JP5207829B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP5207829B2
JP5207829B2 JP2008138050A JP2008138050A JP5207829B2 JP 5207829 B2 JP5207829 B2 JP 5207829B2 JP 2008138050 A JP2008138050 A JP 2008138050A JP 2008138050 A JP2008138050 A JP 2008138050A JP 5207829 B2 JP5207829 B2 JP 5207829B2
Authority
JP
Japan
Prior art keywords
photosensitive member
rotation time
time
image forming
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008138050A
Other languages
Japanese (ja)
Other versions
JP2009288307A5 (en
JP2009288307A (en
Inventor
達也 衣川
公孝 一瀬
智朗 中居
隆生 久米
和弘 船谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008138050A priority Critical patent/JP5207829B2/en
Publication of JP2009288307A publication Critical patent/JP2009288307A/en
Publication of JP2009288307A5 publication Critical patent/JP2009288307A5/ja
Application granted granted Critical
Publication of JP5207829B2 publication Critical patent/JP5207829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Description

本発明は、複写機、プリンタ、ファックスなどの電子写真方式の画像形成装置に関するものである。   The present invention relates to an electrophotographic image forming apparatus such as a copying machine, a printer, and a fax machine.

電子写真方式を利用した画像形成装置は、一般的に以下を備える。像担持体である感光体。感光体表面を帯電する帯電装置(コロナ帯電器、帯電ローラなど)。感光体上に静電潜像を形成する為の像露光装置。静電潜像を現像するための現像装置。トナー像を転写材に転写するための転写装置。感光体上の残留トナーをクリーニングするクリーニング装置。感光体上の静電潜像を消去するための除電露光装置。更に転写材上のトナー像を定着するための定着装置。   An image forming apparatus using an electrophotographic method generally includes the following. A photoconductor as an image carrier. A charging device (corona charger, charging roller, etc.) for charging the surface of the photoreceptor. An image exposure apparatus for forming an electrostatic latent image on a photoreceptor. A developing device for developing an electrostatic latent image. A transfer device for transferring a toner image to a transfer material. A cleaning device for cleaning residual toner on the photoreceptor. A static elimination exposure apparatus for erasing an electrostatic latent image on a photoreceptor. And a fixing device for fixing the toner image on the transfer material.

従来、電子写真を利用した画像形成装置では、一般に静電潜像上にトナー保持する感光体は、電荷発生層及び電荷輸送層で構成された感光層を有する。   Conventionally, in an image forming apparatus using electrophotography, a photoreceptor that holds toner on an electrostatic latent image generally has a photosensitive layer composed of a charge generation layer and a charge transport layer.

そして、プリント開始の信号により、感光体は一定方向に駆動されることで移動するようになっている。   The photosensitive member is moved by being driven in a certain direction in response to a print start signal.

そして、感光体を帯電装置によりバイアス印加をすることにより、感光体表面を一定の電位まで帯電を行う(以下、帯電工程と呼ぶ)。   Then, the surface of the photoconductor is charged to a certain potential by applying a bias to the photoconductor with a charging device (hereinafter referred to as a charging step).

このときの表面電位をVD電位と呼ぶ。さらに、コントローラからの信号に基づいて、オン/オフ制御されたレーザー光或いはLED光を感光体表面に照射する(以下、露光工程と呼ぶ)。感光体の光照射された位置は電位が低下することで、感光体表面には静電潜像が形成される。この光照射された部分の電位をVLと呼ぶ。   The surface potential at this time is called a VD potential. Further, the surface of the photosensitive member is irradiated with on-off controlled laser light or LED light based on a signal from the controller (hereinafter referred to as an exposure process). An electrostatic latent image is formed on the surface of the photoconductor as the potential of the photoirradiated position of the photoconductor decreases. The potential of the irradiated portion is called VL.

そして、感光体に対向配置した、トナーが充填された現像装置に現像バイアスを印加し、所定の電荷を付与されたトナーを感光ドラム等の感光体である感光体上の静電潜像に移すことにより、静電潜像をトナー像とする(以下、現像工程と呼ぶ)。なお、現像バイアスをVdevと呼ぶ。   Then, a developing bias is applied to a developing device filled with toner that is disposed opposite to the photosensitive member, and the toner provided with a predetermined charge is transferred to an electrostatic latent image on the photosensitive member such as a photosensitive drum. Thus, the electrostatic latent image is used as a toner image (hereinafter referred to as a developing step). The developing bias is referred to as Vdev.

そして、感光体に隣接して配置され、感光体と略同速度で順方向に移動する転写ローラ等の転写部材に、感光体上のトナーと逆極性のバイアスを印加する。その状態で感光体と転写部材との間に転写材を通過させることにより、感光上に担持されたトナーを転写材上に転写する(以下、転写工程と呼ぶ)。   A bias having a polarity opposite to that of the toner on the photoconductor is applied to a transfer member such as a transfer roller that is disposed adjacent to the photoconductor and moves in the forward direction at substantially the same speed as the photoconductor. In this state, the transfer material is passed between the photosensitive member and the transfer member to transfer the toner carried on the photosensitive material onto the transfer material (hereinafter referred to as a transfer process).

ところで、露光工程によって感光体中に残留電荷が発生し、画像形成中にVLが変動することがある。また、感光体は接触している帯電部材、露光部材、クリーニング部材等との摩擦や定着器等からの放熱による移動中の昇温により、VLが変動する場合もある。すなわち、画像形成に伴う感光体の露光工程や移動により、VdevとVLの差である現像コントラストが変動してしまうことになる。これは、感光体上のトナー乗り量の変化につながり、転写材上の画像濃度変動を招く。なお、現像コントラストはVcontと呼ぶ。   By the way, residual charges may be generated in the photoconductor by the exposure process, and VL may fluctuate during image formation. In addition, the VL may fluctuate due to temperature rise during movement due to friction with the charging member, exposure member, cleaning member, or the like in contact with the photosensitive member or heat radiation from the fixing device. That is, the development contrast, which is the difference between Vdev and VL, fluctuates due to the exposure process and movement of the photosensitive member accompanying image formation. This leads to a change in the amount of toner loaded on the photoreceptor, and causes an image density fluctuation on the transfer material. The development contrast is called Vcont.

これまで、画像濃度を安定させるために、感光体のVLをセンサにより検知して、その結果に応じて画像形成条件制御を行う画像形成装置がある(特許文献1参照)。しかしながら、センサの設置およびセンサを設置するスペースなどにより、コストアップや装置の大型化を招く問題があった。   Until now, in order to stabilize the image density, there is an image forming apparatus that detects the VL of the photosensitive member with a sensor and controls the image forming condition according to the result (see Patent Document 1). However, there is a problem in that the installation of the sensor and the space for installing the sensor increase the cost and increase the size of the apparatus.

また、静電潜像形成前に行う、除電及び帯電を伴った感光体の回転の回数を、感光体近傍の温度及び湿度に応じて適宜選択することにより、同一画像を多数枚形成した際の画像濃度変動を抑える画像形成装置があった(特許文献2参照)。しかし、作像前の感光体の回転数を増加させることは、印刷スピードを落とし、画像形成装置の生産性を低下させる問題であった。   In addition, by appropriately selecting the number of rotations of the photoconductor with charge removal and charging before forming the electrostatic latent image according to the temperature and humidity in the vicinity of the photoconductor, a large number of the same images are formed. There has been an image forming apparatus that suppresses fluctuations in image density (see Patent Document 2). However, increasing the number of rotations of the photoconductor before image formation is a problem that decreases the printing speed and decreases the productivity of the image forming apparatus.

上記のような問題を解決する方法として、感光体周辺の温度と感光体回転時間と感光体停止時間から感光体のVLを予測し、それに応じてプロセス制御を行う画像形成装置が提案されている(特許文献3参照)。
特開2000−181158号公報 特開2005−300745号公報 特開2002−258550号公報
As a method for solving the above problems, there has been proposed an image forming apparatus that predicts the VL of a photoconductor from the temperature around the photoconductor, the photoconductor rotation time, and the photoconductor stop time, and performs process control accordingly. (See Patent Document 3).
JP 2000-181158 A JP-A-2005-300745 JP 2002-258550 A

しかしながら、本発明者による検討によると、画像形成に伴うVLの変動は雰囲気の絶対湿度依存性を有すること、およびVLの変動はVLの絶対値の上昇だけではなくVLの絶対値が減少する挙動も確認された。したがって、特許文献3で提案されている従来技術では、感光体周辺の雰囲気の絶対湿度を考慮していないことや、感光体回転時間とともにVLの上昇とVLの低下が両方起こりうることを想定していないために、VLの変動を精度よく予測することができなかった。そのため、適切な画像形成制御を行えず、安定した濃度の画像が得られない、という問題があった。以下、感光体回転時間とともにVLの絶対値を上昇させる方向に作用する現象を“VLアップ”と称し、感光体回転時間とともにVLの絶対値を低下させる方向に作用する現象を“VLダウン”と称する。   However, according to the study by the present inventor, the fluctuation of VL due to image formation has an absolute humidity dependence of the atmosphere, and the fluctuation of VL not only increases the absolute value of VL but also decreases the absolute value of VL. Was also confirmed. Therefore, in the prior art proposed in Patent Document 3, it is assumed that the absolute humidity of the atmosphere around the photoconductor is not taken into account, and that both an increase in VL and a decrease in VL can occur with the rotation time of the photoconductor. Therefore, the fluctuation of VL could not be accurately predicted. Therefore, there is a problem that appropriate image formation control cannot be performed and an image having a stable density cannot be obtained. Hereinafter, a phenomenon that acts in the direction of increasing the absolute value of VL with the photosensitive member rotation time is referred to as “VL up”, and a phenomenon that acts in a direction of decreasing the absolute value of VL with the photosensitive member rotation time is referred to as “VL down”. Called.

図2に感光体の表面電位の概念図を示す。図2に示すようにVdevとVLの差である“Vdev−VL”がVcontとなる。このVcontが大きいほど、感光体上に現像されるトナー量が多くなるため画像濃度が高くなる。VLアップは、図2の矢印Aの方向(絶対値が高くなる方向)にVLが変動するため、Vcontが小さくなり画像濃度が低下してしまう現象である。一方、VLダウンは、図2の矢印Bの方向(絶対値が低くなる方向)にVLが変動するため、Vcontが大きくなり画像濃度が上昇してしまう現象である。   FIG. 2 shows a conceptual diagram of the surface potential of the photoreceptor. As shown in FIG. 2, “Vdev−VL”, which is the difference between Vdev and VL, becomes Vcont. As this Vcont increases, the amount of toner developed on the photoconductor increases, so the image density increases. VL up is a phenomenon in which Vcont decreases and image density decreases because VL fluctuates in the direction of arrow A in FIG. 2 (in which the absolute value increases). On the other hand, VL down is a phenomenon in which Vcont increases and image density increases because VL fluctuates in the direction of arrow B (the direction in which the absolute value decreases) in FIG.

以下、VLアップとVLダウンについて詳細に説明する。   Hereinafter, VL up and VL down will be described in detail.

まず、VLアップで起こる現象についての説明を行う。L/L環境(低温低湿環境)、例えば15℃/10%RHの環境においては、数枚の連続画像形成であっても、図3(a)に示すような画像形成に伴うVLアップが起こる。また、本発明者による検討では、VLアップ現象において、絶対湿度が低い環境であるほど単位時間あたりのVLの上昇率が大きいことが確認されている。   First, the phenomenon that occurs with VL-up will be described. In an L / L environment (low-temperature and low-humidity environment), for example, an environment of 15 ° C./10% RH, even when several continuous images are formed, a VL increase accompanying image formation as shown in FIG. . Further, in the VL increase phenomenon, it has been confirmed by the inventor that the increase rate of VL per unit time is larger in an environment where the absolute humidity is lower.

更に、VLアップは画像形成が行われる前に感光体が停止していた時間による影響を受け、この感光体停止時間が長いほど上昇量は大きくなる。例えば、感光体停止時間が長い場合には図3(a)に示すようにVLはV1まで上昇するが、感光体停止時間が短い場合には図3(b)に示すようにVLはV1より少ないV2までしか上昇しない。   Further, the VL up is affected by the time that the photosensitive member has been stopped before image formation is performed, and the amount of increase increases as the photosensitive member stop time increases. For example, when the photosensitive member stop time is long, VL rises to V1 as shown in FIG. 3A, but when the photosensitive member stop time is short, VL is lower than V1 as shown in FIG. 3B. It only rises to a small V2.

本発明者は、VLアップの現象は画像形成の際の感光体に対する露光により感光層内の残留電荷数が増加したことが主原因であると考えている。つまり、絶対湿度が低い環境においては、感光層中のいずれかの層の抵抗が高くなることで、電荷の移動や注入がスムーズに行われにくくなったことがVLアップの原因と考えた。このように絶対湿度が低い環境においては、画像形成を行うとともに抵抗が高い層に残留電荷の蓄積が生じるために、VLアップが起こる。画像形成の時間を感光体回転時間により推定することでもVLアップの量を予測することができる。   The inventor believes that the VL increase phenomenon is mainly caused by an increase in the number of residual charges in the photosensitive layer due to exposure of the photoreceptor during image formation. That is, in an environment where the absolute humidity is low, the resistance of any layer in the photosensitive layer is increased, and it is considered that the charge transfer and injection are difficult to be performed smoothly, which is the cause of the VL increase. In such an environment where the absolute humidity is low, residual charge is accumulated in a layer having high resistance while performing image formation, so that VL increases. The amount of VL increase can also be predicted by estimating the image formation time from the photosensitive member rotation time.

画像形成により発生した残留電荷は、画像形成が終わり画像形成を停止することによりだんだんと感光層からアースへと抜けていく。さらに画像形成停止時間が長いほど、前の画像形成時に発生した残留電荷が少なくなり、次に画像形成を行った時に残留電荷が溜まりやすい状態となる。よって、画像形成停止時間が長いほど、次の画像形成を行った時に、VLアップの影響が顕著にでて、VLの上昇量が大きくなる。   Residual charges generated by image formation gradually escape from the photosensitive layer to ground when the image formation is completed and the image formation is stopped. Further, as the image formation stop time is longer, the residual charge generated during the previous image formation is reduced, and the residual charge is likely to be accumulated when the next image formation is performed. Therefore, as the image formation stop time is longer, the effect of VL increase becomes more significant when the next image formation is performed, and the amount of increase in VL increases.

次に、VLダウンの現象についての説明を行う。連続画像形成がなされた場合に、図3(c)に示すように感光体回転時間とともにVLの低下が起こる。   Next, the phenomenon of VL down will be described. When continuous image formation is performed, VL decreases with the photosensitive member rotation time as shown in FIG.

VLダウンによって低下したVLは、画像形成後に画像形成をしない時間、すなわち感光体停止時間が長いほど元のVLへと回復する傾向を示した。例えば、図3(c)において、直前の画像形成によるVLダウンによって直前の画像形成時のVLがV4まで低下した場合、次の画像形成時の初期のVLは、図3(d)に示すように感光体停止時間が長いほど元のVLであるV3に近い値を示した。   The VL lowered by the VL down showed a tendency to recover to the original VL as the time during which the image is not formed after the image formation, that is, the photoreceptor stop time is longer. For example, in FIG. 3C, when the VL at the previous image formation is reduced to V4 due to the VL down by the previous image formation, the initial VL at the next image formation is as shown in FIG. The longer the photosensitive member stop time, the closer to the original VL, V3.

本発明者はVLダウンについて、感光層内の残留電荷数が減少したことが主原因であると考えた。つまり、画像形成を行うと感光体の昇温が起き、感光層の抵抗が低下するため、感光層中にトラップされていた残留電荷が感光体の外に移動することが、VLダウンの原因と考えた。このように、感光体回転時間とともに感光体の昇温が起きて感光層の抵抗が低下し、トラップされていた残留電荷が減少するために、VLダウンが起きる。なお、感光体回転時間とともに感光体が昇温する原因としては、感光体との接触部材である現像部材、帯電部材、クリーニング部材等との摩擦や定着器等からの放熱であると考えられる。   The present inventor considered that the main cause of VL down was a decrease in the number of residual charges in the photosensitive layer. That is, when an image is formed, the temperature of the photosensitive member rises, and the resistance of the photosensitive layer decreases. Therefore, the residual charge trapped in the photosensitive layer moves to the outside of the photosensitive member. Thought. As described above, the temperature of the photosensitive member increases with the rotation time of the photosensitive member, the resistance of the photosensitive layer decreases, and the residual charge trapped decreases, so that VL down occurs. The reason why the temperature of the photosensitive member increases with the rotation time of the photosensitive member is considered to be friction with a developing member, a charging member, a cleaning member, and the like, which are members in contact with the photosensitive member, and heat radiation from a fixing device.

VLアップとVLダウンは、画像形成装置の置かれている雰囲気環境の温湿度に応じて、どちらか一方のみが起こることもあるし、同時に起こることもある。図3(e)に示すようにVLが一旦上昇してから、その後低下していく現象が起きることがある。また別の、ある環境においては、図3(f)に示すように、VLが一旦減少してから、その後上昇していく現象が起きることもある。   Depending on the temperature and humidity of the atmosphere environment where the image forming apparatus is placed, only one of the VL up and the VL down may occur or may occur simultaneously. As shown in FIG. 3E, a phenomenon may occur in which VL once rises and then decreases. In another environment, as shown in FIG. 3F, a phenomenon may occur in which VL once decreases and then increases.

以上で述べたように、VLの変動は、画像形成装置の設置されている環境の温度、または画像形成装置内の温度、または感光体周辺や感光体そのものの温度といった、温度による要因以外に、絶対湿度による要因もある。そのため、特許文献3で提案されているような従来技術では、絶対湿度に依存して起こるVLの変動を予測していないため、適切な画像形成制御を行うことができず、安定した濃度の画像を得られないという問題があった。   As described above, the fluctuation of VL is caused by a temperature factor such as the temperature of the environment in which the image forming apparatus is installed, the temperature in the image forming apparatus, or the temperature of the periphery of the photoconductor or the photoconductor itself. There is also a factor due to absolute humidity. For this reason, the conventional technology proposed in Patent Document 3 does not predict the fluctuation of VL that occurs depending on the absolute humidity, so that appropriate image formation control cannot be performed, and an image with a stable density can be obtained. There was a problem that could not be obtained.

また、特許文献3で提案されているような従来技術では、VLアップかVLダウンのどちらか一方が起こることを予測して画像形成制御を行う。そのため、VLアップとVLダウンが同時に起きる場合には適切な画像形成制御を行うことができず、安定した濃度の画像を得られないという問題があった。   In the prior art proposed in Patent Document 3, image formation control is performed by predicting that either VL up or VL down will occur. Therefore, when VL up and VL down occur at the same time, there is a problem that appropriate image formation control cannot be performed and an image with a stable density cannot be obtained.

更に、本発明者の検討によると、図4(a)で示すように、感光体の使用状態が新品時は、上述したVLアップの影響が発生しない。そして、A4/LTRサイズの紙を連続で感光体寿命の20%である1000枚程度までプリントするにつれて徐々にVLアップ量が増加する。さらに、1000枚以降の印刷後は、感光体の寿命である5000枚まで同じ量のVLアップが発生することが確認された。   Further, according to the study of the present inventor, as shown in FIG. 4A, when the use state of the photoconductor is new, the above-described influence of VL up does not occur. As the A4 / LTR size paper is continuously printed up to about 1000 sheets, which is 20% of the life of the photoreceptor, the VL increase amount gradually increases. Further, it was confirmed that the same amount of VL up occurs up to 5000 sheets, which is the life of the photoreceptor, after printing 1000 sheets or more.

図4(b)で示すように、感光体の回転状況と感光体膜厚の減少量は比例関係となっている。そのため、本現象のような、感光体の寿命20%あたりまでVLアップ量が徐々に増加し、感光体の20%以降はVLアップ量が同じになるという現象とは一致しない。   As shown in FIG. 4B, the rotation state of the photoconductor and the reduction amount of the photoconductor film thickness are in a proportional relationship. For this reason, this phenomenon does not coincide with the phenomenon in which the VL increase amount gradually increases to around 20% of the life of the photoconductor, and the VL increase amount becomes the same after 20% of the photoconductor.

本発明者は本現象について、感光体の使用状態が新品時は、感光体の露光履歴が少ないため、感光層内の残留電荷が増加しにくい状態にあり、その結果VLアップが発生しにくいと考えた。その一方で、感光体の使用状態が1000枚を超えたあたりでは、感光体の露光履歴が飽和するため、その後のVLアップ量は通紙枚数に依存しないと推定される。   The present inventor is concerned with this phenomenon when the use state of the photoconductor is new, since the exposure history of the photoconductor is small, the residual charge in the photoconductive layer is hardly increased, and as a result, the VL increase is difficult to occur. Thought. On the other hand, since the exposure history of the photoconductor is saturated when the usage state of the photoconductor exceeds 1000 sheets, it is estimated that the subsequent VL-up amount does not depend on the number of sheets passed.

特許文献3で提案されているような従来技術では、このような感光体が新品時から感光体20%程度までにおいて、VLアップ量が小さくなる領域があることが考慮されていない。そのため、上記モードでプリント実行時には、安定した濃度の画像を得られないという問題があった。   In the prior art as proposed in Patent Document 3, it is not considered that there is a region in which the VL-up amount is small from when the photoconductor is new to about 20% of the photoconductor. Therefore, there is a problem that an image having a stable density cannot be obtained when printing is performed in the above mode.

本発明は上記説明した従来技術の問題点を解決することを出発点としてなされたものであり、感光体の積算回転時間に応じて制御を変更することで、画像濃度が変動しない良好な画像をユーザーに提供することである。   The present invention has been made starting from solving the above-mentioned problems of the prior art, and by changing the control according to the accumulated rotation time of the photosensitive member, a good image without changing the image density can be obtained. To provide to users.

上記目的を達成するための本発明の画像形成装置は、以下の構成を有するものである。   In order to achieve the above object, an image forming apparatus of the present invention has the following configuration.

本発明の代表的な構成は、記録媒体に画像を形成する画像形成装置において、表面が回転可能な感光体と、感光体に形成された潜像に現像剤を供給して現像剤像とする現像装置と、前記感光体が停止状態から移動を開始して経過した時間である感光体回転時間に関する情報と、前記感光体が移動状態から停止して経過した時間である感光体停止時間に関する情報とを取得する時間情報取得手段と、画像形成装置の温湿度に関する情報を検知する温湿度検知手段と、記感光体回転時間に関する情報と、前記感光体停止時間に関する情報と、前記温湿度に関する情報と、に応じて、前記現像装置に印加する現像バイアスの絶対値を減少させるように作用する第1の現像バイアス補正量と、前記現像バイアスの絶対値を増加させるように作用する第2の現像バイアス補正量と、を計算し、前記第1の現像バイアス補正量および前記第2の現像バイアス補正量を用いて前記現像バイアスを制御する制御手段と、を備え、前記制御手段は、前記第2の現像バイアス補正量の計算をする際、前記感光体の積算回転時間が所定の回転時間までは、前記感光体の積算回転時間に関する情報を考慮し、前記所定の回転時間の後は、前記感光体の積算回転時間に関する情報を考慮しないことを特徴とする。また本発明の別の構成は、記録媒体に画像を形成可能な画像形成装置において、表面が回転可能な感光体と、前記感光体の表面を帯電する帯電装置と、前記感光体が停止状態から移動を開始して経過した時間である感光体回転時間に関する情報と、前記感光体が移動状態から停止して経過した時間である感光体停止時間に関する情報とを取得する時間情報取得手段と、画像形成装置の温湿度に関する情報を検知する温湿度検知手段と、前記感光体回転時間に関する情報と、前記感光体停止時間に関する情報と、前記温湿度に関する情報と、に応じて、前記帯電装置に印加する帯電バイアスの絶対値を増加させるように作用する第1の帯電バイアス補正量と、前記帯電バイアスの絶対値を減少させるように作用する第2の帯電バイアス補正量と、を計算し、第1の帯電バイアス補正量および前記第2の帯電バイアス補正量を用いて前記帯電バイアスを決める制御手段と、を備え、前記制御手段は、前記第2の帯電バイアス補正量の計算する際、前記感光体の積算回転時間が所定の回転時間までは、前記感光体の積算回転時間に関する情報を考慮して計算し、前記所定の回転時間の後は、前記感光体の積算回転時間に関する情報を考慮しないことを特徴とする。 In a typical configuration of the present invention, in an image forming apparatus for forming an image on a recording medium , a developer is supplied to a photosensitive member whose surface is rotatable and a latent image formed on the photosensitive member to form a developer image. Information on the developing device , the photosensitive member rotation time that is the time elapsed since the photosensitive member started moving from the stopped state, and the information on the photosensitive member stop time that is the elapsed time after the photosensitive member stopped from the moving state and time information acquiring means for acquiring the door, and temperature and humidity detecting means for detecting information about the temperature and humidity of the image forming apparatus, and the information on the previous SL photosensitive member rotation time, and the information on the photosensitive member stop time, related to the temperature and humidity and information, in response to the a first developing bias correction amount acting to reduce the absolute value of the developing bias applied to the developing device, acts to increase the absolute value of the developing bias And second developing bias correction amount, were calculated, and a control means for controlling the developing bias using the first developing bias correction amount and the second developing bias correction amount, wherein, When calculating the second developing bias correction amount, the information on the accumulated rotation time of the photoconductor is taken into account until the accumulated rotation time of the photoconductor reaches a predetermined rotation time, and after the predetermined rotation time, The information on the accumulated rotation time of the photosensitive member is not considered. According to another aspect of the present invention, in an image forming apparatus capable of forming an image on a recording medium, a photosensitive member whose surface is rotatable, a charging device which charges the surface of the photosensitive member, and the photosensitive member from a stopped state. Time information acquisition means for acquiring information on a photosensitive member rotation time that is a time that has elapsed since the start of movement, and information on a photosensitive member stop time that is a time that has passed since the photosensitive member stopped from the moving state; Temperature / humidity detection means for detecting information relating to temperature and humidity of the forming device, information relating to the photosensitive member rotation time, information relating to the photosensitive member stop time, and information relating to the temperature and humidity are applied to the charging device. A first charging bias correction amount that acts to increase the absolute value of the charging bias, and a second charging bias correction amount that acts to decrease the absolute value of the charging bias. Control means for determining the charging bias using the first charging bias correction amount and the second charging bias correction amount, and the control means calculates the second charging bias correction amount. In this case, the total rotation time of the photoconductor is calculated in consideration of information related to the total rotation time of the photoconductor until the predetermined rotation time, and after the predetermined rotation time, the total rotation time of the photoconductor is calculated. It is characterized by not considering the information regarding.

以上説明したように、本発明によれば、感光体の積算回転時間に応じて制御を変更することで、画像濃度が変動しない良好な画像をユーザーに提供することが可能となる。   As described above, according to the present invention, it is possible to provide the user with a good image whose image density does not vary by changing the control according to the accumulated rotation time of the photoconductor.

以下、図面を参照して本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(実施例1)
図5は、本実施の形態の画像形成装置の概略構成を示す。本実施の形態において、画像形成装置100は、電子写真画像形成プロセスによって記録媒体(転写材)、例えば、記録用紙、OHPシート或いは布などに画像形成するレーザービームプリンタとされる。
Example 1
FIG. 5 shows a schematic configuration of the image forming apparatus of the present embodiment. In the present embodiment, the image forming apparatus 100 is a laser beam printer that forms an image on a recording medium (transfer material), for example, a recording sheet, an OHP sheet, or a cloth, by an electrophotographic image forming process.

本実施の形態の画像形成装置100は、像担持体である円筒状の感光ドラム1を有し、その軸を中心に図5の矢印Aの方向に回転可能に支持している。画像形成動作が開始すると、回転する感光ドラム1Yの表面は、ローラ状の帯電手段(帯電ローラ)2Yによって一様に負に帯電される。その後、露光手段である露光装置3Yが、画像情報に応じた光により感光ドラム1Yの表面を走査露光し、感光ドラム1Yの表面に静電潜像を形成する。感光ドラム1Y上に形成した潜像は、現像装置5YがYトナーを供給することで現像される。   The image forming apparatus 100 according to the present embodiment has a cylindrical photosensitive drum 1 that is an image carrier, and supports the photosensitive drum 1 so as to be rotatable in the direction of an arrow A in FIG. When the image forming operation starts, the surface of the rotating photosensitive drum 1Y is uniformly negatively charged by the roller-shaped charging means (charging roller) 2Y. Thereafter, the exposure device 3Y, which is an exposure means, scans and exposes the surface of the photosensitive drum 1Y with light corresponding to the image information, and forms an electrostatic latent image on the surface of the photosensitive drum 1Y. The latent image formed on the photosensitive drum 1Y is developed when the developing device 5Y supplies Y toner.

現像装置5Yでは、現像スリーブ6Yに現像バイアスを印加することで前記感光ドラム1Y上に書き込まれた潜像をYトナー層として形成する。Yトナー層は、転写ローラ7Yに転写バイアスを印加することで、給紙カセット11より給紙ローラ12を介して給紙される転写ベルト9上の転写材Pの表面に転写される。転写材Pに転写されずに感光ドラム1Yの表面上に残ったトナーは、クリーニングブレード16Yによって除去された後、廃トナー収容部8Yによって収容される。   The developing device 5Y forms a latent image written on the photosensitive drum 1Y as a Y toner layer by applying a developing bias to the developing sleeve 6Y. The Y toner layer is transferred to the surface of the transfer material P on the transfer belt 9 fed from the paper feed cassette 11 via the paper feed roller 12 by applying a transfer bias to the transfer roller 7Y. The toner remaining on the surface of the photosensitive drum 1Y without being transferred to the transfer material P is removed by the cleaning blade 16Y and then accommodated in the waste toner accommodating portion 8Y.

転写ベルト9aは4本のローラ10a、10b、10c、10dに掛け渡されており、図5の矢印Bの方向に回転し、表面に担持した転写材Pを画像形成ステーションSY〜SBkに順次搬送する。   The transfer belt 9a is stretched around four rollers 10a, 10b, 10c, and 10d. The transfer belt 9a rotates in the direction of arrow B in FIG. 5, and sequentially transfers the transfer material P carried on the surface to the image forming stations SY to SBk. To do.

上記の処理を他の色のステーションSC、SM、SBkでも行うことにより、転写材P上には各色のトナー層が重ね合わされてできるトナー像(現像剤像)が形成される。その後、転写ベルト9の下流側に配置されたローラ10bのさらに下流側に位置する定着装置14によって、転写材Pの表面に転写されたトナー像は溶融固着され、カラー画像形成装置100の外部に配置されたトレイ15に排出される。   By performing the above processing also at other color stations SC, SM, and SBk, a toner image (developer image) formed by superimposing the toner layers of the respective colors on the transfer material P is formed. Thereafter, the toner image transferred onto the surface of the transfer material P is melted and fixed by the fixing device 14 positioned further downstream of the roller 10 b disposed on the downstream side of the transfer belt 9, and the toner image is transferred to the outside of the color image forming apparatus 100. It is discharged to the arranged tray 15.

画像形成装置100には温湿度検知手段として温湿度センサ18が設けられており、画像形成装置100が使用されている雰囲気環境を検出する。検出した温度と湿度は、CPU22に出力される。CPU22は温湿度センサ18より入力された温度と相対湿度から雰囲気環境の絶対湿度を算出し、雰囲気環境の温度と絶対湿度の情報をそれぞれ0.1℃と0.1g/m3の単位で記憶手段20に保存する。なお、絶対湿度とは、雰囲気環境の単位体積あたりに含まれる水蒸気量(g)を表すものであり、単位はg/mである。温湿度センサ18が設けられる場所はこれに限定されるものではなく、感光ドラム1の周辺に設けてもよいし、それ以外の場所であっても構わない。感光ドラム1の周辺に温湿度センサ18を配置した場合においても、感光ドラム1の実際の温度と、温湿度センサ18が検出する温度にはズレが発生する。そのため、感光ドラム1の周辺に置かれた温湿度センサ18の温湿度情報のみで現像バイアスを切り替えることは、感光ドラムの回転時間に対して画像濃度は安定しない。そこで、本実施の形態で記載されているような温湿度センサ18の検出結果に加え、感光ドラム1の回転時間、停止時間を考慮して予測した制御の方が好ましい。 The image forming apparatus 100 is provided with a temperature / humidity sensor 18 as temperature / humidity detection means, and detects an atmospheric environment in which the image forming apparatus 100 is used. The detected temperature and humidity are output to the CPU 22. The CPU 22 calculates the absolute humidity of the atmospheric environment from the temperature and relative humidity input from the temperature / humidity sensor 18, and stores the temperature and absolute humidity information of the atmospheric environment in units of 0.1 ° C. and 0.1 g / m 3, respectively. Save to 20. The absolute humidity represents the amount of water vapor (g) contained per unit volume of the atmospheric environment, and the unit is g / m 3 . The place where the temperature / humidity sensor 18 is provided is not limited to this, and the temperature / humidity sensor 18 may be provided in the vicinity of the photosensitive drum 1 or may be other places. Even when the temperature / humidity sensor 18 is disposed around the photosensitive drum 1, a deviation occurs between the actual temperature of the photosensitive drum 1 and the temperature detected by the temperature / humidity sensor 18. Therefore, switching the developing bias only with the temperature and humidity information of the temperature and humidity sensor 18 placed around the photosensitive drum 1 does not stabilize the image density with respect to the rotation time of the photosensitive drum. Therefore, in addition to the detection result of the temperature / humidity sensor 18 described in the present embodiment, it is preferable to perform control that is predicted in consideration of the rotation time and stop time of the photosensitive drum 1.

また、本実施の形態においては、雰囲気環境の温度と絶対湿度の情報をそれぞれ0.1℃と0.1g/m3の単位で記憶手段20に保存するとしたが、特に限定されるものではなく、これら以外の単位であってもよい。なお、本実施例では、温度と相対湿度から絶対湿度を計算しているが、直接絶対湿度を測定することが可能であればそれでも問題ない。   In the present embodiment, the temperature and absolute humidity information of the atmospheric environment is stored in the storage means 20 in units of 0.1 ° C. and 0.1 g / m 3, respectively, but is not particularly limited. Units other than these may be used. In this embodiment, the absolute humidity is calculated from the temperature and the relative humidity. However, there is no problem if the absolute humidity can be directly measured.

なお、本実施の形態では、一成分現像方式を用いているが、これに限らず二成分現像方式を用いたものであってもよい。また、本発明における現像手段は磁性現像剤及び非磁性現像剤のいずれを用いるものであってもよく、これらは特に限定されるものではない。また、本発明に用いられる現像剤も、電子写真法に用いられる公知のものを用いることができ、現像手段に合わせて適宜最適なものが選択される。なお、本実施の形態においては、現像剤として非磁性現像剤を用いている。   In this embodiment, the one-component development method is used. However, the present invention is not limited to this, and a two-component development method may be used. Further, the developing means in the present invention may use either a magnetic developer or a non-magnetic developer, and these are not particularly limited. As the developer used in the present invention, a known one used in electrophotography can be used, and an optimum one is appropriately selected according to the developing means. In the present embodiment, a nonmagnetic developer is used as the developer.

次に、画像形成装置100の感光ドラム1について説明する。感光ドラム1の感光層は、電荷発生物質を含有する電荷発生層と、電荷輸送物質を含有する電荷輸送層に機能分離された積層型である。さらに、この積層型の感光層上に保護層として表面層を形成している。   Next, the photosensitive drum 1 of the image forming apparatus 100 will be described. The photosensitive layer of the photosensitive drum 1 is a laminated type in which a function is separated into a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material. Further, a surface layer is formed as a protective layer on the laminated photosensitive layer.

図6を用いて、感光ドラム1の感光層の層構成について説明する。   The layer configuration of the photosensitive layer of the photosensitive drum 1 will be described with reference to FIG.

感光体の支持体となる導電性を有するAl基体1aの上に、バリアー機能と接着機能をもつ下引き層1bを設けている。更に下引き層1bの上には、アルミ基体1aから注入された正電荷が感光ドラム1の表面に帯電された負電荷を打ち消すのを防止する役割を果たす、中抵抗の正電荷注入防止層1cを設けている。   An undercoat layer 1b having a barrier function and an adhesive function is provided on an Al substrate 1a having conductivity which serves as a support for the photoreceptor. Further, on the undercoat layer 1b, a medium-resistance positive charge injection preventing layer 1c that serves to prevent the positive charge injected from the aluminum substrate 1a from canceling the negative charge charged on the surface of the photosensitive drum 1 is used. Is provided.

その上に電荷発生物質を含有する電荷発生層1dを設けており、電荷発生層1dは、電荷発生物質を結着樹脂および溶剤と共に分散して得られる電荷発生層用塗布液を塗布し、これを乾燥させることによって形成することができる。   A charge generation layer 1d containing a charge generation material is provided thereon, and the charge generation layer 1d is applied with a charge generation layer coating solution obtained by dispersing the charge generation material together with a binder resin and a solvent. Can be formed by drying.

電荷発生層1dの上には、電荷輸送物質を含有する電荷輸送層1eを設けている。電荷輸送層は、電荷輸送物質と結着樹脂を溶剤に溶解して得られる電荷輸送層用塗布液を塗布し、これを乾燥させることによって形成することができる。   A charge transport layer 1e containing a charge transport material is provided on the charge generation layer 1d. The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent and drying it.

電荷輸送層1eの上には表面層として表面保護層1fを設けている。表面保護層1fは、硬化性フェノール樹脂を溶剤等で溶解又は希釈して得た塗工液を感光層上に塗工して成形し、これによって塗工後に重合反応が起きて硬化層が形成される。   A surface protective layer 1f is provided as a surface layer on the charge transport layer 1e. The surface protective layer 1f is formed by applying a coating solution obtained by dissolving or diluting a curable phenol resin with a solvent or the like onto the photosensitive layer, thereby forming a cured layer by causing a polymerization reaction after coating. Is done.

次に、本実施の形態における、画像形成装置100の画像濃度制御方法について述べる。   Next, an image density control method of the image forming apparatus 100 in the present embodiment will be described.

画像濃度制御の一部は、各色の最大濃度を一定に保つ事(以下Dmax制御と称す)と、ハーフトーンの階調特性を画像信号に対してリニアに保つこと(以下Dhalf制御と称す)によって行っている。   Part of image density control is to keep the maximum density of each color constant (hereinafter referred to as Dmax control) and to keep the halftone gradation characteristics linear with respect to the image signal (hereinafter referred to as Dhalf control). Is going.

Dmax制御は、各色の最大濃度が感光ドラム1の膜厚や雰囲気環境に影響されるため、所望の最大濃度が得られるように環境検知の結果及びCRGタグ情報から帯電バイアスや現像バイアスなどの画像形成条件を設定する。   In the Dmax control, since the maximum density of each color is affected by the film thickness of the photosensitive drum 1 and the atmospheric environment, an image such as a charging bias or a developing bias is obtained from the result of the environment detection and the CRG tag information so as to obtain a desired maximum density. Set the formation conditions.

一方、Dhalf制御は、電子写真特有の非線形的な入出力特性(γ特性)によって、入力画像信号に対して出力濃度がずれて自然な画像が形成できない事を防止するため、γ特性を打ち消して入出力特性をリニアに保つような画像処理を行う。入力画像信号が異なる複数のトナーパッチを光学センサで検知して、入力画像信号と濃度の関係を得る。その関係から入力画像信号に対して所望の濃度が出るよう、画像形成装置に入力する画像信号を変換する。このDhalf制御はDmax制御により帯電バイアスや現像バイアスなどの画像形成条件を決定した後に行う。   On the other hand, Dhalf control cancels the γ characteristic in order to prevent the output density from deviating from the input image signal due to the nonlinear input / output characteristic (γ characteristic) peculiar to electrophotography. Image processing is performed to keep the input / output characteristics linear. A plurality of toner patches having different input image signals are detected by an optical sensor to obtain a relationship between the input image signal and density. From this relationship, the image signal input to the image forming apparatus is converted so that a desired density is obtained with respect to the input image signal. This Dhalf control is performed after image forming conditions such as a charging bias and a developing bias are determined by Dmax control.

VLの変動によって出力画像の濃度が感光体回転時間とともに変化する場合、Dmax制御とDhalf制御を頻繁に、例えば5枚の印刷枚数ごとに行うことで、色味変動を抑制することは可能である。しかし、Dmax制御とDhalf制御を頻繁に行うことは印刷スピードを大幅に落とし、画像形成装置の生産性を著しく低下させるため現実的ではない。そのため、本実施の形態では、Dmax制御とDhalf制御は1000枚の印刷枚数につき1度しか行っていない。なお、本実施の形態におけるDmax制御とDhalf制御は1000枚の印刷枚数につき1度のタイミングとしたが、これに限定されるものではなく、別のタイミングであっても構わないし、Dhalf制御を全く行わない構成であってもよい。また、印刷枚数ではなくトナー消費量などを基準としてDmax制御とDhalf制御を行うタイミングを決めてもよい。   When the density of the output image changes with the photosensitive member rotation time due to the fluctuation of VL, it is possible to suppress the color fluctuation by frequently performing Dmax control and Dhalf control, for example, every five prints. . However, frequently performing the Dmax control and the Dhalf control is not realistic because the printing speed is greatly reduced and the productivity of the image forming apparatus is significantly reduced. Therefore, in the present embodiment, Dmax control and Dhalf control are performed only once for every 1000 printed sheets. The Dmax control and the Dhalf control in the present embodiment are set to the timing of once per 1000 printed sheets. However, the timing is not limited to this, and other timings may be used. The structure which does not perform may be sufficient. In addition, the timing for performing Dmax control and Dhalf control may be determined based on toner consumption and the like instead of the number of printed sheets.

本実施の形態では、Dmax制御とDhalf制御は1000枚の印刷枚数につき1度しか行っていないため、その間にVLが大幅に変動してしまう。そのため、画像濃度制御をDmax制御とDhalf制御のみで行うと、安定した画像濃度が得られない。そこで、本実施の形態では、Dmax制御やDhalf制御以外の画像濃度制御を行なっている。即ち、感光体回転時間や感光体停止時間、温湿度から、VLの変動を予測することでDmax制御によって決められた帯電バイアス若しくは現像バイアス(Vdev)を現像コントラスト(Vcont)が一定になるように逐次補正する画像形成制御を行う。   In the present embodiment, since the Dmax control and the Dhalf control are performed only once per 1000 printed sheets, the VL fluctuates greatly during that time. Therefore, when image density control is performed only with Dmax control and Dhalf control, a stable image density cannot be obtained. Therefore, in the present embodiment, image density control other than Dmax control and Dhalf control is performed. That is, the development contrast (Vcont) is made constant by charging or developing bias (Vdev) determined by the Dmax control by predicting the fluctuation of VL from the photoreceptor rotation time, photoreceptor stop time, temperature and humidity. Perform image formation control for successive corrections.

図1は、本実施の形態における画像形成制御のシステムブロック図である。なお、記憶手段20、CPU22、読み取り手段21、書き込み手段26は、図4に示すように画像形成装置100のエンジン制御部17に設けられている。なお、記憶手段20は、周知の電子的なメモリを好適に用いることができるが、これに限定されるものではない。本実施の形態では、記憶手段20として不揮発性のEEPROMを使用した。   FIG. 1 is a system block diagram of image formation control in the present embodiment. The storage unit 20, CPU 22, reading unit 21, and writing unit 26 are provided in the engine control unit 17 of the image forming apparatus 100 as shown in FIG. The storage means 20 can suitably use a known electronic memory, but is not limited to this. In this embodiment, a nonvolatile EEPROM is used as the storage means 20.

CPU22は以下を備えている。VLの変動を予測する計算手段25。計算手段25によってVLの変動を予測した結果に基づいて画像形成条件の制御を行う制御手段23。感光体回転時間や感光体停止時間に関する情報を取得可能な時間情報取得手段であるタイマー24。感光体の新品時からどれだけ回転したかを判断する感光体積算回転時間判断手段31を備えている。 The CPU 22 includes the following. Calculation means 25 for predicting fluctuations in VL. A control unit 23 that controls image forming conditions based on a result of predicting a VL variation by the calculation unit 25. A timer 24 which is time information acquisition means capable of acquiring information on the photosensitive member rotation time and the photosensitive member stop time . Photoreceptor integrated rotation time determination means 31 is provided for determining how much the photoconductor has been rotated since it was new.

タイマー24は、感光ドラム1が駆動している間は感光体回転時間のカウントを1秒単位で行い、感光ドラム1の駆動が停止している間は感光体停止時間のカウントを1秒単位で行う。なお、本実施の形態においてはタイマー24のカウントを1秒単位としたが、特に限定されるものではなく、1秒以外の単位であってもよい。タイマー24によって計測した感光体回転時間と感光体停止時間は書き込み手段26を介して記憶手段20に記憶される。なお、本実施の形態においては、感光体回転時間と感光体停止時間の計測をどちらもタイマー24によって行ったが、感光体回転時間と感光体停止時間の計測を2つのタイマーがそれぞれ独立して行う構成であってもよい。   The timer 24 counts the photosensitive member rotation time in units of one second while the photosensitive drum 1 is driven, and counts the photosensitive member stop time in units of one second while the driving of the photosensitive drum 1 is stopped. Do. In the present embodiment, the timer 24 counts in units of one second, but is not particularly limited, and may be in units other than one second. The photosensitive member rotation time and the photosensitive member stop time measured by the timer 24 are stored in the storage unit 20 via the writing unit 26. In this embodiment, both the photoconductor rotation time and the photoconductor stop time are measured by the timer 24. However, the two timers independently measure the photoconductor rotation time and the photoconductor stop time. The structure to perform may be sufficient.

画像形成装置100には、記憶手段20に記憶された情報を読み取るための読み取り手段21が設けられている。読み取り手段21は、記憶手段20から読み取った情報をCPU22へ送る。CPU22内にある計算手段25はこれらの情報に基づいて、後述する方法でVLの変動を予測する。制御手段23は、計算手段25で予測した結果に基づき、画像形成プロセスを制御するための情報を画像形成手段に送る。   The image forming apparatus 100 is provided with a reading unit 21 for reading information stored in the storage unit 20. The reading unit 21 sends the information read from the storage unit 20 to the CPU 22. Based on these pieces of information, the calculation means 25 in the CPU 22 predicts fluctuations in VL by a method described later. The control means 23 sends information for controlling the image forming process to the image forming means based on the result predicted by the calculating means 25.

次に本実施の形態の画像形成装置100における画像形成制御について説明する。VLアップやVLダウンが生じる場合において画像濃度を安定させるためには、感光体回転時間に対する感光ドラム1のVLの変動を補正するような画像形成制御を行うことが必要である。このような画像形成制御のためには、前述したように現像バイアスの制御、帯電バイアスの制御を行うことが挙げられる。例えばVLダウンが生じる場合には、そのVLダウン分の帯電バイアスの絶対値を増加させるように作用する補正量(第1の帯電バイアス補正量)を計算手段で計算する。VLアップが生じる場合には、そのVLアップ分の帯電バイアスの絶対値を減少させるように作用する補正量(第2の帯電バイアス補正量)を計算手段で計算する。また、例えばVLダウンが生じる場合には、そのVLダウン分の現像バイアスの絶対値を減少させるように作用する補正量(第1の現像バイアス補正量)を計算手段で計算する。VLアップが生じる場合には、そのVLアップ分の現像バイアスの絶対値を増加させるように作用する補正量(第2の現像バイアス補正量)を計算手段で計算する。本実施の形態では現像装置5の現像バイアス制御を例として説明する。 Next, image formation control in the image forming apparatus 100 of the present embodiment will be described. In order to stabilize the image density when VL up or VL down occurs, it is necessary to perform image formation control that corrects fluctuation of VL of the photosensitive drum 1 with respect to the photosensitive member rotation time. For such image formation control, it is possible to control the developing bias and the charging bias as described above. For example, when a VL down occurs, a correction amount (first charging bias correction amount) that acts to increase the absolute value of the charging bias corresponding to the VL down is calculated by the calculation means. When VL-up occurs, a correction amount (second charging bias correction amount) that acts to decrease the absolute value of the charging bias corresponding to the VL-up is calculated by the calculation means. For example, when a VL down occurs, a correction amount ( first development bias correction amount) that acts to reduce the absolute value of the developing bias corresponding to the VL down is calculated by the calculating means. When VL-up occurs, the correction means ( second development bias correction amount) that acts to increase the absolute value of the developing bias corresponding to the VL-up is calculated by the calculating means. In the present embodiment, the developing bias control of the developing device 5 will be described as an example.

本実施の形態においては、計算手段25は、VLアップによる変動量であるΔUをt1、t2、W、Tc、tsのパラメータより計算し、VLダウンによる変動量であるΔDをt1、t2、W、Tc、tsのパラメータより計算している。なお、ΔUは0若しくは負の値であり、ΔDは0若しくは正の値である。tsは、感光体積算回転時間であり、感光ドラム1が新品時から現在まで回転した時間の積算値である。   In the present embodiment, the calculation means 25 calculates ΔU, which is a fluctuation amount due to VL up, from parameters t1, t2, W, Tc, ts, and ΔD, which is a fluctuation amount due to VL down, is t1, t2, W. , Tc, and ts. Note that ΔU is 0 or a negative value, and ΔD is 0 or a positive value. ts is the photosensitive member accumulated rotation time, which is an accumulated value of the time that the photosensitive drum 1 has rotated from the new time to the present.

t1は、感光ドラムの回転時間である。t2は、感光ドラムの停止時間である。環境温度Tc、絶対湿度Wは、画像形成装置の電源がONとなったときの温湿度センサ18が読み取った値を記憶手段20へ保存した値である。   t1 is the rotation time of the photosensitive drum. t2 is the photosensitive drum stop time. The environmental temperature Tc and the absolute humidity W are values stored in the storage unit 20 by the values read by the temperature / humidity sensor 18 when the power of the image forming apparatus is turned on.

本実施例では、1つの画像形成(画像形成ジョブの一単位)の開始時にt1=0として情報をリセットしている。したがって、感光体回転時間t1は、画像形成開始から制御装置による画像形成条件の制御実行までの感光体回転時間に該当する。即ち、t1は、感光体が停止状態から移動を開始して経過した時間である感光体回転時間に関する情報である。また、1つの画像形成(画像形成ジョブの一単位)の終了時にt2=0として情報をリセットしている。したがって、感光体停止時間t2は、前の画像形成終了の時から次の画像形成開始までの感光体回転停止時間に該当する。即ち、t2は、感光体が移動状態から停止して経過した時間である感光体停止時間に関する情報である。   In this embodiment, information is reset at t1 = 0 at the start of one image formation (one unit of image formation job). Therefore, the photosensitive member rotation time t1 corresponds to the photosensitive member rotation time from the start of image formation to the execution of control of image forming conditions by the control device. That is, t1 is information relating to the photosensitive member rotation time, which is the time elapsed since the photosensitive member started moving from the stopped state. Information is reset at t2 = 0 at the end of one image formation (one unit of image formation job). Therefore, the photosensitive member stop time t2 corresponds to the photosensitive member rotation stop time from the end of the previous image formation to the start of the next image formation. That is, t2 is information relating to the photosensitive member stop time, which is the time elapsed since the photosensitive member stopped from the moving state.

詳細は後述するが、本実施例では、ΔUを計算する際は、t1とt2から求められる実質的な感光ドラム回転時間t1upと、Wと、Tc、tsとからΔUを計算する。同様に、ΔDを計算する際は、t1とt2から求められる実質的な感光ドラム回転時間t1dwと、Wと、Tc、tsとからΔUを計算する。   Although details will be described later, in this embodiment, when calculating ΔU, ΔU is calculated from the substantial photosensitive drum rotation time t1up obtained from t1 and t2, W, Tc, and ts. Similarly, when calculating ΔD, ΔU is calculated from the substantial photosensitive drum rotation time t1dw obtained from t1 and t2, W, Tc, and ts.

実質的な感光体回転時間は、VLアップカウント用(以下t1upと称する)とVLダウンカウント用(以下t1dwと称する)でそれぞれ独立のパラメータとして設ける構成とした。以下、t1up、t1dwとある場合は、実質的な感光体回転時間を示すものとする。   The substantial photosensitive member rotation time is provided as an independent parameter for VL upcounting (hereinafter referred to as t1up) and for VL downcounting (hereinafter referred to as t1dw). Hereinafter, in the case of t1up and t1dw, the substantial photosensitive member rotation time is indicated.

計算手段25はVLの変動を予測し、制御手段はこの予測結果に基づいて、Vcontが一定になるように現像装置5に印加する現像バイアスを制御する。   The calculation means 25 predicts the fluctuation of VL, and the control means controls the developing bias applied to the developing device 5 so that Vcont becomes constant based on the prediction result.

VLの変動を予測するためには、VLアップによる変動とVLダウンによる変動を両方予測する必要がある。計算手段25は、VLアップによる変動量とVLダウンによる変動量をそれぞれ計算することによりVLの変動を予測している。また、計算手段25は、VLアップによる変動量であるΔUをt1、t2、W、Tc、tsの5つのパラメータより計算し、VLダウンによる変動量であるΔDをt1、t2、W、Tc、tsの5つのパラメータより計算している。   In order to predict VL fluctuation, it is necessary to predict both fluctuation due to VL up and fluctuation due to VL down. The calculation means 25 predicts the fluctuation of VL by calculating the fluctuation amount due to VL up and the fluctuation amount due to VL down, respectively. Further, the calculation means 25 calculates ΔU, which is a fluctuation amount due to VL up, from five parameters t1, t2, W, Tc, ts, and ΔD, which is a fluctuation amount due to VL down, is t1, t2, W, Tc, It is calculated from the five parameters of ts.

次に、計算手段25がVLの変動を計算する方法について詳しく説明する。VLの変動に関する特性は記憶手段20の中に保存されているテーブルに与えられており、計算手段25はこのテーブルを参照することによってVLの変動を計算している。   Next, a method for calculating the VL variation by the calculating means 25 will be described in detail. The characteristics relating to the fluctuation of the VL are given to a table stored in the storage means 20, and the calculating means 25 calculates the fluctuation of the VL by referring to this table.

以下、VLアップによる変動とVLダウンによる変動の計算方法についてそれぞれ述べる。   Hereinafter, calculation methods of fluctuation due to VL up and fluctuation due to VL down will be described respectively.

まず、VLアップによる変動の計算方法について述べる。VLアップによる動は、図1に示すように、記憶手段20の中に保存されているVLアップテーブル27を参照することで行われる。   First, a calculation method of fluctuation due to VL up will be described. The movement due to the VL up is performed by referring to the VL up table 27 stored in the storage means 20, as shown in FIG.

VLアップテーブルは図8に示すように、テーブルAとテーブルB、テーブルC、及びテーブルGから成り、これらのテーブルに基づいて感光体回転時間に対するVLアップによる変動量の計算を行う。テーブルAは、感光体の実質回転時間(以下t1up称する)に対するVLの変動量を示したものであり、テーブルBは、雰囲気環境の温度Tcと絶対湿度Wに基づいて選択される係数が、4×4のマトリクスとして示されている。t1upの詳細は後述する。   As shown in FIG. 8, the VL up table is composed of a table A, a table B, a table C, and a table G, and based on these tables, the fluctuation amount due to the VL up with respect to the photosensitive member rotation time is calculated. Table A shows the fluctuation amount of VL with respect to the substantial rotation time (hereinafter referred to as t1up) of the photoconductor, and Table B has a coefficient selected based on the ambient temperature Tc and the absolute humidity W as 4. Shown as a x4 matrix. Details of t1up will be described later.

また、テーブルCは感光体停止時間t2に基づいて選択される係数を示している。例えばt2=200(S)であれば、λ=0となる。これは感光体停止時間が増加するほど、感光ドラムの残留電荷の影響が元に戻ることを意味している。感光体回転時間に対するVLアップによる変動量の計算は、テーブルAに、テーブルBから選択された係数を乗じることによって行われる。なお、図8で示したテーブルAはテーブルの形にはなっていないが、実際には、このグラフがテーブルの形としてテーブルAには記載されている。   Table C shows coefficients selected based on the photoreceptor stop time t2. For example, if t2 = 200 (S), λ = 0. This means that the influence of the residual charge on the photosensitive drum is restored as the photosensitive member stop time increases. The calculation of the fluctuation amount due to the VL-up with respect to the photosensitive member rotation time is performed by multiplying the table A by the coefficient selected from the table B. The table A shown in FIG. 8 is not in the form of a table, but actually, this graph is described in the table A as the form of the table.

また、テーブルGは感光ドラム1が新品時からの積算回転時間tsに基づいて選択される係数を示している。本実施の形態においては、積算回転時間tsが、感光ドラム1の寿命とされる回転時間となるtzに対して所定の割合(本実施例では20%)となる時間txとなるまでは、感光ドラム1の回転時間に応じて補正係数を線形増加させる。そして、積算回転時間tsがtxより大きくなった場合は、補正係数を固定値とする構成とした。これは、本実施の画像形成装置においては、積算回転時間tsが上述したtx以降となった場合は、VLアップ量に変化が見られなかったという実験結果に基づく。なお、感光ドラム1の寿命は感光ドラム1の膜厚に影響する。そのため、xは、感光体の膜厚変動が感光体の新品時から寿命までの膜厚変動に対して20%以内となる回転数に相当する時間と設定している。   The table G shows coefficients selected based on the accumulated rotation time ts from when the photosensitive drum 1 is new. In the present embodiment, until the accumulated rotation time ts reaches a time tx that is a predetermined ratio (20% in this embodiment) with respect to tz, which is the rotation time that is the life of the photosensitive drum 1, The correction coefficient is linearly increased according to the rotation time of the drum 1. When the accumulated rotation time ts is longer than tx, the correction coefficient is set to a fixed value. This is based on the experimental result that in the image forming apparatus of the present embodiment, when the accumulated rotation time ts is equal to or later than the above-described tx, no change was found in the VL up amount. Note that the life of the photosensitive drum 1 affects the film thickness of the photosensitive drum 1. Therefore, x is set to a time corresponding to the number of revolutions at which the film thickness variation of the photoconductor is within 20% with respect to the film thickness variation from when the photoconductor is new to the lifetime.

前述したように、VLアップによる変動量ΔUは、t1up(t1、t2から求められる)、W、Tc、tsのパラメータから計算される。この理由について説明をする。   As described above, the fluctuation amount ΔU due to VL increase is calculated from the parameters t1up (obtained from t1, t2), W, Tc, and ts. The reason will be described.

テーブルAから解かるように、感光体回転時間t1が大きくなると、変動量ΔUも大きくなる。例えば、テーブルAでは、感光体回転時間t1が30(s)より大きくなると、変動量ΔUは10.5(V)でほぼ飽和することになる。しかしながら、t1のカウントを開始する時点において、すでに感光体が10(s)回転しておりΔUが6になってる状態であるならば、感光体回転時間t1が20(s)を経過した時点で、変動量ΔUは10.5Vに飽和することになる。このように、単純に感光体回転時間t1に基づいて計算を行なってもΔUを適当に求めることができない。そこで、t1をカウントし始める時の感光体の状態を加味した、実質的な感光体回転時間t1upを用いてΔUを計算する。   As can be seen from Table A, when the photosensitive member rotation time t1 increases, the fluctuation amount ΔU also increases. For example, in Table A, when the photosensitive member rotation time t1 becomes longer than 30 (s), the fluctuation amount ΔU is almost saturated at 10.5 (V). However, if the photoconductor has already rotated 10 (s) and ΔU is 6 at the start of counting t1, the photoconductor rotation time t1 has passed 20 (s). The fluctuation amount ΔU is saturated to 10.5V. As described above, ΔU cannot be obtained appropriately even if the calculation is simply performed based on the photosensitive member rotation time t1. Therefore, ΔU is calculated using a substantial photosensitive member rotation time t1up that takes into consideration the state of the photosensitive member when t1 starts to be counted.

本実施例では、画像形成ジョブの一単位の開始時にt1=0として情報をリセットしてカウントをし始める。そこで、t1をカウントし始めた時の、感光体の状態を加味することにしている。具体的には、Vupendとλから、感光体のVLアップの変動量の状態(VLup)を求める。Vupendは、今回の画像形成ジョブの一つ前の画像形成ジョブ終了時のΔUの値である。λは、一つ前の画像形成ジョブが終了してから今回の画像形成ジョブが始まるまでの感光体停止時間t2から求められる補正係数である。   In this embodiment, at the start of one unit of the image forming job, t1 = 0 is set and information is reset and counting is started. Therefore, the state of the photoconductor when t1 starts to be counted is taken into account. Specifically, the state (VLup) of the fluctuation amount of the VL up of the photosensitive member is obtained from Vupend and λ. Vupend is the value of ΔU at the end of the image forming job immediately before the current image forming job. λ is a correction coefficient obtained from the photosensitive member stop time t2 from the end of the previous image forming job to the start of the current image forming job.

VLupは次式で示される。
VLup=λ×Vupend
このVLupの値を、テーブルAを用いて感光体回転時間t1に換算したものを、t1up_lkとする。t1up_lkは、t1のカウントを開始し始めた時に、既にどの程度感光体が回転しているのと同じ状態なのかを表している。ΔUを求める際には、t1up_lkとt1とを加算して実質的な感光体回転時間とすることで、適当なΔUを求めることができる。
VLup is expressed by the following equation.
VLup = λ × Vupend
The value obtained by converting the value of VLup into the photosensitive member rotation time t1 using Table A is defined as t1up_lk. t1up_lk represents how much the photosensitive member is already rotating when t1 starts to be counted. When obtaining ΔU, an appropriate ΔU can be obtained by adding t1up_lk and t1 to obtain a substantial photosensitive member rotation time.

感光ドラム1が駆動中におけるVLアップの計算方法を説明する。画像形成時のVLアップによる変動量ΔUは、感光体回転時間t1upとテーブルAから算出される。ここで、先に説明したように、実質的な感光ドラム1の回転時間であるt1upに関しては、数式1で示すような関係がある。つまり、今回の画像形成ジョブで感光ドラム1が回転開始してからの経過時間t1と、今回の画像形成ジョブが開始された時の感光体の状態を表すt1up_lkの合計値となっている。
t1up=t1+t1up_lk・・・数式1
t1・・・今回の画像形成ジョブで感光ドラム1が回転開始してからの経過時間
t1up_lk・・・今回の画像形成ジョブが開始された時の感光体のVLアップ量をテーブルAにより時間に逆換算した値
テーブルAから算出されたVLアップ量に、図8のテーブルBにて、雰囲気環境の温度Tcと絶対湿度Wに基づいて選択される係数を掛ける。そして、これに、図8のテーブルGにて、感光ドラム1の積算回転時間tsに基づいて選択される係数を掛ける事によって、制御手段23で制御するVLアップ量ΔUを決定する。
A method for calculating VL-up while the photosensitive drum 1 is being driven will be described. The fluctuation amount ΔU due to VL-up during image formation is calculated from the photosensitive member rotation time t1up and the table A. Here, as described above, t1up, which is a substantial rotation time of the photosensitive drum 1, has a relationship represented by Formula 1. That is, it is the total value of the elapsed time t1 from the start of rotation of the photosensitive drum 1 in the current image forming job and t1up_lk representing the state of the photoconductor when the current image forming job is started.
t1up = t1 + t1up_lk Equation 1
t1... Elapsed time from the start of rotation of the photosensitive drum 1 in the current image forming job t1up_lk... The amount of VL up of the photoconductor when the current image forming job is started The VL increase amount calculated from the converted value table A is multiplied by a coefficient selected based on the ambient environment temperature Tc and absolute humidity W in the table B of FIG. Then, by multiplying this by a coefficient selected based on the accumulated rotation time ts of the photosensitive drum 1 in the table G of FIG. 8, the VL up amount ΔU controlled by the control means 23 is determined.

また、画像形成ジョブが終了し感光ドラム1が停止した時に、計算手段25は感光ドラム1停止時のVLアップ量であるVupendを記憶手段に保存し、タイマー24にて感光体停止時間t2のカウントを開始する。そして、今回の画像形成ジョブから次の画像形成ジョブまでの感光体停止時間t2の値に応じて、図8で示すテーブルCによりVupendに掛ける係数λが選択される。次の画像形成ジョブが開始される時には、これらVupendとλから数式2によりVLupを求める。
VLup=λ×Vupend・・・数式2
今回の画像形成ジョブが開始された時の感光体のVLアップ量であるVLupは数式2で示される。数式1にて説明したt1up_lkはこのVLup量をテーブルAにより時間に逆換算したものである。
Further, when the image forming job is completed and the photosensitive drum 1 is stopped, the calculating means 25 stores Vupend, which is the VL-up amount when the photosensitive drum 1 is stopped, in the storage means, and the timer 24 counts the photosensitive member stop time t2. To start. Then, the coefficient λ to be multiplied by Vupend is selected by the table C shown in FIG. 8 according to the value of the photoreceptor stop time t2 from the current image forming job to the next image forming job. When the next image forming job is started, VLup is obtained from Equation 2 using Vupend and λ.
VLup = λ × Vupend Equation 2
VLup, which is the VL up amount of the photosensitive member when the current image forming job is started, is expressed by Equation 2. T1up_lk described in Equation 1 is obtained by inversely converting the VLup amount into time using the table A.

次に、VLダウンによる変動の計算方法について述べる。VLアップによる変動は、図1に示すように、記憶手段20の中に保存されているVLダウンテーブル28を参照することで行われる。   Next, a calculation method of fluctuation due to VL down will be described. As shown in FIG. 1, the fluctuation due to the VL up is performed by referring to the VL down table 28 stored in the storage unit 20.

VLダウンテーブルは図9に示すように、テーブルDとテーブルE、テーブルF、及びテーブルHから成り、これらのテーブルに基づいて感光体回転時間に対するVLダウンによる変動量の計算を行う。テーブルDは、感光体の実質回転時間(以下t1dw称する)に対するVLの変動量を示したものである。テーブルEは、雰囲気環境の温度Tcと絶対湿度Wに基づいて選択される係数が、4×4のマトリクスとして示されている。t1dwの詳細は後述する。   As shown in FIG. 9, the VL down table includes a table D, a table E, a table F, and a table H. Based on these tables, the fluctuation amount due to the VL down with respect to the photosensitive member rotation time is calculated. Table D shows the amount of fluctuation of VL with respect to the substantial rotation time (hereinafter referred to as t1dw) of the photoconductor. In the table E, coefficients selected based on the ambient temperature Tc and the absolute humidity W are shown as a 4 × 4 matrix. Details of t1dw will be described later.

また、テーブルFは感光体停止時間t2に基づいて選択される係数を示している。これは感光体停止時間が増加するほど、感光ドラムの昇温具合が元に戻る(すなわち、雰囲気温度に近づく)ことを意味している。感光体回転時間に対するVLダウンによる変動量の計算は、テーブルDに、テーブルEから選択された係数を乗じることによって行われる。なお、図9はテーブルの形にはなっていないが、実際には、このグラフがテーブルの形としてテーブルDには記載されている。   Table F shows coefficients selected based on the photoreceptor stop time t2. This means that as the photosensitive member stop time increases, the temperature rise of the photosensitive drum is restored (that is, approaches the ambient temperature). The calculation of the fluctuation amount due to the VL down with respect to the photosensitive member rotation time is performed by multiplying the table D by a coefficient selected from the table E. Although FIG. 9 is not in the form of a table, actually, this graph is described in the table D as a table form.

また、テーブルHは感光ドラム1が新品時からの積算回転時間tsに基づいて選択される係数を示している。本実施の形態においては、VLダウンについては感光ドラム1の寿命であるtzまで、積算回転数によらず変化がなかったため、テーブルGは積算回転数tsによらず一定の値とした。しかしながら、積算回転数によってVLダウンが変化する場合は補正係数を持たせる構成としてもよい。   The table H shows coefficients selected based on the accumulated rotation time ts from when the photosensitive drum 1 is new. In the present embodiment, the VL down does not change regardless of the integrated rotational speed until tz, which is the life of the photosensitive drum 1, and therefore the table G has a constant value regardless of the integrated rotational speed ts. However, when the VL down changes depending on the integrated rotation speed, a configuration may be adopted in which a correction coefficient is provided.

前述したように、VLダウンによる変動量ΔDは、t1dw(t1、t2から求められる)、W、Tc、tsのパラメータから計算される。実質的な感光体回転時間t1dwを用いる理由は、VLupのところで説明したものと同じである。   As described above, the fluctuation amount ΔD due to the VL down is calculated from the parameters t1dw (obtained from t1, t2), W, Tc, and ts. The reason for using the substantial photoconductor rotation time t1dw is the same as that described in the VLup.

感光ドラム1が駆動中におけるVLダウンの計算方法を説明する。画像形成時のVLダウンによる変動量ΔDは、感光体回転時間t1dwとテーブルから算出される。ここで、実質的な感光ドラム1の回転時間であるt1dwに関しては、数式3で示すような関係がある。つまり、今回の画像形成ジョブで感光ドラム1が回転開始してからの経過時間t1と、今回の画像形成ジョブが開始された時の感光体の状態を表すt1up_lkの合計値となっている。
t1dw=t1+t1dw_lk・・・数式3
t1・・・今回の画像形成ジョブで感光ドラム1が回転開始してからの経過時間
t1dw_lk・・・今回の画像形成ジョブが開始された時の感光体のVLダウン量をテーブルDにより時間に逆換算した値
テーブルDから算出されたVLダウン量に、図9のテーブルEにて、雰囲気環境の温度Tcと絶対湿度Wに基づいて選択される係数とを掛ける。これに、さらに、図9のテーブルHにて、感光ドラム1の積算回転時間tsに基づいて選択される係数を掛ける事によって、制御手段23で制御するVLダウン量ΔDを決定する。
A method for calculating VL down while the photosensitive drum 1 is being driven will be described. The fluctuation amount ΔD due to the VL down at the time of image formation is calculated from the photosensitive member rotation time t1dw and the table D. Here, t1dw, which is the substantial rotation time of the photosensitive drum 1, has a relationship represented by Expression 3. That is, it is the total value of the elapsed time t1 from the start of rotation of the photosensitive drum 1 in the current image forming job and t1up_lk representing the state of the photoconductor when the current image forming job is started.
t1dw = t1 + t1dw_lk Equation 3
t1... Elapsed time from the start of rotation of the photosensitive drum 1 in the current image forming job t1dw_lk... The amount of VL down of the photosensitive member when the current image forming job is started The VL down amount calculated from the converted value table D is multiplied by a coefficient selected based on the ambient environment temperature Tc and the absolute humidity W in the table E of FIG. Furthermore, the VL down amount ΔD controlled by the control means 23 is determined by multiplying this by a coefficient selected based on the accumulated rotation time ts of the photosensitive drum 1 in the table H of FIG.

また、感光ドラム1の停止時は、計算手段25は感光ドラム1停止時のVLダウン量であるVdwendを記憶手段に保存し、タイマー24にて感光体停止時間t2のカウントを開始する。ここで、感光体停止時間t2の値に応じて、図9のテーブルFによりVdwendに掛ける係数bが選択される。   When the photosensitive drum 1 is stopped, the calculating unit 25 stores Vdwend, which is the VL down amount when the photosensitive drum 1 is stopped, in the storage unit, and starts counting the photosensitive member stop time t2 by the timer 24. Here, the coefficient b to be multiplied by Vdwend is selected according to the table F of FIG. 9 according to the value of the photosensitive member stop time t2.

また、画像形成ジョブが終了し感光ドラム1が停止した時に、計算手段25は感光ドラム1停止時のVLダウン量であるVdwendを記憶手段に保存し、タイマー24にて感光体停止時間t2のカウントを開始する。そして、今回の画像形成ジョブから次の画像形成ジョブまでの感光体停止時間t2の値に応じて、図9で示すテーブルFによりVdwendに掛ける係数bが選択される。次の画像形成ジョブが開始される時には、これらVdwendとλから数式4によりVLdwを求める。
VLdw=b×Vdwend・・・数式4
感光ドラム1が回転直後のVLダウン量であるVLdwは数式4で示され、数式3にて説明したt1dw_lkはこのVLdw量をプリントモードに対応したテーブルDにより時間に逆換算したものである。
When the image forming job is completed and the photosensitive drum 1 is stopped, the calculation unit 25 stores Vdwend, which is a VL down amount when the photosensitive drum 1 is stopped, in the storage unit, and the timer 24 counts the photosensitive member stop time t2. To start. Then, the coefficient b to be multiplied by Vdwend is selected by the table F shown in FIG. 9 according to the value of the photosensitive member stop time t2 from the current image forming job to the next image forming job. When the next image forming job is started, VLdw is obtained by Equation 4 from these Vdwend and λ.
VLdw = b × Vdwend Equation 4
VLdw, which is the VL down amount immediately after the photosensitive drum 1 is rotated, is expressed by Equation 4, and t1dw_lk described in Equation 3 is obtained by inversely converting the VLdw amount into time according to the table D corresponding to the print mode.

以上の方法により、計算手段25は、VLアップテーブルを用いてVLアップ27による変動量を計算し、VLダウンテーブル28を用いてVLダウンによる変動量を計算する。制御手段23は、これらの計算結果の情報に基づき現像装置5に現像バイアス制御のための情報を画像形成手段に送る。本実施の形態においては、現像コントラスト(Vcont)が一定になるように現像バイアスを制御している。   By the above method, the calculation means 25 calculates the fluctuation amount due to the VL up 27 using the VL up table, and calculates the fluctuation amount due to the VL down using the VL down table 28. The control means 23 sends information for developing bias control to the developing device 5 to the image forming means based on the information of these calculation results. In the present embodiment, the development bias is controlled so that the development contrast (Vcont) is constant.

なお、本実施の形態では感光ドラムの積算回転時間tsに応じて連続的に補正量を変化させる構成としたが、積算回転時間の範囲毎に補正係数を求める形式としても同様の効果が得られる。   In the present embodiment, the correction amount is continuously changed according to the accumulated rotation time ts of the photosensitive drum. However, the same effect can be obtained even when the correction coefficient is calculated for each range of the accumulated rotation time. .

次に、図10のフローチャートを参照して、本実施の形態の画像形成制御の流れを説明する。   Next, the flow of image formation control of the present embodiment will be described with reference to the flowchart of FIG.

画像形成開始が指示されると、ステップ1で感光体回転時間t1が0として記憶手段20に保存され、ステップ2にて、タイマー24は1秒単位で時間をカウントし始める。その後ステップ3では、読み取り手段21によって記憶手段20より、環境温度Tc、絶対湿度W、画像形成開始時VLアップ量VLup、画像形成開始時VLダウン量VLdwが読み取られる。なお、このとき、読み取られる環境温度Tc、絶対湿度Wは、画像形成装置の電源がONとなったときの温湿度センサ18が読み取った値を記憶装置20へ保存した値である。   When the start of image formation is instructed, the photosensitive member rotation time t1 is set to 0 in step 1 and stored in the storage means 20, and in step 2, the timer 24 starts counting time in units of one second. Thereafter, in step 3, the reading unit 21 reads the environmental temperature Tc, the absolute humidity W, the VL up amount VLup at the start of image formation, and the VL down amount VLdw at the start of image formation from the storage unit 20. At this time, the environmental temperature Tc and the absolute humidity W that are read are values obtained by storing the values read by the temperature / humidity sensor 18 when the power of the image forming apparatus is turned on in the storage device 20.

ステップ4にて、感光体積算回転時間判断手段31は、記憶手段20内に保存された感光体積算回転時間tsを読み取る。   In step 4, the photosensitive member accumulated rotation time determination unit 31 reads the photosensitive member accumulated rotation time ts stored in the storage unit 20.

ステップ5では、計算手段25は、前述した方法により、環境温度Tc、環境絶対湿度W、画像形成開始時VLアップ量VLup、感光体回転時間t1、感光体積算回転時間tsからVLアップによる変動量ΔUを計算する。   In step 5, the calculation means 25 uses the above-described method to calculate the environmental temperature Tc, the environmental absolute humidity W, the image formation start VL up amount VLup, the photoconductor rotation time t1, and the fluctuation amount due to the VL up from the photoconductor integrated rotation time ts. ΔU is calculated.

ステップ6では、計算手段25は、前述した方法により、環境温度Tc、環境絶対湿度W、画像形成開始時VLダウン量VLdw、感光体回転時間t1、感光体積算回転時間tsからVLダウンによる変動量ΔDを計算する。   In step 6, the calculation means 25 uses the method described above to calculate the environmental temperature Tc, the environmental absolute humidity W, the image formation start VL down amount VLdw, the photoconductor rotation time t1, and the fluctuation amount due to the VL down from the photoconductor integrated rotation time ts. ΔD is calculated.

ステップ7では、計算手段25は、ステップ5とステップ6で計算したVLアップによる変動量ΔUとVLダウンによる変動量ΔDから、VLの変動量を”ΔU+ΔD”として計算する。制御手段23はこの計算結果を元に、Vcontが一定になるように現像装置5に印加する現像バイアスを制御する。   In step 7, the calculation means 25 calculates the VL fluctuation amount as “ΔU + ΔD” from the fluctuation amount ΔU due to VL up and the fluctuation amount ΔD due to VL down calculated in step 5 and step 6. Based on the calculation result, the control unit 23 controls the developing bias applied to the developing device 5 so that Vcont becomes constant.

ステップ8では、CPU22は画像形成が終了するか否かを判断する。画像形成が続行される場合(ステップ8、No)は、ステップ9にてタイマー24は感光体回転時間t1のカウントを1秒増やし、ステップ4からステップ7の動作を画像形成が終了されるまで繰り返す。ステップ8で画像形成が終了される場合(ステップ8、YES)は、画像形成停止時の計算へと移行する。   In step 8, the CPU 22 determines whether or not the image formation is finished. When the image formation is continued (No in Step 8), in Step 9, the timer 24 increases the count of the photosensitive member rotation time t1 by 1 second and repeats the operations from Step 4 to Step 7 until the image formation is completed. . When image formation is completed in step 8 (step 8, YES), the process proceeds to calculation when image formation is stopped.

ステップ10では、CPU22は画像形成終了時のVLup量であるVupend、及びVLdw量であるVdwendを記憶手段20に保存する。   In step 10, the CPU 22 stores Vupend, which is the VLup amount at the end of image formation, and Vdwend, which is the VLdw amount, in the storage unit 20.

ステップ11では、感光体停止時間t2が0として記憶手段20に保存され、ステップ12にて、タイマー24は1秒単位で時間をカウントし始める。   In step 11, the photosensitive member stop time t2 is stored as 0 in the storage means 20, and in step 12, the timer 24 starts counting time in units of one second.

ステップ13では、CPU22は画像形成が開始されるか否かを判断する。画像形成が停止のままである場合は(ステップ13、No)、ステップ16にて感光体停止時間t2のカウントを1秒増やし、画像形成が開始されるまでステップ13からステップ14を繰り返す。画像形成が開始される場合(ステップ13、Yes)は、ステップ15にて感光体停止時間t2に応じて、感光ドラム1停止時のVLアップ量、VLダウン量を前述した数式2及び数式4に基づき算出する。そして、記憶手段20に保存を行い、その後ステップ1からの画像形成時の計算へと移行する。   In step 13, the CPU 22 determines whether or not image formation is started. If the image formation is still stopped (No at Step 13), the photoconductor stop time t2 is incremented by 1 second at Step 16, and Step 13 to Step 14 are repeated until the image formation is started. When image formation is started (step 13, Yes), the VL up amount and the VL down amount when the photosensitive drum 1 is stopped according to the photosensitive member stop time t2 in step 15 are expressed by the above-described equations 2 and 4. Calculate based on And it preserve | saves in the memory | storage means 20, Then, it transfers to the calculation at the time of image formation from step 1.

次に本実施の形態によって得られる効果について、本実施の形態のプロセス制御を行った場合と、行わなかった場合(比較例)を比較して説明する。ここで、比較例については、本実施の形態のプロセス制御を全く行わない、すなわち現像バイアスは固定値であるものとした。なお、従来例の画像形成装置は、上述の画像形成制御を行わない以外は、本実施の形態の画像形成装置100と同一構成であった。   Next, the effects obtained by the present embodiment will be described by comparing the case where the process control of the present embodiment is performed and the case where the process control is not performed (comparative example). Here, in the comparative example, the process control of the present embodiment is not performed at all, that is, the developing bias is a fixed value. The image forming apparatus of the conventional example has the same configuration as the image forming apparatus 100 of the present embodiment except that the above-described image forming control is not performed.

図11には、L/L(15℃10%RH、絶対湿度1.06g/m)の環境下における、VLの推移および、現像バイアスVdevの推移を示してある。比較例、本実施の形態ともに、以下のような条件における推移を示している。Dmax制御とDhalf制御を行った後、感光ドラム1の使用状況が、感光ドラム1の積算回転時間tsが感光ドラムの寿命の20%に相当する1000枚分プリントされた状態から500枚まで連続で画像形成を行った場合。感光ドラム1が新品時における、500枚まで連続で画像形成を行った場合である。また、このときの画像形成開始前の感光体停止時間t2は12000秒であった。 FIG. 11 shows the transition of VL and the development bias Vdev in an environment of L / L (15 ° C., 10% RH, absolute humidity 1.06 g / m 3 ). Both the comparative example and the present embodiment show transitions under the following conditions. After performing the Dmax control and the Dhalf control, the usage state of the photosensitive drum 1 is continuously changed from a state where the accumulated rotation time ts of the photosensitive drum 1 is printed for 1000 sheets corresponding to 20% of the life of the photosensitive drum to 500 sheets. When image formation is performed. This is a case where image formation is continuously performed up to 500 sheets when the photosensitive drum 1 is new. At this time, the photosensitive member stop time t2 before the start of image formation was 12000 seconds.

感光ドラム1が1000枚プリントされた状態でプリントした場合は、プリント開始から25〜50枚付近は3〜4V程度VLアップし、その後VLダウンが発生する。そして、500枚プリント時にはプリント開始時に対して22VのVLダウンが発生する。   When printing is performed with 1000 photosensitive drums 1 printed, VL is increased by about 3 to 4 V in the vicinity of 25 to 50 sheets from the start of printing, and then VL down occurs. Then, when printing 500 sheets, a VL down of 22V occurs at the start of printing.

その一方、感光ドラム1が新品時にてプリントした場合は、プリント開始からほとんどVL電位上昇せず、VL電位が25〜50枚付近で低下しはじめる。その後、プリント枚数が増えるに従い、VL電位が低下してゆき、500枚プリント時でも28VのVL電位の低下が発生した。   On the other hand, when printing is performed when the photosensitive drum 1 is new, the VL potential hardly increases from the start of printing, and the VL potential starts to decrease around 25 to 50 sheets. Thereafter, as the number of printed sheets increased, the VL potential decreased, and the VL potential decreased to 28 V even when printing 500 sheets.

これは、感光ドラム新品時は、露光履歴が少なく、その結果露光による残留電荷が発生せずVLアップが発生しなかったためと推定される。その一方で、VLダウン量は感光ドラム1が1000枚プリントされたときと同じ量だけ発生したため、見かけ上VLダウン量が大きくなったと推定される。   This is presumably because when the photosensitive drum was new, the exposure history was small, and as a result, no residual charge due to exposure occurred and VL up did not occur. On the other hand, since the VL down amount is generated by the same amount as when 1000 photosensitive drums 1 are printed, it is estimated that the VL down amount is apparently increased.

本実施の形態において、感光ドラム1が1000枚プリントされた状態と、感光ドラム1が新品時においてそれぞれのVLの変動に対して適切な現像バイアスを選択している。その結果、Vcontは一定に保たれているため、500枚プリントを実行した場合における画像濃度変動は小さくなっている。   In the present embodiment, an appropriate developing bias is selected for a state in which 1000 photosensitive drums 1 are printed and when the photosensitive drum 1 is new, with respect to fluctuations in VL. As a result, Vcont is kept constant, so that the image density fluctuation when printing 500 sheets is small.

一方、比較例のように現像バイアスを可変としない場合は感光ドラム1の使用状況が1000枚の時、及び新品時のいずれにおいても500枚プリントを実行した場合にVcontの変動が発生した。その結果、感光ドラム1の使用状況が1000枚の時は、プリント開始25〜50枚付近でVLアップが発生しVcontが小さくなるため画像濃度が薄くなる。そして、その後はVLダウンが発生しVcontが大きくなるため画像濃度が濃くなるといった画像濃度変動が発生した。感光ドラム1の使用状況が新品時においては、VLアップの影響がほとんどない。そのため、プリント開始からプリント500枚までVLダウンの影響が支配的となったためVcontが大きくなり、画像濃度が濃くなる画像濃度変動が発生した。   On the other hand, when the developing bias is not variable as in the comparative example, fluctuations in Vcont occurred when 500 sheets were printed both when the photosensitive drum 1 was used at 1000 sheets and when it was new. As a result, when the usage state of the photosensitive drum 1 is 1000 sheets, the VL-up occurs around 25 to 50 sheets from the start of printing and Vcont becomes small, so that the image density becomes light. After that, VL down occurred and Vcont increased, so that image density fluctuation such as image density increased. When the usage of the photosensitive drum 1 is new, there is almost no influence of VL increase. For this reason, the influence of the VL down becomes dominant from the start of printing to 500 prints, so that Vcont increases and image density fluctuations that increase the image density occur.

本実施の形態においては、感光ドラム1の表面電位としてVLの変動を予測した結果に基づいて現像バイアスの制御を行ったが、ハーフトーン画像部の電位変動を予測した結果に基づいて現像バイアスの制御を行ってもよい。   In this embodiment, the development bias is controlled based on the result of predicting the fluctuation of VL as the surface potential of the photosensitive drum 1, but the development bias is controlled based on the result of predicting the potential fluctuation of the halftone image portion. Control may be performed.

本実施の形態においては、1秒単位で現像バイアスの制御を行ったが、別の単位で現像バイアスの制御を行ってもよい。例えば、0.5秒単位で現像バイアスの制御を行ってもよいし、1ページ単位で現像バイアスの制御を行ってもよい。   In this embodiment, the development bias is controlled in units of one second, but the development bias may be controlled in other units. For example, the development bias may be controlled in units of 0.5 seconds, or the development bias may be controlled in units of one page.

本実施の形態では、VLの変動を予測した結果に基づいて、Vcontを一定にするための画像形成制御として現像バイアスの制御を行ったが、帯電バイアスの制御を行ってもよい。つまり、現像バイアスを一定にしたまま、VLの変動を予測した結果に基づいて帯電バイアスを逐次変更することによってVcontを一定にする。そのためには、帯電バイアスと予測されたVLの関係を示したテーブルを記憶手段20に保存しておき、VLが常に一定になるように帯電バイアスを制御すればよい。例えば、ΔUとΔDの影響から、VLがアップするような場合は、帯電バイアスを低くし、VLがダウンするような場合は帯電バイアスを高く設定する。以上の方法によって、画像形成制御として帯電バイアスの制御を行った場合においても、常に安定した濃度の画像を得ることができる。また、VLの変動を予測した結果に基づいて、帯電バイアスと現像バイアスの両方の制御を行う構成であってもよい。   In the present embodiment, development bias control is performed as image formation control for making Vcont constant based on a result of predicting variation in VL. However, charging bias control may be performed. That is, Vcont is made constant by sequentially changing the charging bias based on the result of predicting the fluctuation of VL while keeping the developing bias constant. For this purpose, a table showing the relationship between the charging bias and the predicted VL may be stored in the storage unit 20, and the charging bias may be controlled so that VL is always constant. For example, the charging bias is lowered when VL is increased due to the effects of ΔU and ΔD, and the charging bias is set higher when VL is lowered. By the above method, even when the charging bias is controlled as the image formation control, an image having a stable density can always be obtained. Further, it may be configured to control both the charging bias and the developing bias based on the result of predicting the fluctuation of VL.

本発明に係るシステムブロック図である。It is a system block diagram concerning the present invention. 感光体の表面電位の概念を示す図である。It is a figure which shows the concept of the surface potential of a photoreceptor. 感光ドラム回転時間と感光ドラムの表面電位の関係を示す図である。It is a figure which shows the relationship between photosensitive drum rotation time and the surface potential of a photosensitive drum. 感光ドラムの積算回転時間と、VLアップ量、感光ドラム膜厚の変化を示す図である。It is a figure which shows the change of the integral rotation time of a photosensitive drum, VL up amount, and a photosensitive drum film thickness. 本発明に係る画像形成装置の構成を示す図である。1 is a diagram illustrating a configuration of an image forming apparatus according to the present invention. 本発明に係る感光ドラムの断面図である。1 is a cross-sectional view of a photosensitive drum according to the present invention. 本発明に係るプロセス制御の概念図である。It is a conceptual diagram of the process control which concerns on this invention. 本発明に係るVLアップテーブルの内容を示す図である。It is a figure which shows the content of the VL up table which concerns on this invention. 本発明に係るVLダウンテーブルの内容を示す図である。It is a figure which shows the content of the VL down table which concerns on this invention. 本発明に係る画像形成装置の動作を示すフローチャート図である。FIG. 6 is a flowchart showing the operation of the image forming apparatus according to the present invention. L/L環境における、画像形成枚数に対する感光ドラムの表面電位と、本実施の形態における現像バイアスの推移を示す図である。FIG. 6 is a diagram illustrating the transition of the surface potential of the photosensitive drum with respect to the number of image formations and the development bias in the present embodiment in an L / L environment.

100 画像形成装置
1Y、1M、1C、1K 感光ドラム
2Y、2M、2C、2K 帯電ローラ
3Y、3M、3C、3K 露光装置
5Y、5M、5C、5K 現像装置
6Y、6M、6C、6K 現像スリーブ
7Y、7M、7C、7K 転写ローラ
8Y、8M、8C、8K 廃トナー収容部
9 転写ベルト
11 給紙カセット
13 レジローラ
14 定着装置
16 クリーニングブレード
17 エンジン制御部
18 温湿度センサ
20 記憶手段
21 読み取り手段
22 CPU
23 制御手段
24 タイマー
25 計算手段
26 書き込み手段
27 VLアップテーブル
28 VLダウンテーブル
30 感光体積算回転時間
31 感光体積算回転時間判断手段
40 両面搬送経路
100 Image forming apparatus 1Y, 1M, 1C, 1K Photosensitive drum 2Y, 2M, 2C, 2K Charging roller 3Y, 3M, 3C, 3K Exposure device 5Y, 5M, 5C, 5K Developing device 6Y, 6M, 6C, 6K Developing sleeve 7Y , 7M, 7C, 7K Transfer roller 8Y, 8M, 8C, 8K Waste toner storage unit 9 Transfer belt 11 Paper feed cassette 13 Registration roller 14 Fixing device 16 Cleaning blade 17 Engine control unit 18 Temperature / humidity sensor 20 Storage unit 21 Reading unit 22 CPU
23 Control means 24 Timer 25 Calculation means 26 Writing means 27 VL up table 28 VL down table 30 Photoconductor accumulated rotation time 31 Photoconductor accumulated rotation time judging means 40 Double-sided conveyance path

Claims (17)

記録媒体に画像を形成する画像形成装置において、
表面が回転可能な感光体と、
感光体に形成された潜像に現像剤を供給して現像剤像とする現像装置と、
前記感光体が停止状態から移動を開始して経過した時間である感光体回転時間に関する情報と、前記感光体が移動状態から停止して経過した時間である感光体停止時間に関する情報とを取得する時間情報取得手段と、
画像形成装置の温湿度に関する情報を検知する温湿度検知手段と、
記感光体回転時間に関する情報と、前記感光体停止時間に関する情報と、前記温湿度に関する情報と、に応じて、前記現像装置に印加する現像バイアスの絶対値を減少させるように作用する第1の現像バイアス補正量と、前記現像バイアスの絶対値を増加させるように作用する第2の現像バイアス補正量と、を計算し、前記第1の現像バイアス補正量および前記第2の現像バイアス補正量を用いて前記現像バイアスを制御する制御手段と、
を備え、
前記制御手段は、前記第2の現像バイアス補正量の計算をする際、前記感光体の積算回転時間が所定の回転時間までは、前記感光体の積算回転時間に関する情報を考慮し、前記所定の回転時間の後は、前記感光体の積算回転時間に関する情報を考慮しないことを特徴とする画像形成装置。
In an image forming apparatus for forming an image on a recording medium,
A photoreceptor whose surface is rotatable;
A developing device for supplying a developer to the latent image formed on the photoreceptor to form a developer image;
Information on the photosensitive member rotation time, which is the time elapsed since the photosensitive member started moving from the stopped state, and information on the photosensitive member stop time, which is the time elapsed after the photosensitive member stopped from the moving state, are acquired. Time information acquisition means;
Temperature / humidity detection means for detecting information on the temperature / humidity of the image forming apparatus;
Information about previous SL photosensitive member rotation time, the information about the photosensitive member stop time, and the information on the temperature and humidity, in accordance with the first to act to reduce the absolute value of the developing bias applied to the developing device And a second development bias correction amount that acts to increase the absolute value of the development bias, and calculate the first development bias correction amount and the second development bias correction amount. and control means for controlling the developing bias with,
With
When calculating the second developing bias correction amount , the control means considers information about the accumulated rotation time of the photoconductor until the accumulated rotation time of the photoconductor reaches a predetermined rotation time , and The image forming apparatus is characterized in that after the rotation time, information on the accumulated rotation time of the photosensitive member is not considered .
前記感光体の表面を帯電する帯電装置と、
前記感光体に露光することにより前記潜像を形成する露光装置と
をさらに備えることを特徴とする請求項に記載の画像形成装置。
A charging device for charging the surface of the photoreceptor;
An exposure device for forming the latent image by exposing the photosensitive member,
The image forming apparatus according to claim 1 , further comprising:
前記制御手段は、温度と相対湿度から絶対湿度を算出し、
前記制御手段は、温度と、絶対湿度と、前記感光体回転時間と前記感光体停止時間に応じて前記第1の現像バイアス補正量と、前記第2の現像バイアス補正量を計算することを特徴とする請求項1又は2に記載の画像形成装置。
The control means calculates absolute humidity from temperature and relative humidity,
The control means calculates the first development bias correction amount and the second development bias correction amount according to temperature, absolute humidity, the photosensitive member rotation time, and the photosensitive member stop time. The image forming apparatus according to claim 1 or 2 .
前記温湿度、前記感光体回転時間、前記感光体停止時間の条件が同じ場合、前記感光体の積算回転時間が所定の回転時間となるまでは、前記制御手段は、前記現像装置に印加する現像バイアスの絶対値を、前記所定の回転時間より後の現像バイアスの絶対値よりも小さくすることを特徴とする請求項1乃至3のいずれか1項に記載の画像形成装置。 When the conditions of the temperature and humidity, the photosensitive member rotation time, and the photosensitive member stop time are the same, the control unit applies the development applied to the developing device until the integrated rotation time of the photosensitive member reaches a predetermined rotation time. the absolute value of the bias, an image forming apparatus according to any one of claims 1 to 3, characterized in that less than the absolute value of the developing bias is later than the predetermined rotation time. 前記制御手段は、前記感光体回転時間が増加するほど現像バイアスの絶対値を減少させるように前記第1の現像バイアス補正量を計算し、前記感光体停止時間が増加するほど現像バイアスの絶対値を増加させるように前記第1の現像バイアス補正量を計算することを特徴とする、請求項1乃至4のいずれか1項に記載の画像形成装置。 The control means calculates the first developing bias correction amount so as to decrease the absolute value of the developing bias as the photosensitive member rotation time increases, and the absolute value of the developing bias as the photosensitive member stop time increases. and calculating said first developing bias correction amount to increase the image forming apparatus according to any one of claims 1 to 4. 前記制御手段は、前記感光体回転時間が増加するほど現像バイアスの絶対値を増加させるように前記第2の現像バイアス補正量を計算し、前記感光体停止時間が増加するほど現像バイアスの絶対値を減少させるように前記第2の現像バイアス補正量を計算することを特徴とする、請求項1乃至5のいずれか1項に記載の画像形成装置。 The control means calculates the second development bias correction amount so as to increase the absolute value of the developing bias as the photosensitive member rotation time increases, and the developing bias absolute value as the photosensitive member stop time increases. 6. The image forming apparatus according to claim 1, wherein the second developing bias correction amount is calculated so as to reduce the image forming amount. 前記温湿度、前記感光体回転時間、前記感光体停止時間の条件が同じ場合に、前記制御手段は、前記感光体の積算回転時間が所定の回転時間までは、前記第2の現像バイアス補正量を前記感光体の積算回転時間が所定の回転時間より後の前記第2の現像バイアス補正量よりも小さくするよう計算することを特徴とする請求項1乃至6のいずれか1項に記載の画像形成装置。 When the conditions of the temperature and humidity, the photosensitive member rotation time, and the photosensitive member stop time are the same, the control unit determines that the second developing bias correction amount until the accumulated rotation time of the photosensitive member reaches a predetermined rotation time. and the integrated rotation time of the photosensitive member according to any one of claims 1 to 6, characterized in that calculated to be smaller than the second developing bias correction amount after the predetermined rotation time Image forming apparatus. 前記温湿度、前記感光体回転時間、前記感光体停止時間の条件が同じ場合に、前記制御手段は、前記積算回転時間が所定の回転時間になるまでは、前記感光体の積算回転時間が増加するに従い、前記第2の現像バイアス補正量を増加させることを特徴とする請求項7に記載の画像形成装置。When the conditions of the temperature and humidity, the photosensitive member rotation time, and the photosensitive member stop time are the same, the control unit increases the integrated rotation time of the photosensitive member until the integrated rotation time reaches a predetermined rotation time. The image forming apparatus according to claim 7, wherein the second developing bias correction amount is increased as the processing proceeds. 記録媒体に画像を形成可能な画像形成装置において、In an image forming apparatus capable of forming an image on a recording medium,
表面が回転可能な感光体と、A photoreceptor whose surface is rotatable;
前記感光体の表面を帯電する帯電装置と、A charging device for charging the surface of the photoreceptor;
前記感光体が停止状態から移動を開始して経過した時間である感光体回転時間に関する情報と、前記感光体が移動状態から停止して経過した時間である感光体停止時間に関する情報とを取得する時間情報取得手段と、Information on the photosensitive member rotation time, which is the time elapsed since the photosensitive member started moving from the stopped state, and information on the photosensitive member stop time, which is the time elapsed after the photosensitive member stopped from the moving state, are acquired. Time information acquisition means;
画像形成装置の温湿度に関する情報を検知する温湿度検知手段と、Temperature / humidity detection means for detecting information on the temperature / humidity of the image forming apparatus;
前記感光体回転時間に関する情報と、前記感光体停止時間に関する情報と、前記温湿度に関する情報と、に応じて、前記帯電装置に印加する帯電バイアスの絶対値を増加させるように作用する第1の帯電バイアス補正量と、前記帯電バイアスの絶対値を減少させるように作用する第2の帯電バイアス補正量と、を計算し、前記第1の帯電バイアス補正量および前記第2の帯電バイアス補正量を用いて前記帯電バイアスを制御する制御手段と、A first function that increases the absolute value of the charging bias applied to the charging device according to the information related to the photosensitive member rotation time, the information related to the photosensitive member stop time, and the information related to the temperature and humidity. A charging bias correction amount and a second charging bias correction amount that acts to reduce the absolute value of the charging bias are calculated, and the first charging bias correction amount and the second charging bias correction amount are calculated. Control means for controlling the charging bias using,
を備え、With
前記制御手段は、前記第2の帯電バイアス補正量の計算する際、前記感光体の積算回転時間が所定の回転時間までは、前記感光体の積算回転時間に関する情報を考慮し、前記所定の回転時間の後は、前記感光体の積算回転時間に関する情報を考慮しないことを特徴とする画像形成装置。When calculating the second charging bias correction amount, the control means considers information about the accumulated rotation time of the photoconductor until the accumulated rotation time of the photoconductor reaches a predetermined rotation time, and performs the predetermined rotation. An image forming apparatus characterized in that after the time, information on the accumulated rotation time of the photosensitive member is not considered.
前記感光体に露光することにより潜像を形成する露光装置と、An exposure device that forms a latent image by exposing the photosensitive member;
前記潜像に現像剤を供給して現像剤像とする現像装置と、A developing device for supplying a developer to the latent image to form a developer image;
をさらに備えることを特徴とする請求項9に記載の画像形成装置。The image forming apparatus according to claim 9, further comprising:
前記制御手段は、温度と相対湿度から絶対湿度を算出し、The control means calculates absolute humidity from temperature and relative humidity,
前記制御手段は、温度と、絶対湿度と、前記感光体回転時間と前記感光体停止時間に応じて前記第1の帯電バイアス補正量と、前記第2の帯電バイアス補正量を計算することを特徴とする請求項9又は10に記載の画像形成装置。The control means calculates the first charging bias correction amount and the second charging bias correction amount according to temperature, absolute humidity, the photosensitive member rotation time, and the photosensitive member stop time. The image forming apparatus according to claim 9 or 10.
前記温湿度、前記感光体回転時間、前記感光体停止時間の条件が同じ場合、前記感光体の積算回転時間が所定の回転時間となるまでは、前記制御手段は、前記帯電装置に印加する帯電バイアスの絶対値を、前記所定の回転時間より後の帯電バイアスの絶対値よりも大きくすることを特徴とする請求項9乃至11のいずれか1項に記載の画像形成装置。 When the conditions of the temperature and humidity, the photosensitive member rotation time, and the photosensitive member stop time are the same, the control unit applies the charging applied to the charging device until the cumulative rotation time of the photosensitive member reaches a predetermined rotation time. The image forming apparatus according to claim 9 , wherein an absolute value of the bias is made larger than an absolute value of the charging bias after the predetermined rotation time. 前記制御手段は、前記感光体回転時間が増加するほど帯電バイアスの絶対値を増加させるように前記第1の帯電バイアス補正量を計算し、前記感光体停止時間が増加するほど帯電バイアスの絶対値を減少させるように前記第1の帯電バイアス補正量を計算することを特徴とする、請求項9乃至12のいずれか1項に記載の画像形成装置。 The controller calculates the first charging bias correction amount so that the absolute value of the charging bias is increased as the photosensitive member rotation time is increased, and the absolute value of the charging bias is increased as the photosensitive member stop time is increased. 13. The image forming apparatus according to claim 9 , wherein the first charging bias correction amount is calculated so as to reduce the voltage. 前記制御手段は、前記感光体回転時間が増加するほど帯電バイアスの絶対値を減少させるように前記第2の帯電バイアス補正量を計算し、前記感光体停止時間が増加するほど帯電バイアスの絶対値を増加させるように前記第2の帯電バイアス補正量を計算することを特徴とする、請求項9乃至13のいずれか1項に記載の画像形成装置。 The control means calculates the second charging bias correction amount so as to decrease the absolute value of the charging bias as the photosensitive member rotation time increases, and the charging bias absolute value as the photosensitive member stop time increases. 14. The image forming apparatus according to claim 9 , wherein the second charging bias correction amount is calculated so as to increase. 前記温湿度、前記感光体回転時間、前記感光体停止時間の条件が同じ場合に、前記制御手段は、前記感光体の積算回転時間が所定の回転時間までは、前記第2の帯電バイアス補正量を前記感光体の積算回転時間が所定の回転時間より後の前記第2の帯電バイアス補正量よりも小さくするよう計算することを特徴とする請求項9乃至14のいずれか1項に記載の画像形成装置。 The temperature and humidity, the photosensitive member rotation time, if the condition of the photosensitive member stop time is the same, the control means, wherein the accumulated time of rotation of the photoreceptor predetermined rotation time mom, the second charging bias correction cumulative revolution time of the amount the photoreceptor according to any one of claims 9 to 14, characterized in that calculated to be smaller than the second charging bias correction amount after the predetermined rotation time Image forming apparatus. 前記温湿度、前記感光体回転時間、前記感光体停止時間の条件が同じ場合に、前記制御手段は、前記積算回転時間が所定の回転時間となるまでは、前記感光体の積算回転時間が増加するに従い、前記第2の帯電バイアス補正量を増加させることを特徴とする請求項15に記載の画像形成装置。When the conditions of the temperature and humidity, the photosensitive member rotation time, and the photosensitive member stop time are the same, the control unit increases the integrated rotation time of the photosensitive member until the integrated rotation time reaches a predetermined rotation time. The image forming apparatus according to claim 15, wherein the second charging bias correction amount is increased as the operation proceeds. 前記所定の回転時間とは、前記感光体の膜厚変動が前記感光体の新品時から寿命までの膜厚変動に対して20%以内となる回転数に相当する時間であることを特徴とする、請求項1乃至16のいずれか1項に記載の画像形成装置。 The predetermined rotation time is a time corresponding to a rotation speed at which the film thickness variation of the photoconductor is within 20% with respect to the film thickness variation from the time when the photoconductor is new to the lifetime. The image forming apparatus according to claim 1 .
JP2008138050A 2008-05-27 2008-05-27 Image forming apparatus Active JP5207829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138050A JP5207829B2 (en) 2008-05-27 2008-05-27 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138050A JP5207829B2 (en) 2008-05-27 2008-05-27 Image forming apparatus

Publications (3)

Publication Number Publication Date
JP2009288307A JP2009288307A (en) 2009-12-10
JP2009288307A5 JP2009288307A5 (en) 2011-07-07
JP5207829B2 true JP5207829B2 (en) 2013-06-12

Family

ID=41457620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138050A Active JP5207829B2 (en) 2008-05-27 2008-05-27 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP5207829B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100863A (en) * 1981-12-11 1983-06-15 Canon Inc Electrophotographic image stabilizing method
JPH04220683A (en) * 1990-12-21 1992-08-11 Minolta Camera Co Ltd Photosensitive material electric discharger
JPH05289458A (en) * 1992-04-08 1993-11-05 Sharp Corp After image preventing device for photosensitive body

Also Published As

Publication number Publication date
JP2009288307A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5289148B2 (en) Image forming apparatus
JP5188339B2 (en) Image forming apparatus
JP5377035B2 (en) Image forming apparatus
US9665032B2 (en) Image forming apparatus with exposure controlled in dependence on cumulative operating time and humidity
JP2013171093A (en) Image forming apparatus
JP4724464B2 (en) Image forming apparatus
JP2007086660A (en) Image forming apparatus
US9753414B2 (en) Image forming apparatus comprising frictional force adjustment roller and adjustment unit
JP5587388B2 (en) Image forming apparatus
JP5207829B2 (en) Image forming apparatus
JP5371288B2 (en) Image forming apparatus
JP5114345B2 (en) Image forming apparatus
JP2009288307A5 (en)
JP4826246B2 (en) Image forming apparatus
JP2011215344A (en) Image forming apparatus, method for controlling image forming apparatus, and control program for image forming apparatus
JP2009288308A5 (en)
JP2019159208A (en) Image forming apparatus and control method
JP2019219487A (en) Image forming device and image forming method
JP2020016733A (en) Image forming apparatus and program
JP7443137B2 (en) Image forming device
US11106152B2 (en) Image forming apparatus
JP6094801B2 (en) Image forming apparatus
US20240103418A1 (en) Image forming apparatus, fog margin determination method and non-transitory computer-readable recording medium encoded with fog margin determination program
JP2007140337A (en) Image forming apparatus
JP2006243214A (en) Image forming apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5207829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3