JP5207472B2 - Electrochemical hydrogen bromide gas sensor - Google Patents

Electrochemical hydrogen bromide gas sensor Download PDF

Info

Publication number
JP5207472B2
JP5207472B2 JP2009057582A JP2009057582A JP5207472B2 JP 5207472 B2 JP5207472 B2 JP 5207472B2 JP 2009057582 A JP2009057582 A JP 2009057582A JP 2009057582 A JP2009057582 A JP 2009057582A JP 5207472 B2 JP5207472 B2 JP 5207472B2
Authority
JP
Japan
Prior art keywords
hydrogen bromide
boron
gas sensor
doped diamond
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009057582A
Other languages
Japanese (ja)
Other versions
JP2010210466A (en
Inventor
宏昭 松浦
信夫 中野
剛史 近藤
武司 河合
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Tokyo University of Science
Kanagawa Academy of Science and Technology
Original Assignee
Riken Keiki KK
Tokyo University of Science
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK, Tokyo University of Science, Kanagawa Academy of Science and Technology filed Critical Riken Keiki KK
Priority to JP2009057582A priority Critical patent/JP5207472B2/en
Publication of JP2010210466A publication Critical patent/JP2010210466A/en
Application granted granted Critical
Publication of JP5207472B2 publication Critical patent/JP5207472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、臭化水素を検出するのに適した電気化学式ガスセンサに関する。   The present invention relates to an electrochemical gas sensor suitable for detecting hydrogen bromide.

臭化水素は、通常、特許文献1に見られるようなガス取り入れ口側となるように酸化触媒を通気性撥水性膜に添着した作用極を対極とともに電解液中に配置して構成された電気化学式ガスセンサにより検出されている。
しかしながら検出対象ガスである臭化水素以外のガスに対しても高い感度を有するばかりでなく、臭化水素に対する感度が低いという問題がある。
Hydrogen bromide is an electric battery constructed by arranging a working electrode in which an oxidation catalyst is attached to a breathable water-repellent film together with a counter electrode in an electrolyte so as to be on the gas intake side as normally seen in Patent Document 1. It is detected by a chemical gas sensor.
However, there is a problem that not only the gas other than hydrogen bromide, which is the detection target gas, has high sensitivity, but also the sensitivity to hydrogen bromide is low.

特開2002−71622JP 2002-71622 A

本発明はこのような問題に鑑みてなされたものであってその目的とするところは、臭化水素を高い感度と選択性で検出することができる電気化学式ガスセンサを提供することである。
本発明の他の目的は上記電気化学式ガスセンサに適した作用極を提供することである。
The present invention has been made in view of such problems, and an object thereof is to provide an electrochemical gas sensor capable of detecting hydrogen bromide with high sensitivity and selectivity.
Another object of the present invention is to provide a working electrode suitable for the electrochemical gas sensor.

このような課題を達成するために本発明においては、通気性と導電性を有する炭素繊維をシート状に形成して構成された基材の一方の面にボロンドープダイヤモンドを添着した作用極を、前記基材の他方の面をガス取り入れ口側となるように対極とともに電解液中に配置して構成されている。 In order to achieve such a problem, in the present invention, a working electrode in which boron-doped diamond is attached to one surface of a substrate formed by forming a carbon fiber having air permeability and conductivity into a sheet shape , The other surface of the base material is arranged in the electrolyte solution together with the counter electrode so as to be on the gas inlet side.

本発明によれば、臭化水素を高い選択性と感度で検出することができる。   According to the present invention, hydrogen bromide can be detected with high selectivity and sensitivity.

本発明の電気化学式臭化水素ガスセンサの一実施例を示す断面図である。It is sectional drawing which shows one Example of the electrochemical type hydrogen bromide gas sensor of this invention. 上記センサに適した作用極の一実施例を示す平面図である。It is a top view which shows one Example of a working electrode suitable for the said sensor. 本発明の作用極のXRDによる分析結果を示す線図である。It is a diagram which shows the analysis result by XRD of the working electrode of this invention. ボロンドープダイヤモンドの層の形成時間と検出感度との関係を示す線図である。It is a diagram which shows the relationship between the formation time of a boron dope diamond layer, and detection sensitivity. 上記電気化学式臭化水素ガスセンサの出力の時間変化を示す線図である。It is a diagram which shows the time change of the output of the said electrochemical hydrogen bromide gas sensor. 上記センサの臭化水素と出力との関係を示す線図である。It is a diagram which shows the relationship between the hydrogen bromide of the said sensor, and an output. 上記センサの応答特性を示す線図である。It is a diagram which shows the response characteristic of the said sensor.

本発明の詳細を図示した実施例に基づいて説明する。
図1は本発明のセンサで、図中符号11は、本発明が特徴とする作用極であり、電解液24を収容するケース20のガス取り入れ口21に液密状態で固定されており、被測定ガスの濃度に応じて対極22との間に電解電流を生じるように構成されている。なお図中符号23は参照極である。
Details of the present invention will be described based on the illustrated embodiments.
FIG. 1 shows a sensor according to the present invention. Reference numeral 11 in the figure denotes a working electrode characterized by the present invention, which is fixed in a liquid-tight state to a gas inlet 21 of a case 20 containing an electrolytic solution 24. An electrolytic current is generated between the counter electrode 22 in accordance with the concentration of the measurement gas. Reference numeral 23 in the figure denotes a reference electrode.

作用極11は、図2に示したように例えば炭素繊維をパンチングや圧縮によりシート状に形成して構成された導電性と通気性を有する基材12と、この基材12の一方の面、つまりガス取り入れ口21となる側の表面近傍にボロンドープダイヤモンドの層13を、基材12の周縁部12aを残すとともにボロンドープダイヤモンドの層13の一部13aが基材12の外周に到達するように形成して構成されている。
なお、必要に応じて電解液の漏れ出しを防止するために被測定ガス流入側に通気性と撥水性を備えた多孔質シート14を密着させてもよい。
As shown in FIG. 2, the working electrode 11 is made of, for example, carbon fiber formed into a sheet shape by punching or compression, and has a conductive and breathable base material 12, and one surface of the base material 12. That is, the boron-doped diamond layer 13 is formed in the vicinity of the surface on the gas inlet 21 side, the peripheral portion 12a of the substrate 12 is left, and a part 13a of the boron-doped diamond layer 13 reaches the outer periphery of the substrate 12. It is formed and configured.
If necessary, a porous sheet 14 having air permeability and water repellency may be adhered to the measured gas inflow side in order to prevent leakage of the electrolyte.

上記ボロンドープダイヤモンドの層13は、通常のボロンドープダイヤモンド成膜法と同様に反応室にアセトン、メタノール、及びトリメトキシボランからなる炭素源となる雰囲気中に基材、例えばカーボンペーパーを収容し、所定電力、この実施例では1300Wのマイクロ波を照射して化学気相成長法(CVD)により構成されている。   The boron-doped diamond layer 13 contains a base material, for example, carbon paper, in an atmosphere serving as a carbon source composed of acetone, methanol, and trimethoxyborane in a reaction chamber in the same manner as in a normal boron-doped diamond film forming method. It is configured by chemical vapor deposition (CVD) by irradiating a microwave of a predetermined power, 1300 W in this embodiment.

図3は、基材と、基材にボロンドープダイヤモンドの層を形成したものとのそれぞれのXRD分析結果で、図中点線の楕円により囲む領域、つまりダイヤモンドの(111面)の43.9度でのピークを示すもので、基材だけのものと比較してボロンドープダイヤモンドの層を形成したもののピークが大きくなっていることが確認できる。   Fig. 3 shows the results of XRD analysis of the base material and the base material with a boron-doped diamond layer formed on the base material. It shows a peak, and it can be confirmed that the peak of the boron-doped diamond layer formed is larger than that of the substrate alone.

一方、成膜時間30分で基材にボロンドープダイヤモンドの層を形成し、走査型電子顕微鏡により観察したところ、平均粒径は150nm程度のボロンドープダイヤモンドの粒子が相互に接触するとともにガスが透過可能な隙間を形成するようにカーボン繊維の表面に添着されている。   On the other hand, a boron-doped diamond layer was formed on the substrate in 30 minutes, and observed with a scanning electron microscope. The boron-doped diamond particles with an average particle size of about 150 nm were in contact with each other and the gas was transmitted. It is attached to the surface of the carbon fiber so as to form a possible gap.

このようにしてダイヤモンド粒子が異なる作用極11をガス取り入れ口に配置して種々のガスに対するセンサ出力を調査したところ、表1に示したように臭化水素に対する感度は、他のガスに比較して極端に高かった。このことから、通気性導電材の表面にボロンドープダイヤモンドを成膜した作用極は臭化水素に対する高い選択性を有することが確認できた。   In this way, the working electrode 11 with different diamond particles was placed at the gas inlet and the sensor output for various gases was investigated. As shown in Table 1, the sensitivity to hydrogen bromide compared to other gases. It was extremely expensive. From this, it was confirmed that the working electrode in which boron-doped diamond was formed on the surface of the air-permeable conductive material had high selectivity for hydrogen bromide.

Figure 0005207472
Figure 0005207472

他方、ボロンドープダイヤモンドの層の密度による影響を確認するため、成膜時間30分乃至120分までを変更しながら基材にボロンドープダイヤモンドの層を形成し、走査型電子顕微鏡により観察したところ平均粒径は150nm乃至400nm程度のボロンドープダイヤモンドの粒子がカーボン繊維の表面に添着されていた。
そして、それぞれの作用極により臭化水素に対する検出感度を調査したところ図4のような結果を得た。
このことから、最適な密度が存在することが確認できた。
On the other hand, in order to confirm the influence of the density of the boron-doped diamond layer, the boron-doped diamond layer was formed on the substrate while changing the film formation time from 30 minutes to 120 minutes, and the average was observed with a scanning electron microscope. Boron-doped diamond particles having a particle size of about 150 nm to 400 nm were attached to the surface of the carbon fiber.
When the detection sensitivity for hydrogen bromide was investigated using each working electrode, the results shown in FIG. 4 were obtained.
From this, it was confirmed that an optimum density exists.

作用極の安定性を調査するため一定濃度の臭化水素を連続的に供給してその出力を複数のサンプルについて測定したところ図5に示したように初期段階では出力が時間とともに低下したが、以後は、安定状態に到達した。なお、図中符号CP−0824、CP−0830、CP−0831はそれぞれサンプル番号を示す。 In order to investigate the stability of the working electrode, a constant concentration of hydrogen bromide was continuously supplied, and the output was measured for a plurality of samples.As shown in FIG. Thereafter, a stable state was reached. In the figure, symbols CP-0824, CP-0830, and CP-0831 indicate sample numbers, respectively.

さらに、濃度の異なる臭化水素を測定したところ図6に示したように高い直線性を有することが確認できた。   Furthermore, when hydrogen bromide with different concentrations was measured, it was confirmed that it had high linearity as shown in FIG.

一定濃度の臭化水素を間歇的に供給して応答性を調査したところ図7に示したような結果となった。   When a constant concentration of hydrogen bromide was intermittently supplied to investigate the response, the results shown in FIG. 7 were obtained.

本発明によれば、臭化水素を高い選択性と感度で検出することができる。   According to the present invention, hydrogen bromide can be detected with high selectivity and sensitivity.

11 作用極
12 基材
13 ボロンドープダイヤモンドの層
14 多孔質シート
21 ガス取り入れ口
22 対極
24 電解液
11 Working electrode
12 Base material
13 Boron-doped diamond layer
14 Porous sheet
21 Gas intake
22 Counter electrode
24 electrolyte

Claims (2)

通気性と導電性を有する炭素繊維をシート状に形成して構成された基材の一方の面にボロンドープダイヤモンドを添着した作用極を、前記基材の他方の面をガス取り入れ口側となるように対極とともに電解液中に配置して構成された電気化学式臭化水素ガスセンサ。 A working electrode in which boron-doped diamond is attached to one surface of a base material formed by forming a carbon fiber having air permeability and conductivity into a sheet shape, and the other surface of the base material is a gas inlet side. An electrochemical hydrogen bromide gas sensor arranged in an electrolyte with a counter electrode. 通気性と導電性を有する炭素繊維をシート状に形成して構成された基材の一方の表面にボロンドープダイヤモンドを添着した電気化学式臭化水素ガスセンサの作用極。 A working electrode of an electrochemical hydrogen bromide gas sensor in which boron-doped diamond is attached to one surface of a base material formed by forming a carbon fiber having air permeability and conductivity into a sheet shape .
JP2009057582A 2009-03-11 2009-03-11 Electrochemical hydrogen bromide gas sensor Expired - Fee Related JP5207472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057582A JP5207472B2 (en) 2009-03-11 2009-03-11 Electrochemical hydrogen bromide gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057582A JP5207472B2 (en) 2009-03-11 2009-03-11 Electrochemical hydrogen bromide gas sensor

Publications (2)

Publication Number Publication Date
JP2010210466A JP2010210466A (en) 2010-09-24
JP5207472B2 true JP5207472B2 (en) 2013-06-12

Family

ID=42970794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057582A Expired - Fee Related JP5207472B2 (en) 2009-03-11 2009-03-11 Electrochemical hydrogen bromide gas sensor

Country Status (1)

Country Link
JP (1) JP5207472B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194443B2 (en) * 2012-12-28 2017-09-13 理研計器株式会社 Working electrode for electrochemical gas sensor and manufacturing method thereof
CN110112427B (en) * 2019-04-11 2021-04-02 北京化工大学 Preparation method of electrochemical-assisted nitrogen and phosphorus double-doped carbon-based air electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288955A (en) * 1985-10-15 1987-04-23 Shinkosumosu Denki Kk Gas sensor having gaseous hydrogen halide selectivity
JP2001050924A (en) * 1999-06-01 2001-02-23 Akira Fujishima Flow cell for electrochemical measurement and electrochemical measuring device
JP4562131B2 (en) * 2005-02-24 2010-10-13 理研計器株式会社 Separator for working electrode of electrochemical gas sensor for detecting nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2)
JP2010085130A (en) * 2008-09-30 2010-04-15 Riken Keiki Co Ltd Electrochemical gas sensor and operation electrode thereof
JP5483228B2 (en) * 2008-10-20 2014-05-07 学校法人東京理科大学 Conductive diamond hollow fiber membrane and method for producing conductive diamond hollow fiber membrane

Also Published As

Publication number Publication date
JP2010210466A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
Zhang et al. Oxidized laser‐induced graphene for efficient oxygen electrocatalysis
Mao et al. Electrospun carbon nanofiber webs with controlled density of states for sensor applications
Thirumalairajan et al. Surface morphology-dependent room-temperature LaFeO3 nanostructure thin films as selective NO2 gas sensor prepared by radio frequency magnetron sputtering
Huang et al. Nonenzymatic glucose sensor based on three different CuO nanomaterials
Hanafi et al. Electrochemical sensor for environmental monitoring system: A review
Guan et al. Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials
Yew et al. Electrochemistry of layered graphitic carbon nitride synthesised from various precursors: searching for catalytic effects
Wang et al. N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction
CN101059476A (en) Electrochemical probe type humidity sensor
Chen et al. Electrocatalytic oxidation of formaldehyde on direct electrodeposited graphene–platinum nanoparticles composites electrode
Xu et al. Electrochemical bisphenol A sensor based on carbon nanohorns
Chen et al. Gas sensor detecting 3-hydroxy-2-butanone biomarkers: boosted response via decorating Pd nanoparticles onto the {010} facets of BiVO4 decahedrons
JP2000258390A (en) Gas sensor
JP5207472B2 (en) Electrochemical hydrogen bromide gas sensor
KR102009059B1 (en) Sensor and method for manufacturing a sensor
Khun et al. An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures
Wu et al. A simple, cost-effective and selective analysis of glucose via electrochemical impedance sensing based on copper and nitrogen co-doped carbon quantum dots
JP5593196B2 (en) Apparatus and method for nondestructive indirect measurement of bending stiffness of gas diffusion layer for fuel cell
Sathe Rhodium nanoparticle–carbon nanosphere hybrid material as an electrochemical hydrogen sensor
JP4562131B2 (en) Separator for working electrode of electrochemical gas sensor for detecting nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2)
Dilonardo et al. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors
CN202676664U (en) Detecting device capable of being used for detecting NOX concentration
JP2013515351A5 (en)
Zhang et al. A new design of activated carbon membrane air-cathode for wastewater treatment and energy recovery
TW201440306A (en) Fuel cells and method of operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees