JP2010085130A - Electrochemical gas sensor and operation electrode thereof - Google Patents

Electrochemical gas sensor and operation electrode thereof Download PDF

Info

Publication number
JP2010085130A
JP2010085130A JP2008251957A JP2008251957A JP2010085130A JP 2010085130 A JP2010085130 A JP 2010085130A JP 2008251957 A JP2008251957 A JP 2008251957A JP 2008251957 A JP2008251957 A JP 2008251957A JP 2010085130 A JP2010085130 A JP 2010085130A
Authority
JP
Japan
Prior art keywords
gas sensor
electrochemical gas
working electrode
base material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008251957A
Other languages
Japanese (ja)
Inventor
Nobuo Nakano
中野信夫
Hiroaki Matsuura
松浦宏昭
Ryuji Asada
朝田隆二
Isao Taniguchi
谷口功
Katsuhiko Nishiyama
西山勝彦
Hiroyuki Yamada
山田洋行
Yasuo Seto
瀬戸康雄
Shintaro Yamaguchi
山口慎太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Kumamoto University NUC
National Research Institute of Police Science
Original Assignee
Riken Keiki KK
Kumamoto University NUC
National Research Institute of Police Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK, Kumamoto University NUC, National Research Institute of Police Science filed Critical Riken Keiki KK
Priority to JP2008251957A priority Critical patent/JP2010085130A/en
Publication of JP2010085130A publication Critical patent/JP2010085130A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical gas sensor detecting irritating poisonous gas selectively with high sensitivity. <P>SOLUTION: In the electrochemical gas sensor formed, by immersing an operational electrode member 10 and a counter electrode 22 into an electrolyte 24, particles 12 constituted of gold (Au) having an average particle size of not more than 4 nm in a sheet-like base material 11, consisting of carbon fiber are dispersed and held in the operation electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガス透過性膜に形成した酸化触媒を作用極としてガスの濃度を検出する電気化学式ガスセンサに関する。   The present invention relates to an electrochemical gas sensor that detects a gas concentration using an oxidation catalyst formed on a gas permeable membrane as a working electrode.

電気化学式ガスセンサは、撥水性を備えた通気性多孔質膜に導電性酸化触媒層を形成した作用極と、対極、及び参照極とを電解液に浸漬して構成されている。
導電性酸化触媒層としては通常、白金黒が使用されているが、選択性が低く、特にマスタードやルイサイトなどの糜爛性ガスに対する感度が低く、これらのガスに対する感度の向上を求められていた。
The electrochemical gas sensor is configured by immersing a working electrode in which a conductive oxidation catalyst layer is formed on a breathable porous membrane having water repellency, a counter electrode, and a reference electrode in an electrolytic solution.
Platinum black is usually used as the conductive oxidation catalyst layer, but the selectivity is low, especially the sensitivity to the inert gases such as mustard and lewisite is low, and the improvement of the sensitivity to these gases has been demanded. .

本発明はこのような事情に鑑みてなされたものであってその目的とするところは糜爛性ガスを選択的かつ高い感度で検出することができる電気化学式ガスセンサを提供することである。
本発明の他の目的は上記電気化学式ガスセンサに適した作用極を提供することである。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrochemical gas sensor that can selectively detect an inert gas with high sensitivity.
Another object of the present invention is to provide a working electrode suitable for the electrochemical gas sensor.

このような課題を達成するために本発明においては、作用極と、対極とを電解液に浸漬して構成された電気化学式ガスセンサにおいて、前記作用極が炭素繊維からなるシート状の基材の平均粒径4ナノメートル以下の金(Au)の粒子を分散、保持させて構成されている。   In order to achieve such a problem, in the present invention, in an electrochemical gas sensor configured by immersing a working electrode and a counter electrode in an electrolytic solution, the working electrode is an average of a sheet-like base material made of carbon fiber. It consists of dispersed and held gold (Au) particles with a particle size of 4 nanometers or less.

本発明によれば、マスタードガスのような糜爛性ガスを高い選択性と感度で検出することができる。   According to the present invention, an inert gas such as mustard gas can be detected with high selectivity and sensitivity.

本発明の詳細を図示した実施例に基づいて説明する。
図中符号10は、本発明が特徴とする作用極部材で、電解液24を収容するケース20のガス取り入れ口21に液密状態で固定されており、被測定ガスの濃度に応じて対極22との間に電解電流を生じるように構成されている。なお図中符号23は参照極である。
Details of the present invention will be described based on the illustrated embodiments.
Reference numeral 10 in the figure denotes a working electrode member characterized by the present invention, which is fixed in a liquid-tight state to a gas inlet 21 of a case 20 that contains an electrolytic solution 24. The counter electrode 22 corresponds to the concentration of the gas to be measured. And an electrolysis current between them. Reference numeral 23 in the figure denotes a reference electrode.

作用極部材10は、例えば炭素繊維をパンチングや圧縮によりシート状に形成して構成された導電性と通気性を有する基材11と、この基材を構成する繊維の間に平均粒径4ナノメートル以下の金(Au)の粒子12を分散、保持させて構成されている。
なお、必要に応じて電解液の漏れを防止するために被測定ガス流入側に通気性と撥水性を備えた多孔質シート13を密着させてもよい。
The working electrode member 10 has an average particle size of 4 nanometers between a conductive and breathable base material 11 formed by, for example, forming carbon fibers into a sheet shape by punching or compression, and fibers constituting the base material. It is configured by dispersing and holding gold (Au) particles 12 of a meter or less.
If necessary, a porous sheet 13 having air permeability and water repellency may be adhered to the measured gas inflow side in order to prevent leakage of the electrolyte.

上記金の粒子を分散、保持させる方法は、塩化金酸をNaBH4により還元して加熱により平均粒径4ナノメートルまで成長させて粒子状とし、この金粒子を揮発性を有する液体、例えばトルエンに懸垂させて基材11に均一に含浸させ、最後に300℃程度に加熱して液体を揮散させ工程からなる。   The gold particles are dispersed and retained by reducing chloroauric acid with NaBH4 and growing to an average particle size of 4 nanometers by heating to form particles. The process consists of a process of suspending and uniformly impregnating the base material 11 and finally heating to about 300 ° C. to volatilize the liquid.

このように分散された金粒子12は、基材を構成する各繊維11aの表面に分散し、繊維は金粒子により修飾されていることが透過電子顕微鏡(TEM)により確認できた。   The gold particles 12 thus dispersed were dispersed on the surface of each fiber 11a constituting the substrate, and it was confirmed by a transmission electron microscope (TEM) that the fiber was modified with the gold particles.

次に厚さ0.3mmの基材を0.1g用意し、これに金粒子の修飾量を異ならせた作用極部材を製作してセンサとしてのベースラインドリフト、及び被測定ガス(マスタードガス)に対する感度との関係を調査したところそれぞれ図2(a)、及び図2(b)のような結果となった。   Next, 0.1 g of a 0.3 mm-thick base material is prepared, and a working electrode member with a different amount of gold particle modification is manufactured on this to produce a baseline drift as a sensor and sensitivity to the gas to be measured (mustard gas). As a result, the results shown in FIG. 2 (a) and FIG. 2 (b) were obtained.

すなわち、図2(a)からも明らかなように金粒子の修飾量とベースラインドリフトとはほぼ比例関係にあり、また図2(b)からも明らかなようにマスタードガスに対して最大感度を示す金粒子の修飾量は厚さ0.3mm、0.1gの基材に換算して1μgがピークであることが判明した。   That is, as is clear from FIG. 2 (a), the modification amount of the gold particles and the baseline drift are almost proportional, and as is clear from FIG. 2 (b), the maximum sensitivity to the mustard gas is obtained. The modification amount of the gold particles shown was found to be 1 μg peak when converted to a base material having a thickness of 0.3 mm and 0.1 g.

すなわち、金粒子の修飾量とS/N比との関係は、図3に示すように厚さ0.3mm、0.1gの基材に対して金粒子0.5μgがピークであることがわかった。   That is, the relationship between the modification amount of the gold particles and the S / N ratio was found to have a peak of 0.5 μg of gold particles with respect to a substrate having a thickness of 0.3 mm and 0.1 g as shown in FIG.

これらの結果を踏まえて厚さ0.3mm、0.1gの基材に金粒子を0.5μg程度分散させた作用極部材を製作してマスタードガスに対する応答性、及び直線性を調査した。応答性は、図4に示すように白金黒を使用した通常の電気化学式ガスセンサよりも速かった。   Based on these results, a working electrode member in which about 0.5 μg of gold particles was dispersed in a base material having a thickness of 0.3 mm and 0.1 g was manufactured, and the response to the mustard gas and the linearity were investigated. As shown in FIG. 4, the responsiveness was faster than a normal electrochemical gas sensor using platinum black.

一方、マスタードガスの濃度と検出値は、図5に示すようにほぼ直線性を維持することが確認できた。   On the other hand, it was confirmed that the concentration of the mustard gas and the detected value remained almost linear as shown in FIG.

最後に各種ガスに対する干渉性を調査したところ表1のような結果となった。すなわち大気中に存在するCO、NO、NO2、SO2、Cl2、NH3などのガスに対してはきわめて感度が低く、また半導体材料ガス(AsH3、B2H6、PH3、SiH4)に対しても感度も低かった。このことからマスタードを高い感度と選択性で検出できることが確認できた。   Finally, when the interference with various gases was investigated, the results shown in Table 1 were obtained. That is, the sensitivity was very low for gases such as CO, NO, NO2, SO2, Cl2, and NH3 present in the atmosphere, and the sensitivity was also low for semiconductor material gases (AsH3, B2H6, PH3, SiH4). . This confirmed that mustard can be detected with high sensitivity and selectivity.

Figure 2010085130
Figure 2010085130

なお、上述の実施例においては電解液の漏洩を確実に防止するため被測定ガス流入側に撥水性を備えた通気性多孔質膜を配置しているが、導電性基材が十分な撥水性を備えている場合には不要であることは明らかである。また上述の実施例においては参照極を備えた3極式について説明したが、作用極部材と対極だけの2極式のガスセンサの作用極として使用しても同様の作用効果を奏することを確認した。   In the above-described embodiment, a breathable porous film having water repellency is disposed on the measured gas inflow side in order to surely prevent leakage of the electrolyte, but the conductive base material has sufficient water repellency. Obviously, it is not necessary if Further, in the above-described embodiment, the three-pole type provided with the reference electrode has been described. However, it was confirmed that the same effect can be obtained even when used as a working electrode of a two-pole type gas sensor having only a working electrode member and a counter electrode. .

図(a)、(b)は、それぞれ本発明の電気化学式ガスセンサの一実施例を示す断面図、及び作用極部材を拡大して示す図面に代える写真である。Drawing (a), (b) is a photograph which replaces with sectional drawing which shows one example of the electrochemical gas sensor of the present invention, and drawing which expands and shows a working electrode member, respectively. 図(a)、(b)はそれぞれ金粒子の修飾量とベースラインドリフト、及び信号強度との関係を示す線図である。Figures (a) and (b) are graphs showing the relationship between the modification amount of the gold particles, the baseline drift, and the signal intensity, respectively. 金粒子の修飾量とS/N比との関係を示す線図である。It is a diagram which shows the relationship between the modification amount of a gold particle, and S / N ratio. 応答性を示す図である。It is a figure which shows responsiveness. 被測定ガスの濃度と出力との関係を示す線図である。It is a diagram which shows the relationship between the density | concentration of to-be-measured gas, and an output.

符号の説明Explanation of symbols

10 作用極部材 11 導電性と通気性とを有する繊維からなる基材 12 平均粒径4ナノメートル以下の金(Au)の粒子 13 多孔質シート 22 対極 24 電解液 10 Working electrode member 11 Substrate made of conductive and breathable fibers 12 Gold (Au) particles with an average particle size of 4 nanometers or less 13 Porous sheet 22 Counter electrode 24 Electrolyte

Claims (3)

作用極と、対極とを電解液に浸漬して構成された電気化学式ガスセンサにおいて、
前記作用極が炭素繊維からなるシート状の基材の平均粒径4ナノメートル以下の金(Au)の粒子を分散、保持させて構成されている電気化学式ガスセンサ。
In an electrochemical gas sensor configured by immersing a working electrode and a counter electrode in an electrolyte,
An electrochemical gas sensor in which the working electrode is configured by dispersing and holding gold (Au) particles having an average particle diameter of 4 nanometers or less of a sheet-like base material made of carbon fiber.
前記作用極のガス流入側に通気性と撥水性を備えたガス透過膜が密着して配置されている請求項1に記載の電気化学式ガスセンサ。 2. The electrochemical gas sensor according to claim 1, wherein a gas permeable membrane having air permeability and water repellency is disposed in close contact with the gas inflow side of the working electrode. 炭素繊維からなるシート状の基材の平均粒径4ナノメートル以下の金(Au)の粒子を分散、保持させて構成された電気化学式ガスセンサ用作用極。 A working electrode for an electrochemical gas sensor configured by dispersing and holding gold (Au) particles having an average particle diameter of 4 nanometers or less on a sheet-like base material made of carbon fiber.
JP2008251957A 2008-09-30 2008-09-30 Electrochemical gas sensor and operation electrode thereof Pending JP2010085130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251957A JP2010085130A (en) 2008-09-30 2008-09-30 Electrochemical gas sensor and operation electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251957A JP2010085130A (en) 2008-09-30 2008-09-30 Electrochemical gas sensor and operation electrode thereof

Publications (1)

Publication Number Publication Date
JP2010085130A true JP2010085130A (en) 2010-04-15

Family

ID=42249246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251957A Pending JP2010085130A (en) 2008-09-30 2008-09-30 Electrochemical gas sensor and operation electrode thereof

Country Status (1)

Country Link
JP (1) JP2010085130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210466A (en) * 2009-03-11 2010-09-24 Riken Keiki Co Ltd Electrochemical hydrobromic gas sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113056A (en) * 1985-11-06 1987-05-23 アライド・コ−ポレ−シヨン Device for detecting selected compound in gas environment
JPH03152452A (en) * 1989-11-10 1991-06-28 Denki Kagaku Keiki Kk Sensitive film for measuring gaseous hydride
JPH06308075A (en) * 1993-04-22 1994-11-04 Japan Storage Battery Co Ltd Electrochemical gas sensor
JPH08313480A (en) * 1995-05-23 1996-11-29 Gastec:Kk Electrode of constant potential electrolytic gas sensor
JPH0943195A (en) * 1995-07-28 1997-02-14 Shimadzu Corp Constant potential electrolytic gas sensor
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113056A (en) * 1985-11-06 1987-05-23 アライド・コ−ポレ−シヨン Device for detecting selected compound in gas environment
JPH03152452A (en) * 1989-11-10 1991-06-28 Denki Kagaku Keiki Kk Sensitive film for measuring gaseous hydride
JPH06308075A (en) * 1993-04-22 1994-11-04 Japan Storage Battery Co Ltd Electrochemical gas sensor
JPH08313480A (en) * 1995-05-23 1996-11-29 Gastec:Kk Electrode of constant potential electrolytic gas sensor
JPH0943195A (en) * 1995-07-28 1997-02-14 Shimadzu Corp Constant potential electrolytic gas sensor
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012052146; 谷口功, 山田洋行, 西山勝彦, 松浦宏昭, 中野信夫, 山口慎太郎, 朝田隆二, 瀬戸康雄: '金ナノ粒子修飾カ-ボン電極を用いたびらん性有毒化学剤の電気化学検出' 日本分析化学会年会講演要旨集 Vol.57th, 20080827, Page.103 *
JPN6012052147; 谷口功, 山田洋行, 西山勝彦 , 松浦宏昭, 中野信夫, 瀬戸康雄: '金ナノ粒子修飾カ-ボン繊維電極を用いたびらん性有毒化学剤の電気化学検出法の開発' 電気化学会大会講演要旨集 Vol.75th, 20080329, Page.348 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210466A (en) * 2009-03-11 2010-09-24 Riken Keiki Co Ltd Electrochemical hydrobromic gas sensor

Similar Documents

Publication Publication Date Title
Jahanbakhshi et al. A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum
Hanafi et al. Electrochemical sensor for environmental monitoring system: A review
Reitz et al. CuO nanospheres based nonenzymatic glucose sensor
US10775338B2 (en) Electrochemical gas sensor, filter and methods
Miao et al. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode
Niu et al. Nonenzymatic electrochemical glucose sensor based on novel Pt–Pd nanoflakes
Liu et al. A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection
CA2326210C (en) Hydrogen gas sensor
US20150014167A1 (en) Electrochemical gas sensor comprising an anion-exchange membrane
Cui et al. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode
Wang et al. Facile low-temperature growth of carbon nanosheets toward simultaneous determination of dopamine, ascorbic acid and uric acid
Li et al. A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip
Gong et al. A glucose biosensor based on the polymerization of aniline induced by a bio-interphase of glucose oxidase and horseradish peroxidase
Guler et al. A novel nonenzymatic hydrogen peroxide amperometric sensor based on Pd@ CeO2-NH2 nanocomposites modified glassy carbon electrode
Gan et al. Highly sensitive electrochemical sensor for Sudan I based on graphene decorated with mesoporous TiO 2
Tareen et al. A novel MnO–CrN nanocomposite based non-enzymatic hydrogen peroxide sensor
Azad et al. Efficient sensing of nitrite by Fe (bpy) 32+ immobilized Nafion modified electrodes
JP4562131B2 (en) Separator for working electrode of electrochemical gas sensor for detecting nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2)
Lu et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase entrapped in a self-supporting nanoporous gold electrode: a new strategy to improve the orientation of immobilized enzymes
JP2010085130A (en) Electrochemical gas sensor and operation electrode thereof
Ertek et al. Flow injection amperometric detection of sulfide using a prussian blue modified glassy carbon electrode
GB2338559A (en) Electrochemical sensor for hydrides of arsenic and phosphorus
KR100707987B1 (en) The method of electrode formation in electrochemical gas sensor
JP2016176946A (en) Constant potential electrolysis-type gas sensor
JP3881540B2 (en) Constant potential electrolysis gas sensor and gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130325

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131004