JP5204572B2 - Separator manufacturing method and apparatus for polymer electrolyte fuel cell - Google Patents

Separator manufacturing method and apparatus for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5204572B2
JP5204572B2 JP2008191802A JP2008191802A JP5204572B2 JP 5204572 B2 JP5204572 B2 JP 5204572B2 JP 2008191802 A JP2008191802 A JP 2008191802A JP 2008191802 A JP2008191802 A JP 2008191802A JP 5204572 B2 JP5204572 B2 JP 5204572B2
Authority
JP
Japan
Prior art keywords
molding
backlash
roll
cylinder
main bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008191802A
Other languages
Japanese (ja)
Other versions
JP2010033736A (en
Inventor
信広 田添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Primetals Technologies Holdings Ltd
Original Assignee
IHI Corp
IHI Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Metaltech Co Ltd filed Critical IHI Corp
Priority to JP2008191802A priority Critical patent/JP5204572B2/en
Publication of JP2010033736A publication Critical patent/JP2010033736A/en
Application granted granted Critical
Publication of JP5204572B2 publication Critical patent/JP5204572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池用セパレータ製造方法及び装置に関するものである。   The present invention relates to a method and apparatus for producing a polymer electrolyte fuel cell separator.

一般に、固体高分子型燃料電池は、燃料として、純水素、或いはアルコール類を改質して得られる水素ガスを用い、該水素と空気中の酸素との反応を電気化学的に制御することによって電気を得るものである。   In general, a polymer electrolyte fuel cell uses pure hydrogen or hydrogen gas obtained by reforming alcohol as a fuel, and electrochemically controls the reaction between the hydrogen and oxygen in the air. To get electricity.

前記固体高分子型燃料電池は、固体の水素イオン選択透過型有機物膜を電解質として用いるため、従来のアルカリ型燃料電池、燐酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池等のように、電解質として水溶液系電解質や溶融塩系電解質といった流動性媒体を用いる燃料電池に比べてコンパクト化が可能となり、電気自動車やその他の用途に向けた開発が進められている。   Since the polymer electrolyte fuel cell uses a solid hydrogen ion permselective organic membrane as an electrolyte, the conventional alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid electrolyte fuel cell, etc. As described above, the fuel cell can be made more compact than a fuel cell using a fluid medium such as an aqueous electrolyte or a molten salt electrolyte as an electrolyte, and development for electric vehicles and other uses is being promoted.

そして、前記固体高分子型燃料電池は、図7に示される如く、凸部1a及び凹部1bが形成されたセパレータ1と、水素極2と、高分子電解質膜3と、空気(酸素)極4と、凸部1a及び凹部1bが形成されたセパレータ1とを重ね合わせてサンドイッチ構造のセル5を形成し、該セル5を多数積層してスタック6としたものが用いられるようになっており、前記セパレータ1の水素極2と接する側の空間に水素流路7が形成されると共に、前記セパレータ1の空気極4と接する側の空間に空気(酸素)流路8が形成され、更に、前記セパレータ1同士が重ね合わされる側の空間に冷却水流路9が形成されるようになっている。   As shown in FIG. 7, the polymer electrolyte fuel cell includes a separator 1 having convex portions 1 a and concave portions 1 b, a hydrogen electrode 2, a polymer electrolyte membrane 3, and an air (oxygen) electrode 4. And the separator 1 in which the convex portion 1a and the concave portion 1b are formed to form a cell 5 having a sandwich structure, and a plurality of the cells 5 stacked to form a stack 6 are used. A hydrogen channel 7 is formed in a space on the side of the separator 1 in contact with the hydrogen electrode 2, and an air (oxygen) channel 8 is formed in a space on the side of the separator 1 in contact with the air electrode 4. A cooling water channel 9 is formed in the space on the side where the separators 1 are overlapped.

従来において、前記セパレータ1は、プレス成形により周縁部が平坦で中央部に多数の凸部1a及び凹部1bからなる膨出成形部を形成することを想定していたが、実際に金属薄板からなる被成形材の加工を試みると、前記凸部1a及び凹部1bからなる膨出成形部において延性割れが生じることから、前述のような形状にプレス成形することが困難となる一方、大量のセパレータ1をプレス成形によって製造しようとすると、生産効率が低下してしまうという問題があった。   In the past, the separator 1 was assumed to be formed by press forming, and a peripheral portion is flat and a bulging formed portion including a large number of convex portions 1a and concave portions 1b is formed in the central portion. Attempting to process the material to be molded causes ductile cracking in the bulging molded portion composed of the convex portion 1a and the concave portion 1b, so that it becomes difficult to press-mold into the shape as described above, while a large amount of separator 1 When trying to manufacture by press molding, there was a problem that production efficiency fell.

このため、最近では、表面に凹部及び凸部が形成された成形領域を有する一対のロールを対向配置し、該ロール間に金属薄板からなる被成形材を導入して圧下することにより、前記ロールの凹部及び凸部に対応する流路(水素流路7、空気流路8、冷却水流路9)が形成されたセパレータ1を連続的に製造することが提案されている。   For this reason, recently, a pair of rolls having a forming region with concave and convex portions formed on the surface are arranged opposite to each other, and a material to be formed of a thin metal plate is introduced between the rolls to reduce the roll. It has been proposed to continuously manufacture the separator 1 in which the flow paths (hydrogen flow path 7, air flow path 8, and cooling water flow path 9) corresponding to the concave and convex portions are formed.

尚、図7に示されるような固体高分子型燃料電池のセパレータ1を製造するための装置の一般的技術水準を示すものとしては、例えば、特許文献1がある。
特開2002−190305号公報
For example, Patent Document 1 shows a general technical level of an apparatus for manufacturing a separator 1 of a polymer electrolyte fuel cell as shown in FIG.
JP 2002-190305 A

しかしながら、前記セパレータ1は、ステンレス鋼等の金属薄板からなる被成形材をますます薄く(板厚が0.1[mm]程度)且つ精度良く成形することが求められており、単なる圧延用の装置を用いたのでは、ロールのハウジングと主ベアリング軸箱との間のガタや、ロールと主ベアリングとの間のガタによって、要求される精度が得られないという問題を有していた。   However, the separator 1 is required to form a material to be formed of a thin metal plate such as stainless steel thinner and thinner (plate thickness is about 0.1 [mm]) with high accuracy, and is simply used for rolling. When the apparatus is used, there is a problem that the required accuracy cannot be obtained due to the backlash between the roll housing and the main bearing shaft box or the backlash between the roll and the main bearing.

本発明は、斯かる実情に鑑み、生産効率を低下させることなく、金属薄板からなる被成形材を精度良く成形でき、高精度なセパレータを効率良く製造し得る固体高分子型燃料電池用セパレータ製造方法及び装置を提供しようとするものである。   In view of such circumstances, the present invention provides a separator for a polymer electrolyte fuel cell that can accurately form a molding material made of a thin metal plate and can efficiently manufacture a high-precision separator without reducing production efficiency. It is an object to provide a method and apparatus.

本発明は、表面に凹部及び凸部が形成された成形領域と、凹部及び凸部が形成されない非成形領域とを円周方向へ交互に有し且つ対向配置された一対のロール間に金属薄板からなる被成形材を導入して圧下することにより、前記凹部及び凸部に対応する流路が形成されたセパレータを連続的に製造する固体高分子型燃料電池用セパレータ製造方法において、
成形開始前、前記ロールのハウジングと主ベアリング軸箱との間の上下方向並びに水平方向のガタを常時ガタ除去シリンダの作動にてなくした状態で、前記ロール間のギャップを設定値より広くしておき、前記ロールと主ベアリングとの間のガタを非成形時ガタ除去シリンダの作動にてなくし、
この状態で、前記ロール間のギャップをプッシュアップシリンダを伸長させて設定値とし、前記被成形材をロール間に導入して成形荷重が生じた時点で、前記成形領域に入ったと判断し、前記非成形時ガタ除去シリンダの設定圧を0として、前記被成形材の成形を行い、
前記成形荷重が0となった時点で、前記非成形領域に入ったと判断し、前記プッシュアップシリンダを所要量だけ収縮させてロール間のギャップを設定値より所要量だけ広くすると共に、前記ロールと主ベアリングとの間のガタを非成形時ガタ除去シリンダの作動にてなくし、
再び前記ロール間のギャップをプッシュアップシリンダを伸長させて設定値とし、成形荷重が生じた時点で、前記成形領域に入ったと判断し、前記非成形時ガタ除去シリンダの設定圧を0として、前記被成形材の成形を行い、
以下、前記ロールのハウジングと主ベアリング軸箱との間のガタの除去を常時行いつつ、前記非成形領域におけるロールと主ベアリングとの間のガタの除去と、前記成形領域における被成形材の成形とを繰り返し行うことを特徴とする固体高分子型燃料電池用セパレータ製造方法にかかるものである。
The present invention relates to a metal thin plate between a pair of rolls alternately having a molding area in which concave and convex portions are formed on the surface and a non-molding area in which no concave and convex portions are formed in the circumferential direction. In the separator manufacturing method for a polymer electrolyte fuel cell, in which a separator formed with a flow path corresponding to the concave portion and the convex portion is continuously manufactured by introducing and reducing the molding material comprising:
Before starting molding, with the vertical and horizontal backlash between the roll housing and the main bearing axle box eliminated by the operation of the backlash removal cylinder, the gap between the rolls should be wider than the set value. The backlash between the roll and the main bearing is eliminated by the operation of the backlash removal cylinder when not forming,
In this state, the gap between the rolls is set to a set value by extending a push-up cylinder, and when the molding material is introduced between the rolls and a molding load is generated, it is determined that the molding area has been entered, When the set pressure of the non-molding backlash removal cylinder is 0, the molding material is molded,
When the forming load becomes zero, it is determined that the non-forming region has been entered, the push-up cylinder is contracted by a required amount to widen the gap between the rolls by a predetermined amount, and the roll The backlash between the main bearing is eliminated by the operation of the backlash removal cylinder when not forming,
The gap between the rolls is again set to a set value by extending the push-up cylinder, and when the forming load is generated, it is determined that the forming region has been entered, and the set pressure of the non-forming backlash removal cylinder is set to 0, Form the material to be molded,
Hereinafter, the backlash between the roll housing and the main bearing in the non-molding region is removed while the backlash between the roll housing and the main bearing axle box is constantly removed, and the molding material is molded in the molding region. The present invention relates to a method for producing a separator for a polymer electrolyte fuel cell, characterized in that the above is repeated.

一方、本発明は、表面に凹部及び凸部が形成された成形領域と、凹部及び凸部が形成されない非成形領域とを円周方向へ交互に有し且つ対向配置された一対のロール間に金属薄板からなる被成形材を導入して圧下することにより、前記凹部及び凸部に対応する流路が形成されたセパレータを連続的に製造する固体高分子型燃料電池用セパレータ製造装置において、
前記ロール間のギャップを調節可能なプッシュアップシリンダと、
前記ロールのハウジングと主ベアリング軸箱との間に、上下方向並びに水平方向のガタをなくすよう配設される常時ガタ除去シリンダと、
前記ロールのネック部に嵌着される補助ベアリングと、
該補助ベアリング間に、前記ロールと主ベアリングとの間のガタをなくすよう配設される非成形時ガタ除去シリンダと、
成形荷重を検出する荷重検出器と、
該荷重検出器で検出される成形荷重に基づき、前記プッシュアップシリンダと常時ガタ除去シリンダと非成形時ガタ除去シリンダとにそれぞれ作動信号を出力し、前記ロールのハウジングと主ベアリング軸箱との間のガタの除去を常時行わせつつ、前記非成形領域におけるロールと主ベアリングとの間のガタの除去と、前記成形領域における被成形材の成形とを繰り返し行わせる制御器と
を備えたことを特徴とする固体高分子型燃料電池用セパレータ製造装置にかかるものである。
On the other hand, the present invention is provided between a pair of rolls that are alternately arranged in the circumferential direction and have a non-molding area in which recesses and protrusions are not formed and non-molding areas in which recesses and protrusions are not formed. In the separator manufacturing apparatus for a polymer electrolyte fuel cell for continuously manufacturing a separator in which a flow path corresponding to the concave portion and the convex portion is formed by introducing and reducing a molding material made of a thin metal plate,
A push-up cylinder capable of adjusting the gap between the rolls;
A backlash removing cylinder arranged between the housing of the roll and the main bearing axle box so as to eliminate backlash in the vertical direction and the horizontal direction;
An auxiliary bearing fitted to the neck of the roll;
A non-molding backlash removal cylinder disposed between the auxiliary bearings so as to eliminate backlash between the roll and the main bearing;
A load detector for detecting the molding load;
Based on the forming load detected by the load detector, an operation signal is output to the push-up cylinder, the backlash removal cylinder and the non-forming backlash removal cylinder, respectively, between the housing of the roll and the main bearing axle box. And a controller that repeatedly performs backlash removal between the roll and the main bearing in the non-molding region and molding of the molding material in the molding region. The present invention relates to a separator for manufacturing a polymer electrolyte fuel cell.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

ロールのハウジングと主ベアリング軸箱との間のガタは常時ガタ除去シリンダの作動にて除去され、ロールと主ベアリングとの間のガタは非成形時ガタ除去シリンダの作動にて除去され、ロール間のギャップを精度良く設定値に保持可能となるため、非常に薄い金属薄板からなる被成形材であっても、その成形に要求される精度が得られ、高精度なセパレータを効率良く製造することが可能となる。   The backlash between the roll housing and the main bearing axle box is always removed by the operation of the backlash removal cylinder, and the backlash between the roll and the main bearing is removed by the backlash removal cylinder when not forming, Because the gap can be accurately maintained at the set value, the precision required for molding can be obtained even for a material made of a very thin metal sheet, and a highly accurate separator can be produced efficiently. Is possible.

前記固体高分子型燃料電池用セパレータ製造装置においては、前記各ロールのロール軸部にそれぞれ波動歯車機構を備えた減速機を介して別々のサーボモータを直結すると共に、該減速機をそれぞれ対応する主ベアリング軸箱に直結することが、回転動力伝達系の回転方向のガタを微小にして回転動力をロールに伝達する上で有効となる。   In the polymer electrolyte fuel cell separator manufacturing apparatus, separate servomotors are directly connected to the roll shaft portions of the respective rolls via reduction gears each having a wave gear mechanism, and the reduction gears respectively correspond to them. Direct connection to the main bearing shaft box is effective in transmitting the rotational power to the roll with a small amount of play in the rotational direction of the rotational power transmission system.

本発明の固体高分子型燃料電池用セパレータ製造方法及び装置によれば、生産効率を低下させることなく、金属薄板からなる被成形材を精度良く成形でき、高精度なセパレータを効率良く製造し得るという優れた効果を奏し得る。   According to the method and apparatus for producing a polymer electrolyte fuel cell separator of the present invention, it is possible to accurately form a molding material made of a thin metal plate without reducing the production efficiency, and it is possible to efficiently produce a highly accurate separator. An excellent effect can be achieved.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図6は本発明を実施する形態の一例であって、10はハウジング、11はハウジング10に配設された主ベアリング軸箱、12は主ベアリング軸箱11内に設けられた主ベアリング、13は主ベアリング12によりハウジング10に対し回転自在に支承されるよう上下に対向配置された一対のロールであり、該ロール13は、図1及び図2に示す如く、表面に凹部14a及び凸部14bが形成された成形領域と、凹部14a及び凸部14bが形成されない非成形領域とを円周方向へ交互に有している。   1 to 6 show an embodiment of the present invention, in which 10 is a housing, 11 is a main bearing shaft box disposed in the housing 10, and 12 is a main bearing provided in the main bearing shaft box 11. , 13 are a pair of upper and lower rolls arranged so as to be rotatably supported by the main bearing 12 with respect to the housing 10, and the roll 13 has a concave portion 14a and a convex on the surface as shown in FIGS. It has alternately the shaping | molding area | region in which the part 14b was formed, and the non-molding area | region in which the recessed part 14a and the convex part 14b are not formed in the circumferential direction.

本図示例の場合、前記ロール13のロール本体部13aに、表面に凹部14a及び凸部14bが形成された成形領域を有する円弧形状の二個の金型14をキー15とボルト等の締結部材16にて嵌着することにより、前記ロール13に成形領域と非成形領域とが円周方向へ交互に形成されるようにしてある。   In the case of the illustrated example, two arc-shaped molds 14 each having a molding region having a concave portion 14a and a convex portion 14b formed on the surface of the roll main body portion 13a of the roll 13 are connected to a key 15 and a fastening member such as a bolt. 16, the forming region and the non-forming region are alternately formed in the circumferential direction on the roll 13.

又、前記ハウジング10の下部に、下側のロール13の主ベアリング軸箱11を押し上げ下げすることにより前記ロール13間のギャップを調節可能なプッシュアップシリンダ17を配置し、前記ロール13のハウジング10と主ベアリング軸箱11との間に、上下方向並びに水平方向のガタをなくす常時ガタ除去シリンダ18,19(図1及び図3参照)を配設し、前記ロール13のネック部13bに補助ベアリング20を嵌着し、該補助ベアリング20間に、前記ロール13と主ベアリング12との間のガタをなくす非成形時ガタ除去シリンダ21(図1及び図4参照)を配設し、前記ハウジング10の上部に、成形荷重23aを検出するロードセル等の荷重検出器23を設け、該荷重検出器23で検出される成形荷重23aに基づき、前記プッシュアップシリンダ17と常時ガタ除去シリンダ18,19と非成形時ガタ除去シリンダ21とにそれぞれ作動信号17a,18a,19a,21aを出力する制御器24を設けてある。   In addition, a push-up cylinder 17 capable of adjusting the gap between the rolls 13 by pushing up and down the main bearing axle box 11 of the lower roll 13 is disposed at the lower part of the housing 10. And the main bearing shaft box 11 are provided with regular backlash removing cylinders 18 and 19 (see FIGS. 1 and 3) for eliminating backlash in the vertical and horizontal directions, and an auxiliary bearing is provided on the neck 13b of the roll 13. 20, and a non-molding backlash removal cylinder 21 (see FIGS. 1 and 4) that eliminates backlash between the roll 13 and the main bearing 12 is disposed between the auxiliary bearings 20. Is provided with a load detector 23 such as a load cell for detecting the molding load 23a, and based on the molding load 23a detected by the load detector 23, Serial push-up cylinder 17 always play removal cylinder 18, 19 and the unformed during play removal cylinder 21 and the respective actuation signal 17a, 18a, 19a, is provided with a controller 24 for outputting 21a.

尚、前記非成形時ガタ除去シリンダ21は、補助ベアリング20の外周を覆うように取り付けられる半割り状の補助ベアリングカバー22の間に介装するようにしてある。   The non-molding backlash removal cylinder 21 is interposed between a half-split auxiliary bearing cover 22 attached to cover the outer periphery of the auxiliary bearing 20.

一方、前記各ロール13のロール軸部13cにそれぞれ所謂ハーモニックドライブ(登録商標)と称される波動歯車機構を備えた減速機25を介して別々のサーボモータ26を直結すると共に、該減速機25をそれぞれ対応する主ベアリング軸箱11に直結するようにしてある。   On the other hand, a separate servo motor 26 is directly connected to the roll shaft portion 13c of each roll 13 via a speed reducer 25 having a wave gear mechanism called a so-called harmonic drive (registered trademark). Are directly connected to the corresponding main bearing axle boxes 11.

ここで、前記波動歯車機構を備えた減速機25は、図5(a)〜図5(c)に示す如く、外周が楕円状のウエーブジェネレータ27と、外周に多数の外歯が形成されると共に軸受28を介してウエーブジェネレータ27に外嵌され、且つウエーブジェネレータ27が回転することにより、図5(b)、図5(c)に示すように順次円周方向へ撓まされる位置が変化するようにした弾性変形可能なフレクスプライン29と、該フレクスプライン29の外周側に位置して、フレクスプライン29の外歯と嵌合する内歯を有し、フレクスプライン29の撓む位置が変化することにより、内歯の外歯に対する噛み合い位置が変化するようにした回転しないサーキュラスプライン30とを備えており、前記ウエーブジェネレータ27の軸孔27aには、前記サーボモータ26の軸26aが嵌合され(図1参照)、フレクスプライン29には、ロール13のロール軸部13cが接続されるようになっている。尚、フレクスプライン29の外歯の歯数は、サーキュラスプライン30の内歯の歯数よりも数枚少ない。   Here, as shown in FIGS. 5A to 5C, the speed reducer 25 provided with the wave gear mechanism has a wave generator 27 having an elliptical outer periphery and a large number of external teeth on the outer periphery. In addition, when the wave generator 27 is externally fitted to the wave generator 27 via the bearing 28 and the wave generator 27 is rotated, the position of the bending in the circumferential direction is changed as shown in FIGS. 5B and 5C. The flexspline 29 is elastically deformable, and has an inner tooth that is located on the outer peripheral side of the flexspline 29 and engages with the outer teeth of the flexspline 29. And a circular spline 30 that does not rotate so that the meshing position of the inner teeth with the outer teeth changes, and the shaft hole 27a of the wave generator 27 includes Serial axis 26a of the servo motor 26 is fitted (see FIG. 1), the flexspline 29, so that the roll shaft 13c of the roll 13 is connected. Note that the number of external teeth of the flexspline 29 is several less than the number of internal teeth of the circular spline 30.

そして、前記サーボモータ26の駆動により、ウエーブジェネレータ27が、例えば、図5(a)において、時計方向へ回転すると、フレクスプライン29は弾性変形し、該ウエーブジェネレータ27の楕円の長軸部分でフレクスプライン29の外歯はサーキュラスプライン30の内歯に噛み合い、ウエーブジェネレータ27の楕円の短軸の部分では、フレクスプライン29の外歯はサーキュラスプライン30の内歯から完全に離脱し、その結果、フレクスプライン29の外歯とサーキュラスプライン30の内歯の噛み合い位置が円周方向(時計方向)へ順次移動して行き(図5(b)参照)、ウエーブジェネレータ27が一回転したときに、フレクスプライン29の外歯とサーキュラスプライン30の内歯の噛み合い位置は回転開始時の位置から移動する(図5(c)参照)。このため、フレクスプライン29はサーキュラスプライン30の内歯よりも少ない外歯の歯数の分だけ回転開始時の噛み合い位置の手前にあり(図5(c)参照)、従って、フレクスプライン29は、ウエーブジェネレータ27の回転方向と逆方向(図5(c)では反時計方向)へ歯数差分だけ移動し、これが回転出力としてロール13のロール軸部13cに取り出されるようになっている。   Then, when the wave generator 27 is rotated in the clockwise direction in FIG. 5A, for example, by driving the servo motor 26, the flex spline 29 is elastically deformed and flexed at the elliptical long axis portion of the wave generator 27. The external teeth of the spline 29 mesh with the internal teeth of the circular spline 30, and the external teeth of the flex spline 29 completely disengage from the internal teeth of the circular spline 30 at the elliptical short axis portion of the wave generator 27, and as a result, When the meshing position of the outer teeth of the spline 29 and the inner teeth of the circular spline 30 is sequentially moved in the circumferential direction (clockwise) (see FIG. 5B), the flex spline is rotated when the wave generator 27 makes one rotation. The meshing position of the 29 external teeth and the internal teeth of the circular spline 30 is the position at the start of rotation. Moving (see FIG. 5 (c)). For this reason, the flex spline 29 is in front of the meshing position at the start of rotation by the number of external teeth smaller than the internal teeth of the circular spline 30 (see FIG. 5C). The tooth generator moves by a difference in the number of teeth in the direction opposite to the rotation direction of the wave generator 27 (counterclockwise in FIG. 5C), and this is extracted as a rotation output to the roll shaft portion 13c of the roll 13.

因みに、減速機25自体のバックラッシは、そのままロール13の回転変動に影響するので、バックラッシは微小でなくてはならないが、前述したように波動歯車機構を備えた減速機25は、バックラッシュが極めて微小な減速機であるため、本発明では回転動力系のガタ(回転位相差の変動)を前記減速機25によって無視できる程度まで減少させるようにしている。   Incidentally, since the backlash of the speed reducer 25 itself directly affects the rotational fluctuation of the roll 13, the backlash must be very small. However, as described above, the speed reducer 25 equipped with the wave gear mechanism is extremely backlash. Since the present invention is a minute reduction gear, in the present invention, the backlash (variation in rotational phase difference) of the rotational power system is reduced to a level that can be ignored by the reduction gear 25.

更に、本図示例の場合、図6に示す如く、成形開始前、前記制御器24から前記常時ガタ除去シリンダ18,19の設定圧をP0とする作動信号18a,19aを出力し、前記ロール13のハウジング10と主ベアリング軸箱11との間の上下方向並びに水平方向のガタをなくした状態で、前記制御器24から前記プッシュアップシリンダ17を収縮させる作動信号17aを出力し、前記ロール13間のギャップを設定値gaより広くしておき、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0とする作動信号21aを出力し、前記ロール13と主ベアリング12との間のガタをなくし、この状態で、前記制御器24から前記プッシュアップシリンダ17の伸長量をStとする作動信号17aを出力し、前記ロール13間のギャップを設定値gaとし、金属薄板からなる被成形材1A(図2参照)をロール13間に導入して前記荷重検出器23で検出される成形荷重23aが生じた時点で、前記成形領域に入ったと判断し、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0から0とする作動信号21aを出力して、前記被成形材1Aの成形を行わせ、前記成形荷重23aが0となった時点で、前記非成形領域に入ったと判断し、前記制御器24から前記プッシュアップシリンダ17の伸長量をStから所要量だけ収縮させてS1とする作動信号17aを出力し、前記ロール13間のギャップを設定値gaより所要量だけ広くしてg1とすると共に、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0とする作動信号21aを出力し、前記ロール13と主ベアリング12との間のガタをなくし、前記制御器24から再び前記プッシュアップシリンダ17の伸長量をS1から所要量だけ伸長させてStとする作動信号17aを出力し、前記ロール13間のギャップを設定値gaとし、前記成形荷重23aが生じた時点で、前記成形領域に入ったと判断し、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0から0とする作動信号21aを出力して、前記被成形材1Aの成形を行わせ、以下、前記ロール13のハウジング10と主ベアリング軸箱11との間のガタの除去を常時行わせつつ、前記非成形領域におけるロール13と主ベアリング12との間のガタの除去と、前記成形領域における被成形材1Aの成形とを繰り返し行わせるようにしてある。 Further, in the case of the illustrated example, as shown in FIG. 6, before the start of molding, the controller 24 outputs operation signals 18a and 19a for setting the set pressure of the backlash removal cylinders 18 and 19 to P 0, and the roll In the state where the vertical and horizontal play between the housing 10 and the main bearing axle box 11 is eliminated, an operation signal 17a for contracting the push-up cylinder 17 is output from the controller 24, and the roll 13 the gap between leave wider than the set value g a, the set pressure of the non-molding during play removal cylinder 21 outputs an operation signal 21a to P 0 from the controller 24, and the roll 13 and the main bearing 12 eliminating the backlash between, in this state, the extension amount of the push-up cylinders 17 outputs an operation signal 17a to S t from the controller 24, while the roll 13 When the gap is a set value g a, forming load 23a that the molded material 1A made of sheet metal (see FIG. 2) is introduced between the rolls 13 is detected by the load detector 23 has occurred, the forming region The controller 24 outputs an operation signal 21a for setting the set pressure of the non-molding backlash removal cylinder 21 from P0 to 0 from the controller 24 to cause the molding material 1A to be molded. when the load 23a is zero, the actuation signal 17a to the judges that has entered the non-formation zone, the extension amount of the controller 24 from the push-up cylinder 17 by only requirements shrinkage from S t to S 1 And the gap between the rolls 13 is made wider than the set value g a by a required amount to be g 1, and the controller 24 is operated to set the set pressure of the non-molding backlash removal cylinder 21 to P 0. Output signal 21a And, wherein eliminating the backlash between the roll 13 and the main bearings 12, outputs an operation signal 17a to the extension amount of the push-up cylinder 17 again from the controller 24 is extended by a required amount from S 1 and S t and, the gap between the rolls 13 and the set value g a, when the forming load 23a is generated, it is determined that has entered into the formation zone, set pressure of the from the controller 24 unshaped during play removal cylinder 21 An operation signal 21a with P0 being 0 is output to cause the molding material 1A to be molded. Thereafter, the backlash between the housing 10 of the roll 13 and the main bearing shaft box 11 is constantly removed. In addition, the backlash removal between the roll 13 and the main bearing 12 in the non-molding region and the molding of the molding material 1A in the molding region are repeatedly performed.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

先ず、準備段階として、成形開始前には、前記制御器24から前記常時ガタ除去シリンダ18,19の設定圧をP0とする作動信号18a,19aが出力され、前記ロール13のハウジング10と主ベアリング軸箱11との間の上下方向並びに水平方向のガタをなくした状態で、前記制御器24から前記プッシュアップシリンダ17を収縮させる作動信号17aが出力され、前記ロール13間のギャップが設定値gaより広く保持され、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0とする作動信号21aが出力され、前記ロール13と主ベアリング12との間のガタが除去され、この状態で、前記制御器24から前記プッシュアップシリンダ17の伸長量をStとする作動信号17aが出力され、前記ロール13間のギャップが設定値gaとされる。 First, as a preparation step, before the start molding operation signal 18a to the set pressure of the constantly play removal cylinder 18, 19 and P 0 from the controller 24, 19a is output, the main housing 10 of the roll 13 The controller 24 outputs an operation signal 17a for contracting the push-up cylinder 17 with the vertical and horizontal play between the bearing shaft box 11 and the gap between the rolls 13 set to a set value. wider than g a held, the controller 24 actuation signal 21a to the set pressure of the non-molding during play removing cylinder 21 and P 0 is output from, backlash between the roll 13 and the main bearing 12 is removed in this state, actuation signal 17a to the extension amount of the push-up cylinder 17 and the S t from the controller 24 is outputted, between the roll 13 Cap is a set value g a.

続いて、金属薄板からなる被成形材1A(図2参照)がロール13間に導入されて成形が開始されると、前記荷重検出器23で検出される成形荷重23aが跳ね上がり、この時点で、前記成形領域に入ったと判断され、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0から0とする作動信号21aが出力されて、前記被成形材1Aの成形が行われる。 Subsequently, when the molding material 1A made of a thin metal plate (see FIG. 2) is introduced between the rolls 13 and molding is started, the molding load 23a detected by the load detector 23 jumps up. is determined to have entered the forming zone, actuation signal 21a is output to the set pressure of the non-molding during play removing cylinder 21 from the controller 24 and the P 0 0, molding of the object to be profiled 1A is performed .

この後、前記成形荷重23aが0となった時点で、前記非成形領域に入ったと判断され、前記制御器24から前記プッシュアップシリンダ17の伸長量をStから所要量だけ収縮させてS1とする作動信号17aが出力され、前記ロール13間のギャップが設定値gaより所要量だけ拡張されてg1となると共に、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0とする作動信号21aが出力され、前記ロール13と主ベアリング12との間のガタが除去され、前記制御器24から再び前記プッシュアップシリンダ17の伸長量をS1から所要量だけ伸長させてStとする作動信号17aが出力され、前記ロール13間のギャップが設定値gaとされる。 Thereafter, when the forming load 23a is zero, the it is determined to have entered the non-molding region, an extension amount of the push-up cylinders 17 from the controller 24 by the required amount by shrinkage from S t S 1 And the gap between the rolls 13 is expanded by a required amount from the set value g a to become g 1, and the set pressure of the non-molding backlash removal cylinder 21 is set from the controller 24. An operation signal 21a of P 0 is output, the play between the roll 13 and the main bearing 12 is removed, and the extension amount of the push-up cylinder 17 is again extended from S 1 by a required amount from the controller 24. actuation signal 17a to S t Te is output, the gap between the roll 13 is the set value g a.

次に、前記成形荷重23aが生じた時点で、前記成形領域に入ったと判断され、前記制御器24から前記非成形時ガタ除去シリンダ21の設定圧をP0から0とする作動信号21aが出力されて、前記被成形材1Aの成形が行われ、以下、前記ロール13のハウジング10と主ベアリング軸箱11との間のガタの除去が常時行われつつ、前記非成形領域におけるロール13と主ベアリング12との間のガタの除去と、前記成形領域における被成形材1Aの成形とが繰り返し行われる。 Then, at the time when the forming load 23a is generated, it is determined to have entered the forming zone, actuation signal 21a to the set pressure of the non-molding during play removing cylinder 21 from the controller 24 and the P 0 0 output Then, the molding material 1A is molded. Thereafter, the backlash between the housing 10 of the roll 13 and the main bearing axle box 11 is always removed, and the roll 13 and the main in the non-molding region are removed. The removal of play between the bearing 12 and the molding of the molding material 1A in the molding region are repeatedly performed.

このように、前記ロール13のハウジング10と主ベアリング軸箱11との間のガタは常時ガタ除去シリンダ18,19の作動にて除去され、前記ロール13と主ベアリング12との間のガタは非成形時ガタ除去シリンダ21の作動にて除去され、前記ロール13間のギャップを精度良く設定値gaに保持可能となるため、非常に薄い金属薄板からなる被成形材1Aであっても、その成形に要求される精度が得られ、高精度で且つ前記凹部14a及び凸部14bに対応する流路(水素流路7、空気流路8、冷却水流路9)が形成されたセパレータ1(図7参照)を効率良く製造することが可能となる。 As described above, the backlash between the housing 10 of the roll 13 and the main bearing shaft box 11 is always removed by the operation of the backlash removal cylinders 18 and 19, and the backlash between the roll 13 and the main bearing 12 is not. is removed by the operation of the molding during play removing cylinder 21, it becomes possible to hold the gap between the roll 13 to accurately set value g a, even the molded material 1A made of very thin sheet metal, its The separator 1 (shown in FIG. 1) that has the accuracy required for molding and has high accuracy and the passages (hydrogen passage 7, air passage 8, cooling water passage 9) corresponding to the concave portions 14a and the convex portions 14b are formed. 7) can be manufactured efficiently.

しかも、前記各ロール13のロール軸部13cをそれぞれ波動歯車機構を備えた減速機25を介して別々のサーボモータ26に直結すると共に、該減速機25をそれぞれ対応する主ベアリング軸箱11に直結してあるため、各サーボモータ26が駆動されると、該サーボモータ26の回転動力はその軸26aを介して波動歯車機構を備えた減速機25に伝達され、減速されて各ロール13のロール軸部13cに伝達され、その結果、各ロール13は独自に回転される。このとき、前記サーボモータ26の速度変動は約±0.01%程度と低い値であるためにサーボモータ26による振動が少ないと共に、サーボモータ26の軸26aが波動歯車機構を備えた減速機25に直結されていてギヤのバックラッシや継手のクリアランス等によるガタがないため、振動の少ない回転力が波動歯車機構を備えた減速機25に伝えられる。更に、波動歯車機構を備えた減速機25はバックラッシが極めて微小な減速機であり、従ってサーボモータ26の回転力は極力振動が抑えられた状態でロール13に伝えられることになり、よってロール13は振動することなく安定して回転される。   In addition, the roll shaft portion 13c of each roll 13 is directly connected to a separate servo motor 26 via a speed reducer 25 having a wave gear mechanism, and the speed reducer 25 is directly connected to the corresponding main bearing shaft box 11 respectively. Therefore, when each servo motor 26 is driven, the rotational power of the servo motor 26 is transmitted to the speed reducer 25 provided with the wave gear mechanism via the shaft 26a, and is decelerated to roll of each roll 13. As a result, each roll 13 is rotated independently. At this time, since the speed fluctuation of the servo motor 26 is a low value of about ± 0.01%, the vibration by the servo motor 26 is small, and the shaft 26a of the servo motor 26 has a wave gear mechanism. Since there is no backlash due to gear backlash or joint clearance, a rotational force with little vibration is transmitted to the speed reducer 25 having a wave gear mechanism. Further, the speed reducer 25 provided with the wave gear mechanism is a speed reducer with extremely small backlash. Therefore, the rotational force of the servo motor 26 is transmitted to the roll 13 with vibrations suppressed as much as possible. Is rotated stably without vibration.

尚、前記円弧形状の金型14の取付部の違いに伴う成形領域での弾性変形の差に応じて、成形領域での押込量を任意に変更可能とし、被成形材1Aの長手方向成形量が一定となるようなパターン制御を行うことも可能である。例えば、前記金型14の取付部が、図2に示す如く、ロール13の平面とした外周部に対して密着する形式の場合に、中央のキー15取付部の直下で前記被成形材1Aを成形する際は、該キー15取付部付近はバネ定数が小さく、凹み変形が大きくなるので、プッシュアップシリンダ17の伸長量をStより所要量だけ増加させ、前記ロール13間のギャップを通常の設定値gaより減らすよう押込み勝手のパターンで圧下を行うことができる。 In addition, according to the difference of the elastic deformation in the shaping | molding area | region accompanying the difference in the attachment part of the said circular arc-shaped metal mold | die 14, the pushing amount in a shaping | molding area | region can be changed arbitrarily, The longitudinal direction shaping | molding amount of 1 A of to-be-molded materials It is also possible to perform pattern control so that is constant. For example, when the mounting portion of the mold 14 is in close contact with the outer peripheral portion of the roll 13 as shown in FIG. 2, the molding material 1A is placed directly under the central key 15 mounting portion. when molding is the key 15 near the attachment portion has a small spring constant, since dents deformation increases, the extension amount of the push-up cylinder 17 is increased by a required amount from S t, the gap between the rolls 13 normal The reduction can be performed in a pushing-in pattern so as to reduce the set value g a .

こうして、生産効率を低下させることなく、金属薄板からなる被成形材1Aを精度良く成形でき、高精度なセパレータ1を効率良く製造し得る。   Thus, the molding material 1A made of a thin metal plate can be accurately molded without reducing the production efficiency, and the highly accurate separator 1 can be efficiently manufactured.

尚、本発明の固体高分子型燃料電池用セパレータ製造方法及び装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the method and apparatus for producing a polymer electrolyte fuel cell separator of the present invention are not limited to the above illustrated examples, and various modifications can be made without departing from the scope of the present invention. It is.

本発明を実施する形態の一例を示す全体側断面図である。It is a whole sectional side view showing an example of an embodiment which carries out the present invention. 本発明を実施する形態の一例におけるロールの断面図であって、図1のII−II断面相当図である。It is sectional drawing of the roll in an example of embodiment which implements this invention, Comprising: It is the II-II cross-section equivalent figure of FIG. 本発明を実施する形態の一例におけるロールと主ベアリングとの間のガタを除去する常時ガタ除去シリンダを示す図であって、図1のIII−III矢視相当図である。It is a figure which shows the backlash removal cylinder which removes the backlash between the roll and main bearing in an example of embodiment which implements this invention, Comprising: It is a III-III arrow equivalent view of FIG. 本発明を実施する形態の一例におけるロールと主ベアリングとの間のガタを除去する非成形時ガタ除去シリンダ及び補助ベアリングを示す図であって、図1のIV−IV矢視相当図である。It is a figure which shows the backlash removal cylinder and auxiliary | assistant bearing which remove the backlash between the roll and main bearing in an example of embodiment which implements this invention, Comprising: It is an IV-IV arrow equivalent view of FIG. 図1の固体高分子型燃料電池用セパレータ製造装置に適用する減速機の波動歯車機構の原理を説明するための正面図であって、(a)はウエーブジェネレータが回転を開始する前の状態を示す図、(b)はウエーブジェネレータが時計方向へ90度回転した状態を示す図、(c)はウエーブジェネレータが時計方向へ360度回転した状態を示す図である。It is a front view for demonstrating the principle of the wave gear mechanism of the reduction gear applied to the separator manufacturing apparatus for polymer electrolyte fuel cells of FIG. 1, Comprising: (a) is a state before a wave generator starts rotation. FIG. 4B is a diagram showing a state where the wave generator is rotated 90 degrees clockwise, and FIG. 4C is a diagram showing a state where the wave generator is rotated 360 degrees clockwise. 本発明を実施する形態の一例における成形開始前から成形領域、非成形領域での荷重検出器出力と、常時ガタ除去シリンダ、非成形時ガタ除去シリンダ及びプッシュアップシリンダの各作動状態と、ロール間ギャップとの関係を示す制御チャートである。The load detector output in the molding region and the non-molding region from the start of molding in an example of the embodiment of the present invention, the operation state of the backlash removal cylinder, the backlash removal cylinder during non-molding, and the push-up cylinder, and between the rolls It is a control chart which shows the relationship with a gap. 固体高分子型燃料電池の一例を示す拡大断面図である。It is an expanded sectional view showing an example of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

1 セパレータ
1A 被成形材
1a 凸部
1b 凹部
7 水素流路(流路)
8 空気流路(流路)
9 冷却水流路(流路)
10 ハウジング
11 主ベアリング軸箱
12 主ベアリング
13 ロール
13a ロール本体部
13b ネック部
13c ロール軸部
14 金型
14a 凹部
14b 凸部
17 プッシュアップシリンダ
17a 作動信号
18 常時ガタ除去シリンダ
18a 作動信号
19 常時ガタ除去シリンダ
19a 作動信号
20 補助ベアリング
21 非成形時ガタ除去シリンダ
21a 作動信号
22 補助ベアリングカバー
23 荷重検出器
23a 成形荷重
24 制御器
25 減速機
26 サーボモータ
27 ウエーブジェネレータ
29 フレクスプライン
30 サーキュラスプライン
DESCRIPTION OF SYMBOLS 1 Separator 1A Molding material 1a Convex part 1b Concave part 7 Hydrogen flow path (flow path)
8 Air flow path (flow path)
9 Cooling water channel (channel)
DESCRIPTION OF SYMBOLS 10 Housing 11 Main bearing shaft box 12 Main bearing 13 Roll 13a Roll main-body part 13b Neck part 13c Roll shaft part 14 Mold 14a Concave part 14b Convex part 17 Push-up cylinder 17a Actuation signal 18 Constant play removal cylinder 18a Actuation signal 19 Regular play removal Cylinder 19a Actuation signal 20 Auxiliary bearing 21 Non-molding backlash removal cylinder 21a Actuation signal 22 Auxiliary bearing cover 23 Load detector 23a Molding load 24 Controller 25 Reduction gear 26 Servo motor 27 Wave generator 29 Flex spline 30 Circular spline

Claims (3)

表面に凹部及び凸部が形成された成形領域と、凹部及び凸部が形成されない非成形領域とを円周方向へ交互に有し且つ対向配置された一対のロール間に金属薄板からなる被成形材を導入して圧下することにより、前記凹部及び凸部に対応する流路が形成されたセパレータを連続的に製造する固体高分子型燃料電池用セパレータ製造方法において、
成形開始前、前記ロールのハウジングと主ベアリング軸箱との間の上下方向並びに水平方向のガタを常時ガタ除去シリンダの作動にてなくした状態で、前記ロール間のギャップを設定値より広くしておき、前記ロールと主ベアリングとの間のガタを非成形時ガタ除去シリンダの作動にてなくし、
この状態で、前記ロール間のギャップをプッシュアップシリンダを伸長させて設定値とし、前記被成形材をロール間に導入して成形荷重が生じた時点で、前記成形領域に入ったと判断し、前記非成形時ガタ除去シリンダの設定圧を0として、前記被成形材の成形を行い、
前記成形荷重が0となった時点で、前記非成形領域に入ったと判断し、前記プッシュアップシリンダを所要量だけ収縮させてロール間のギャップを設定値より所要量だけ広くすると共に、前記ロールと主ベアリングとの間のガタを非成形時ガタ除去シリンダの作動にてなくし、
再び前記ロール間のギャップをプッシュアップシリンダを伸長させて設定値とし、成形荷重が生じた時点で、前記成形領域に入ったと判断し、前記非成形時ガタ除去シリンダの設定圧を0として、前記被成形材の成形を行い、
以下、前記ロールのハウジングと主ベアリング軸箱との間のガタの除去を常時行いつつ、前記非成形領域におけるロールと主ベアリングとの間のガタの除去と、前記成形領域における被成形材の成形とを繰り返し行うことを特徴とする固体高分子型燃料電池用セパレータ製造方法。
Molding formed of a thin metal plate between a pair of rolls alternately having a molding area in which concave and convex portions are formed on the surface and a non-molding area in which no concave and convex portions are formed in the circumferential direction. In the method for producing a polymer electrolyte fuel cell separator, by continuously producing a separator in which a flow path corresponding to the concave portion and the convex portion is formed by introducing and reducing the material,
Before starting molding, with the vertical and horizontal backlash between the roll housing and the main bearing axle box eliminated by the operation of the backlash removal cylinder, the gap between the rolls should be wider than the set value. The backlash between the roll and the main bearing is eliminated by the operation of the backlash removal cylinder when not forming,
In this state, the gap between the rolls is set to a set value by extending a push-up cylinder, and when the molding material is introduced between the rolls and a molding load is generated, it is determined that the molding area has been entered, When the set pressure of the non-molding backlash removal cylinder is 0, the molding material is molded,
When the forming load becomes zero, it is determined that the non-forming region has been entered, the push-up cylinder is contracted by a required amount to widen the gap between the rolls by a predetermined amount, and the roll The backlash between the main bearing is eliminated by the operation of the backlash removal cylinder when not forming,
The gap between the rolls is again set to a set value by extending the push-up cylinder, and when the forming load is generated, it is determined that the forming region has been entered, and the set pressure of the non-forming backlash removal cylinder is set to 0, Form the material to be molded,
Hereinafter, the backlash between the roll housing and the main bearing in the non-molding region is removed while the backlash between the roll housing and the main bearing axle box is constantly removed, and the molding material is molded in the molding region. And a separator manufacturing method for a polymer electrolyte fuel cell.
表面に凹部及び凸部が形成された成形領域と、凹部及び凸部が形成されない非成形領域とを円周方向へ交互に有し且つ対向配置された一対のロール間に金属薄板からなる被成形材を導入して圧下することにより、前記凹部及び凸部に対応する流路が形成されたセパレータを連続的に製造する固体高分子型燃料電池用セパレータ製造装置において、
前記ロール間のギャップを調節可能なプッシュアップシリンダと、
前記ロールのハウジングと主ベアリング軸箱との間に、上下方向並びに水平方向のガタをなくすよう配設される常時ガタ除去シリンダと、
前記ロールのネック部に嵌着される補助ベアリングと、
該補助ベアリング間に、前記ロールと主ベアリングとの間のガタをなくすよう配設される非成形時ガタ除去シリンダと、
成形荷重を検出する荷重検出器と、
該荷重検出器で検出される成形荷重に基づき、前記プッシュアップシリンダと常時ガタ除去シリンダと非成形時ガタ除去シリンダとにそれぞれ作動信号を出力し、前記ロールのハウジングと主ベアリング軸箱との間のガタの除去を常時行わせつつ、前記非成形領域におけるロールと主ベアリングとの間のガタの除去と、前記成形領域における被成形材の成形とを繰り返し行わせる制御器と
を備えたことを特徴とする固体高分子型燃料電池用セパレータ製造装置。
Molding formed of a thin metal plate between a pair of rolls alternately having a molding area in which concave and convex portions are formed on the surface and a non-molding area in which no concave and convex portions are formed in the circumferential direction. In the separator manufacturing apparatus for a polymer electrolyte fuel cell that continuously manufactures a separator in which a flow path corresponding to the concave portion and the convex portion is formed by introducing and reducing the material,
A push-up cylinder capable of adjusting the gap between the rolls;
A backlash removing cylinder arranged between the housing of the roll and the main bearing axle box so as to eliminate backlash in the vertical direction and the horizontal direction;
An auxiliary bearing fitted to the neck of the roll;
A non-molding backlash removal cylinder disposed between the auxiliary bearings so as to eliminate backlash between the roll and the main bearing;
A load detector for detecting the molding load;
Based on the forming load detected by the load detector, an operation signal is output to the push-up cylinder, the backlash removal cylinder and the non-forming backlash removal cylinder, respectively, between the housing of the roll and the main bearing axle box. And a controller that repeatedly performs backlash removal between the roll and the main bearing in the non-molding region and molding of the molding material in the molding region. An apparatus for producing a separator for a solid polymer fuel cell.
前記各ロールのロール軸部にそれぞれ波動歯車機構を備えた減速機を介して別々のサーボモータを直結すると共に、該減速機をそれぞれ対応する主ベアリング軸箱に直結した請求項2記載の固体高分子型燃料電池用セパレータ製造装置。   3. The solid height according to claim 2, wherein a separate servo motor is directly connected to a roll shaft portion of each roll via a reduction gear provided with a wave gear mechanism, and the reduction gear is directly connected to a corresponding main bearing shaft box. Molecular fuel cell separator manufacturing equipment.
JP2008191802A 2008-07-25 2008-07-25 Separator manufacturing method and apparatus for polymer electrolyte fuel cell Expired - Fee Related JP5204572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191802A JP5204572B2 (en) 2008-07-25 2008-07-25 Separator manufacturing method and apparatus for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191802A JP5204572B2 (en) 2008-07-25 2008-07-25 Separator manufacturing method and apparatus for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2010033736A JP2010033736A (en) 2010-02-12
JP5204572B2 true JP5204572B2 (en) 2013-06-05

Family

ID=41737984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191802A Expired - Fee Related JP5204572B2 (en) 2008-07-25 2008-07-25 Separator manufacturing method and apparatus for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5204572B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2777860C (en) 2009-12-21 2014-05-06 Ihi Corporation Method and device for manufacturing separator for polymer electrolyte fuel cell
WO2013046325A1 (en) * 2011-09-27 2013-04-04 三和パッキング工業株式会社 Method for manufacturing multidirectional waved material, multidirectional waved material, and device for manufacturing waved material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942134A (en) * 1982-09-02 1984-03-08 Nippon Steel Corp Thin sheet corrugating device
JPS60160901U (en) * 1984-03-30 1985-10-25 住友金属工業株式会社 Embossed steel plate manufacturing equipment
JPH0669587B2 (en) * 1986-03-12 1994-09-07 株式会社日立製作所 Cold roll forming method and apparatus
JPH0636946B2 (en) * 1990-05-02 1994-05-18 三菱重工業株式会社 Corrugated cutter head
JPH04237521A (en) * 1991-01-17 1992-08-26 Nippondenso Co Ltd Method for forming fin
JPH0775836A (en) * 1993-09-03 1995-03-20 Toyota Motor Corp Production of corrugated sheet for metal carrier
JP4395952B2 (en) * 2000-01-14 2010-01-13 トヨタ自動車株式会社 Fuel cell separator molding apparatus and molding method
JP4400029B2 (en) * 2002-09-03 2010-01-20 トヨタ自動車株式会社 Long metal plate roll forming method and roll forming apparatus
JP2008004291A (en) * 2006-06-20 2008-01-10 Toyota Motor Corp Manufacturing method of press metal separator for fuel cell

Also Published As

Publication number Publication date
JP2010033736A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
WO2011077474A1 (en) Method and device for manufacturing separator for polymer electrolyte fuel cell
JP5183342B2 (en) Separator manufacturing method and equipment for polymer electrolyte fuel cell
CN101504984B (en) Metallic bipolar plate forming mold for fuel cell and forming method
JP4395952B2 (en) Fuel cell separator molding apparatus and molding method
JP5204572B2 (en) Separator manufacturing method and apparatus for polymer electrolyte fuel cell
JP2002313354A (en) Manufacturing method and device for separator for solid polymer fuel cell
US7178374B2 (en) Press forming apparatus for fuel cell metal separator
JP4700393B2 (en) Multi-stage roll forming equipment
JP4400029B2 (en) Long metal plate roll forming method and roll forming apparatus
TWI425699B (en) Method and facility for producing separator for polymer electrolyte fuel cell
JP5169480B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP4231398B2 (en) Separator manufacturing method and manufacturing apparatus for polymer electrolyte fuel cell
JP4280226B2 (en) Solid polymer fuel cell separator manufacturing method and reduction roll
JP2003338295A (en) Solid polymer fuel battery metallic separator with less warpage and manufacturing method therefor
JP4769570B2 (en) Metal sheet forming method
JP4231399B2 (en) Separator manufacturing apparatus and manufacturing method for polymer electrolyte fuel cell
JP4571774B2 (en) Solid polymer fuel cell separator manufacturing equipment
JP2004220908A (en) Manufacturing device of separator for solid polymer fuel cell
CN100474678C (en) Production method for fuel cell
JP2004134090A (en) Manufacturing method and manufacturing device of stainless steel separator for solid polymer fuel cell
JP2006185667A (en) Molding method and molding device of metal separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees