JP5205643B2 - Surface texture measuring device, contact model generation method thereof, and program - Google Patents

Surface texture measuring device, contact model generation method thereof, and program Download PDF

Info

Publication number
JP5205643B2
JP5205643B2 JP2009009152A JP2009009152A JP5205643B2 JP 5205643 B2 JP5205643 B2 JP 5205643B2 JP 2009009152 A JP2009009152 A JP 2009009152A JP 2009009152 A JP2009009152 A JP 2009009152A JP 5205643 B2 JP5205643 B2 JP 5205643B2
Authority
JP
Japan
Prior art keywords
contact
contactor
model
dimensional
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009009152A
Other languages
Japanese (ja)
Other versions
JP2010164532A (en
Inventor
司 小島
孝文 加納
聰一 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2009009152A priority Critical patent/JP5205643B2/en
Priority to DE201010000876 priority patent/DE102010000876A1/en
Publication of JP2010164532A publication Critical patent/JP2010164532A/en
Application granted granted Critical
Publication of JP5205643B2 publication Critical patent/JP5205643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、接触子を用いて変位測定を行う3次元測定機などの表面性状測定装置、その接触子モデル生成方法、及び接触子モデル生成プログラムに関する。   The present invention relates to a surface property measuring apparatus such as a three-dimensional measuring machine that performs displacement measurement using a contact, a contact model generation method thereof, and a contact model generation program.

接触式プローブ(接触子)を使用した接触測定方式においては、一般に接触子の先端は、球であると仮定し、その中心の位置を測定点として与える。この場合の測定点は、接触子が被測定物に接触している位置とは異なる為、被測定物の実形状に対して誤差を含んでいる。従って、そのような測定点をここでは疑似測定点と呼ぶ。疑似測定点と真の測定点との間の誤差は、接触子の形状を理想的な球と考え、先端球の半径分オフセットすることで解消し、被測定物の実形状により近い座標値を得ることができる。   In a contact measurement method using a contact type probe (contact), it is generally assumed that the tip of the contact is a sphere, and the center position is given as a measurement point. Since the measurement point in this case is different from the position where the contact is in contact with the object to be measured, the measurement point includes an error with respect to the actual shape of the object to be measured. Accordingly, such measurement points are referred to herein as pseudo measurement points. The error between the pseudo measurement point and the true measurement point is eliminated by offsetting the tip sphere by the radius of the tip sphere, considering the shape of the contactor as an ideal sphere. Can be obtained.

しかしながら、求めるべき被測定物上の位置は、接触子の形状に依存しており、高精度な測定点取得のためには、接触子の形状を考慮する必要がある。近年の測定精度の向上に伴い、接触子の形状を理想的な球としたこれまでの補正処理では、十分な精度が得られなくなってきているという実情もあり、新たな接触子形状を考慮した高精度な測定点取得方法の開発が望まれている。   However, the position on the object to be measured depends on the shape of the contact, and it is necessary to consider the shape of the contact in order to obtain a highly accurate measurement point. With the recent improvement in measurement accuracy, there has been a situation where sufficient accuracy cannot be obtained with the conventional correction processing in which the contact shape is an ideal sphere. Development of a highly accurate measurement point acquisition method is desired.

このようなことから、特許文献1には、校正の基準となる形状が既知の基準ワークを測定して求めた接触子の形状誤差データを用いて、接触子の形状誤差に起因した被測定物の測定誤差を補正するようにした表面性状測定装置が提案されている。   For this reason, Patent Document 1 discloses that an object to be measured resulting from a contact shape error is obtained by using contact shape error data obtained by measuring a reference workpiece whose calibration reference shape is known. There has been proposed a surface texture measuring apparatus which corrects the measurement error.

しかし、特許文献1に開示の技術は、接触子をXYZの三軸方向に駆動して基準ワークを倣い測定するものである。一般に、測定精度は駆動する軸の数が増えるほど劣化する。したがって、三軸駆動では、誤差の影響が大きくなって十分に高い精度で接触子モデルを生成することができない。   However, the technique disclosed in Patent Document 1 drives a contactor in the three-axis directions of XYZ to measure the reference workpiece. In general, the measurement accuracy deteriorates as the number of driven axes increases. Therefore, in the three-axis drive, the influence of the error becomes large, and a contactor model cannot be generated with sufficiently high accuracy.

特開2002−357415号公報JP 2002-357415 A

本発明は、高精度で3次元接触子モデルを生成可能な表面性状測定装置、その接触子モデル生成方法、及びプログラムを提供する。   The present invention provides a surface texture measuring apparatus capable of generating a three-dimensional contact model with high accuracy, a contact model generation method thereof, and a program.

本発明に係る表面性状測定装置は、被測定物に先端が接触可能な接触子と、前記接触子を互いに直交する水平方向の第1軸及び第2軸並びに垂直方向の第3軸に沿って移動させる接触子駆動手段と、前記接触子駆動手段によって前記接触子を前記被測定物の表面に倣うように駆動すると共に前記接触子の先端位置を疑似測定点として取得する疑似測定点取得手段と、前記取得された疑似測定点と前記接触子の先端形状を規定する3次元接触子モデルとに基づいて前記被測定物の表面形状を算出する演算手段と、基準形状を持つ基準ワークを前記接触子で倣い測定して前記3次元接触子モデルを算出する接触子モデル算出手段とを備えた表面性状測定装置において、前記接触子駆動手段は、前記接触子を、前記第3軸を中心として回転駆動するものであり、前記接触子モデル算出手段は、前記回転駆動される接触子の複数の回転位置のそれぞれにおいて、前記接触子駆動手段で前記接触子を前記第1軸方向及び第3軸方向に沿って移動させて前記基準ワークを倣い測定して前記疑似測定点を取得し、取得された疑似測定点に基づいて前記3次元接触子モデルを算出することを特徴とする。   The surface texture measuring apparatus according to the present invention includes a contactor whose tip can be in contact with an object to be measured, a first axis in the horizontal direction and a second axis orthogonal to each other, and a third axis in the vertical direction. Contact driving means for moving, and pseudo measurement point acquisition means for driving the contact so as to follow the surface of the object to be measured by the contact driving means and acquiring the tip position of the contact as a pseudo measurement point; Calculating means for calculating a surface shape of the object to be measured based on the acquired pseudo measurement point and a three-dimensional contact model defining a tip shape of the contact; and a reference work having a reference shape as the contact In the surface texture measuring device comprising contact model calculation means for calculating the three-dimensional contact model by copying with a child, the contact drive means rotates the contact about the third axis. Drive The contactor model calculating means moves the contactor along the first axial direction and the third axial direction by the contactor driving means at each of a plurality of rotational positions of the rotationally driven contactor. The pseudo-measurement point is acquired by moving the reference workpiece and measuring it, and the three-dimensional contactor model is calculated based on the acquired pseudo-measurement point.

本発明に係る表面性状測定装置の接触子モデル生成方法は、被測定物に先端が接触可能な接触子と、前記接触子を互いに直交する水平方向の第1軸及び第2軸並びに垂直方向の第3軸に沿って移動させる接触子駆動手段と、前記接触子駆動手段によって前記接触子を前記被測定物の表面に倣うように駆動すると共に前記接触子の先端位置を疑似測定点として取得する疑似測定点取得手段と、前記取得された疑似測定点と前記接触子の先端形状を規定する3次元接触子モデルとに基づいて前記被測定物の表面形状を算出する演算手段とを備えた表面性状測定装置の接触子モデル生成方法であって、前記接触子を、前記第3軸を中心として回転させ、前記接触子の複数の回転位置のそれぞれにおいて、前記接触子駆動手段で前記接触子を前記第1軸方向及び第3軸方向に沿って移動させて前記基準ワークを倣い測定して前記疑似測定点を取得し、取得された疑似測定点に基づいて前記3次元接触子モデルを算出することを特徴とする。   A contactor model generation method for a surface texture measuring device according to the present invention includes a contactor whose tip can be in contact with an object to be measured, a horizontal first axis and a second axis orthogonal to each other, and a vertical direction. A contact driving means that moves along the third axis, and the contact driving means drives the contact so as to follow the surface of the object to be measured, and obtains the tip position of the contact as a pseudo measurement point. Surface comprising: pseudo measurement point acquisition means; and calculation means for calculating the surface shape of the object to be measured based on the acquired pseudo measurement point and a three-dimensional contact model that defines the tip shape of the contact A contactor model generation method for a property measuring device, wherein the contactor is rotated about the third axis, and the contactor driving means is used to rotate the contactor at each of a plurality of rotational positions of the contactor. The first Moving along the direction and the third axis direction, measuring the reference workpiece by copying, obtaining the pseudo measurement point, and calculating the three-dimensional contactor model based on the obtained pseudo measurement point To do.

本発明に係る表面性状測定装置の接触子モデル生成プログラムは、被測定物に先端が接触可能な接触子と、前記接触子を互いに直交する水平方向の第1軸及び第2軸並びに垂直方向の第3軸に沿って移動させる接触子駆動手段と、前記接触子駆動手段によって前記接触子を前記被測定物の表面に倣うように駆動すると共に前記接触子の先端位置を疑似測定点として取得する疑似測定点取得手段と、前記取得された疑似測定点と前記接触子の先端形状を規定する3次元接触子モデルとに基づいて前記被測定物の表面形状を算出する演算手段とを備えた表面性状測定装置の接触子モデル生成プログラムであって、コンピュータに、前記接触子を、前記第3軸を中心として回転させ、前記接触子の複数の回転位置のそれぞれにおいて、前記接触子駆動手段で前記接触子を前記第1軸方向及び第3軸方向に沿って移動させて前記基準ワークを倣い測定して前記疑似測定点を取得し、取得された疑似測定点に基づいて前記3次元接触子モデルを算出させることを特徴とする。   A contactor model generation program for a surface texture measuring device according to the present invention includes a contactor whose tip can contact an object to be measured, a horizontal first axis and a second axis perpendicular to each other, and a vertical direction A contact driving means that moves along the third axis, and the contact driving means drives the contact so as to follow the surface of the object to be measured, and obtains the tip position of the contact as a pseudo measurement point. Surface comprising: pseudo measurement point acquisition means; and calculation means for calculating the surface shape of the object to be measured based on the acquired pseudo measurement point and a three-dimensional contact model that defines the tip shape of the contact A contact model generation program for a property measuring device, wherein the computer rotates the contact about the third axis, and the contact driver is rotated at each of a plurality of rotational positions of the contact. The contact is moved along the first axis direction and the third axis direction by means to measure the reference workpiece to obtain the pseudo measurement point, and based on the obtained pseudo measurement point, the three-dimensional A contactor model is calculated.

本発明によれば、高精度で3次元接触子モデルを生成可能な表面性状測定装置、その接触子モデル生成方法、及びプログラムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface property measuring apparatus which can produce | generate a three-dimensional contactor model with high precision, its contactor model production | generation method, and a program can be provided.

本発明の第1実施形態に係る表面性状測定装置の概略構成を示す外観斜視図である。It is an external appearance perspective view which shows schematic structure of the surface texture measuring apparatus which concerns on 1st Embodiment of this invention. 第1実施形態に係る表面性状測定装置のスタイラス23、及び接触子24を示す拡大図である。It is an enlarged view which shows the stylus 23 and the contactor 24 of the surface texture measuring apparatus which concerns on 1st Embodiment. 第1実施形態に係る表面性状測定装置の演算処理装置本体31の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing unit main body 31 of the surface texture measuring apparatus which concerns on 1st Embodiment. 第1実施形態に係る表面性状測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the surface texture measuring apparatus which concerns on 1st Embodiment. ステップS101の動作を説明するための図である。It is a figure for demonstrating the operation | movement of step S101. 擬似測定点Piを示す図である。It is a figure which shows the pseudo | simulation measurement point Pi. 2次元接触子モデルM1iを示す図である。It is a figure which shows the two-dimensional contactor model M1i. ステップS103の動作を説明するための図である。It is a figure for demonstrating operation | movement of step S103. ステップS105の動作を説明するための図である。It is a figure for demonstrating operation | movement of step S105. ステップS105の動作を説明するための図である。It is a figure for demonstrating operation | movement of step S105. 3次元接触子モデルM2を示す図である。It is a figure which shows the three-dimensional contactor model M2. ステップS105の動作を説明するフローチャートであるIt is a flowchart explaining operation | movement of step S105. ステップS205の動作を説明するための図である。It is a figure for demonstrating operation | movement of step S205. ステップS205の動作を説明するための図である。It is a figure for demonstrating operation | movement of step S205. 本発明の第2実施形態に係る表面性状測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the surface texture measuring apparatus which concerns on 2nd Embodiment of this invention. ステップS304、S305における、「3次元擬似測定点P1ij」を説明するための図である。It is a figure for demonstrating "three-dimensional pseudo measurement point P1ij" in step S304, S305. 基準形状M4(M4A、M4B、M4C)を説明するための図である。It is a figure for demonstrating the reference | standard shape M4 (M4A, M4B, M4C).

次に、本発明に係る実施形態を、図面を参照して説明する。   Next, an embodiment according to the present invention will be described with reference to the drawings.

[第1実施形態]
(第1実施形態に係る表面性状測定装置の構成)
先ず、図1を参照して、第1実施形態に係る表面性状測定装置の構成を説明する。図1は、第1実施形態に係る表面性状測定装置(形状測定装置)の外観斜視図である。
[First Embodiment]
(Configuration of surface texture measuring apparatus according to the first embodiment)
First, the configuration of the surface texture measuring apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is an external perspective view of a surface texture measuring device (shape measuring device) according to the first embodiment.

この表面性状測定装置は、測定機本体1と、駆動制御装置1aを介して測定機本体1に接続された演算処理装置2とから構成される。測定機本体1は、基台3と、この基台3上に設けられて基準ワーク4(既知の基準形状を持つ被測定物)を載置するテーブル5と、このテーブル5に載置された基準ワーク4の表面の変位を検出する変位検出装置6と、これらを操作するための操作部7とを備えて構成されている。テーブル5は、基台3上を図中X軸方向(左右方向)、及び図中Y軸方向(紙面と直交する方向)に移動可能に構成されている。また、テーブル5は、基準ワーク4の載置面を任意の姿勢に調整可能な傾斜調整機能付きの構成を有している。   This surface texture measuring device includes a measuring machine main body 1 and an arithmetic processing device 2 connected to the measuring machine main body 1 via a drive control device 1a. The measuring machine main body 1 is mounted on the base 3, a table 5 provided on the base 3 for placing a reference work 4 (a measured object having a known reference shape), and the table 5. A displacement detection device 6 for detecting the displacement of the surface of the reference workpiece 4 and an operation unit 7 for operating them are configured. The table 5 is configured to be movable on the base 3 in the X-axis direction (left-right direction) in the figure and the Y-axis direction (direction orthogonal to the paper surface) in the figure. Further, the table 5 has a configuration with an inclination adjustment function capable of adjusting the placement surface of the reference workpiece 4 to an arbitrary posture.

変位検出装置6は次のように構成されている。即ち、基台3には上方に延びるコラム21が立設されており、このコラム21にスライダ22が上下動可能に装着されている。スライダ22にはスタイラス23が装着されている。スタイラス23は、水平(X軸、Y軸)、垂直(Z軸)方向に駆動可能に構成されており、その先端には接触子24が設けられている。すなわち、スタイラス23は、テーブル5に対して相対移動可能に構成されている。接触子24は、その先端が被測定物に接触可能に構成されている。   The displacement detection device 6 is configured as follows. That is, a column 21 extending upward is erected on the base 3, and a slider 22 is mounted on the column 21 so as to be movable up and down. A stylus 23 is attached to the slider 22. The stylus 23 is configured to be drivable in the horizontal (X-axis, Y-axis) and vertical (Z-axis) directions, and a contactor 24 is provided at the tip thereof. That is, the stylus 23 is configured to be movable relative to the table 5. The contact 24 is configured such that the tip thereof can contact the object to be measured.

接触子24は、図2に示すように、スタイラス23先端の下面から下方に延び且つテーブル5に対する垂直方向(Z軸方向)を回転軸として回転可能に構成されている。接触子24の回転駆動も含め、コラム21、スライダ22、及びスタイラス23で接触子駆動手段を構成している。   As shown in FIG. 2, the contactor 24 extends downward from the lower surface of the tip of the stylus 23 and is configured to be rotatable about a direction perpendicular to the table 5 (Z-axis direction) as a rotation axis. The column 21, the slider 22, and the stylus 23 constitute contactor driving means including rotational driving of the contactor 24.

上記スライダ22、スタイラス23を移動させ、接触子24を基準ワーク4の表面を走査(トレース)することによって、X軸方向の各位置における表面の高さZが測定データ(擬似測定点Pi)として得られるようになっている。また、テーブル5で基準ワーク4をY軸方向に移動させることにより、X軸方向に延びるスキャンライン(測定経路)を切り替えることができる。   The slider 22 and the stylus 23 are moved, and the contact 24 is scanned (traced) on the surface of the reference workpiece 4, whereby the surface height Z at each position in the X-axis direction is measured data (pseudo measurement point Pi). It has come to be obtained. Further, the scan line (measurement path) extending in the X-axis direction can be switched by moving the reference workpiece 4 in the Y-axis direction with the table 5.

演算処理装置2は、変位検出装置6で得られた擬似測定点Piを取り込む。演算処理装置2は、演算処理を実行する演算処理装置本体31、及び操作部32、表示画面33を有する。また、演算処理装置2は、操作部7と同様に測定機本体1の動作を制御可能に構成されている。   The arithmetic processing device 2 takes in the pseudo measurement point Pi obtained by the displacement detection device 6. The arithmetic processing device 2 includes an arithmetic processing device main body 31 that executes arithmetic processing, an operation unit 32, and a display screen 33. In addition, the arithmetic processing device 2 is configured to be able to control the operation of the measuring machine main body 1 in the same manner as the operation unit 7.

次に、図3を参照して、演算処理装置本体31の構成について説明する。図3は、本発明の一実施形態に係る演算処理装置本体31の構成を示すブロック図である。   Next, the configuration of the arithmetic processing unit main body 31 will be described with reference to FIG. FIG. 3 is a block diagram showing a configuration of the arithmetic processing unit main body 31 according to the embodiment of the present invention.

演算処理装置本体31は、図3に示すように、主に、制御部(CPU:Central Processing Unit)41、RAM(Random Access Memory)42、ROM(Read Only Memory)43、HDD(Hard Disk Drive)44、表示制御部45を有する。演算処理装置本体31において、操作部32から入力されるコード情報及び位置情報は、I/F46aを介して制御部41に入力される。制御部41は、ROM43に格納されたマクロプログラム及びHDD44からI/F46bを介してRAM42に格納された各種プログラムに従って、各種の処理を実行する。   As shown in FIG. 3, the arithmetic processing unit main body 31 mainly includes a control unit (CPU: Central Processing Unit) 41, a RAM (Random Access Memory) 42, a ROM (Read Only Memory) 43, and an HDD (Hard Disk Drive). 44 and a display control unit 45. In the arithmetic processing unit main body 31, code information and position information input from the operation unit 32 are input to the control unit 41 via the I / F 46a. The control unit 41 executes various processes according to the macro program stored in the ROM 43 and the various programs stored in the RAM 42 from the HDD 44 via the I / F 46b.

制御部41は、測定実行処理に従って、I/F46cを介して測定機本体1を制御する。HDD44は、各種制御プログラムを格納する記録媒体である。RAM42は、各種プログラムを格納する他、各種処理のワーク領域を提供する。また、制御部41は、表示制御部45を介して表示画面33に測定結果等を表示する。   The control unit 41 controls the measuring machine main body 1 via the I / F 46c according to the measurement execution process. The HDD 44 is a recording medium that stores various control programs. The RAM 42 stores various programs and provides a work area for various processes. In addition, the control unit 41 displays measurement results and the like on the display screen 33 via the display control unit 45.

制御部41は、HDD44から各種プログラムを読み出し、そのプログラムを実行することにより、後述する図4及び図12に示す動作を実行する。制御部41は、コラム21、スライダ22及びスタイラス23を制御して、接触子24を互いに直交する水平方向のX軸及びY軸並びに垂直方向のZ軸に沿って移動させる。制御部41は、測定時に、接触子24を被測定物の表面に倣うように駆動すると共に接触子24の先端位置を疑似測定点Piとして取得する。制御部41は、取得された疑似測定点Piと接触子24の先端形状を規定する3次元接触子モデルM2とに基づいて被測定物の表面形状を算出する。制御部41は、基準形状を持つ基準ワーク4を接触子24で倣い測定して3次元接触子モデルM2を算出する。   The control unit 41 reads out various programs from the HDD 44 and executes the programs to execute operations shown in FIGS. 4 and 12 described later. The control unit 41 controls the column 21, the slider 22, and the stylus 23 to move the contactor 24 along the horizontal X axis and Y axis that are orthogonal to each other and the vertical Z axis. At the time of measurement, the control unit 41 drives the contactor 24 so as to follow the surface of the object to be measured, and acquires the tip position of the contactor 24 as a pseudo measurement point Pi. The control unit 41 calculates the surface shape of the object to be measured based on the acquired pseudo measurement point Pi and the three-dimensional contact model M2 that defines the tip shape of the contact 24. The control unit 41 calculates the three-dimensional contact model M2 by measuring the reference workpiece 4 having the reference shape by copying with the contact 24.

また、制御部41は、図示しないスタイラス23内部の駆動機構を制御して接触子24を、Z軸を中心として回転駆動させる。制御部41は、回転駆動される接触子24の複数の回転位置のそれぞれにおいて、接触子24をX軸方向及びZ軸方向に沿って移動させて基準ワーク4を倣い測定して疑似測定点Piを取得し、取得された疑似測定点Piに基づいて3次元接触子モデルM2を算出する。   In addition, the control unit 41 controls a drive mechanism inside the stylus 23 (not shown) to drive the contactor 24 to rotate about the Z axis. The control unit 41 moves the contactor 24 along the X-axis direction and the Z-axis direction to measure the reference workpiece 4 at each of a plurality of rotational positions of the contactor 24 that is rotationally driven, thereby measuring the pseudo measurement point Pi. And the three-dimensional contactor model M2 is calculated based on the acquired pseudo measurement point Pi.

また、制御部41は、接触子24の各回転位置において、取得された疑似測定点Piに基づき2次元接触子モデルM1iを算出し、算出された接触子24の各回転位置における2次元接触子モデルMiを合成して3次元接触子モデルM2を算出する。   Further, the control unit 41 calculates a two-dimensional contact model M1i based on the acquired pseudo measurement point Pi at each rotational position of the contact 24, and the two-dimensional contact at each calculated rotational position of the contact 24. A model Mi is synthesized to calculate a three-dimensional contact model M2.

また、制御部41は、仮想空間内で、初期値として与えられた3次元接触子モデルM0又は算出された3次元接触子モデルを疑似測定点Piに配置し、3次元接触子モデルと基準ワーク4との接触状況を調べ、接触状況に基づいて3次元接触子モデルを修正する処理を繰り返す。   In addition, the control unit 41 arranges the three-dimensional contactor model M0 given as an initial value or the calculated three-dimensional contactor model in the virtual space at the pseudo measurement point Pi, and the three-dimensional contactor model and the reference work 4 is checked, and the process of correcting the three-dimensional contactor model based on the contact state is repeated.

(第1実施形態に係る表面性状測定装置の動作)
次に、図4を参照して第1実施形態に係る表面性状測定装置の動作について説明する。図4は、第1実施形態に係る表面性状測定装置の動作を示すフローチャートである。
(Operation of the surface texture measuring device according to the first embodiment)
Next, the operation of the surface texture measuring apparatus according to the first embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing the operation of the surface texture measuring apparatus according to the first embodiment.

先ず、制御部41は、スタイラス23をX軸方向に走査して、擬似測定点Piを取得する(ステップS101)。例えば、図5に示すように、スタイラス23は、接触子24が基準ワーク4の表面(ワーク面S0)に接するように、X軸方向に走査される。擬似測定点Piは、図6に示すように、基準ワーク4への接触時における接触子24の所定位置を示す点である。複数の擬似測定点Piを結ぶ線分は、ワーク面S0から所定距離をもって、擬似測定面S1を構成する。   First, the control unit 41 scans the stylus 23 in the X-axis direction and acquires a pseudo measurement point Pi (step S101). For example, as shown in FIG. 5, the stylus 23 is scanned in the X-axis direction so that the contact 24 contacts the surface of the reference workpiece 4 (work surface S0). As shown in FIG. 6, the pseudo measurement point Pi is a point indicating a predetermined position of the contact 24 when contacting the reference workpiece 4. A line segment connecting the plurality of pseudo measurement points Pi constitutes the pseudo measurement surface S1 with a predetermined distance from the work surface S0.

次に、制御部41は、擬似測定点Piに基づき、2次元接触子モデルM1iを生成する(ステップS102)。2次元接触子モデルM1iは、図7に示すように、離散的な点列の集合として表される。   Next, the control unit 41 generates a two-dimensional contactor model M1i based on the pseudo measurement point Pi (step S102). The two-dimensional contact model M1i is represented as a set of discrete point sequences as shown in FIG.

続いて、制御部41は、接触子24をZ軸方向を中心に所定角度回転させる(ステップS103)。接触子24は、図8に示すように、基準ワーク4を横断した後、所定位置にて回転する。   Subsequently, the control unit 41 rotates the contactor 24 by a predetermined angle around the Z-axis direction (step S103). As shown in FIG. 8, the contactor 24 rotates at a predetermined position after crossing the reference workpiece 4.

次に、制御部41は、接触子24が180°回転したか否かを判断する(ステップS104)。ここで、制御部41は、接触子24が180°回転していないと判断すると(ステップS104、N)、再びステップS101からの制御を実行する。すなわち、制御部41は、接触子24が180°回転するまで、接触子24の各回転位置において、取得された擬似測定点Piに基づき2次元接触子モデルM1iを算出する。   Next, the control unit 41 determines whether or not the contactor 24 has rotated 180 ° (step S104). Here, if the control part 41 judges that the contactor 24 has not rotated 180 degrees (step S104, N), it will perform the control from step S101 again. That is, the control unit 41 calculates the two-dimensional contactor model M1i based on the acquired pseudo measurement point Pi at each rotational position of the contactor 24 until the contactor 24 rotates 180 °.

一方、制御部41は、接触子24が180°回転したと判断すると(ステップS104、Y)、算出された接触子24の各回転位置における2次元接触子モデルM1iを合成して、3次元接触子モデルM2を生成する(ステップS105)。   On the other hand, when the control unit 41 determines that the contactor 24 has rotated 180 ° (step S104, Y), the control unit 41 synthesizes the two-dimensional contactor model M1i at each rotation position of the calculated contactor 24 to generate a three-dimensional contact. A child model M2 is generated (step S105).

3次元接触子モデルM2は、図9に示すように、複数の平面(平面−1、平面−2、平面−3、…、平面−i、…)を表す複数の2次元接触子モデルM1iを重ね合わせることで生成される。例えば、図10に示すように、2次元接触子モデルM1iの頂点ciの座標と、2次元接触子モデルM1iの頂点cjの座標とが異なる場合がある。この場合、2次元接触子モデルM1i、又は2次元接触子モデルM1jの座標系を平行移動させ、頂点ciと頂点cjとを頂点cの座標に合わせる。このような工程を経て生成された3次元接触子モデルM2は、図11に示すように、離散的な点列の集合として表される。以上で、制御部41の動作は終了する。   As shown in FIG. 9, the three-dimensional contact model M2 includes a plurality of two-dimensional contact models M1i representing a plurality of planes (plane-1, plane-2, plane-3,..., Plane-i,...). Generated by overlapping. For example, as shown in FIG. 10, the coordinates of the vertex ci of the two-dimensional contactor model M1i may be different from the coordinates of the vertex cj of the two-dimensional contactor model M1i. In this case, the coordinate system of the two-dimensional contactor model M1i or the two-dimensional contactor model M1j is translated, and the vertex ci and the vertex cj are matched with the coordinate of the vertex c. As shown in FIG. 11, the three-dimensional contactor model M2 generated through such a process is represented as a set of discrete point sequences. Thus, the operation of the control unit 41 ends.

次に、図12を参照して、上述したステップS105の詳細について説明する。図12は、図4のステップS105を示すフローチャートである。   Next, the details of step S105 described above will be described with reference to FIG. FIG. 12 is a flowchart showing step S105 of FIG.

先ず、制御部41は、仮想空間内で、擬似測定面S1とワーク面S0とを同一の座標系で表す(図6参照)。すなわち、制御部41は、擬似測定面S1とワーク面S0の位置合わせを行う(ステップS201)。例えば、球を擬似測定面S1に当てはめ、その球の中心位置に基準ワーク4の中心があるものとする。   First, the control unit 41 represents the pseudo measurement surface S1 and the work surface S0 in the same coordinate system in the virtual space (see FIG. 6). That is, the control unit 41 aligns the pseudo measurement surface S1 and the workpiece surface S0 (step S201). For example, it is assumed that a sphere is applied to the pseudo measurement surface S1, and the center of the reference workpiece 4 is located at the center position of the sphere.

続いて、制御部41は、初期値としての初期3次元接触子モデルM0の入力を受け付ける(ステップS202)。ここで、初期3次元接触子モデルM0は、例えば、接触子24の公称値によって決定される。次に、制御部41は、初期3次元接触子モデルM0を擬似測定面S1の擬似測定点Piに配置する(ステップS203)。   Subsequently, the control unit 41 receives an input of the initial three-dimensional contact model M0 as an initial value (step S202). Here, the initial three-dimensional contact model M0 is determined by the nominal value of the contact 24, for example. Next, the control unit 41 places the initial three-dimensional contactor model M0 at the pseudo measurement point Pi of the pseudo measurement surface S1 (step S203).

続いて、制御部41は、初期3次元接触子モデルM0とワーク面S0の接触状況を確認する(ステップS204)。次に、制御部41は、その接触状況に基づき、初期3次元接触子モデルM0を修正する(ステップS205)。ここで、図13に示すように、初期3次元接触子モデルM0が、ワーク面S0に食い込んでいる場合、初期3次元接触子モデルM0は、ワーク面S0に接触するように修正される。また、図14に示すように、初期3次元接触子モデルM0が、ワーク面S0から離れている場合、初期3次元接触子モデルM0は、ワーク面S0に接触するように修正される。   Subsequently, the control unit 41 confirms the contact state between the initial three-dimensional contact model M0 and the work surface S0 (step S204). Next, the control unit 41 corrects the initial three-dimensional contactor model M0 based on the contact state (step S205). Here, as shown in FIG. 13, when the initial three-dimensional contact model M0 bites into the work surface S0, the initial three-dimensional contact model M0 is corrected so as to contact the work surface S0. As shown in FIG. 14, when the initial three-dimensional contact model M0 is away from the work surface S0, the initial three-dimensional contact model M0 is corrected so as to come into contact with the work surface S0.

次に、制御部41は、修正した値が所定値未満であるか否かを判断する(ステップS206)。ここで、制御部41は、修正した値が所定値未満でないと判断した場合(ステップS206、N)、再びステップS203からの動作を実行する。なお、続く、ステップS203からの動作において、制御部41は、上記ステップS206までの処理で算出された3次元接触子モデルを用いる。   Next, the control unit 41 determines whether or not the corrected value is less than a predetermined value (step S206). If the control unit 41 determines that the corrected value is not less than the predetermined value (step S206, N), the control unit 41 executes the operation from step S203 again. In the subsequent operation from step S203, the control unit 41 uses the three-dimensional contactor model calculated in the processing up to step S206.

一方、制御部41は、ステップS206において、修正した値が所定値未満であると判断した場合(ステップS206、Y)、その動作を終了する。なお、ステップS203〜S206の処理を繰り返し実行することにより、3次元接触子モデルの形状は、所定値に収束する。   On the other hand, when the control unit 41 determines in step S206 that the corrected value is less than the predetermined value (step S206, Y), the operation ends. Note that the shape of the three-dimensional contact model converges to a predetermined value by repeatedly executing the processes of steps S203 to S206.

(第1実施形態に係る表面性状測定装置の効果)
次に、第1実施形態に係る表面性状測定装置の効果について説明する。第1実施形態に係る表面性状測定装置は、スタイラス23のX軸方向の走査、及び接触子24のZ軸方向を中心とする回転、すなわち2軸駆動のみにより、3次元接触子モデルM2を生成するこができる。したがって、3軸駆動によって3次元接触子モデルを生成する装置よりも、第1実施形態に係る表面性状測定装置は、誤差の要因となる駆動軸が少ないので、高精度で3次元接触子モデルM2を生成することができる。
(Effects of the surface texture measuring device according to the first embodiment)
Next, effects of the surface texture measuring apparatus according to the first embodiment will be described. The surface texture measuring apparatus according to the first embodiment generates a three-dimensional contactor model M2 only by scanning the stylus 23 in the X-axis direction and rotating the contactor 24 around the Z-axis direction, that is, by two-axis driving. Can do. Therefore, since the surface texture measuring device according to the first embodiment has fewer drive shafts that cause errors than the device that generates a three-dimensional contact model by three-axis driving, the three-dimensional contact model M2 is highly accurate. Can be generated.

ここで、3軸駆動の表面性状測定装置の場合、3次元接触子モデルを生成する際に用いられるワークは、球(半球)状の形状に限られる。一方、第1実施形態に係る表面性状測定装置は2軸駆動であるので、3次元接触子モデルの生成に用いる基準ワーク4は、球(半球)状に限られず、半円柱、三角柱状であってもよい。すなわち、第1実施形態に係る表面性状測定装置においては、校正測定が多様化でき、その使い勝手は向上する。   Here, in the case of a three-axis-driven surface texture measuring device, the work used when generating a three-dimensional contactor model is limited to a sphere (hemisphere) shape. On the other hand, since the surface texture measuring apparatus according to the first embodiment is biaxially driven, the reference workpiece 4 used for generating the three-dimensional contactor model is not limited to a sphere (hemisphere), but is a semi-cylinder or a triangular prism. May be. That is, in the surface texture measuring apparatus according to the first embodiment, calibration measurement can be diversified, and its usability is improved.

[第2実施形態]
(第2実施形態に係る表面性状測定装置の構成)
次に、第2実施形態に係る表面性状測定装置の構成について説明する。第2実施形態に係る表面性状測定装置においては、制御部41のみが第1実施形態と異なる。なお、第2実施形態において、第1実施形態と同様の構成については、同一符号を付し、その説明を省略する。
[Second Embodiment]
(Configuration of Surface Texture Measuring Device According to Second Embodiment)
Next, the configuration of the surface texture measuring device according to the second embodiment will be described. In the surface texture measuring apparatus according to the second embodiment, only the control unit 41 is different from the first embodiment. Note that in the second embodiment, identical symbols are assigned to configurations similar to those in the first embodiment and descriptions thereof are omitted.

第2実施形態において、制御部41は、接触子24の各回転位置において、取得された疑似測定点Piを接触子24の回転位置に応じて座標変換して得られた3次元疑似測定点P1ijから3次元接触子モデルM2を算出する。   In the second embodiment, the control unit 41 converts the acquired pseudo measurement point Pi at each rotational position of the contactor 24 according to the coordinate conversion according to the rotational position of the contactor 24 to obtain a three-dimensional pseudomeasurement point P1ij. The three-dimensional contact model M2 is calculated from the above.

(第2実施形態に係る表面性状測定装置の動作)
次に、図15を参照して、第2実施形態に係る表面性状測定装置の動作について説明する。図15は、第2実施形態に係る表面性状測定装置の動作を示すフローチャートである。
(Operation of the surface texture measuring device according to the second embodiment)
Next, the operation of the surface texture measuring apparatus according to the second embodiment will be described with reference to FIG. FIG. 15 is a flowchart showing the operation of the surface texture measuring apparatus according to the second embodiment.

先ず、制御部41は、スタイラス23をX軸方向に走査して、擬似測定点Piを取得する(ステップS301)。次に、制御部41は、接触子24をZ軸方向を中心に所定角度回転させる(ステップS302)。   First, the control unit 41 scans the stylus 23 in the X-axis direction and acquires a pseudo measurement point Pi (step S301). Next, the control unit 41 rotates the contactor 24 by a predetermined angle around the Z-axis direction (step S302).

続いて、制御部41は、接触子24が180°回転したか否かを判断する(ステップS303)。ここで、制御部41は、接触子24が180°回転していないと判断した場合(ステップS303、N)、再びステップS301からの制御を実行する。   Subsequently, the control unit 41 determines whether or not the contactor 24 has rotated 180 ° (step S303). Here, when the control unit 41 determines that the contactor 24 has not rotated 180 ° (step S303, N), the control unit 41 executes the control from step S301 again.

一方、制御部41は、接触子24が180°回転していると判断した場合(ステップS303、Y)、取得された擬似測定点Piを接触子24の回転位置に応じて座標変換して、3次元擬似測定点P1ijを生成する(ステップS304)。次に、制御部41は、全ての3次元擬似測定点P1ijに基づき、基準形状M4を生成する(ステップS305)。なお、3次元擬似測定点P1ij、及び基準形状M4の詳細については、後述する。   On the other hand, when the control unit 41 determines that the contactor 24 is rotated by 180 ° (step S303, Y), the control unit 41 performs coordinate conversion of the acquired pseudo measurement point Pi according to the rotation position of the contactor 24, A three-dimensional pseudo measurement point P1ij is generated (step S304). Next, the control unit 41 generates a reference shape M4 based on all the three-dimensional pseudo measurement points P1ij (step S305). Details of the three-dimensional pseudo measurement point P1ij and the reference shape M4 will be described later.

続いて、制御部41は、基準形状M4に基づき、3次元接触子モデルM2を生成する(ステップS306)。以上で、制御部41の動作は終了する。   Subsequently, the control unit 41 generates a three-dimensional contactor model M2 based on the reference shape M4 (step S306). Thus, the operation of the control unit 41 ends.

次に、図16及び図17を参照して、ステップS304、S305における、「3次元擬似測定点P1ij」、及び「基準形状M4」を説明する。   Next, with reference to FIG. 16 and FIG. 17, “three-dimensional pseudo measurement point P1ij” and “reference shape M4” in steps S304 and S305 will be described.

図16に示すように、実際の測定において、基準ワーク4上の同一経路で、スタイラス23をX軸方向に走査して、測定[A]、[B]が行われる。測定[A]、[B]において、接触子24はα°回転する。   As shown in FIG. 16, in the actual measurement, the measurement [A], [B] is performed by scanning the stylus 23 in the X-axis direction along the same path on the reference workpiece 4. In the measurements [A] and [B], the contactor 24 rotates by α °.

一方、図16に示すように、接触子24の回転がない測定を想定すると、実際の測定[A]、[B]は、測定[A’]、[B’]に変換される。すなわち、測定[A’]、[B’]において、接触子24は、回転しない。また、測定[A’]においてスタイラス23は、X軸方向に走査され、測定[B’]においてスタイラス23は、X軸方向からα°の角度をもつ方向に走査される。測定[A]、[B]における擬似測定点Piを、上記のような測定[A’]、[B’]に変換した場合に対応する値が、「3次元擬似測定点P1ij」である。   On the other hand, as shown in FIG. 16, assuming a measurement in which the contact 24 does not rotate, actual measurements [A] and [B] are converted into measurements [A ′] and [B ′]. That is, in the measurements [A ′] and [B ′], the contact 24 does not rotate. In measurement [A ′], the stylus 23 is scanned in the X-axis direction, and in measurement [B ′], the stylus 23 is scanned in a direction having an angle of α ° with respect to the X-axis direction. A value corresponding to the case where the pseudo measurement points Pi in the measurements [A] and [B] are converted into the above measurements [A ′] and [B ′] is “three-dimensional pseudo measurement points P1ij”.

制御部41は、上記の3次元擬似測定点P1ijに基づき、図17に示すような基準形状M4(M4A、M4B、M4C)を生成し、3次元接触子モデルM2を生成する。   The control unit 41 generates a reference shape M4 (M4A, M4B, M4C) as shown in FIG. 17 based on the three-dimensional pseudo measurement point P1ij, and generates a three-dimensional contactor model M2.

例えば、図17に示すように、実際の基準ワーク4Aが半円柱である場合、3次元擬似測定点P1ijに基づき生成される基準形状M4Aは半球となる。また、実際の基準ワーク4Bが三角柱である場合、基準形状M4Bは円錐となる。また、実際の基準ワーク4Cが半球である場合、基準形状M4Cは半球となる。   For example, as shown in FIG. 17, when the actual reference workpiece 4A is a semi-cylinder, the reference shape M4A generated based on the three-dimensional pseudo measurement point P1ij is a hemisphere. When the actual reference workpiece 4B is a triangular prism, the reference shape M4B is a cone. In addition, when the actual reference workpiece 4C is a hemisphere, the reference shape M4C is a hemisphere.

(第2実施形態に係る表面性状測定装置の効果)
第2実施形態に係る表面性状測定装置は、第1実施形態と略同様の構成を有し、第1実施形態と同様の効果を奏する。
(Effects of the surface texture measuring device according to the second embodiment)
The surface texture measuring apparatus according to the second embodiment has substantially the same configuration as that of the first embodiment and has the same effects as those of the first embodiment.

[その他の実施形態]
以上、表面性状測定装置の実施形態を説明してきたが、本発明は、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、追加、置換等が可能である。例えば、本発明は、輪郭測定機、粗さ測定機にも適応可能である。
[Other Embodiments]
The embodiment of the surface texture measuring device has been described above, but the present invention is not limited to the above embodiment, and various modifications, additions, substitutions, and the like are possible without departing from the spirit of the invention. is there. For example, the present invention can be applied to a contour measuring machine and a roughness measuring machine.

1…測定機本体、2…演算処理装置、3…基台、4…ワーク、5…テーブル、6…変位検出装置、7…操作部、21…コラム、22…スライダ、23…スタイラス、24…接触子、31…演算処理装置本体、32…操作部、33…表示画面。   DESCRIPTION OF SYMBOLS 1 ... Measuring machine main body, 2 ... Arithmetic processing unit, 3 ... Base, 4 ... Work, 5 ... Table, 6 ... Displacement detection device, 7 ... Operation part, 21 ... Column, 22 ... Slider, 23 ... Stylus, 24 ... Contact, 31... Arithmetic processing unit main body, 32... Operation unit, 33.

Claims (6)

被測定物に先端が接触可能な接触子と、
前記接触子を互いに直交する水平方向の第1軸及び第2軸並びに垂直方向の第3軸に沿って移動させる接触子駆動手段と、
前記接触子駆動手段によって前記接触子を前記被測定物の表面に倣うように駆動すると共に前記接触子の先端位置を疑似測定点として取得する疑似測定点取得手段と、
前記取得された疑似測定点と前記接触子の先端形状を規定する3次元接触子モデルとに基づいて前記被測定物の表面形状を算出する演算手段と、
基準形状を持つ基準ワークを前記接触子で倣い測定して前記3次元接触子モデルを算出する接触子モデル算出手段と
を備えた表面性状測定装置において、
前記接触子駆動手段は、前記接触子を、前記第3軸を中心として回転駆動するものであり、
前記接触子モデル算出手段は、前記回転駆動される接触子の複数の回転位置のそれぞれにおいて、前記接触子駆動手段で前記接触子を前記第1軸方向及び第3軸方向に沿って移動させて前記基準ワークを倣い測定して前記疑似測定点を取得し、取得された疑似測定点に基づいて前記3次元接触子モデルを算出する
ことを特徴とする表面性状測定装置。
A contactor whose tip can contact the object to be measured;
Contact driving means for moving the contacts along a first axis and a second axis in the horizontal direction perpendicular to each other and a third axis in the vertical direction;
A pseudo measurement point acquiring means for driving the contactor to follow the surface of the object to be measured by the contact driving means and acquiring the tip position of the contact as a pseudo measurement point;
An arithmetic means for calculating the surface shape of the object to be measured based on the acquired pseudo measurement point and a three-dimensional contact model that defines the tip shape of the contact;
A surface texture measuring device comprising: contact model calculation means for calculating the three-dimensional contact model by measuring a reference workpiece having a reference shape with the contact.
The contact drive means rotates the contact around the third axis,
The contact model calculation means moves the contact along the first axial direction and the third axial direction by the contact driving means at each of a plurality of rotational positions of the rotationally driven contact. A surface texture measuring apparatus characterized by measuring the reference workpiece to obtain the pseudo measurement point and calculating the three-dimensional contactor model based on the obtained pseudo measurement point.
前記接触子モデル算出手段は、前記接触子の各回転位置において、前記取得された疑似測定点に基づき2次元接触子モデルを算出し、算出された前記接触子の各回転位置における2次元接触子モデルを合成して3次元接触子モデルを算出する
ことを特徴とする請求項1記載の表面性状測定装置。
The contact model calculation means calculates a two-dimensional contact model at each rotational position of the contact based on the acquired pseudo measurement point, and the calculated two-dimensional contact at each rotational position of the contact The surface texture measuring apparatus according to claim 1, wherein the model is synthesized to calculate a three-dimensional contactor model.
前記接触子モデル算出手段は、前記接触子の各回転位置において、前記取得された疑似測定点を前記接触子の回転位置に応じて座標変換して得られた3次元疑似測定点から前記3次元接触子モデルを算出する
ことを特徴とする請求項1記載の表面性状測定装置。
The contact model calculation means is configured to convert the acquired pseudo measurement point at each rotational position of the contact from the three-dimensional pseudo measurement point obtained by performing coordinate conversion according to the rotation position of the contact. The surface property measuring apparatus according to claim 1, wherein a contact model is calculated.
前記接触子モデル算出手段は、仮想空間内で、初期値として与えられた3次元接触子モデル又は算出された3次元接触子モデルを前記疑似測定点に配置し、前記3次元接触子モデルと前記基準ワークとの接触状況を調べ、前記接触状況に基づいて前記3次元接触子モデルを修正する処理を繰り返す
ことを特徴とする請求項1記載の表面性状測定装置。
The contact model calculation means arranges a three-dimensional contact model given as an initial value or a calculated three-dimensional contact model at the pseudo measurement point in a virtual space, and the three-dimensional contact model and the The surface property measuring apparatus according to claim 1, wherein a contact state with a reference workpiece is checked, and the process of correcting the three-dimensional contactor model based on the contact state is repeated.
被測定物に先端が接触可能な接触子と、
前記接触子を互いに直交する水平方向の第1軸及び第2軸並びに垂直方向の第3軸に沿って移動させる接触子駆動手段と、
前記接触子駆動手段によって前記接触子を前記被測定物の表面に倣うように駆動すると共に前記接触子の先端位置を疑似測定点として取得する疑似測定点取得手段と、
前記取得された疑似測定点と前記接触子の先端形状を規定する3次元接触子モデルとに基づいて前記被測定物の表面形状を算出する演算手段と
を備えた表面性状測定装置の接触子モデル生成方法であって、
前記接触子を、前記第3軸を中心として回転させ、
前記接触子の複数の回転位置のそれぞれにおいて、前記接触子駆動手段で前記接触子を前記第1軸方向及び第3軸方向に沿って移動させて前記基準ワークを倣い測定して前記疑似測定点を取得し、取得された疑似測定点に基づいて前記3次元接触子モデルを算出する
ことを特徴とする表面性状測定装置の接触子モデル生成方法。
A contactor whose tip can contact the object to be measured;
Contact driving means for moving the contacts along a first axis and a second axis in the horizontal direction perpendicular to each other and a third axis in the vertical direction;
A pseudo measurement point acquiring means for driving the contactor to follow the surface of the object to be measured by the contact driving means and acquiring the tip position of the contact as a pseudo measurement point;
A contactor model of a surface texture measuring device comprising: an arithmetic means for calculating a surface shape of the object to be measured based on the acquired pseudo measurement point and a three-dimensional contactor model that defines a tip shape of the contactor A generation method,
Rotating the contact around the third axis;
At each of the plurality of rotational positions of the contactor, the contactor driving means moves the contactor along the first axis direction and the third axis direction to measure the reference workpiece to measure the pseudo measurement point. And calculating the three-dimensional contactor model based on the acquired pseudo measurement points. A contactor model generating method for a surface texture measuring device.
被測定物に先端が接触可能な接触子と、
前記接触子を互いに直交する水平方向の第1軸及び第2軸並びに垂直方向の第3軸に沿って移動させる接触子駆動手段と、
前記接触子駆動手段によって前記接触子を前記被測定物の表面に倣うように駆動すると共に前記接触子の先端位置を疑似測定点として取得する疑似測定点取得手段と、
前記取得された疑似測定点と前記接触子の先端形状を規定する3次元接触子モデルとに基づいて前記被測定物の表面形状を算出する演算手段と
を備えた表面性状測定装置の接触子モデル生成プログラムであって、
コンピュータに
前記接触子を、前記第3軸を中心として回転させ、
前記接触子の複数の回転位置のそれぞれにおいて、前記接触子駆動手段で前記接触子を前記第1軸方向及び第3軸方向に沿って移動させて前記基準ワークを倣い測定して前記疑似測定点を取得し、取得された疑似測定点に基づいて前記3次元接触子モデルを算出させる
ことを特徴とする表面性状測定装置の接触子モデル生成プログラム。
A contactor whose tip can contact the object to be measured;
Contact driving means for moving the contacts along a first axis and a second axis in the horizontal direction perpendicular to each other and a third axis in the vertical direction;
A pseudo measurement point acquiring means for driving the contactor to follow the surface of the object to be measured by the contact driving means and acquiring the tip position of the contact as a pseudo measurement point;
A contactor model of a surface texture measuring device comprising: an arithmetic means for calculating a surface shape of the object to be measured based on the acquired pseudo measurement point and a three-dimensional contactor model that defines a tip shape of the contactor A generation program,
The computer rotates the contactor about the third axis,
At each of the plurality of rotational positions of the contactor, the contactor driving means moves the contactor along the first axis direction and the third axis direction to measure the reference workpiece to measure the pseudo measurement point. And calculating the three-dimensional contactor model based on the acquired pseudo measurement points. A contactor model generation program for a surface texture measuring device.
JP2009009152A 2009-01-19 2009-01-19 Surface texture measuring device, contact model generation method thereof, and program Expired - Fee Related JP5205643B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009009152A JP5205643B2 (en) 2009-01-19 2009-01-19 Surface texture measuring device, contact model generation method thereof, and program
DE201010000876 DE102010000876A1 (en) 2009-01-19 2010-01-14 Surface texture measuring apparatus and method and program for generating a sensor model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009152A JP5205643B2 (en) 2009-01-19 2009-01-19 Surface texture measuring device, contact model generation method thereof, and program

Publications (2)

Publication Number Publication Date
JP2010164532A JP2010164532A (en) 2010-07-29
JP5205643B2 true JP5205643B2 (en) 2013-06-05

Family

ID=42263112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009152A Expired - Fee Related JP5205643B2 (en) 2009-01-19 2009-01-19 Surface texture measuring device, contact model generation method thereof, and program

Country Status (2)

Country Link
JP (1) JP5205643B2 (en)
DE (1) DE102010000876A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272248B2 (en) * 2009-05-08 2013-08-28 株式会社ミツトヨ Surface texture measuring device, surface texture measuring method, and program
JP6113998B2 (en) 2012-10-18 2017-04-12 株式会社ミツトヨ Shape measuring machine, method for adjusting shape measuring machine, and shape measuring method
JP7045194B2 (en) 2018-01-11 2022-03-31 株式会社ミツトヨ Lens measuring device and lens measuring method
KR20240032881A (en) * 2021-09-29 2024-03-12 조인트 스탁 컴퍼니 “로제네르고아톰” Reactor Technology Channel Curvature Measurement Method
CN118563627B (en) * 2024-08-02 2024-09-27 贵州交通职业技术学院 Static load deflection detection device for asphalt pavement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025413B2 (en) * 1994-08-02 2000-03-27 株式会社東京精密 Method and apparatus for measuring contour shape
JP3516630B2 (en) * 2000-03-29 2004-04-05 株式会社ミツトヨ Shape measuring machine and shape measuring method
JP4794753B2 (en) * 2001-06-04 2011-10-19 パナソニック株式会社 Shape measurement method
JP4695374B2 (en) * 2003-11-25 2011-06-08 株式会社ミツトヨ Surface scanning measuring device and scanning probe correction table creation method
JP2007183184A (en) * 2006-01-06 2007-07-19 Mitsutoyo Corp Calibration method for profiling probe
JP4372759B2 (en) * 2006-02-10 2009-11-25 株式会社ミツトヨ Shape measuring apparatus, shape measuring method, and shape measuring program
JP5203028B2 (en) * 2007-05-30 2013-06-05 株式会社ミツトヨ Abnormality detection method for shape measuring mechanism and shape measuring mechanism

Also Published As

Publication number Publication date
DE102010000876A1 (en) 2010-07-22
JP2010164532A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP4372759B2 (en) Shape measuring apparatus, shape measuring method, and shape measuring program
JP5221004B2 (en) Measuring device, surface texture measuring method, and surface texture measuring program
US7643963B2 (en) Apparatus, method and program for measuring surface texture
JP5612386B2 (en) Shape measuring device
JP5648692B2 (en) Shape measuring apparatus, shape measuring method, structure manufacturing method and program
JP6113963B2 (en) Shape measuring method and shape measuring apparatus
JP3827548B2 (en) Scanning probe calibration method and calibration program
JP5332009B2 (en) Shape measuring apparatus and shape measuring method
JP5205643B2 (en) Surface texture measuring device, contact model generation method thereof, and program
JP2009008523A (en) Method of calibrating parameters for multi-joint type coordinate measuring apparatus
JP2004257927A (en) Three-dimensional profile measuring system and method for measuring the same
JP2010223865A (en) Corrected ball diameter calculating method and form measuring instrument
JP5600045B2 (en) CMM calibration method
JP2003114117A (en) Calibration method and calibration program for probe
JP5272248B2 (en) Surface texture measuring device, surface texture measuring method, and program
JP5629883B2 (en) Shape measuring apparatus, shape measuring method, and shape measuring program
JP6514041B2 (en) Control method of shape measuring device
JP6474587B2 (en) Measurement value correction method, measurement value correction program, and measurement apparatus
JP2021021650A (en) Parameter calibration method for surface property measuring device
JP5496033B2 (en) Defect dimension measuring apparatus, defect dimension measuring method, and program
JP2015222196A (en) Three dimensional measuring machine and method for measuring shape using the same
JP5064725B2 (en) Shape measurement method
JP2009288227A (en) Three-dimensional measuring machine
JP4652011B2 (en) Three-dimensional coordinate measurement system and part program used therefor
CN114061502A (en) Control method of shape measuring apparatus and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees