JP5204505B2 - Induction heat treatment equipment - Google Patents

Induction heat treatment equipment Download PDF

Info

Publication number
JP5204505B2
JP5204505B2 JP2008033089A JP2008033089A JP5204505B2 JP 5204505 B2 JP5204505 B2 JP 5204505B2 JP 2008033089 A JP2008033089 A JP 2008033089A JP 2008033089 A JP2008033089 A JP 2008033089A JP 5204505 B2 JP5204505 B2 JP 5204505B2
Authority
JP
Japan
Prior art keywords
heat treatment
heating
workpiece
heating coil
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008033089A
Other languages
Japanese (ja)
Other versions
JP2009191315A (en
Inventor
潤二 己之上
弘 服部
卓美 石川
Original Assignee
富士電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電子工業株式会社 filed Critical 富士電子工業株式会社
Priority to JP2008033089A priority Critical patent/JP5204505B2/en
Publication of JP2009191315A publication Critical patent/JP2009191315A/en
Application granted granted Critical
Publication of JP5204505B2 publication Critical patent/JP5204505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、多気筒エンジンに使用されるカムシャフトのカムのように、熱処理部が同軸の複数箇所に存在するワークを焼き入れする高周波熱処理装置に関するものである。   The present invention relates to a high-frequency heat treatment apparatus for quenching a workpiece in which heat treatment portions exist at a plurality of coaxial positions such as a camshaft cam used in a multi-cylinder engine.

カムシャフトのカムのような歪な外形の熱処理部を、従来の環状の加熱コイルを備えた高周波加熱装置で熱処理(焼き入れ)すると、最も加熱コイルに近い部位の加熱量が他の部位の加熱量よりも多くなり、焼き入れ深さに差異が生じてしまう。熱処理部の全周囲の焼き入れが一様に行われないと割れの原因となる。これを回避することができる高周波加熱装置が特許文献1に開示されている。すなわち、特許文献1に開示されている高周波加熱装置は、ワークの熱処理部の全周囲が均一に加熱されるように熱処理することができる。
特開2001−131638号公報
When a heat treatment part with a distorted outer shape such as a camshaft cam is heat-treated (quenched) with a conventional high-frequency heating device equipped with an annular heating coil, the heating amount in the part closest to the heating coil is heated in other parts. More than the amount, the difference in quenching depth will occur. If quenching of the entire periphery of the heat treatment part is not performed uniformly, it causes cracking. A high frequency heating apparatus capable of avoiding this is disclosed in Patent Document 1. That is, the high-frequency heating device disclosed in Patent Document 1 can perform heat treatment so that the entire periphery of the heat treatment portion of the workpiece is uniformly heated.
JP 2001-131638 A

ところで、特許文献1に開示されている高周波加熱装置では、環状の加熱コイルが、小径部と大径部とを備えたいわゆるだるま形状に構成されている。そして、ワークが回転して熱処理部の半径方向外方へ最も突出した部位が加熱コイルの小径部に対向しているときには加熱コイルの加熱量を減少させ、突出した部位が逆に大径部に対向しているときには加熱コイルの加熱量を増加させることによって、熱処理部の全周囲の熱処理の均一化を図っている。   By the way, in the high frequency heating device disclosed in Patent Document 1, the annular heating coil is configured in a so-called daruma shape having a small diameter portion and a large diameter portion. Then, when the work rotates and the part that protrudes most outward in the radial direction of the heat treatment part is opposed to the small diameter part of the heating coil, the heating amount of the heating coil is reduced, and the protruded part is conversely changed to the large diameter part. When facing each other, the heating amount of the heating coil is increased, so that the heat treatment around the entire heat treatment portion is made uniform.

しかし、特許文献1に開示されている構成では、熱処理部(カム)が一つだけの場合には効果を奏するが、軸周りに設置角度の異なる熱処理部が複数個設けられたワークを熱処理するには相当な時間が必要である。すなわち、特許文献1に開示されている高周波加熱装置では、軸周りに設置角度の異なる複数の熱処理部を順に一つずつ熱処理しなければ、全ての熱処理部の全周囲の焼き入れ深さを均一にすることはできない。よって、特許文献1に開示されている高周波加熱装置では、ワークの複数の熱処理部の熱処理を完了するまでに相当な時間が掛かってしまう。   However, the configuration disclosed in Patent Document 1 is effective when there is only one heat treatment part (cam), but heats a workpiece provided with a plurality of heat treatment parts with different installation angles around the axis. Takes a lot of time. That is, in the high-frequency heating device disclosed in Patent Document 1, if a plurality of heat treatment parts having different installation angles around the axis are not heat-treated one by one in order, the entire quenching depth of all heat treatment parts is uniform. Can not be. Therefore, in the high-frequency heating device disclosed in Patent Document 1, it takes a considerable time to complete the heat treatment of the plurality of heat treatment portions of the workpiece.

また、特許文献1に開示されている高周波加熱装置で、複数の熱処理部を同時に熱処理するためには、熱処理部と同数の高周波電源(インバータ)が必要であり、さらに、該高周波電源の出力を個別に制御する制御機構が必要である。そのため、装置構成が複雑化すると共に、非常にコスト高となる。   In addition, in order to simultaneously heat-treat a plurality of heat treatment units with the high-frequency heating device disclosed in Patent Document 1, the same number of high-frequency power sources (inverters) as the heat treatment units are required. A control mechanism is required to control individually. This complicates the apparatus configuration and increases the cost.

上述のような特許文献1に開示されている高周波加熱装置を採用する代わりに、簡易な構成でワークの各熱処理部(カム)の全周囲の焼き入れ深さの均一化を図る方法として、例えば、ワークの複数の熱処理部の周囲に各々配置した環状の加熱コイルを、熱処理部の回転角度位置に応じて個々に一方向に往復移動させることが考えられる。しかし、これでは高周波加熱装置を簡易に構成することはできても、ワークの熱処理部の焼き入れ深さの均一化は不十分である。   Instead of adopting the high-frequency heating device disclosed in Patent Document 1 as described above, as a method for uniformizing the quenching depth around the entire heat treatment portion (cam) of the workpiece with a simple configuration, for example, It is conceivable that the annular heating coils respectively arranged around the plurality of heat treatment parts of the workpiece are individually reciprocated in one direction according to the rotation angle position of the heat treatment part. However, even if the high-frequency heating apparatus can be simply configured with this, the quenching depth of the heat treatment part of the workpiece is not uniform.

そこで本発明は、同軸上に同形の複数の歪形ワーク熱処理部が各々異なる角度で設置されているワークの各歪形ワーク熱処理部を、簡単な構成で同時に短時間で熱処理することができる高周波熱処理装置を提供することを目的とする。   Accordingly, the present invention provides a high frequency capable of simultaneously heat-treating each strain-shaped workpiece heat treatment section of a workpiece in which a plurality of identical strain-shaped workpiece heat treatment sections on the same axis are installed at different angles simultaneously with a simple configuration. An object is to provide a heat treatment apparatus.

上記課題を解決するための請求項1の発明は、同軸上に複数の歪形ワーク熱処理部が各々異なる角度で軸方向に間隔を置いて設置されているワークを熱処理する高周波熱処理装置であって、各歪形ワーク熱処理部の周囲に配置する加熱部材と、該加熱部材の加熱量を制御する制御手段とを備えており、軸が回転すると、前記各歪形ワーク熱処理部から加熱部材までの最短距離が一様に変化するように前記加熱部材が構成されていることを特徴とする高周波熱処理装置である。   The invention of claim 1 for solving the above-mentioned problem is a high-frequency heat treatment apparatus for heat-treating a work in which a plurality of strain-shaped work heat treatment portions are coaxially arranged at different angles in the axial direction. And a heating member disposed around each strained workpiece heat treatment section, and a control means for controlling the heating amount of the heating member, and when the shaft rotates, from each strain workpiece heat treatment section to the heating member In the high-frequency heat treatment apparatus, the heating member is configured so that the shortest distance is uniformly changed.

請求項1の発明では、軸が回転する際に、前記各歪形ワーク熱処理部から加熱部材までの最短距離が一様に変化するように前記加熱部材を構成した。これにより、各歪形ワーク熱処理部から加熱部材までの最短距離を同期させることができる。
よって、請求項1の発明を実施した高周波加熱装置は、各歪形ワーク熱処理部を同時に同様に熱処理することができる。各歪形ワーク熱処理部の全周囲を同時に熱処理可能なので、短時間で熱処理を完了することができる。
請求項1の発明は、軸に対する各歪形ワーク熱処理部の設置角度が、任意の角度でずれていても実施可能であるが、各歪形ワーク熱処理部の設置角度が、所定角度ずつずれている場合に好適に実施することができる。
In the invention of claim 1, the heating member is configured such that the shortest distance from each strained workpiece heat treatment portion to the heating member is uniformly changed when the shaft rotates. Thereby, the shortest distance from each distorted work heat treatment part to a heating member can be synchronized.
Therefore, the high-frequency heating apparatus embodying the invention of claim 1 can simultaneously heat treat each strain-shaped workpiece heat treatment part simultaneously. Since the entire periphery of each strain workpiece heat treatment portion can be simultaneously heat treated, the heat treatment can be completed in a short time.
The invention of claim 1 can be carried out even if the installation angles of the respective strain-shaped workpiece heat treatment portions with respect to the shaft are shifted by an arbitrary angle, but the installation angles of the respective strain-shaped workpiece heat treatment portions are shifted by a predetermined angle. This can be suitably implemented when

請求項2の発明は、請求項1の高周波熱処理装置の発明において、制御手段が、各歪形ワーク熱処理部から加熱部材までの最短距離が長くなるほど加熱量を増加させるようにした。   According to the invention of claim 2, in the invention of the high-frequency heat treatment apparatus of claim 1, the control means increases the heating amount as the shortest distance from each strained workpiece heat treatment section to the heating member becomes longer.

請求項2の発明では、制御手段が、各歪形ワーク熱処理部から加熱部材までの最短距離が長くなるほど加熱量を増加させるようにしたので、各歪形ワーク熱処理部の全周囲の熱処理を均一化することができる。
すなわち請求項2の発明では、制御手段が高周波電源の出力調整を行う。その出力調整は、各歪形ワーク熱処理部から加熱部材までの最短距離が長くなるほど加熱量を増加させるように行うので、各歪形ワーク熱処理部の全周囲の熱処理を均一化することができる。
歪形ワーク熱処理部から加熱部材までの最短距離は、歪形ワーク熱処理部のトップ部が加熱部材に最接近する際に最も短くなり、歪形ワーク熱処理部のベース部が加熱部材に最接近する際に最も長くなるように各歪形ワーク熱処理部と加熱部材は配置されている。
In the invention of claim 2, since the control means increases the heating amount as the shortest distance from each strained workpiece heat treatment section to the heating member becomes longer, the heat treatment on the entire periphery of each strain workpiece heat treatment section is uniform. Can be
That is, in the second aspect of the invention, the control means adjusts the output of the high frequency power source. Since the output adjustment is performed so that the heating amount is increased as the shortest distance from each strain-shaped workpiece heat treatment section to the heating member is increased, the heat treatment on the entire periphery of each strain-shaped workpiece heat treatment section can be made uniform.
The shortest distance from the strained workpiece heat treatment part to the heating member is the shortest when the top part of the strained workpiece heat treatment part is closest to the heating member, and the base part of the strained workpiece heat treatment part is closest to the heating member. In this case, the strain-shaped workpiece heat treatment part and the heating member are arranged so as to be the longest.

請求項3の発明は、請求項1又は請求項2の発明の高周波熱処理装置において、加熱部材を環状とし、各歪形ワーク熱処理部の外周に個々に配置した。   According to a third aspect of the present invention, in the high frequency heat treatment apparatus according to the first or second aspect of the present invention, the heating member is formed in an annular shape and is individually arranged on the outer periphery of each strained workpiece heat treatment portion.

請求項3の発明では、加熱部材を各歪形ワーク熱処理部毎に設けるので、各歪形ワーク熱処理部を同時に熱処理することができる。また、各加熱部材毎に位置の微調整が可能である。   In the invention of claim 3, since the heating member is provided for each strained workpiece heat treatment part, each strained workpiece heat treatment part can be heat treated simultaneously. Further, the position can be finely adjusted for each heating member.

請求項4の発明は、請求項1乃至請求項3のうちのいずれの高周波熱処理装置の発明において、高周波電源を一つ備えた。   A fourth aspect of the present invention is the high frequency heat treatment apparatus according to any one of the first to third aspects, wherein one high frequency power source is provided.

請求項4の発明では、一つの高周波電源でワークの各歪形ワーク熱処理部を同時に熱処理する。すなわち、各歪形ワーク熱処理部から加熱部材までの最短距離を同期させることができるので、一つの高周波電源の出力調整で同時に各歪形ワーク熱処理部の全周囲を均一に熱処理することができる。
よって、請求項4の発明を実施すると、高周波熱処理装置の構成を簡素化することができる。また、安価に高周波熱処理装置を構成することができる。
According to the fourth aspect of the present invention, each strained workpiece heat treatment portion of the workpiece is simultaneously heat treated with one high frequency power source. That is, since the shortest distance from each strained workpiece heat treatment section to the heating member can be synchronized, the entire periphery of each strained workpiece heat treatment section can be uniformly heat treated at the same time by adjusting the output of one high frequency power source.
Therefore, when the invention of claim 4 is carried out, the configuration of the high-frequency heat treatment apparatus can be simplified. In addition, the high-frequency heat treatment apparatus can be configured at low cost.

本発明の高周波熱処理装置は、同軸上に同形の複数の歪形ワーク熱処理部が各々異なる角度で設置されているワークの各歪形ワーク熱処理部の全周囲を同時に短時間で一様に熱処理することができる。   The high-frequency heat treatment apparatus of the present invention uniformly heats the entire periphery of each strain-shaped workpiece heat treatment section of a workpiece in which a plurality of strain-shaped workpiece heat treatment sections having the same shape on the same axis are installed at different angles simultaneously in a short time. be able to.

図1は、本発明の高周波熱処理装置の全体概略図であり、図2(a)〜(d)は、各々各加熱コイルとワークの位置関係を示す正面図であり、図3(a),(b)は、各々高周波熱処理装置の各加熱コイルとワーク(カムシャフト)の平面図及び側面図である。また、図4は、ワークを配置した高周波熱処理装置の各加熱コイルの正面図である。
まず、図1を参照しながら高周波熱処理装置1の概要を説明し、その後に本発明の特徴的な構成である加熱コイル2a〜2dについて図2〜図4等を参照しながら説明する。
FIG. 1 is an overall schematic diagram of the high-frequency heat treatment apparatus of the present invention, and FIGS. 2A to 2D are front views showing the positional relationship between each heating coil and a workpiece, respectively. (B) is the top view and side view of each heating coil and workpiece | work (camshaft) of a high frequency heat processing apparatus, respectively. FIG. 4 is a front view of each heating coil of the high-frequency heat treatment apparatus in which the workpiece is disposed.
First, the outline of the high-frequency heat treatment apparatus 1 will be described with reference to FIG. 1, and then the heating coils 2a to 2d which are characteristic structures of the present invention will be described with reference to FIGS.

図1に示すように高周波熱処理装置1は、インバータ6(高周波発振器),制御装置15,駆動装置16,出力トランス7a〜7d,導体8〜11等で構成されている。   As shown in FIG. 1, the high frequency heat treatment apparatus 1 includes an inverter 6 (high frequency oscillator), a control device 15, a drive device 16, output transformers 7a to 7d, conductors 8 to 11, and the like.

インバータ6は、三相交流電源5と接続されており、電圧AC400ボルト,周波数50Hz又は60Hzの交流を高周波電流に変換し、出力トランス7a〜7dへ高周波電流を供給する。制御装置15は、後述するカムシャフト14(ワーク)を回転駆動する駆動装置16の回転角度位置を検出し、インバータ6の出力トランス7a〜7dへの出力を制御する。   The inverter 6 is connected to the three-phase AC power source 5 and converts an AC voltage of 400 volts AC and a frequency of 50 Hz or 60 Hz into a high frequency current and supplies the high frequency current to the output transformers 7a to 7d. The control device 15 detects the rotational angle position of a drive device 16 that rotationally drives a camshaft 14 (workpiece) described later, and controls the output of the inverter 6 to the output transformers 7a to 7d.

出力トランス7a〜7dは、インバータ6に対して並列に接続されており、インバータ6から高周波電流の供給を受けて導体8〜11に高周波の誘導電流を生じさせる。導体8〜11の内部には冷却液を通す冷却液通路12(図3)が設けられている。また、各導体8〜11によって、各々環状型の加熱コイル2a〜2dが形成されている。   The output transformers 7a to 7d are connected in parallel to the inverter 6, and receive high-frequency current from the inverter 6 to generate high-frequency induced current in the conductors 8 to 11. Inside the conductors 8 to 11, a coolant passage 12 (FIG. 3) through which coolant is passed is provided. In addition, annular heating coils 2a to 2d are formed by the conductors 8 to 11, respectively.

図2(a)〜(d)に示すように、加熱コイル2a〜2dは、各々環状型のコイルであって大きさと形状は同じであるが、図4に示すように各加熱コイル2a〜2dの中心4a〜4dは一致していない。図3(a),(b)に示すように加熱コイル4a〜4dを個別に見ると、加熱コイル2aの中心4aと加熱コイル2bの中心4bは、水平方向と鉛直方向にそれぞれ距離L1だけずれている。すなわち、加熱コイル2aは、図4で見て加熱コイル2bよりも右斜め上方に位置している。
加熱コイル2aの中心4aと加熱コイル2cの中心4cは、水平方向には一致しているが、鉛直方向には距離(L1+L1)だけずれており、加熱コイル2aの中心4aの方が上方にある。
加熱コイル2bの中心4bと加熱コイル2cの中心4cは、水平方向に距離L1だけずれており、さらに鉛直方向に距離L1だけずれている。そのため加熱コイル2bは、図4で見て加熱コイル2cの左斜め上方に位置している。
加熱コイル2dの中心4dは、加熱コイル2aの中心4aよりも水平方向に距離L1だけ加熱コイル2bの中心4bとは反対側にずれており、また、加熱コイル2aの中心4aよりも鉛直方向に距離L1だけ下方にずれている。
As shown in FIGS. 2A to 2D, each of the heating coils 2a to 2d is an annular coil and has the same size and shape. However, as shown in FIG. The centers 4a to 4d are not coincident. When the heating coils 4a to 4d are individually viewed as shown in FIGS. 3A and 3B, the center 4a of the heating coil 2a and the center 4b of the heating coil 2b are shifted by a distance L1 in the horizontal direction and the vertical direction, respectively. ing. That is, the heating coil 2a is located obliquely above and to the right of the heating coil 2b as viewed in FIG.
The center 4a of the heating coil 2a and the center 4c of the heating coil 2c coincide in the horizontal direction, but are shifted by a distance (L1 + L1) in the vertical direction, and the center 4a of the heating coil 2a is on the upper side. .
The center 4b of the heating coil 2b and the center 4c of the heating coil 2c are shifted by a distance L1 in the horizontal direction and further shifted by a distance L1 in the vertical direction. Therefore, the heating coil 2b is located obliquely above and to the left of the heating coil 2c as seen in FIG.
The center 4d of the heating coil 2d is shifted from the center 4a of the heating coil 2a in the horizontal direction by a distance L1 to the opposite side of the center 4b of the heating coil 2b, and more vertically than the center 4a of the heating coil 2a. It is shifted downward by a distance L1.

その結果、各加熱コイル2a〜2dは、図4に示すように上下左右にずれている。
なお、熱処理を行う対象のワークの各歪形ワーク熱処理部(後述するカム13a〜13d)の想定する形状及び大きさが同じであり、各歪形ワーク熱処理部の周囲に配置される加熱コイル2a〜2dが同じ大きさであるので、各加熱コイル2a〜2dの中心4a〜4dは、回転軸3の軸心3aから上下左右のいずれかに距離L1だけずれている。
以上、説明した高周波熱処理装置1によって、複数のカム13a〜13d(歪形ワーク熱処理部)を同時に熱処理する。
As a result, the heating coils 2a to 2d are displaced vertically and horizontally as shown in FIG.
In addition, the heating coil 2a arrange | positioned around each distortion | strained workpiece | work heat processing part that the shape and magnitude | size which each distortion | strained workpiece | work heat treatment part (cam 13a-13d mentioned later) assumes of the workpiece | work which is heat-processed is the same. Since ˜2d has the same size, the centers 4a to 4d of the heating coils 2a to 2d are deviated from the axis 3a of the rotating shaft 3 either vertically or horizontally by a distance L1.
As described above, the plurality of cams 13a to 13d (strained workpiece heat treatment portions) are simultaneously heat treated by the high-frequency heat treatment apparatus 1 described above.

次に、高周波熱処理装置1によって熱処理されるワークについて説明する。
ワークは、4つのカム13a〜13dを備えたカムシャフト14である。カムシャフト14は、回転軸3に対して各カム13a〜13dが軸方向に所定の間隔を置いて90度ずつ向きを変えて固着されて構成されている。すなわち各カム13a〜13dの回転軸3に対する取付角度は90度ずつ相違している。
ここで、回転軸3に固着されるカムの数及び設置角度は、ワークの使用目的に応じて任意に設定されるものである。例えばカム数が3つであれば、各カムの設置角度の間隔は120度とすることができるが、各カムの設置角度は、必ずしも等間隔である必要はない。
Next, the workpiece | work heat-processed with the high frequency heat processing apparatus 1 is demonstrated.
The workpiece is a camshaft 14 having four cams 13a to 13d. The cam shaft 14 is configured such that the cams 13 a to 13 d are fixed to the rotating shaft 3 by changing the direction by 90 degrees at predetermined intervals in the axial direction. That is, the mounting angles of the cams 13a to 13d with respect to the rotating shaft 3 are different by 90 degrees.
Here, the number of cams fixed to the rotating shaft 3 and the installation angle are arbitrarily set according to the purpose of use of the workpiece. For example, if the number of cams is 3, the interval between the installation angles of the cams can be 120 degrees, but the installation angles of the cams are not necessarily equal.

各カム13a〜13dの周囲には、各々加熱コイル2a〜2dが配置される。すなわち、カムシャフト14は、各加熱コイル2a〜2dの内部を貫通し、両端が図示しない支持機構によって回転可能に支持される。また、カムシャフト14(回転軸3)は、駆動装置16(図1)によって回転駆動が可能となっている。
図2(a)に示すようにカムシャフト14の回転軸3の軸心3a(回転中心)は、前述したように各加熱コイル2a〜2dの中心4a〜4dとは一致していない。すなわち、回転軸3の軸心3aと各加熱コイル2a〜2dの中心4a〜4dとは、各々カムの突出部側に距離L1だけ離れている。言い換えると、各加熱コイル2a〜2dは、カムの突出部側に距離L1だけ中心4a〜4dが軸心3aから離間するように配置されている。
Heating coils 2a to 2d are arranged around the cams 13a to 13d, respectively. That is, the camshaft 14 penetrates the inside of each heating coil 2a-2d, and both ends are rotatably supported by a support mechanism (not shown). The camshaft 14 (rotating shaft 3) can be driven to rotate by a driving device 16 (FIG. 1).
As shown in FIG. 2A, the axis 3a (rotation center) of the rotation shaft 3 of the camshaft 14 does not coincide with the centers 4a to 4d of the heating coils 2a to 2d as described above. That is, the axis 3a of the rotating shaft 3 and the centers 4a to 4d of the heating coils 2a to 2d are separated from each other by a distance L1 toward the protruding portion of the cam. In other words, each of the heating coils 2a to 2d is disposed on the protruding portion side of the cam such that the centers 4a to 4d are separated from the axis 3a by a distance L1.

各カム13a〜13dは、同一の回転軸3に一体に固着されているので、回転軸3が回転すると各カム13a〜13dも一体に回転する。その様子を主に図2(a)〜図2(d)を参照しながら説明する。   Since the cams 13a to 13d are integrally fixed to the same rotary shaft 3, when the rotary shaft 3 rotates, the cams 13a to 13d also rotate together. This will be described mainly with reference to FIGS. 2 (a) to 2 (d).

インバータ6から出力トランス7a〜7dへ高周波電流が供給されると、導体8〜11には高周波誘導電流が生じる。そして、導体8〜11(各加熱コイル2a〜2d)には同時に高周波誘導電流が流れ、各カム13a〜13d上にも高周波誘導電流が生じ、各カム13a〜13dが同時に加熱される。ここで、導体8〜11内には冷却液通路12が設けられていて、冷却液通路12内を冷却液が流れるので、導体8〜11の加熱昇温は抑制されるが、各カム13a〜13dは生じた高周波誘導電流の大きさに応じて加熱昇温する。   When a high frequency current is supplied from the inverter 6 to the output transformers 7a to 7d, a high frequency induction current is generated in the conductors 8 to 11. A high-frequency induction current flows simultaneously through the conductors 8 to 11 (each heating coil 2a to 2d), a high-frequency induction current is also generated on each cam 13a to 13d, and each cam 13a to 13d is heated simultaneously. Here, since the cooling fluid passage 12 is provided in the conductors 8 to 11 and the cooling fluid flows in the cooling fluid passage 12, the heating temperature rise of the conductors 8 to 11 is suppressed, but each cam 13a to 13a. 13d heats up according to the magnitude of the generated high frequency induction current.

ところで、図2(a)に示す状態では、カム13aから加熱コイル2aの内壁までの最短距離,カム13bから加熱コイル2bの内壁までの最短距離,カム13cから加熱コイル2cの内壁までの最短距離,及びカム13dから加熱コイル2dの内壁までの最短距離は、いずれも距離X1である。
図2(b)は、カムシャフト14の回転軸3が、図2(a)に示す状態から90度回転した状態を示している。このときの各カムから加熱コイルの内壁までの最短距離は、いずれもX2である。
図2(c)は、カムシャフト14の回転軸3が、図2(b)に示す状態から90度回転した状態を示している。このときの各カムから加熱コイルの内壁までの最短距離は、いずれもX3である。
そして図2(d)は、カムシャフト14の回転軸3が、図2(c)に示す状態から90度回転した状態を示している。このときの各カムから加熱コイルの内壁までの最短距離は、いずれもX4である。
In the state shown in FIG. 2A, the shortest distance from the cam 13a to the inner wall of the heating coil 2a, the shortest distance from the cam 13b to the inner wall of the heating coil 2b, and the shortest distance from the cam 13c to the inner wall of the heating coil 2c. , And the shortest distance from the cam 13d to the inner wall of the heating coil 2d is the distance X1.
FIG. 2B shows a state where the rotating shaft 3 of the camshaft 14 is rotated 90 degrees from the state shown in FIG. In this case, the shortest distance from each cam to the inner wall of the heating coil is X2.
FIG. 2C shows a state in which the rotating shaft 3 of the camshaft 14 is rotated 90 degrees from the state shown in FIG. In this case, the shortest distance from each cam to the inner wall of the heating coil is X3.
FIG. 2D shows a state in which the rotating shaft 3 of the camshaft 14 is rotated 90 degrees from the state shown in FIG. In this case, the shortest distance from each cam to the inner wall of the heating coil is X4.

すなわち、カムシャフト14の回転軸3が回転し、各カム13a〜13dが一体に回転すると、各カムから各加熱コイルの内側までの最短距離は一様に変化する。この最短距離が、各カム13a〜13dのトップ部T(図2)が加熱コイル2a〜2dに最接近する際に最も短い最短距離X3となり、各カム13a〜13dのベース部E(図2)が加熱コイル2a〜2dに最接近する際に最も長い最短距離X1となるように各カム13a〜13dと加熱コイル2a〜2dは配置されている。そして、図1に示す制御装置15は、駆動装置16によって回転駆動されるカムシャフト14の回転角度位置を検出し、前述の最短距離X1〜X4を間接的に検出してインバータ6の出力調整を行う。すなわち、カムシャフト14の回転軸3の回転角度位置に応じて、インバータ6の出力調整(パワーリダクション)を行うと、各カム13a〜13dの全周囲の熱処理(焼き入れ処理)を一様に行うことができるようになる。   That is, when the rotating shaft 3 of the camshaft 14 rotates and the cams 13a to 13d rotate integrally, the shortest distance from each cam to the inside of each heating coil changes uniformly. This shortest distance becomes the shortest shortest distance X3 when the top portion T (FIG. 2) of each cam 13a to 13d is closest to the heating coils 2a to 2d, and the base portion E (FIG. 2) of each cam 13a to 13d. Each of the cams 13a to 13d and the heating coils 2a to 2d are arranged so as to have the longest shortest distance X1 when approaching the heating coils 2a to 2d. Then, the control device 15 shown in FIG. 1 detects the rotational angle position of the camshaft 14 that is rotationally driven by the drive device 16, indirectly detects the shortest distances X1 to X4, and adjusts the output of the inverter 6. Do. That is, when the output adjustment (power reduction) of the inverter 6 is performed in accordance with the rotational angle position of the rotating shaft 3 of the camshaft 14, the heat treatment (quenching process) is performed uniformly around the entire cams 13a to 13d. Will be able to.

よって、高周波熱処理装置1は、一基のインバータ6で、各カム13a〜13dの焼き入れ処理を同時に行うことができ、しかも各カム13a〜13dの全周囲を一様に焼き入れすることができる。   Therefore, the high frequency heat treatment apparatus 1 can simultaneously quench the cams 13a to 13d with a single inverter 6, and can uniformly quench the entire periphery of the cams 13a to 13d. .

インバータ6のパワーリダクションの仕方を、図5を参照しながら説明する。図5は、前述の最短距離X1〜X4(図2)とインバータ6によって調整される出力(電力)の関係を示すグラフである。図5に示すように、時刻t1における最短距離はX1,時刻t2における最短距離はX2,時刻t3における最短距離はX3,そして時刻t4における最短距離はX4となっている。最短距離は、X1が最も長く、X3が最も短い。そしてX2とX4とが等しく、両者の長さはX1とX3の間である。   A method of power reduction of the inverter 6 will be described with reference to FIG. FIG. 5 is a graph showing the relationship between the aforementioned shortest distances X1 to X4 (FIG. 2) and the output (power) adjusted by the inverter 6. In FIG. As shown in FIG. 5, the shortest distance at time t1 is X1, the shortest distance at time t2 is X2, the shortest distance at time t3 is X3, and the shortest distance at time t4 is X4. As for the shortest distance, X1 is the longest and X3 is the shortest. X2 and X4 are equal, and the length of both is between X1 and X3.

一方、最短距離が長くなるほど電力(加熱量)が大きくなり、逆に最短距離が短くなるほど電力(加熱量)が小さくなるようにインバータ6はパワーリダクションを行う。よって、時刻t1ではインバータ6から供給される電力は最大のW1となっており、時刻t3における電力は最小のW3となっている。   On the other hand, the inverter 6 performs power reduction so that the power (heating amount) increases as the shortest distance increases, and conversely, the power (heating amount) decreases as the shortest distance decreases. Therefore, the power supplied from the inverter 6 is the maximum W1 at time t1, and the power at time t3 is the minimum W3.

電力の切替(W1からW3へ、及び、W3からW1への切替)は、時刻tBと時刻tCにおいて行う。時刻tBは、前述の最短距離がX2になる時刻t2よりも若干手前の時刻であり、時刻t2よりどの程度手前にするかはワークの形状等を勘案すると共に予め実験により求めておく。また、時刻tCは、前述の最短距離がX4になる時刻t4よりも若干経過した時刻であり、時刻t4よりどの程度経過した時刻に設定するかは、ワークの形状等を勘案すると共に予め実験により求めておく。このように最短距離がX2又はX4になるタイミングで電力を切り替えるだけでワーク(歪形ワーク熱処理部13a〜13d)の周面を略均一に加熱することができるようになる。   The power switching (switching from W1 to W3 and from W3 to W1) is performed at time tB and time tC. The time tB is a time slightly before the time t2 at which the shortest distance becomes X2, and the amount of time before the time t2 is determined in advance by experiments in consideration of the shape of the workpiece. The time tC is a time slightly after the time t4 when the shortest distance becomes X4. The time tC is set to the time after the time t4 by taking into account the shape of the workpiece and conducting an experiment in advance. I ask for it. As described above, the peripheral surface of the work (distorted work heat treatment parts 13a to 13d) can be heated substantially uniformly only by switching the electric power when the shortest distance becomes X2 or X4.

時刻tAにおいて電力をW1からW2に切り替え、さらに時刻tBにおいて電力をW2からW3に切り替えると、カム(歪形ワーク熱処理部)13a〜13dの周面を、より均一に加熱することができるようになる。ここで時刻tAは、時刻t1と時刻tBの中間の時刻であるのが好ましい。また、電力W2は、電力W1と電力W3の中間(すなわち、W3<W2<W1)の電力である。   When the power is switched from W1 to W2 at time tA and further from W2 to W3 at time tB, the peripheral surfaces of the cams (distorted workpiece heat treatment units) 13a to 13d can be heated more uniformly. Become. Here, the time tA is preferably an intermediate time between the time t1 and the time tB. Further, the power W2 is a power intermediate between the power W1 and the power W3 (that is, W3 <W2 <W1).

すなわち、電力をいきなりW1からW3に切り替えるのではなく、W1からW2を経てW3に至るように時間経過と連動して段階的に変化させると、カム(歪形ワーク熱処理部)13a〜13dの周面をより均一に加熱(焼入)することができるようになる。時刻tC以降においても、同様に今度は電力W3から電力W2を経て電力W1へ時間経過と連動して段階的に切り替える(例えば時刻tCで電力をW3からW2へ切り替え、さらに時刻tDでW1に切り替える)と、カム(歪形ワーク熱処理部)13a〜13dの周面の加熱(焼入)をより均一化することができるようになる。   That is, if the electric power is not suddenly switched from W1 to W3 but gradually changed in conjunction with the passage of time from W1 to W2 to W3, the cams (distorted workpiece heat treatment parts) 13a to 13d The surface can be heated (quenched) more uniformly. Similarly, after time tC, this time, the power W3 is switched stepwise from power W3 to power W1 in conjunction with the passage of time (for example, the power is switched from W3 to W2 at time tC, and further switched to W1 at time tD). ) And heating (quenching) of the peripheral surfaces of the cams (distorted workpiece heat treatment portions) 13a to 13d can be made more uniform.

電力をW1からW3へ、又はW3からW1へ切り替える際に、複数段階に細かく切り替えるほどカム(歪形ワーク熱処理部)13a〜13dの周面の加熱をより均一化することができる。しかし、電力の切替を、二段階又は三段階でW1からW3へ、又はW3からW1へ切り替えるようにすると、カム(歪形ワーク熱処理部)13a〜13dの周面の加熱の均一化を好ましく行えると共に、電力の切替が煩雑化せず、両者の利点を兼ね備えた高周波熱処理装置1を構成することができる。   When the electric power is switched from W1 to W3 or from W3 to W1, the heating of the peripheral surfaces of the cams (distorted workpiece heat treatment units) 13a to 13d can be made more uniform as the electric power is switched in a plurality of stages. However, when the power is switched from W1 to W3 or from W3 to W1 in two or three stages, the heating of the peripheral surfaces of the cams (distorted workpiece heat treatment units) 13a to 13d can be preferably made uniform. In addition, it is possible to configure the high-frequency heat treatment apparatus 1 having both advantages without complicating the switching of electric power.

上述した例では、各カム13a〜13d(歪形ワーク熱処理部)の形状と大きさとが同じである場合を示したが、仮に、いずれかのカムの大きさ又は形状が他のカムと異なっていれば、該カムを熱処理する加熱コイルの中心位置のずれ(距離L1)又は加熱コイルの大きさ,形状のいずれかが、他のカムを熱処理する加熱コイルと相違する。
すなわち、カムシャフト14の回転軸3の回転角度位置毎の各カムから加熱コイル内壁までの最短距離が同じになるように加熱コイルの中心位置をずらしたり、加熱コイルの形状や大きさを変更することにより、各カムの全周囲の熱処理を均一化することができる。
In the above-described example, the case where the shape and size of each cam 13a to 13d (strained workpiece heat treatment portion) is the same is shown. However, the size or shape of one of the cams is different from the other cams. Then, the deviation (distance L1) of the center position of the heating coil that heat-treats the cam or the size and shape of the heating coil differs from the heating coil that heat-treats the other cam.
That is, the center position of the heating coil is shifted, or the shape and size of the heating coil are changed so that the shortest distance from each cam to the inner wall of the heating coil is the same for each rotation angle position of the rotating shaft 3 of the camshaft 14. Thus, the heat treatment around the entire circumference of each cam can be made uniform.

本発明の高周波熱処理装置の全体概略図である。1 is an overall schematic diagram of a high-frequency heat treatment apparatus of the present invention. (a)〜(d)は、各々各加熱コイルとワークの位置関係を示す正面図である。(A)-(d) is a front view which shows the positional relationship of each heating coil and a workpiece | work, respectively. (a),(b)は、各々高周波熱処理装置の各加熱コイルとワーク(カムシャフト)の平面図及び側面図である。(A), (b) is each the top view and side view of each heating coil and workpiece | work (camshaft) of a high frequency heat processing apparatus. 加熱コイルの正面図である。It is a front view of a heating coil. 加熱コイルからカムまでの最短距離とインバータによって調整される出力(電力)の関係を示すグラフである。It is a graph which shows the relationship between the shortest distance from a heating coil to a cam, and the output (electric power) adjusted by an inverter.

符号の説明Explanation of symbols

1 高周波熱処理装置
2a〜2d 加熱コイル(加熱部材)
3 回転軸
3a 軸心
4a〜4d 加熱コイルの中心
6 インバータ(高周波電源)
7 出力トランス
8〜11 導体
13a〜13d カム(歪形ワーク熱処理部)
14 カムシャフト
15 制御装置
1 High-frequency heat treatment apparatus 2a to 2d Heating coil (heating member)
3 Rotating shaft 3a Axes 4a-4d Center of heating coil 6 Inverter (high frequency power supply)
7 Output transformers 8 to 11 Conductors 13a to 13d Cam (strained workpiece heat treatment section)
14 Camshaft 15 Control device

Claims (4)

同軸上に複数の歪形ワーク熱処理部が各々異なる角度で軸方向に間隔を置いて設置されているワークを熱処理する高周波熱処理装置であって、
各歪形ワーク熱処理部の周囲に配置する加熱部材と、該加熱部材の加熱量を制御する制御手段とを備えており、
軸が回転すると、前記各歪形ワーク熱処理部から加熱部材までの最短距離が一様に変化するように前記加熱部材が構成されていることを特徴とする高周波熱処理装置。
A high-frequency heat treatment apparatus for heat-treating a work in which a plurality of strain-shaped work heat treatment portions on the same axis are spaced apart from each other in the axial direction at different angles,
A heating member arranged around each strain-shaped workpiece heat treatment section, and a control means for controlling the heating amount of the heating member;
The high frequency heat treatment apparatus, wherein the heating member is configured such that the shortest distance from each strained workpiece heat treatment portion to the heating member changes uniformly when the shaft rotates.
制御手段は、各歪形ワーク熱処理部から加熱部材までの最短距離が長くなるほど加熱量を増加させることを特徴とする請求項1に記載の高周波熱処理装置。   2. The high frequency heat treatment apparatus according to claim 1, wherein the control means increases the heating amount as the shortest distance from each strained workpiece heat treatment section to the heating member increases. 加熱部材は環状であって各歪形ワーク熱処理部の外周に個々に配置されていることを特徴とする請求項1又は請求項2に記載の高周波熱処理装置。   The high frequency heat treatment apparatus according to claim 1 or 2, wherein the heating members are annular and are individually arranged on the outer periphery of each strained workpiece heat treatment portion. 高周波電源を一つ備えたことを特徴とする請求項1乃至請求項3のうちのいずれかに記載の高周波熱処理装置。   The high frequency heat treatment apparatus according to any one of claims 1 to 3, further comprising a single high frequency power supply.
JP2008033089A 2008-02-14 2008-02-14 Induction heat treatment equipment Active JP5204505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008033089A JP5204505B2 (en) 2008-02-14 2008-02-14 Induction heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033089A JP5204505B2 (en) 2008-02-14 2008-02-14 Induction heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2009191315A JP2009191315A (en) 2009-08-27
JP5204505B2 true JP5204505B2 (en) 2013-06-05

Family

ID=41073602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033089A Active JP5204505B2 (en) 2008-02-14 2008-02-14 Induction heat treatment equipment

Country Status (1)

Country Link
JP (1) JP5204505B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331171B2 (en) * 2011-07-22 2013-10-30 電気興業株式会社 High frequency induction heating coil and high frequency induction heating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0009812A (en) * 1999-04-16 2002-03-19 Elotherm Gmbh Process and device for tempering areas of a crankshaft or camshaft
JP3499486B2 (en) * 2000-01-28 2004-02-23 富士電子工業株式会社 Multiple cam simultaneous hardening device
JP3676215B2 (en) * 2000-09-22 2005-07-27 電気興業株式会社 Low distortion induction hardening method and apparatus for camshaft
JP2002167620A (en) * 2000-11-28 2002-06-11 Denki Kogyo Co Ltd Induction hardening method of cam shaft, and apparatus therefor

Also Published As

Publication number Publication date
JP2009191315A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP7172082B2 (en) Motor core annealing apparatus and motor core annealing method
JP5349941B2 (en) Quenching method and quenching apparatus
WO2015136927A1 (en) Heat-treatment device and heat-treatment method
JP5204505B2 (en) Induction heat treatment equipment
JP5277545B2 (en) Induction heat treatment method and induction heat treatment apparatus
JP2004052013A (en) High frequency induction heating coil body
JP2002047515A (en) Induction heating coil for shaft member having various- shaped parts to be heat-treated and heat treatment method
CN109439852A (en) A kind of drive shaft quenching unit and process for quenching with the angle R
JP4023623B2 (en) Camshaft high frequency induction heating coil and camshaft high frequency induction heating method using the heating coil
JP2007262440A (en) Induction heating apparatus
JP2000087134A (en) Induction heating coil for shaft body with steps and hardening device
JP5331171B2 (en) High frequency induction heating coil and high frequency induction heating method
JP2008150661A (en) Heating coil for tempering
JP2020020027A (en) Heating method for coil spring, heating device for end coil part, and coil spring
JP6973196B2 (en) Motor core annealing device and motor core annealing method
JP2013019043A (en) Method and device for high frequency induction hardening
JP2008169431A (en) Heat-treatment apparatus and heat-treatment method for steel ball
JP2002105532A (en) Heat treatment apparatus for deformed work
JP2004027311A (en) Method and apparatus of induction-heating and hardening for ring member
JP5010434B2 (en) Induction hardening method and apparatus for crankshaft
JP6290714B2 (en) Camshaft induction heating apparatus and camshaft induction heating method
US6514455B1 (en) Heating apparatus of a workpiece of distorted shape, and a quenching apparatus for simultaneous operation of multiple cams and a quenching method for the same
JP2020117768A (en) Motor core annealing apparatus and motor core annealing method
JP6438734B2 (en) Work heating and quenching methods
JP2008045162A (en) Apparatus and method for hardening cam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Ref document number: 5204505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3