JP5204266B2 - Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method - Google Patents

Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method Download PDF

Info

Publication number
JP5204266B2
JP5204266B2 JP2011097641A JP2011097641A JP5204266B2 JP 5204266 B2 JP5204266 B2 JP 5204266B2 JP 2011097641 A JP2011097641 A JP 2011097641A JP 2011097641 A JP2011097641 A JP 2011097641A JP 5204266 B2 JP5204266 B2 JP 5204266B2
Authority
JP
Japan
Prior art keywords
porous membrane
sheet
polytetrafluoroethylene
stretched
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011097641A
Other languages
Japanese (ja)
Other versions
JP2011208146A (en
Inventor
理利 鈴木
豊 小久保
博幸 山崎
浩 下岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2011097641A priority Critical patent/JP5204266B2/en
Publication of JP2011208146A publication Critical patent/JP2011208146A/en
Application granted granted Critical
Publication of JP5204266B2 publication Critical patent/JP5204266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、ポリテトラフルオロエチレン(PTFE)多孔質膜の製造方法およびバグフィルタ用濾材の製造方法に関する。   The present invention relates to a method for producing a polytetrafluoroethylene (PTFE) porous membrane and a method for producing a filter material for a bag filter.

バグフィルタ式集塵機は、例えば、ごみ焼却炉や産業廃棄物焼却炉から排出される排ガスから煤塵を除去するために使用されており、排ガスに含まれるダイオキシンなどの有害物質を煤塵とともに除去する手段としても重視されている。   Bag filter type dust collectors are used, for example, to remove soot and dust from exhaust gas discharged from waste incinerators and industrial waste incinerators, and as a means to remove harmful substances such as dioxin contained in exhaust gas together with soot and dust. Is also emphasized.

バグフィルタ式集塵機では、ガス流中の煤塵をバグフィルタ上にダストケーキ層として堆積させてガス流から取り除く。ダストケーキ層は定期的に実施される逆洗によりバグフィルタから払い落とされる。逆洗はガス流の透過方向と逆向きに加えられるパルス圧力をバグフィルタに加えることにより行われる。   In the bag filter type dust collector, the dust in the gas flow is deposited as a dust cake layer on the bag filter and removed from the gas flow. The dust cake layer is removed from the bag filter by regular backwashing. Backwashing is performed by applying to the bag filter a pulse pressure that is applied in the direction opposite to the gas flow permeation direction.

耐熱性、耐薬品性などに優れたPTFE多孔質膜は、各種フィルタに用いられており、バグフィルタにも適した特性を有する。濾材として使用する場合、PTFE多孔質膜は、フェルト、不織布などの通気性支持材と接合されて補強されることが多い。   PTFE porous membranes excellent in heat resistance and chemical resistance are used in various filters and have characteristics suitable for bag filters. When used as a filter medium, the PTFE porous membrane is often reinforced by being joined to a breathable support material such as felt or nonwoven fabric.

PTFE多孔質膜は、一般に、PTFEペーストを押出または延伸して得たPTFEシートを、さらに延伸して多孔化することにより製造される。特許文献1および2には、バグフィルタに用いるためにPTFEシートを延伸してPTFE多孔質膜とする方法が開示されている。PTFEシートは、通常、まず押出または延伸した方向であるシートの流れ方向(MD方向;長尺シートについては長手方向)に延伸され、引き続き、シートの流れ方向と直交する方向(TD方向;長尺シートについては幅方向)に延伸される。特許文献1によると、MD方向の延伸倍率は5〜30倍、特に10〜20倍が好適であり、TD方向の延伸倍率は10〜50倍が好適である。
特開2004−223334号公報 特開2006−81984号公報
The PTFE porous membrane is generally produced by further stretching a porous PTFE sheet obtained by extruding or stretching a PTFE paste. Patent Documents 1 and 2 disclose a method of stretching a PTFE sheet to form a PTFE porous membrane for use in a bag filter. In general, a PTFE sheet is first stretched in the sheet flow direction (MD direction; longitudinal direction for long sheets), which is the direction of extrusion or stretching, and then is orthogonal to the sheet flow direction (TD direction; long length). The sheet is stretched in the width direction). According to Patent Document 1, the draw ratio in the MD direction is preferably 5 to 30 times, particularly 10 to 20 times, and the draw ratio in the TD direction is preferably 10 to 50 times.
JP 2004-223334 A Japanese Patent Laid-Open No. 2006-81984

ダストケーキ層を十分に払い落としてバグフィルタの圧力損失の上昇を防ぐためには、逆洗の際に大きなパルス圧力を加える必要がある。このため、PTFE多孔質膜と通気性支持材とが接合されてなる濾材をバグフィルタとして用いると、繰り返し加えられるパルス圧力により、PTFE多孔質膜が破壊したり通気性支持材から剥離したりすることがある。PTFE多孔質膜の破壊や剥離は、バグフィルタの集塵効率を低下させる。   In order to prevent the bag filter pressure loss from rising by sufficiently removing the dust cake layer, it is necessary to apply a large pulse pressure during backwashing. For this reason, when a filter medium in which a PTFE porous membrane and a breathable support material are joined is used as a bag filter, the PTFE porous membrane is broken or peeled off from the breathable support material due to repeatedly applied pulse pressure. Sometimes. The destruction or peeling of the PTFE porous membrane reduces the dust collection efficiency of the bag filter.

PTFE多孔質膜の破壊や剥離の程度は、PTFE多孔質膜が接合される通気性支持材の種類によって相違する。ガラス織布は、耐熱性に優れているため、それ自体はバグフィルタへの使用に適している。しかし、PTFE多孔質膜とガラス織布とを接合して得たバグフィルタでは、PTFE多孔質膜の破壊または破損による集塵効率の低下が生じやすい。これは、ガラス織布の表面に比較的大きな凹凸が存在するため、PTFE多孔質膜とガラス織布との接合が不十分となりやすいためである。PTFE多孔質膜の破壊や剥離を防止するために逆洗の際のパルス圧力を小さくすると、ダストケーキ層が十分に脱離せず、バグフィルタの圧力損失が増加することになる。   The degree of destruction and peeling of the PTFE porous membrane varies depending on the type of the air-permeable support material to which the PTFE porous membrane is bonded. Since the glass woven fabric has excellent heat resistance, the glass woven fabric itself is suitable for use in a bag filter. However, in a bag filter obtained by joining a PTFE porous membrane and a glass woven fabric, the dust collection efficiency is likely to decrease due to the destruction or breakage of the PTFE porous membrane. This is because relatively large irregularities exist on the surface of the glass woven fabric, so that the PTFE porous membrane and the glass woven fabric are likely to be insufficiently joined. If the pulse pressure during backwashing is reduced in order to prevent the PTFE porous membrane from being broken or peeled off, the dust cake layer will not be sufficiently detached, and the pressure loss of the bag filter will increase.

このため、その優れた耐熱性にもかかわらず、ガラス織布はバグフィルタ用濾材の通気性支持材としては不適であると考えられてきた。特許文献1には、通気性支持材として用いる織布の材料として、木綿、アクリル、ポリプロピレンなどが挙げられているが、ガラス繊維は挙げられていない(段落0026)。特許文献2では、PTFE多孔質膜と接合する通気性支持材として熱可塑性樹脂繊維製フェルトが用いられている(請求項1)。   For this reason, despite its excellent heat resistance, glass woven fabrics have been considered unsuitable as breathable support materials for bag filter media. Patent Document 1 mentions cotton, acrylic, polypropylene, and the like as a material for a woven fabric used as a breathable support material, but does not mention glass fiber (paragraph 0026). In Patent Document 2, a felt made of thermoplastic resin fiber is used as a breathable support material to be joined to the PTFE porous membrane (Claim 1).

本発明は、上記事情に鑑み、バグフィルタ用濾材にガラス織布の優れた耐熱性を活かすため、PTFE多孔質膜とガラス織布とが接合されてなるバグフィルタ用濾材の新たな製造方法を提供することを目的とする。本発明の別の目的は、上記製造方法への使用に適したPTFE多孔質膜を提供することにある。   In view of the above circumstances, the present invention provides a new method for producing a filter material for a bag filter in which a PTFE porous membrane and a glass woven fabric are bonded together in order to utilize the excellent heat resistance of the glass woven fabric for the filter material for a bag filter. The purpose is to provide. Another object of the present invention is to provide a PTFE porous membrane suitable for use in the above production method.

本発明は、
PTFEシートを互いに直交する二方向に延伸して多孔質膜とするPTFE多孔質膜の製造方法であって、
PTFE粉末と液状潤滑剤とを混合して調製したペーストを押出または圧延してPTFEシートを成形し、
前記シートを、PTFEの融点未満の温度で、前記ペーストを押出または圧延した方向である前記シートの流れ方向と直交する方向である前記シートの幅方向に延伸倍率が5〜20倍となるように延伸し、
前記幅方向に延伸した前記シートから前記液状潤滑剤を除去し、
前記液状潤滑剤を除去した前記シートを、PTFEの融点未満の温度で、前記シートの流れ方向である前記シートの長さ方向に延伸倍率が2〜15倍となるとともに前記幅方向の延伸倍率と前記長さ方向の延伸倍率との積が40〜75となるように延伸し、
前記長さ方向に延伸した前記シートを、PTFEの融点以上の温度で焼成することにより、
前記幅方向および前記長さ方向のそれぞれについて、引っ張り強度が0.25N以上で伸び率が100%以上であるPTFE多孔質膜を得る、
PTFE多孔質膜の製造方法、を提供する。
The present invention
A PTFE porous membrane production method in which a PTFE sheet is stretched in two directions perpendicular to each other to form a porous membrane,
Extruding or rolling a paste prepared by mixing PTFE powder and a liquid lubricant to form a PTFE sheet,
The sheet is stretched at a temperature lower than the melting point of PTFE at a stretching ratio of 5 to 20 times in the width direction of the sheet, which is a direction perpendicular to the flow direction of the sheet, which is the direction in which the paste is extruded or rolled. Stretched,
Removing the liquid lubricant from the sheet stretched in the width direction;
The sheet from which the liquid lubricant has been removed has a draw ratio of 2 to 15 times in the length direction of the sheet, which is the flow direction of the sheet, at a temperature lower than the melting point of PTFE, and the draw ratio in the width direction. Stretching so that the product of the lengthwise draw ratio is 40-75,
By firing the sheet stretched in the length direction at a temperature equal to or higher than the melting point of PTFE,
For each of the width direction and the length direction, a PTFE porous membrane having a tensile strength of 0.25 N or more and an elongation of 100% or more is obtained.
A method for producing a PTFE porous membrane is provided.

ここで、引っ張り強度は、測定方向と直交する方向についての長さが25mmとなるように切断した多孔質膜サンプルを互いの間隔が50mmとなるように配置した一対のつかみ具により上記間隔を規定する方向が測定方向と一致するように保持し、一対のつかみ具によりサンプルを測定方向に沿って100mm/分の速度でサンプルが破断するまで引っ張る試験を行い、サンプルが破断したときに一対のつかみ具に印加されていた応力により定める。   Here, the tensile strength is defined by a pair of grips in which a porous membrane sample cut so that the length in the direction orthogonal to the measurement direction is 25 mm is arranged so that the distance between them is 50 mm. The test is held so that the measuring direction coincides with the measurement direction, and a test is performed by pulling the sample along the measurement direction at a speed of 100 mm / min with a pair of grips until the sample breaks. Determined by the stress applied to the tool.

また、伸び率は、上記試験においてサンプルが破断したときの一対のつかみ具の間隔をL1(mm)としたときに、{(L1−50)/50}×100(%)により算出される値により定める。 The elongation percentage is calculated by {(L 1 −50) / 50} × 100 (%), where L 1 (mm) is the distance between the pair of grips when the sample breaks in the above test. It is determined by the value.

また、本発明は、
PTFE多孔質膜とガラス織布とを接合して濾材とする、バグフィルタ用濾材の製造方法であって、
上記の方法を実施してPTFE多孔質膜を製造し、
当該PTFE多孔質膜とガラス織布とを接合して濾材を得る、
バグフィルタ用濾材の製造方法、
を提供する。
The present invention also provides:
A method for producing a filter material for a bag filter, comprising joining a PTFE porous membrane and a glass woven fabric to obtain a filter material,
Performing the above method to produce a PTFE porous membrane,
The PTFE porous membrane and the glass woven fabric are joined to obtain a filter medium.
Manufacturing method of filter material for bag filter,
I will provide a.

本発明によれば、PTFE多孔質膜とガラス織布とが接合されてなるバグフィルタ用濾材であって、通気面が面積98.5cm2の円形となるように濾材を保持した状態でガラス織布側から通気面に対して0.1MPaのパルスエアを0.1秒間印加する疑似逆洗操作を20000回繰り返す試験を実施しても通気面にクラックが観察されない、バグフィルタ用濾材を提供することができる。 According to the present invention, there is provided a filter material for a bag filter in which a PTFE porous membrane and a glass woven fabric are joined, and the glass woven material is held in a state in which the filter medium is held so that the ventilation surface is a circle having an area of 98.5 cm 2. To provide a filter material for a bag filter in which cracks are not observed on the vent surface even when a test is repeated 20000 times by applying a pseudo backwash operation in which 0.1 MPa of pulsed air is applied to the vent surface from the cloth side for 0.1 second. Can do.

本発明では、バグフィルタ用濾材への使用に要求される程度の通気度を有しながらも、伸び率および面内方向の引っ張り強度が高いPTFE多孔質膜を用いることとした。このPTFE多孔質膜は、伸び率が高いためにガラス織布の形状変化に良く追随して剥離にくく、引っ張り強度が高いために引き延ばされても破断しにくい。   In the present invention, a PTFE porous membrane having a high degree of elongation and a high tensile strength in the in-plane direction while having an air permeability required for use in a filter material for a bag filter is used. Since this PTFE porous membrane has a high elongation rate, it follows the shape change of the glass woven fabric well and is not easily peeled off, and since it has a high tensile strength, it is difficult to break even if it is stretched.

しかも、本発明によるPTFE多孔質は、MD方向およびTD方向の双方について伸び率および引っ張り強度が高く設定されている。このため、本発明によるPTFE多孔質膜からは、伸び率や引っ張り強度が極端に小さい方向が解消されており、バグフィルタにおけるPTFE多孔質膜の破損または剥離が発生しにくい。本発明によれば、PTFE多孔質膜とガラス織布とが接合してなり、逆洗の際のPTFE多孔質膜の剥離や破損が抑制されたバグフィルタ用濾材を製造できる。   Moreover, the PTFE porous material according to the present invention is set to have a high elongation and tensile strength in both the MD direction and the TD direction. Therefore, the PTFE porous membrane according to the present invention eliminates the direction in which the elongation rate and the tensile strength are extremely small, and the PTFE porous membrane in the bag filter is unlikely to break or peel off. ADVANTAGE OF THE INVENTION According to this invention, the PTFE porous membrane and glass woven fabric join, and the filter medium for bag filters by which peeling and damage of the PTFE porous membrane at the time of backwashing were suppressed can be manufactured.

図1は引っ張り強度および伸び率の測定方法を説明するための図である。FIG. 1 is a diagram for explaining a method for measuring tensile strength and elongation. 図2は逆洗試験の方法を説明するための図である。FIG. 2 is a diagram for explaining a method of a backwash test.

以下、まず、本発明によるPTFE多孔質膜の製造方法について説明する。   Hereinafter, first, a method for producing a PTFE porous membrane according to the present invention will be described.

PTFE多孔質膜は、PTFEシートを延伸して多孔化することによって製造される。PTFEシートは、PTFE粉末および液状潤滑剤を混合することにより調製したPTFEペーストから製造することができる。   The PTFE porous membrane is produced by stretching a PTFE sheet to make it porous. The PTFE sheet can be produced from a PTFE paste prepared by mixing PTFE powder and a liquid lubricant.

PTFEペーストの調製に際し、液状潤滑剤の配合量は、PTFE粉末100質量部に対して5〜50質量部とすることが好ましい。PTFE粉末としては、未焼成のPTFEファインパウダー(例えばダイキン工業株式会社製ポリフロンF104)を使用すればよい。液状潤滑剤としては、流動パラフィン、ナフサなどの炭化水素油を使用すればよい。   In preparing the PTFE paste, the amount of the liquid lubricant is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the PTFE powder. As the PTFE powder, unfired PTFE fine powder (for example, Polyflon F104 manufactured by Daikin Industries, Ltd.) may be used. As the liquid lubricant, hydrocarbon oils such as liquid paraffin and naphtha may be used.

PTFEペーストは圧延または押出によりPTFEシートへと成形される。PTFEシートの厚さは0.1〜0.7mmの範囲が好適である。   The PTFE paste is formed into a PTFE sheet by rolling or extrusion. The thickness of the PTFE sheet is preferably in the range of 0.1 to 0.7 mm.

PTFEシートは延伸されてPTFE多孔質膜となる。PTFE多孔質膜の延伸は、MD方向(長手方向)およびTD方向(幅方向)についての二軸延伸により行うとよいが、TD方向のみへの一軸延伸としても構わない。PTFEシートの延伸は、従来から行われてきたとおり、ロール法、テンター法などにより行えばよい。   The PTFE sheet is stretched to become a PTFE porous membrane. The PTFE porous membrane may be stretched by biaxial stretching in the MD direction (longitudinal direction) and the TD direction (width direction), but may be uniaxial stretching only in the TD direction. The stretching of the PTFE sheet may be performed by a roll method, a tenter method, or the like, as conventionally performed.

本発明では、MD方向およびTD方向のそれぞれについて伸び率および引っ張り強度を所定値以上とするため、延伸に際しては、延伸倍率、温度、(二軸延伸する場合の)延伸順序、潤滑剤除去と延伸との前後関係などの延伸条件を適切に制御する必要がある。   In the present invention, in order to make the elongation and the tensile strength equal to or higher than the predetermined values in each of the MD direction and the TD direction, the stretching ratio, temperature, stretching order (when biaxial stretching), lubricant removal and stretching are performed in stretching. It is necessary to appropriately control the stretching conditions such as the context.

従来、濾材とするPTFE多孔質膜への要求特性は、圧力損失や捕集効率を規定する通気度や平均孔径であった。これらの特性を示す値が適切な範囲にあれば、クリーンルーム用エアフィルタのように大きな応力が加わらない濾材としては問題なく使用できる。しかし、本発明によるPTFE多孔質膜を得るためには、伸び率および引っ張り強度に着目してPTFEシートの延伸条件を制御する必要がある。また、ガラス織布と接合して使用する場合の強度を保持するためには、伸び率または引っ張り強度が極度に小さい方向が解消されていることも求められる。しかし、従来の延伸では、伸び率と引っ張り強度との両立を目指すことも、これら特性の方向によるバラツキも十分に配慮されてはいなかった。   Conventionally, the required characteristics of a PTFE porous membrane used as a filter medium have been air permeability and average pore diameter that define pressure loss and collection efficiency. If the values indicating these characteristics are in an appropriate range, it can be used without any problem as a filter medium to which a large stress is not applied like a clean room air filter. However, in order to obtain the PTFE porous membrane according to the present invention, it is necessary to control the stretching conditions of the PTFE sheet by paying attention to the elongation rate and the tensile strength. Further, in order to maintain the strength when used by being bonded to a glass woven fabric, it is also required that the direction in which the elongation rate or the tensile strength is extremely small is eliminated. However, in the conventional stretching, neither aiming at achieving both the elongation rate and the tensile strength nor variation due to the direction of these characteristics has been sufficiently considered.

PTFE多孔質膜は、フラジール法により測定した通気量が1〜10cm3/cm2/秒の範囲にあることが好ましい。この程度の通気度を有するPTFE多孔質膜は、従来、一般には、PTFEシートから潤滑剤を除去してからMD方向およびTD方向に順次二軸延伸することにより製造されていた。この二軸延伸において通常適用される程度の延伸倍率(例えば特許文献1において好ましいとされているMD方向10〜20倍の倍率)を適用すると、得られるPTFE多孔質膜は、MD方向についての伸び率が低いものとなる(シートF〜Hについての表1,2の結果を参照)。これは、MD方向への延伸倍率が高いためにフィブリルが長くなりすぎるためであると考えられる。上記のような二軸延伸を適用する場合、MD方向についての伸び率を確保するためには、MD方向への延伸倍率を従来よりも低くし、TD方向への延伸倍率は、通気度を好ましい範囲とするべくMD方向への延伸倍率の低さを補うように設定するとよい。 The PTFE porous membrane preferably has an air flow rate measured by the Frazier method in the range of 1 to 10 cm 3 / cm 2 / sec. Conventionally, a PTFE porous membrane having such a degree of air permeability has been generally produced by removing a lubricant from a PTFE sheet and then biaxially stretching sequentially in the MD direction and the TD direction. When a stretching ratio that is normally applied in this biaxial stretching (for example, a magnification of 10 to 20 times in the MD direction, which is preferable in Patent Document 1) is applied, the resulting PTFE porous membrane is stretched in the MD direction. The rate is low (see results in Tables 1 and 2 for sheets FH). This is thought to be because the fibrils become too long because the draw ratio in the MD direction is high. When biaxial stretching as described above is applied, in order to ensure the elongation in the MD direction, the stretching ratio in the MD direction is made lower than that in the past, and the stretching ratio in the TD direction is preferable for air permeability. It may be set so as to compensate for the low stretch ratio in the MD direction so as to be in the range.

PTFE多孔質膜は、上記のような二軸延伸に限らず、TD方向のみに延伸する方法などによっても得ることもできる。実施例で確認されたところでは、下記の条件に従って液状潤滑剤を含む未焼成PTFEシートを延伸することにより、望ましい特性を有するPTFE多孔質膜を得ることができる。   The PTFE porous membrane can be obtained not only by the biaxial stretching as described above but also by a method of stretching only in the TD direction. As confirmed in the examples, a PTFE porous membrane having desirable characteristics can be obtained by stretching an unfired PTFE sheet containing a liquid lubricant according to the following conditions.

a)液状潤滑剤を除去し、MD方向に2〜8倍の倍率で延伸し、その後、TD方向に15〜50倍の倍率で延伸する。MD方向およびTD方向の延伸はともにPTFEの融点未満の温度で行う。MD方向の延伸倍率とTD方向の延伸倍率との積は100〜125とする。   a) The liquid lubricant is removed and stretched in the MD direction at a magnification of 2 to 8 times, and then stretched in the TD direction at a magnification of 15 to 50 times. Both the MD direction and the TD direction are stretched at a temperature lower than the melting point of PTFE. The product of the draw ratio in the MD direction and the draw ratio in the TD direction is 100 to 125.

b)MD方向に2〜5倍で延伸し、液状潤滑剤を除去し、その後、TD方向に15〜25倍の倍率で延伸する。MD方向およびTD方向の延伸はともにPTFEの融点未満の温度で行う。MD方向の延伸倍率とTD方向の延伸倍率との積は50〜75とする。   b) The film is stretched 2 to 5 times in the MD direction to remove the liquid lubricant, and then stretched 15 to 25 times in the TD direction. Both the MD direction and the TD direction are stretched at a temperature lower than the melting point of PTFE. The product of the draw ratio in the MD direction and the draw ratio in the TD direction is 50 to 75.

上記b)のようにMD方向に延伸してから液状潤滑剤を除去すると、潤滑剤を除去してからMD方向に延伸した場合(a))と比較してフィブリルの少ない原反となる。   When the liquid lubricant is removed after stretching in the MD direction as in the above b), it becomes a raw fabric with less fibrils as compared with the case (a)) in which the liquid lubricant is removed after stretching in the MD direction.

c)液状潤滑剤を除去し、TD方向に20〜70倍で延伸し、その後、MD方向に5倍以下の倍率で延伸するかMD方向についての延伸は行わない。MD方向およびTD方向の延伸はともにPTFEの融点未満の温度で行う。MD方向の延伸倍率とTD方向の延伸倍率との積は50〜100とする(延伸を行わなかった場合の延伸倍率は1として計算する)。   c) The liquid lubricant is removed, the film is stretched 20 to 70 times in the TD direction, and then stretched in the MD direction at a magnification of 5 times or less, or stretching in the MD direction is not performed. Both the MD direction and the TD direction are stretched at a temperature lower than the melting point of PTFE. The product of the stretching ratio in the MD direction and the stretching ratio in the TD direction is 50 to 100 (the stretching ratio when the stretching is not performed is calculated as 1).

上記c)のようにTD方向に延伸してからMD方向に延伸すると、MD方向に延伸してからTD方向に延伸した場合(a))と比較してTD方向について幅収縮が生じやすい。   When the film is stretched in the MD direction after being stretched in the TD direction as in the above c), the width shrinkage is likely to occur in the TD direction as compared with the case where the film is stretched in the MD direction and then stretched in the TD direction (a)).

d)TD方向に5〜20倍で延伸し、潤滑剤を除去し、その後、MD方向に2〜15倍の倍率で延伸する。MD方向およびTD方向の延伸はともにPTFEの融点未満の温度で行う。MD方向の延伸倍率とTD方向の延伸倍率との積は40〜75とする。   d) The film is stretched 5 to 20 times in the TD direction to remove the lubricant, and then stretched 2 to 15 times in the MD direction. Both the MD direction and the TD direction are stretched at a temperature lower than the melting point of PTFE. The product of the draw ratio in the MD direction and the draw ratio in the TD direction is 40 to 75.

上記d)のようにTD方向に延伸してから液状潤滑剤を除去すると、潤滑剤を除去してからMD方向に延伸した場合(c))と比較して、MD方向へのフィブリルが多く発生し、MD方向についての伸びが小さくなる。   When the liquid lubricant is removed after stretching in the TD direction as in d) above, more fibrils are generated in the MD direction than when the lubricant is removed and then stretched in the MD direction (c)). In addition, the elongation in the MD direction is reduced.

上記a)〜d)では、延伸温度はPTFEの融点未満の温度に設定するが、延伸温度は、低くし過ぎると膜が破断する可能性が生じる。延伸温度は延伸倍率などとの兼ね合いを考慮して適切に設定すべきである。   In the above a) to d), the stretching temperature is set to a temperature lower than the melting point of PTFE. However, if the stretching temperature is too low, the film may break. The stretching temperature should be set appropriately considering the balance with the stretching ratio and the like.

上記a)〜d)とも、延伸処理後、PTFEの融点以上の温度、例えば327〜470℃で焼成することが好ましい。焼成温度が高すぎるとPTFE多孔質膜が変質することがある。焼成の時間は、例えば0.2秒〜1分間が適用である。この焼成により、PTFE多孔質膜の引っ張り強度が向上し、寸法が安定し、圧力損失が下がり、ハンドリングが容易となる。   In any of the above-mentioned a) to d), it is preferable to perform firing at a temperature equal to or higher than the melting point of PTFE, for example, 327 to 470 ° C. If the firing temperature is too high, the porous PTFE membrane may be altered. The firing time is, for example, 0.2 second to 1 minute. This firing improves the tensile strength of the porous PTFE membrane, stabilizes the dimensions, reduces the pressure loss, and facilitates handling.

PTFE多孔質膜の厚みは5〜60μm、特に10〜50μmが好ましい。   The thickness of the PTFE porous membrane is preferably 5 to 60 μm, particularly preferably 10 to 50 μm.

上記により得たPTFE多孔質膜はガラス織布に接合され、バグフィルタ用濾材となる。PTFE多孔質膜とガラス織布との接合は、ホットメルト接着剤などを用いて行ってもよいが、熱ラミネートにより行うことが好ましい。熱ラミネートは、製造コスト面で有利なだけでなく、濾材の圧力損失を低く保ち、耐熱性を損なわないからである。   The PTFE porous membrane obtained as described above is bonded to a glass woven fabric and becomes a filter material for a bag filter. The PTFE porous membrane and the glass woven fabric may be joined using a hot-melt adhesive or the like, but preferably by thermal lamination. This is because thermal lamination is not only advantageous in terms of manufacturing cost but also keeps the pressure loss of the filter medium low and does not impair heat resistance.

熱ラミネートは、PTFE多孔質膜とガラス織布とを積層し、加熱した一対のロールの間を通すことなどにより押圧して行うことができる。熱ラミネートの温度は、PTFEの融点以上の温度とするとよい。   Thermal lamination can be performed by laminating a PTFE porous membrane and a glass woven fabric and pressing them by passing between a pair of heated rolls. The temperature of the heat laminate is preferably a temperature equal to or higher than the melting point of PTFE.

PTFE多孔質膜との接合に用いるガラス織布には、織り方として、二重織、綾織、朱子織、三重織などがあるが、耐熱性の観点から二重織または綾織の織布が好ましい。目付は500〜800g/m2が好適である。PTFEを含浸させたガラス織布を用いてもよ
く、この場合はガラス織布に対して5〜30質量%のPTFEを含浸させるとよい。
The glass woven fabric used for bonding with the PTFE porous membrane includes a double woven fabric, a twill woven fabric, a satin woven fabric, a triple woven fabric, etc., but a double woven fabric or a twill woven fabric is preferable from the viewpoint of heat resistance. . The basis weight is preferably 500 to 800 g / m 2 . A glass woven fabric impregnated with PTFE may be used. In this case, 5 to 30% by mass of PTFE may be impregnated with respect to the glass woven fabric.

以下、具体例を挙げ、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with specific examples.

次のようにしてPTFE多孔質膜を形成した。未焼成のPTFEファインパウダー(ダイキン工業株式会社製ポリフロンF104)100質量部に対し、液状潤滑剤としてナフサ19質量部を均一に混合し、PTFEペーストを調製した。次いで、このPTFEペーストを、20kg/cm2の圧力で予備成形した後に丸棒状に押出成形し、さらに一対の金属ロールにより圧延して、厚さ0.2mmのPTFEシートを得た。 A PTFE porous membrane was formed as follows. 19 parts by mass of naphtha as a liquid lubricant was uniformly mixed with 100 parts by mass of unsintered PTFE fine powder (polyflon F104 manufactured by Daikin Industries, Ltd.) to prepare a PTFE paste. Next, this PTFE paste was preformed at a pressure of 20 kg / cm 2 , extruded into a round bar shape, and then rolled with a pair of metal rolls to obtain a PTFE sheet having a thickness of 0.2 mm.

引き続き、表1に示す条件でシートを延伸した。MD方向(押出方向)への延伸はロール法により、TD方向(押出方向に直交する方向)への延伸はテンター法により行った。潤滑剤の除去は150℃に設定した炉内で1分間保持することにより行った。延伸したPTFE多孔質膜は、400℃に設定した炉内に5秒間保持することにより焼成した。   Subsequently, the sheet was stretched under the conditions shown in Table 1. Stretching in the MD direction (extrusion direction) was performed by a roll method, and stretching in the TD direction (direction orthogonal to the extrusion direction) was performed by a tenter method. The lubricant was removed by holding it in a furnace set at 150 ° C. for 1 minute. The stretched porous PTFE membrane was fired by being held in a furnace set at 400 ° C. for 5 seconds.

Figure 0005204266
Figure 0005204266

得られたPTFE多孔質膜の引っ張り強度(膜強度)、伸び率、膜厚および通気度を測定した。   The obtained PTFE porous membrane was measured for tensile strength (membrane strength), elongation, film thickness, and air permeability.

強度および伸び率は、引張試験機(島津製作所製テンシロン)を用いて測定した。MD方向(長手方向)およびTD方向(幅方向)についての引っ張り強度および伸び率は、それぞれ別のサンプルを用意して個別に測定した。   The strength and elongation were measured using a tensile tester (Tensilon manufactured by Shimadzu Corporation). The tensile strength and the elongation rate in the MD direction (longitudinal direction) and the TD direction (width direction) were individually measured by preparing different samples.

測定方法を図1を参照しながら以下説明する。サンプル1は、測定方向と直交する方向についての長さWが25mmとなるように予め切断した。サンプル1を、互いの間隔Dが50mmとなるように配置した一対のチャック2,2により、測定方向(MD方向またはTD方向)が間隔Dを規定する方向と一致するように把持した。図1に示したように、チャック2,2はサンプル1をその全幅(25mm)において把持している。図1に示した状態から、一対のチャック2,2によりサンプル1を測定方向に沿って100mm/分の速度でサンプル1が破断するまで引っ張った。サンプルが破断したときに一対のチャック2,2に印加されていた応力を測定し、この応力を引っ張り強度とした。   The measurement method will be described below with reference to FIG. Sample 1 was cut in advance so that the length W in the direction orthogonal to the measurement direction was 25 mm. The sample 1 was held by a pair of chucks 2 and 2 arranged so that the distance D between them was 50 mm so that the measurement direction (MD direction or TD direction) coincided with the direction defining the distance D. As shown in FIG. 1, the chucks 2 and 2 hold the sample 1 in its full width (25 mm). From the state shown in FIG. 1, the sample 1 was pulled by the pair of chucks 2 and 2 along the measurement direction at a speed of 100 mm / min until the sample 1 was broken. The stress applied to the pair of chucks 2 and 2 when the sample broke was measured, and this stress was taken as the tensile strength.

また、伸び率は、上記の試験においてサンプル1が破断したときのチャック2,2の間隔をL1(mm)としたときに、{(L1―50)/50}×100(%)により算出される値により定めた。 Further, the elongation percentage is {(L 1 −50) / 50} × 100 (%), where L 1 (mm) is the distance between the chucks 2 and 2 when the sample 1 is broken in the above test. It was determined by the calculated value.

膜厚は、ミツトヨ製シックネスゲージを用いて測定した。PTFE多孔質膜および後述するバグフィルタ用濾材の通気度は、フラジール試験機(東洋精機製)を用い、JIS L 1096に従って測定した。   The film thickness was measured using a Mitsutoyo thickness gauge. The air permeability of the PTFE porous membrane and the filter material for bag filter described later was measured according to JIS L 1096 using a Frazier tester (manufactured by Toyo Seiki).

測定結果を表2にまとめて示す。   The measurement results are summarized in Table 2.

Figure 0005204266
Figure 0005204266

上記から得た各PTFE多孔質膜をガラス織布(ユニチカグラスファイバー社製「T790QB」、目付量800g/m2)と重ね合わせ、370℃に加熱した一対の熱ロールの間を通過させてPTFE多孔質膜とガラス織布とを接合することにより、バグフィルタ用濾材を作製した。 Each PTFE porous membrane obtained from the above was overlapped with a glass woven fabric (“T790QB” manufactured by Unitika Glass Fiber Co., Ltd., basis weight 800 g / m 2 ) and passed between a pair of hot rolls heated to 370 ° C. The filter material for bag filters was produced by joining the porous membrane and the glass woven fabric.

製造したバグフィルタ用濾材における通気度、洗濯試験後の捕集効率および当該試験後のクラックの有無を調べた。   The air permeability, the collection efficiency after the washing test, and the presence or absence of cracks after the test were examined in the produced filter material for bag filter.

洗濯試験は、測定対象とするバグフィルタ用濾材からB5サイズ(182mm×257mm)に切り出した6枚のサンプルを水とともに洗濯機(三洋電機製)に投入し、洗濯モードを20分間の洗いの後に9分間の脱水を行うサイクルに設定し、このサイクルを4回繰り返すことにより実施した。これは、洗濯機の内壁との衝突や濾材同士の衝突による濾材のダメージを評価するための試験である。   In the washing test, six samples cut into B5 size (182 mm × 257 mm) from the filter material for bag filter to be measured are put into a washing machine (manufactured by Sanyo Electric) together with water, and the washing mode is set after washing for 20 minutes. The cycle was set to 9 minutes and the cycle was repeated 4 times. This is a test for evaluating the damage of the filter medium due to the collision with the inner wall of the washing machine or the collision between the filter mediums.

洗濯試験後に各濾材についてダメージの有無と捕集効率とを測定した。クラックの有無は、目視により、各サンプルにおけるPTFE多孔質膜の状態を観察することにより判断した。6枚のサンプルのうち1枚でもクラックが確認された場合には、「クラックあり」とした。   The presence or absence of damage and the collection efficiency were measured for each filter medium after the washing test. The presence or absence of cracks was judged by observing the state of the PTFE porous membrane in each sample by visual observation. When cracks were confirmed even in one of the six samples, “cracked” was set.

捕集効率は、以下のようにして測定した。まず、サンプルをその周縁をホルダーで有効通気面積が100cm2なるように支持し、サンプルを通過する空気の流速が5.3cm/秒となるようにサンプルの上流側と下流側との間に圧力差を与えた。この状態で、上流側にJIS11種(関東ローム)のダストをダスト濃度が2g/m3となるように供給し、体積平均粒子径が2〜5μmの範囲にあるダストを対象に、パーティクルカウンター(リオン株式会社製KC−03)を用いてサンプルの上流側および下流側の空間におけるダスト濃度を測定した。 The collection efficiency was measured as follows. First, the periphery of the sample is supported by a holder so that the effective ventilation area is 100 cm 2 , and pressure is applied between the upstream side and the downstream side of the sample so that the flow velocity of air passing through the sample is 5.3 cm / second. Gave a difference. In this state, JIS11 (Kanto loam) dust is supplied to the upstream side so that the dust concentration is 2 g / m 3, and the particle counter (for the dust whose volume average particle diameter is in the range of 2 to 5 μm is targeted. The dust concentration in the space on the upstream side and downstream side of the sample was measured using KC-03 manufactured by Rion Co., Ltd.

各サンプルにおける捕集効率を下記式により求め、6枚のサンプルの平均値をその濾材についての捕集効率とした。
捕集効率(%)={1−(下流側ダスト濃度/上流側ダスト濃度)}×100
The collection efficiency in each sample was determined by the following formula, and the average value of the six samples was taken as the collection efficiency for the filter medium.
Collection efficiency (%) = {1− (downstream dust concentration / upstream dust concentration)} × 100

Figure 0005204266
Figure 0005204266

表3に示すように、MD方向およびTD方向についての引っ張り強度および伸び率がそれぞれ0.25N(0.25N/25mm)以上および60%以上の範囲にあるPTFE多孔質膜を用いて作製したバグフィルタ用濾材(シートA〜Eおよびシート1〜5)は、いずれも洗濯試験によってクラックが発生せず、試験後の捕集効率も良好であった。また、これら濾材は、フラジール法により測定した通気量が1〜6.2cm3/cm2/秒、より具体的には1.2〜6.2cm3/cm2/秒の範囲にあった。 As shown in Table 3, the bug was made using a PTFE porous membrane having a tensile strength and elongation in the MD direction and TD direction of 0.25 N (0.25 N / 25 mm) or more and 60% or more, respectively. All of the filter media (sheets A to E and sheets 1 to 5) were free from cracks in the washing test, and the collection efficiency after the test was good. Further, these filter media had an air flow rate measured by the Frazier method of 1 to 6.2 cm 3 / cm 2 / sec, more specifically 1.2 to 6.2 cm 3 / cm 2 / sec.

さらに、図2に示した装置を用いて、逆洗を模したパルスエアの印加試験を行った。この試験は、PTFE多孔質膜11とガラス織布12とが接合されてなる濾材を横断面が円形であるアクリル樹脂製の一対の筒状体21,21の間に挟み込んで行った。筒状体21,21は、その内部の空間が底部において面積98.5cm2の円形、頂部で面積26cm2の円形、高さが40cmである。濾材と筒状体との間には気密のためにリング状のゴムパッキング22,22を介在させた。筒状体21,21に挟み込まれる濾材は面積98.5cm2の円形部分が筒状体の内部空間に露出して通気面を構成することとなる。この円形の濾材に対し、ガラス織布12が露出している面に0.3MPaの圧力がかかるようにパルスエア23を0.1秒間印加する操作を2万回行う。濾材を通過するエアの速度は、0.18L/分であった。その後、目視により、クラック発生の有無を確認した。結果を表3に併せて示す。 Further, using the apparatus shown in FIG. 2, a pulsed air application test simulating backwashing was performed. This test was conducted by sandwiching a filter medium formed by joining the PTFE porous membrane 11 and the glass woven fabric 12 between a pair of cylindrical bodies 21 and 21 made of acrylic resin having a circular cross section. The cylindrical bodies 21 and 21 have a circular space with an area of 98.5 cm 2 at the bottom, a circular shape with an area of 26 cm 2 at the top, and a height of 40 cm. Ring-shaped rubber packings 22 and 22 are interposed between the filter medium and the cylindrical body for airtightness. In the filter medium sandwiched between the cylindrical bodies 21 and 21, a circular portion having an area of 98.5 cm 2 is exposed to the internal space of the cylindrical body to form a ventilation surface. The operation of applying the pulse air 23 for 0.1 second is performed 20,000 times on the circular filter medium so that a pressure of 0.3 MPa is applied to the surface where the glass woven fabric 12 is exposed. The speed of air passing through the filter medium was 0.18 L / min. Then, the presence or absence of crack generation was confirmed visually. The results are also shown in Table 3.

洗濯試験により良好な結果を示したバグフィルタ用濾材(シートA〜Eおよびシート1〜5)は、上記の擬似的な逆洗試験によってもクラックが発生することがなかった。このように、本発明による濾材は、ガラス織布を用いた従来の濾材が耐えられなかった試験に合格する優れた耐屈曲性を有している。   The filter media for bag filters (sheets A to E and sheets 1 to 5) that showed good results in the washing test were free from cracks even in the pseudo backwash test. Thus, the filter medium according to the present invention has excellent bending resistance that passes a test that a conventional filter medium using a glass woven fabric could not withstand.

なお、上記試験において、クラックは、典型的にはPTFE多孔質膜表面の長さ0.5〜5cm程度の傷として観察された。   In the above test, the crack was typically observed as a scratch having a length of about 0.5 to 5 cm on the surface of the porous PTFE membrane.

洗濯試験の結果より、クラックが発生すると、濾材の捕集効率が90%未満となることが確認されている。クラックが発生しないという結果は、換言すれば、逆洗試験後においても濾材の捕集効率が90%以上、好ましくは95%以上、に保たれているということである。   From the results of the washing test, it is confirmed that when cracks occur, the collection efficiency of the filter medium is less than 90%. In other words, the result that cracks do not occur is that the collection efficiency of the filter medium is maintained at 90% or more, preferably 95% or more even after the backwash test.

本発明によれば、耐熱性が高いガラス織布を用いながらも逆洗の際に加わる応力に対して剥離などが生じにくく寿命が長いバグフィルタ用濾材を提供できる。   According to the present invention, it is possible to provide a filter material for a bag filter that has a long life and is hardly peeled off due to stress applied during backwashing while using a glass woven fabric having high heat resistance.

1 サンプル
2 チャック
11 PTFE多孔質膜
12 ガラス織布
21 逆洗試験用筒状体
22 パッキング
23 パルスエア
1 Sample 2 Chuck 11 PTFE Porous Membrane 12 Glass Woven 21 Tubular Body for Backwash Test 22 Packing 23 Pulse Air

Claims (3)

ポリテトラフルオロエチレンシートを互いに直交する二方向に延伸して多孔質膜とするポリテトラフルオロエチレン多孔質膜の製造方法であって、
ポリテトラフルオロエチレン粉末と液状潤滑剤とを混合して調製したペーストを押出または圧延してポリテトラフルオロエチレンシートを成形し、
前記シートを、ポリテトラフルオロエチレンの融点未満の温度で、前記ペーストを押出または圧延した方向である前記シートの流れ方向と直交する方向である前記シートの幅方向に延伸倍率が5〜20倍となるように延伸し、
前記幅方向に延伸した前記シートから前記液状潤滑剤を除去し、
前記液状潤滑剤を除去した前記シートを、ポリテトラフルオロエチレンの融点未満の温度で、前記シートの流れ方向である前記シートの長さ方向に延伸倍率が2〜15倍となるとともに前記幅方向の延伸倍率と前記長さ方向の延伸倍率との積が40〜75となるように延伸し、
前記長さ方向に延伸した前記シートを、ポリテトラフルオロエチレンの融点以上の温度で焼成することにより、
前記幅方向および前記長さ方向のそれぞれについて、引っ張り強度が0.25N以上で伸び率が100%以上であるポリテトラフルオロエチレン多孔質膜を得る、
ポリテトラフルオロエチレン多孔質膜の製造方法。
ここで、前記引っ張り強度は、測定方向と直交する方向についての長さが25mmとなるように切断した多孔質膜サンプルを互いの間隔が50mmとなるように配置した一対のつかみ具により前記間隔を規定する方向が前記測定方向と一致するように保持し、前記一対のつかみ具により前記サンプルを前記測定方向に沿って100mm/分の速度で前記サンプルが破断するまで引っ張る試験を行い、前記サンプルが破断したときに前記一対のつかみ具に印加されていた応力により定め、
前記伸び率は、前記試験において前記サンプルが破断したときの前記一対のつかみ具の間隔をL1(mm)としたときに、{(L1―50)/50}×100(%)により算出される値により定める。
A method for producing a polytetrafluoroethylene porous membrane, in which a polytetrafluoroethylene sheet is stretched in two directions perpendicular to each other to form a porous membrane,
Extruding or rolling a paste prepared by mixing polytetrafluoroethylene powder and a liquid lubricant to form a polytetrafluoroethylene sheet,
The sheet is stretched at a temperature below the melting point of polytetrafluoroethylene at a stretching ratio of 5 to 20 times in the width direction of the sheet, which is a direction perpendicular to the flow direction of the sheet, which is the direction in which the paste is extruded or rolled. Stretched so that
Removing the liquid lubricant from the sheet stretched in the width direction;
The sheet from which the liquid lubricant has been removed is stretched at a temperature lower than the melting point of polytetrafluoroethylene at a stretching ratio of 2 to 15 times in the length direction of the sheet, which is the flow direction of the sheet. Stretching so that the product of the draw ratio and the draw ratio in the length direction is 40 to 75,
By firing the sheet stretched in the length direction at a temperature equal to or higher than the melting point of polytetrafluoroethylene,
For each of the width direction and the length direction, a polytetrafluoroethylene porous membrane having a tensile strength of 0.25 N or more and an elongation of 100% or more is obtained.
A method for producing a polytetrafluoroethylene porous membrane.
Here, the tensile strength is determined by a pair of grips in which a porous membrane sample cut so that the length in the direction orthogonal to the measurement direction is 25 mm is arranged so that the distance between each other is 50 mm. The specified direction is held so as to coincide with the measurement direction, and a test is performed by pulling the sample along the measurement direction at a speed of 100 mm / min with the pair of grips until the sample breaks. Determined by the stress applied to the pair of grips when ruptured,
The elongation percentage is calculated by {(L 1 −50) / 50} × 100 (%), where L 1 (mm) is the distance between the pair of grips when the sample breaks in the test. Determined by the value to be determined.
前記ポリテトラフルオロエチレン多孔質膜のフラジール法により測定した通気量が7〜10cm3/cm2/秒の範囲にある、請求項1に記載のポリテトラフルオロエチレン多孔質膜の製造方法。 The manufacturing method of the polytetrafluoroethylene porous membrane of Claim 1 which has the air flow rate measured by the Frazier method of the said polytetrafluoroethylene porous membrane in the range of 7-10 cm < 3 > / cm < 2 > / sec. ポリテトラフルオロエチレン多孔質膜とガラス織布とを接合して濾材とする、バグフィルタ用濾材の製造方法であって、
請求項1に記載の方法を実施してポリテトラフルオロエチレン多孔質膜を製造し、
当該ポリテトラフルオロエチレン多孔質膜とガラス織布とを接合して濾材を得る、
バグフィルタ用濾材の製造方法。
A method for producing a filter material for a bag filter, comprising joining a polytetrafluoroethylene porous membrane and a glass woven fabric as a filter material,
Performing the method of claim 1 to produce a polytetrafluoroethylene porous membrane;
Bonding the polytetrafluoroethylene porous membrane and the glass woven fabric to obtain a filter medium,
A method for producing a filter medium for a bag filter.
JP2011097641A 2011-04-25 2011-04-25 Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method Active JP5204266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097641A JP5204266B2 (en) 2011-04-25 2011-04-25 Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097641A JP5204266B2 (en) 2011-04-25 2011-04-25 Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007187421A Division JP2009022858A (en) 2007-07-18 2007-07-18 Method for producing filter material for bag filter, polytetrafluoroethylene porous film to be used therefor, and filter material for bag filter

Publications (2)

Publication Number Publication Date
JP2011208146A JP2011208146A (en) 2011-10-20
JP5204266B2 true JP5204266B2 (en) 2013-06-05

Family

ID=44939513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097641A Active JP5204266B2 (en) 2011-04-25 2011-04-25 Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method

Country Status (1)

Country Link
JP (1) JP5204266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020005959T5 (en) * 2019-12-05 2022-09-22 Nitto Denko Corporation EXTENDED POROUS POLYTETRAFLUORETHYLENE MEMBRANE, AIR PERMEABLE MEDIUM USING SAME AND FILTER ELEMENT USING SAME

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4213560B1 (en) * 1963-11-01 1967-08-01
JPS6157328A (en) * 1984-07-23 1986-03-24 Nok Corp Manufacture of polytetrafluoroethylene porous material
US4902423A (en) * 1989-02-02 1990-02-20 W. L. Gore & Associates, Inc. Highly air permeable expanded polytetrafluoroethylene membranes and process for making them
US5476589A (en) * 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor

Also Published As

Publication number Publication date
JP2011208146A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
TWI503162B (en) Polyethylene membrane
JP5658860B2 (en) Polytetrafluoroethylene porous membrane, method for producing the same, and filter medium
TWI503163B (en) Teflon porous film and air filter filter
JP4963185B2 (en) Polytetrafluoroethylene porous membrane production method, filter medium and filter unit
CA2999397C (en) Air filter medium, air filter pack, and air filter unit
US9073061B2 (en) Heat stabilized composite filter media and method of making the filter media
JP6292920B2 (en) Air filter medium manufacturing method, air filter medium and air filter pack
JPH07292144A (en) Polytetrafluoroethylene complex porous film
JP2000079332A (en) Filter medium for air filter
EP2730607A1 (en) Method for producing porous polytetrafluoroethylene film
JP2001170461A (en) Air filter medium, air filter pack and air filter unit using the same, and method for manufacturing air filter medium
KR102539590B1 (en) Air filter media, air filter packs and air filter units
JP2007160275A (en) Filter unit and its manufacturing method
JP2000300921A (en) Air filter material and air filter unit using the same
CN111629807A (en) Filter bag comprising porous membrane
CN107530646B (en) Filter medium and filter unit
KR20180002675A (en) Filter element and filter unit
JP5204266B2 (en) Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method
JP2002346319A (en) Suction filter medium for turbine
WO2020137733A1 (en) Filter medium, pleated filter pack, and filter unit
JP2009022858A (en) Method for producing filter material for bag filter, polytetrafluoroethylene porous film to be used therefor, and filter material for bag filter
JP2005205305A (en) Air filter medium
JP3793130B2 (en) Dust collector filter and manufacturing method thereof
JP2007111697A (en) Air filter medium
JP4007919B2 (en) Filter for dust collector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5204266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250