JP5203880B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP5203880B2
JP5203880B2 JP2008261671A JP2008261671A JP5203880B2 JP 5203880 B2 JP5203880 B2 JP 5203880B2 JP 2008261671 A JP2008261671 A JP 2008261671A JP 2008261671 A JP2008261671 A JP 2008261671A JP 5203880 B2 JP5203880 B2 JP 5203880B2
Authority
JP
Japan
Prior art keywords
pressure
fluid
flow rate
differential pressure
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008261671A
Other languages
Japanese (ja)
Other versions
JP2009229444A (en
Inventor
広宣 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2008261671A priority Critical patent/JP5203880B2/en
Publication of JP2009229444A publication Critical patent/JP2009229444A/en
Application granted granted Critical
Publication of JP5203880B2 publication Critical patent/JP5203880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Fluid-Driven Valves (AREA)
  • Safety Valves (AREA)

Description

本発明は、供給ラインを流通する流体の流量を測定する流量測定装置に関する。   The present invention relates to a flow rate measuring device for measuring a flow rate of a fluid flowing through a supply line.

半導体製造工程では、ウェハーに各種の加工を適宜行うために、フッ酸や硫酸、アンモニア等の化学薬液や、超純水を使用してウェハーの洗浄を行う。このような洗浄工程を正常に実施するためには、洗浄液の流量を正確に把握することが極めて重要である。そのため、ウェハーの洗浄工程を実施する際には、洗浄装置内の薬液供給ラインに流量測定装置が配置されて、前記供給ラインを流通する流体の流量が適宜測定される。   In the semiconductor manufacturing process, in order to appropriately perform various processing on the wafer, the wafer is cleaned using a chemical solution such as hydrofluoric acid, sulfuric acid, and ammonia, or ultrapure water. In order to carry out such a cleaning process normally, it is extremely important to accurately grasp the flow rate of the cleaning liquid. Therefore, when the wafer cleaning process is performed, a flow rate measuring device is arranged in the chemical solution supply line in the cleaning device, and the flow rate of the fluid flowing through the supply line is appropriately measured.

従来、流体の流量を測定する流量センサーとしては、回転式流量センサー、浮子式流量センサー、超音波流量センサー、カルマン渦流量センサー等の種々の流量センサーが用いられる。しかしながら、回転式流量センサーや浮子式流量センサーでは羽根車や浮子が流路内で可動することによりパーティクル(微細なゴミ)が発生してしまう等の問題があり、超音波流量センサーやカルマン渦流量センサーは流体の気泡に弱く流体の乱れによって精度にばらつきが生じる等の問題があったため、半導体製造等のようにクリーンな環境や発泡性流体が用いられる現場で使用するには難しい面があった。   Conventionally, various flow sensors such as a rotary flow sensor, a float flow sensor, an ultrasonic flow sensor, and a Karman vortex flow sensor are used as flow sensors for measuring the flow rate of fluid. However, rotary flow sensors and float type flow sensors have problems such as generation of particles (fine dust) by moving the impeller and float in the flow path. The sensor is weak to fluid bubbles and has problems such as variations in accuracy due to fluid disturbances, so it was difficult to use in a clean environment such as semiconductor manufacturing or in the field where foaming fluid is used .

そこで、上記の問題点を解決した流量センサーとして、差圧式流量センサーが知られている。この差圧式流量センサーは、例えば、流体流路内にオリフィスを挟んで2つの圧力センサーを配置し、オリフィスの前後に差圧を発生させて2つの圧力センサーによってそれぞれ検知された流体圧力の圧力差に基づいて流量を測定するように構成される(例えば、特許文献1参照。)。しかしながら、オリフィスを挟んで2つの圧力センサーを配置した差圧式流量センサーでは、2つの圧力センサーを使用するため、それぞれの圧力センサーの個体差によるドリフト特性が異なり、演算後の補正やゼロ調整等を頻繁に行う必要があった。   Therefore, a differential pressure type flow sensor is known as a flow sensor that solves the above problems. In this differential pressure type flow rate sensor, for example, two pressure sensors are arranged with an orifice in the fluid flow path, a differential pressure is generated before and after the orifice, and the pressure difference between the fluid pressures respectively detected by the two pressure sensors. (See, for example, Patent Document 1). However, the differential pressure type flow sensor with two pressure sensors placed across the orifice uses two pressure sensors, so the drift characteristics due to individual differences of each pressure sensor differ, and post-computation correction, zero adjustment, etc. It was necessary to do it frequently.

これに対し、2つの受圧部に対して1つのセンサーで検知するように構成された差圧式流量センサーが知られている(例えば、特許文献2参照。)。この差圧式流量センサーは、2つのダイヤフラムを対向配置してチャンバを区画し、一次側のチャンバからオリフィス部を有する流路を介して二次側のチャンバに所定の差圧を生じさせた流体を流通させて、2つのダイヤフラムの間に各ダイヤフラムが受ける圧力を伝達する受圧部を介して荷重差センサーを配置し、前記荷重差センサーによって各ダイヤフラムが受ける圧力差を荷重差として検知して流量を測定するように構成される。そのため、2つの圧力センサーを配置した差圧式流量センサーに必要であった個体差による補正を行う必要がなく、メンテナンスを少なくすることができ、流体内にパーティクルを発生させる恐れもない流量センサーを提供することができる。   On the other hand, a differential pressure type flow rate sensor configured to detect two pressure receiving units with one sensor is known (see, for example, Patent Document 2). In this differential pressure type flow sensor, two diaphragms are arranged opposite to each other to divide the chamber, and a fluid that generates a predetermined differential pressure in the secondary side chamber from the primary side chamber through a flow path having an orifice portion. The load difference sensor is arranged between two diaphragms via a pressure receiving part that transmits the pressure received by each diaphragm, and the pressure difference received by each diaphragm by the load difference sensor is detected as a load difference to detect the flow rate. Configured to measure. For this reason, there is no need to perform corrections due to individual differences required for the differential pressure type flow rate sensor with two pressure sensors, maintenance can be reduced, and a flow rate sensor that does not generate particles in the fluid is provided. can do.

このような差圧式流量センサーでは、検知した差圧(荷重差)に基づいて流量を測定するものであることから、下記の理論式が成り立つ。なお、Qは流量、Cvは任意の流量ポイントごとに設定されるCv値、ΔPは差圧を表す。
Q=Cv×√(ΔP)
In such a differential pressure type flow rate sensor, since the flow rate is measured based on the detected differential pressure (load difference), the following theoretical formula is established. Q is a flow rate, Cv is a Cv value set for each arbitrary flow point, and ΔP is a differential pressure.
Q = Cv × √ (ΔP)

この理論式において、上記差圧式流量センサーの如く、2つのダイヤフラムが受ける圧力差(ΔP)を1つのセンサーが荷重差(F)として検知する場合、センサーにかかる荷重(F)は下記の式で表される。なお、P1は一次側(流入側)の流体圧力、P2は二次側(流出側)の流体圧力、S1は一次側のダイヤフラムの受圧面積、S2は二次側のダイヤフラムの受圧面積である。
F=P1×S1−P2×S2
In this theoretical formula, when the pressure difference (ΔP) received by the two diaphragms is detected as a load difference (F) as in the differential pressure type flow sensor, the load (F) applied to the sensor is expressed by the following formula. expressed. P1 is the fluid pressure on the primary side (inflow side), P2 is the fluid pressure on the secondary side (outflow side), S1 is the pressure receiving area of the diaphragm on the primary side, and S2 is the pressure receiving area of the diaphragm on the secondary side.
F = P1 * S1-P2 * S2

この差圧式流量センサーでは、流体圧力を荷重として伝達するための条件を一致させるために、各ダイヤフラムを同一の構成とすることが要求される。ここで、上記の差圧式流量センサーにおいては、耐薬品性等の面からダイヤフラムにPTFE等のフッ素樹脂が適用される。しかしながら、フッ素樹脂は金属に比べ加工精度が出にくいため、各ダイヤフラムには極わずかな差異が生じることがある。そして、この差異によって流量センサーのレンジアビリティが小さくなるという問題があった。   In this differential pressure type flow rate sensor, each diaphragm is required to have the same configuration in order to match the conditions for transmitting the fluid pressure as a load. Here, in the above differential pressure type flow rate sensor, a fluororesin such as PTFE is applied to the diaphragm from the viewpoint of chemical resistance and the like. However, since the processing accuracy of fluororesin is less than that of metal, there may be a slight difference between the diaphragms. This difference causes a problem that the range ability of the flow sensor is reduced.

例えば、一例として、直径40.1mmの一次側ダイヤフラムと、直径39.9mmの二次側ダイヤフラムとがそれぞれ受圧部として構成された上記差圧式流量センサーを用いて、流量の測定値(Q)を前述の理論式に従って計算する。なお、以下の計算では、一次側ダイヤフラムの受圧面積1262mm2をS1=1、二次側ダイヤフラムの受圧面積1249mm2をS2=0.99とした。また、ここでは、任意の流量ポイントをQp=100(ml/m)とQp=20(ml/m)として、二次側の流体圧力P2の条件がP2=50(kPa)とP2=0(kPa)に変動した場合について、各流量ポイントQp=100及びQp=20での流量の測定値(Q)を計算する。その際、Cvは定数であり、Q1=100のときC100=12.4、Q2=20のときC20=10.6とし、設定時の二次側の流体圧力(精度が±0となるときの二次側の流体圧力)はP2=100であり、この差圧式流量センサーの最大流量(F.S)は100とする。 For example, as an example, using the above differential pressure type flow rate sensor in which a primary side diaphragm having a diameter of 40.1 mm and a secondary side diaphragm having a diameter of 39.9 mm are configured as pressure receiving portions, the measured value (Q) of the flow rate is obtained. Calculate according to the above theoretical formula. In the following calculations, the pressure receiving area 1262Mm 2 of S1 = 1 of the primary diaphragm, and a pressure receiving area 1249Mm 2 of S2 = of 0.99 of the secondary diaphragm. Further, here, arbitrary flow points are set to Qp = 100 (ml / m) and Qp = 20 (ml / m), and the conditions of the secondary side fluid pressure P2 are P2 = 50 (kPa) and P2 = 0 ( Measure the flow rate measurement value (Q) at each flow rate point Qp = 100 and Qp = 20 for the case of fluctuation to kPa). In this case, Cv is a constant, C 100 = 12.4 when Q1 = 100, C 20 = 10.6 when Q2 = 20, and the secondary fluid pressure at the time of setting (accuracy is ± 0) (Secondary fluid pressure at this time) is P2 = 100, and the maximum flow rate (FS) of this differential pressure type flow rate sensor is 100.

流量ポイントQp=100の場合(ΔP=64)
(a)P2=50
Q=C100×√(P1×S1−P2×S2)
=12.4×√(114×1−50×0.99)
=99.6
(b)P2=0
Q=C100×√(P1×S1−P2×S2)
=12.4×√(64×1−0×0.99)
=99.2
In case of flow point Qp = 100 (ΔP = 64)
(A) P2 = 50
Q = C 100 × √ (P1 × S1-P2 × S2)
= 12.4 × √ (114 × 1-50 × 0.99)
= 99.6
(B) P2 = 0
Q = C 100 × √ (P1 × S1-P2 × S2)
= 12.4 × √ (64 × 1-0 × 0.99)
= 99.2

流量ポイントQp=20の場合(ΔP=2.56)
(c)P2=50
Q=C20×√(P1×S1−P2×S2)
=10.6×√(52.56×1−50×0.99)
=18.5
(d)P2=0
Q=C20×√(P1×S1−P2×S2)
=10.6×√(2.56×1−0×0.99)
=17.0
When the flow rate point Qp = 20 (ΔP = 2.56)
(C) P2 = 50
Q = C 20 × √ (P1 × S1-P2 × S2)
= 10.6 × √ (52.56 × 1-50 × 0.99)
= 18.5
(D) P2 = 0
Q = C 20 × √ (P1 × S1-P2 × S2)
= 10.6 × √ (2.56 × 1-0 × 0.99)
= 17.0

上記(a)〜(d)における測定値と差圧式流量センサーの誤差は下記の通りである。なお、誤差(%)は(Qp−Q)÷(F.S)×100で求めるものとする。
(a)(100−99.6)÷100×100=0.4(%)
(b)(100−99.2)÷100×100=0.8(%)
(c)(20−18.5)÷100×100=1.5(%)
(d)(20−17.0)÷100×100=3.0(%)
The measured values in the above (a) to (d) and the error of the differential pressure type flow sensor are as follows. The error (%) is obtained by (Qp−Q) ÷ (FS) × 100.
(A) (100-99.6) ÷ 100 × 100 = 0.4 (%)
(B) (100-99.2) ÷ 100 × 100 = 0.8 (%)
(C) (20-18.5) /100×100=1.5 (%)
(D) (20-17.0) ÷ 100 × 100 = 3.0 (%)

このように、センサーが1つの差圧式流量センサーでは、流体圧力が変動した際に流量の測定値にわずかな誤差が生じる。また、特に、流量が小さくなった場合や、測定時の二次側圧力が設定時の二次側圧力から遠ざかった場合に測定値の誤差が大きくなる傾向がある。そして、誤差が大きくなりすぎると(例えば、上記の例では誤差が3.0%となった場合)、十分な測定精度が得られない。そのため、従来では、誤差が測定精度に影響しない(例えば、誤差が±2%F.S以下)流量の測定流量域があらかじめ設定される。   Thus, with a differential pressure type flow rate sensor with a single sensor, a slight error occurs in the measured flow rate when the fluid pressure fluctuates. In particular, when the flow rate becomes small or when the secondary pressure at the time of measurement moves away from the secondary pressure at the time of setting, the error in the measured value tends to increase. If the error becomes too large (for example, when the error is 3.0% in the above example), sufficient measurement accuracy cannot be obtained. For this reason, conventionally, a measurement flow rate range in which an error does not affect the measurement accuracy (for example, the error is ± 2% FS or less) is set in advance.

上記差圧式流量センサーを用いて流量測定を行う場合には、想定される流量測定範囲に対応した差圧式流量センサーが流通ラインに配置される。そして、測定部分の配管を変化させたり、流量センサーの流量測定範囲外に測定流量を変化させたりする際には、想定外の圧力変動が発生するため、その変動圧力に対応した他の流量測定範囲を設定した差圧式流量センサーに取り替えられていた。しかし、そのような作業は手間であり、ランニングコストもかさむことから、想定外の圧力変動にも対応して最適な測定精度を維持することができるようなレンジアビリティの大きい差圧式流量センサーが求められている。   When performing flow rate measurement using the differential pressure type flow rate sensor, a differential pressure type flow rate sensor corresponding to an assumed flow rate measurement range is disposed in the distribution line. And when changing the piping of the measurement part or changing the measured flow rate outside the flow rate measurement range of the flow sensor, an unexpected pressure fluctuation occurs, so other flow measurement corresponding to the fluctuating pressure It was replaced by a differential pressure type flow sensor with a set range. However, such work is laborious and increases the running cost. Therefore, there is a need for a differential pressure flow sensor with high rangeability that can maintain optimum measurement accuracy in response to unexpected pressure fluctuations. It has been.

また、従来の差圧式流量センサーでは、ダイヤフラムを介して流体圧力を検知する構成により、二次側の流体圧力が負圧となった場合に前記ダイヤフラムがセンサーとは逆の方向にたわむことがあり、良好な測定精度を得ることが困難となる。そのため、二次側の流体圧力が負圧となった場合でも、測定精度を低下させずにより正確な流量測定を実施できるようにすることが要求されていた。
特開2006−250955号公報 特許第3845615号明細書
Further, in the conventional differential pressure type flow rate sensor, when the fluid pressure on the secondary side becomes a negative pressure, the diaphragm may bend in the opposite direction to the sensor due to the configuration in which the fluid pressure is detected via the diaphragm. It is difficult to obtain good measurement accuracy. Therefore, even when the fluid pressure on the secondary side becomes a negative pressure, it has been required to perform more accurate flow rate measurement without reducing the measurement accuracy.
JP 2006-250955 A Japanese Patent No. 3845615

本発明は前記の点に鑑みなされたものであり、より大きいレンジアビリティで高い測定精度を維持するとともに、二次側の流体圧力が負圧となった場合でも正確に流量を測定することができる流量測定装置を提供するものである。   The present invention has been made in view of the above points, and can maintain high measurement accuracy with a larger range ability and can accurately measure the flow rate even when the secondary fluid pressure becomes negative. A flow measuring device is provided.

すなわち、請求項1の発明は、液体からなる流体の供給ラインに配される流量測定装置であって、前記供給ラインを流通する液体からなる流体にオリフィス部を介して所定の差圧を生じさせ、前記オリフィス部を介して配置された2つのダイヤフラムが受ける前記流体の圧力変動による差圧を検出して流量を測定する差圧式流量センサーと、前記差圧式流量センサーの二次側に配置され、弁室内に弁座に対して進退する弁体と、前記弁室の一次側に配置されて前記弁体と一体に形成された第1ダイヤフラムと、該第1ダイヤフラムを弁室方向に常時加圧する第一加圧手段とを有し、前記差圧式流量センサーの二次側流体の圧力変動に対応して前記弁体が前記弁座に対して進退して一次側流体を所定の圧力に維持することにより前記差圧式流量センサーの二次側流体の圧力を一定に保持する圧力制御弁部とを備えたことを特徴とする流量測定装置に係る。 That is, the invention of claim 1 is a flow measuring device disposed in a supply line of a fluid consisting of liquid, causing the predetermined pressure difference through the orifice portion in a fluid consisting of liquid flowing through the supply line , A differential pressure type flow sensor for measuring a flow rate by detecting a differential pressure due to pressure fluctuations of the fluid received by two diaphragms arranged through the orifice part, and a secondary pressure sensor of the differential pressure type flow rate sensor, A valve body that advances and retreats with respect to the valve seat in the valve chamber, a first diaphragm that is disposed on the primary side of the valve chamber and is formed integrally with the valve body, and constantly pressurizes the first diaphragm in the valve chamber direction. A first pressurizing means, and the valve body advances and retreats with respect to the valve seat in response to the pressure fluctuation of the secondary side fluid of the differential pressure type flow rate sensor to maintain the primary side fluid at a predetermined pressure. The differential pressure flow rate The pressure of the secondary side fluid Nsa according to the flow measuring device is characterized in that a pressure control valve unit for holding constant.

請求項の発明は、前記圧力制御弁部の弁体が前記弁室の二次側に配置される第2ダイヤフラムと一体に形成され、前記第2ダイヤフラムが第二加圧手段によって前記弁室方向に常時加圧されている請求項に記載の流量測定装置に係る。 According to a second aspect of the present invention, the valve body of the pressure control valve portion is formed integrally with a second diaphragm disposed on the secondary side of the valve chamber, and the second diaphragm is formed by the second pressurizing means by the valve chamber. The flow rate measuring device according to claim 1 , which is constantly pressurized in the direction.

請求項1の発明に係る流量測定装置は、液体からなる流体の供給ラインに配される流量測定装置であって、前記供給ラインを流通する液体からなる流体にオリフィス部を介して所定の差圧を生じさせ、前記オリフィス部を介して配置された2つのダイヤフラムが受ける前記流体の圧力変動による差圧を検出して流量を測定する差圧式流量センサーと、前記差圧式流量センサーの二次側に配置され、弁室内に弁座に対して進退する弁体と、前記弁室の一次側に配置されて前記弁体と一体に形成された第1ダイヤフラムと、該第1ダイヤフラムを弁室方向に常時加圧する第一加圧手段とを有し、前記差圧式流量センサーの二次側流体の圧力変動に対応して前記弁体が前記弁座に対して進退して一次側流体を所定の圧力に維持することにより前記差圧式流量センサーの二次側流体の圧力を一定に保持する圧力制御弁部とを備えたため、差圧式流量センサーの二次側流体の圧力を所望する値に安定して維持することができて該二次側流体の圧力が負圧になることがなく、測定精度を向上させることができ、しかも、大きいレンジアビリティで高い測定精度を維持した流量測定を実施することができる。 Flow measuring device according to the invention of claim 1 is a flow measuring device disposed in a supply line of a fluid consisting of liquid, a predetermined pressure difference through the orifice portion in a fluid consisting of liquid flowing through the supply line A differential pressure type flow sensor that detects a differential pressure due to pressure fluctuations of the fluid received by two diaphragms disposed through the orifice portion and measures a flow rate; and a secondary side of the differential pressure type flow sensor A valve body that is disposed in the valve chamber and moves forward and backward with respect to the valve seat ; a first diaphragm that is disposed on a primary side of the valve chamber and is formed integrally with the valve body; and the first diaphragm that extends toward the valve chamber A first pressurizing unit that constantly pressurizes, and the valve body advances and retreats with respect to the valve seat in response to a pressure fluctuation of the secondary side fluid of the differential pressure type flow rate sensor, thereby causing the primary side fluid to flow to a predetermined pressure. By maintaining the difference Due to a pressure control valve unit for holding the pressure of the secondary side fluid of the formula flow sensor constant, said to be able to maintain the pressure of the secondary side fluid pressure flow sensor stably to the desired value The pressure of the secondary fluid does not become a negative pressure, the measurement accuracy can be improved, and the flow rate measurement with high range accuracy and high measurement accuracy can be performed.

請求項の発明は、請求項において、前記圧力制御弁部の弁体が前記弁室の二次側に配置される第2ダイヤフラムと一体に形成され、前記第2ダイヤフラムが第二加圧手段によって前記弁室方向に常時加圧されているため、前記弁体の進退動作時の反復精度を向上させることができ、一次側流体(差圧式流量センサーの二次側流体)の圧力制御をより精度よく行うことが可能となる。 According to a second aspect of the present invention, in the first aspect , the valve body of the pressure control valve portion is formed integrally with a second diaphragm disposed on the secondary side of the valve chamber, and the second diaphragm is second pressurized. Since the pressure is constantly applied in the direction of the valve chamber by the means, it is possible to improve the repeatability when the valve body moves back and forth, and to control the pressure of the primary side fluid (secondary side fluid of the differential pressure type flow sensor). It becomes possible to carry out more accurately.

以下添付の図面に従ってこの発明を詳細に説明する。
図1は本発明の一実施例に係る流量測定装置を用いた流体の供給ラインの概略図、図2は差圧式流量センサーの断面図、図3は第一実施例に係る圧力制御弁部の断面図、図4は第二実施例に係る圧力制御弁部の断面図、図5は他の実施例に係る差圧式流量センサーの断面図である。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
1 is a schematic diagram of a fluid supply line using a flow rate measuring device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a differential pressure type flow sensor, and FIG. 3 is a pressure control valve unit according to the first embodiment. 4 is a cross-sectional view of a pressure control valve unit according to a second embodiment, and FIG. 5 is a cross-sectional view of a differential pressure type flow sensor according to another embodiment.

図1に示す本発明の一実施例に係る流量測定装置10は、流体の供給ラインLに配されるものであって、差圧式流量センサー20と、圧力制御弁部50とを備える。図において、符号11は供給ラインLを流通する流体の供給部、12は供給された流体の使用部、13は供給部11から流体を供給ラインLに流通させるためのポンプを表す。   A flow rate measuring apparatus 10 according to an embodiment of the present invention shown in FIG. 1 is arranged in a fluid supply line L, and includes a differential pressure type flow rate sensor 20 and a pressure control valve unit 50. In the figure, reference numeral 11 denotes a fluid supply part that circulates through the supply line L, 12 denotes a use part of the supplied fluid, and 13 denotes a pump for circulating fluid from the supply part 11 to the supply line L.

差圧式流量センサー20は、供給ラインLを流通する流体の流量を測定するものである。この差圧式流量センサー20としては、例えば、特許第3845615号に記載の差圧式流量センサー20Aが好適に使用される。実施例の差圧式流量センサー20Aでは、図2に示すように、対向配置された2つのダイヤフラム30,35によってチャンバ22が一次側チャンバ23と二次側チャンバ24に区画されるとともに、各ダイヤフラム30,35の間に荷重差センサー40が配置され、一次側チャンバ23から二次側チャンバ24にオリフィス部26を有するバイパス流路25を介して所定の差圧を生じさせた流体を流通させることにより、各ダイヤフラム30,35が受ける流体の圧力変動による荷重差を荷重差センサー40が変位量として検出して流体の流量を検知するように構成されている。なお、差圧式流量センサー20Aに対して一次側は流体の供給部11側、二次側は後述の圧力制御弁部50側を表す。   The differential pressure type flow rate sensor 20 measures the flow rate of the fluid flowing through the supply line L. As this differential pressure type flow sensor 20, for example, a differential pressure type flow sensor 20A described in Japanese Patent No. 3845615 is preferably used. In the differential pressure type flow rate sensor 20A of the embodiment, as shown in FIG. 2, the chamber 22 is divided into a primary side chamber 23 and a secondary side chamber 24 by two diaphragms 30 and 35 arranged opposite to each other. , 35, and a fluid having a predetermined differential pressure is circulated from the primary side chamber 23 to the secondary side chamber 24 through the bypass passage 25 having the orifice portion 26. The load difference sensor 40 detects the load difference due to the fluid pressure fluctuation received by each of the diaphragms 30 and 35 as a displacement amount to detect the flow rate of the fluid. For the differential pressure type flow sensor 20A, the primary side represents the fluid supply unit 11 side, and the secondary side represents the pressure control valve unit 50 side described later.

図2において、符号21は差圧式流量センサー20Aのボディ本体、27は一次側チャンバ23に形成された被測定流体の流入部、28は二次側チャンバ24に形成された被測定流体の流出部、31はダイヤフラム30を固定する内周押さえリング、32はダイヤフラム30を固定する外周押さえリング、36はダイヤフラム35を固定する内周押さえリング、37はダイヤフラム35を固定する外周押さえリング、41はダイヤフラム30の圧力を受けてその荷重を伝達する受圧部、42はダイヤフラム30の変位が所定以上の大きさにならないように受圧部41の内側に設けられた変位制限部材、43はチャンバ22内に固定配置された外周枠部、46はダイヤフラム35の圧力を受けてその荷重を伝達する受圧部、47はダイヤフラム35の変位が所定以上の大きさにならないように受圧部46の内側に設けられた変位制限部材、48は各受圧部41,46が取付けられる中心部材、49は外周枠部43と中心部材48との間に延設された起歪部49aに生じる変位量を電気信号として取り出す計測部である。   In FIG. 2, reference numeral 21 denotes a body body of the differential pressure type flow sensor 20 </ b> A, 27 denotes an inflow portion of the fluid to be measured formed in the primary side chamber 23, and 28 denotes an outflow portion of the fluid to be measured formed in the secondary side chamber 24. , 31 is an inner periphery pressing ring for fixing the diaphragm 30, 32 is an outer periphery pressing ring for fixing the diaphragm 30, 36 is an inner periphery pressing ring for fixing the diaphragm 35, 37 is an outer periphery pressing ring for fixing the diaphragm 35, and 41 is a diaphragm. A pressure receiving portion that receives the pressure of 30 and transmits the load, 42 is a displacement limiting member provided inside the pressure receiving portion 41 so that the displacement of the diaphragm 30 does not become larger than a predetermined size, and 43 is fixed in the chamber 22 The outer peripheral frame part 46, the pressure receiving part 46 that receives the pressure of the diaphragm 35 and transmits the load, 47 is the diaphragm 5 is a displacement limiting member provided inside the pressure receiving portion 46 so that the displacement of 5 is not larger than a predetermined size, 48 is a central member to which the pressure receiving portions 41 and 46 are attached, 49 is an outer peripheral frame portion 43 and a central member 48. It is a measuring part which takes out the amount of displacement which arises in strain generating part 49a extended between as an electric signal.

圧力制御弁部50は、差圧式流量センサー20Aの二次側に配置されるものであって、図3に示すように、弁室52内に弁座55に対して進退する弁体60を有し、二次側(使用部12側)流体の圧力変動に対応して弁体60が弁座55に対して進退して一次側(差圧式流量センサー20A側)流体を所定の圧力に維持することにより差圧式流量センサー20Aの二次側流体の圧力を一定に保持するように構成される。   The pressure control valve unit 50 is disposed on the secondary side of the differential pressure type flow sensor 20A, and has a valve body 60 that moves forward and backward with respect to the valve seat 55 in the valve chamber 52 as shown in FIG. Then, the valve body 60 advances and retreats with respect to the valve seat 55 in response to the pressure fluctuation of the secondary side (use portion 12 side) fluid, and the primary side (differential pressure type flow rate sensor 20A side) fluid is maintained at a predetermined pressure. Thus, the pressure of the secondary fluid of the differential pressure type flow sensor 20A is configured to be kept constant.

実施例の圧力制御弁部50は、図3に図示たように、弁体60を弁室52の一次側52Aに配置される第1ダイヤフラム61と一体に形成し、第1ダイヤフラム61が第一加圧手段56によって弁室52方向に常時加圧されるように構成されている。この実施例において、第一加圧手段56は、公知の電空レギュレータによって制御される調圧気体であり、該調圧気体の供給(加圧)に応じて弁体60を弁室52の弁座55に対して進退させるものである。 As shown in FIG. 3, the pressure control valve unit 50 of the embodiment integrally forms the valve body 60 with the first diaphragm 61 disposed on the primary side 52 </ b> A of the valve chamber 52, and the first diaphragm 61 is the first diaphragm 61. One pressurizing means 56 is configured to be constantly pressurized in the direction of the valve chamber 52. In this embodiment, the first pressurizing means 56 is a pressure-regulating gas controlled by a known electropneumatic regulator, and the valve body 60 is changed to a valve of the valve chamber 52 in accordance with the supply (pressurization) of the pressure-regulating gas. The seat 55 is advanced and retracted.

図3において、符号51は圧力制御弁部50のボディ本体、52Bは二次側の弁室、53は一次側流体(差圧式流量センサー20Aの二次側流体)が流通する流入口、54は二次側流体が流通する流出口、57は一次側加圧室、57Aは調圧気体のための給気ポート、57Bはその排気ポートである。   In FIG. 3, reference numeral 51 denotes a body body of the pressure control valve unit 50, 52B denotes a secondary valve chamber, 53 denotes an inlet through which a primary fluid (secondary fluid of the differential pressure type flow sensor 20A) flows, and 54 denotes An outlet through which the secondary side fluid flows, 57 is a primary side pressurizing chamber, 57A is an air supply port for pressure-regulating gas, and 57B is an exhaust port thereof.

この圧力制御弁部50では、二次側(使用部12側)流体の圧力に対応して第一加圧手段56による加圧力を調圧することにより、弁体60を進退させて弁座55の開度を調整し、一次側(差圧式流量センサー20A側)流体の圧力を一定に制御するように構成される。これにより、一次側(差圧式流量センサー20A側)流体の圧力変動を抑制することができ、一次側(差圧式流量センサー20A側)流体の圧力を所望する値に安定して維持することができる。   The pressure control valve unit 50 adjusts the pressure applied by the first pressurizing means 56 in accordance with the pressure of the secondary side (use unit 12 side) fluid, thereby moving the valve body 60 forward and backward, The opening degree is adjusted, and the primary side (differential pressure type flow sensor 20A side) fluid pressure is configured to be controlled to be constant. Thereby, the pressure fluctuation of the primary side (differential pressure type flow sensor 20A side) fluid can be suppressed, and the pressure of the primary side (differential pressure type flow rate sensor 20A side) fluid can be stably maintained at a desired value. .

次に、当該流量測定装置10による流量測定について説明する。この流量測定装置10では、差圧式流量センサー20Aの二次側に圧力制御弁部50を配置したことにより、前記圧力制御弁部50が一次側流体(差圧式流量センサー20Aの二次側流体)の圧力を一定に制御するように作用する。ここで、実施例の圧力制御弁部50は、差圧式流量センサー20Aの二次側圧力をP2=120±10%の範囲で一定に制御できるものである。その際、差圧式流量センサー20Aの二次側流体に想定外の圧力変動が発生する環境であっても、前記圧力制御弁部50によって前記二次側圧力は常にP2=120±10%の範囲で制御される。   Next, flow measurement by the flow measurement device 10 will be described. In the flow rate measuring device 10, the pressure control valve unit 50 is disposed on the secondary side of the differential pressure type flow sensor 20A, so that the pressure control valve unit 50 is a primary side fluid (secondary side fluid of the differential pressure type flow sensor 20A). It acts to control the pressure at a constant. Here, the pressure control valve unit 50 of the embodiment can control the secondary side pressure of the differential pressure type flow sensor 20A to be constant within a range of P2 = 120 ± 10%. At this time, even in an environment where unexpected pressure fluctuations occur in the secondary fluid of the differential pressure type flow sensor 20A, the secondary pressure is always in the range of P2 = 120 ± 10% by the pressure control valve unit 50. It is controlled by.

そこで、差圧式流量センサー20Aの二次側流体に想定外の圧力変動が発生した場合において、表1を用いて当該流量測定装置10による流量の測定値の誤差と、従来の差圧式流量センサーによる流量の測定値の誤差とを比較する。なお、以下の説明において、流量の測定値は、前述の理論式に基づいて計算したものである。また、実施例の差圧式流量センサー20Aでは、ダイヤフラム30の直径が40.1mm、ダイヤフラム35の直径が39.9mmであり、ダイヤフラム30の受圧面積1262mm2をS1=1、二次側ダイヤフラム35の受圧面積1249mm2をS2=0.99として計算した。さらに、任意の流量ポイントをQp=100(ml/m)とQp=20(ml/m)、定数であるCvをQ1=100のときC100=12.4、Q2=20のときC20=10.3とし、設定時の二次側の流体圧力(精度が±0となるときの二次側の流体圧力)はP2=120(kPa)であり、この差圧式流量センサーの最大流量(F.S)は100とする。 Therefore, when an unexpected pressure fluctuation occurs in the secondary side fluid of the differential pressure type flow sensor 20A, the error in the measured value of the flow rate by the flow rate measuring device 10 using Table 1 and the conventional differential pressure type flow rate sensor Compare with measured flow error. In the following description, the measured value of the flow rate is calculated based on the above theoretical formula. Moreover, in the differential pressure type flow sensor 20A of the embodiment, the diameter of the diaphragm 30 is 40.1 mm, the diameter of the diaphragm 35 is 39.9 mm, the pressure receiving area 1262 mm 2 of the diaphragm 30 is S1 = 1, and the secondary diaphragm 35 The pressure receiving area of 1249 mm 2 was calculated with S2 = 0.99. Furthermore, arbitrary flow rate points are Qp = 100 (ml / m) and Qp = 20 (ml / m), and Cv which is a constant is C 100 = 12.4 when Q1 = 100, C 20 = when Q2 = 20 10.3, the secondary side fluid pressure at the time of setting (secondary side fluid pressure when the accuracy is ± 0) is P2 = 120 (kPa), and the maximum flow rate of this differential pressure type flow sensor (F .S) is set to 100.

Figure 0005203880
Figure 0005203880

流量ポイントQp=100において、流量測定装置10の圧力制御弁部50が差圧式流量センサー20Aの二次側圧力(P2)を132(kPa)に制御する場合、使用部12側で圧力変動が発生したとしても、差圧式流量センサー20Aのダイヤフラム35には常に132(kPa)の二次側圧力が作用する。そのため、流量の測定値は、使用部12側で発生した圧力変動に関わらず、100.2(ml/m)となる。したがって、誤差は0.2(%)である。   When the pressure control valve unit 50 of the flow rate measuring device 10 controls the secondary pressure (P2) of the differential pressure type flow sensor 20A to 132 (kPa) at the flow point Qp = 100, pressure fluctuation occurs on the use unit 12 side. Even so, the secondary pressure of 132 (kPa) always acts on the diaphragm 35 of the differential pressure type flow sensor 20A. Therefore, the measured value of the flow rate is 100.2 (ml / m) regardless of the pressure fluctuation generated on the use part 12 side. Therefore, the error is 0.2 (%).

また、流量ポイントQp=100において、流量測定装置10の圧力制御弁部50が差圧式流量センサー20Aの二次側圧力(P2)を108(kPa)に制御する場合、使用部12側で圧力変動が発生したとしても、差圧式流量センサー20Aのダイヤフラム35には常に108(kPa)の二次側圧力が作用する。そのため、流量の測定値は、使用部12側で発生した圧力変動に関わらず、100.0(ml/m)となる。したがって、誤差は0.0(%)である。   In addition, when the pressure control valve unit 50 of the flow rate measuring device 10 controls the secondary pressure (P2) of the differential pressure type flow rate sensor 20A to 108 (kPa) at the flow point Qp = 100, the pressure fluctuation on the use unit 12 side. Even if this occurs, a secondary side pressure of 108 (kPa) always acts on the diaphragm 35 of the differential pressure type flow sensor 20A. Therefore, the measured value of the flow rate is 100.0 (ml / m) regardless of the pressure fluctuation generated on the use unit 12 side. Therefore, the error is 0.0 (%).

同様に、流量ポイントQp=20において、流量測定装置10の圧力制御弁部50が差圧式流量センサー20Aの二次側圧力(P2)を132(kPa)に制御する場合、流量の測定値は、使用部12側で発生した圧力変動に関わらず、20.3(ml/m)となる。したがって、誤差は0.3(%)である。   Similarly, when the pressure control valve unit 50 of the flow rate measuring device 10 controls the secondary pressure (P2) of the differential pressure type flow rate sensor 20A to 132 (kPa) at the flow rate point Qp = 20, the measured value of the flow rate is It becomes 20.3 (ml / m) irrespective of the pressure fluctuation generated on the use part 12 side. Therefore, the error is 0.3 (%).

また、流量ポイントQp=20において、流量測定装置10の圧力制御弁部50が差圧式流量センサー20Aの二次側圧力(P2)を108(kPa)に制御する場合、流量の測定値は、使用部12側で発生した圧力変動に関わらず、19.7(ml/m)となる。したがって、誤差は0.3(%)である。   When the pressure control valve unit 50 of the flow rate measuring device 10 controls the secondary pressure (P2) of the differential pressure type flow rate sensor 20A to 108 (kPa) at the flow rate point Qp = 20, the measured value of the flow rate is used. Regardless of the pressure fluctuation generated on the part 12 side, 19.7 (ml / m). Therefore, the error is 0.3 (%).

表1から理解されるように、当該流量測定装置10による流量測定では、どのような流量を測定する場合であっても、従来に比して誤差が小さくなる。また、特に、測定流量が小さくなった場合において、従来の誤差よりも極めて小さい値となり、誤差の影響が大幅に改善された。   As understood from Table 1, in the flow rate measurement by the flow rate measuring device 10, an error is smaller than in the conventional case, regardless of the flow rate. In particular, when the measured flow rate is small, the value is much smaller than the conventional error, and the influence of the error is greatly improved.

このように、本発明の流量測定装置10では、想定外の圧力変動が発生した場合でも、圧力制御弁部50が差圧式流量センサー20Aの二次側圧力を一定に制御することによって、差圧式流量センサー20Aの各ダイヤフラム30,35に作用する流体圧力が常に一定に保持される。そのため、想定外の圧力変動の影響が抑制されて従来に比して誤差を極めて小さくすることができ、どのような流量を測定する場合であっても十分な測定精度を得ることが可能となる。したがって、大きいレンジアビリティで高い測定精度を維持した流量測定を実施することができる。   As described above, in the flow rate measuring device 10 of the present invention, even when an unexpected pressure fluctuation occurs, the pressure control valve unit 50 controls the secondary side pressure of the differential pressure type flow rate sensor 20A to be constant, whereby the differential pressure type. The fluid pressure acting on the diaphragms 30 and 35 of the flow sensor 20A is always kept constant. For this reason, the influence of unexpected pressure fluctuations is suppressed, and the error can be made extremely small compared to the conventional case, and sufficient measurement accuracy can be obtained regardless of the flow rate. . Therefore, it is possible to perform flow rate measurement with high range accuracy and high measurement accuracy.

また、この流量測定装置10では、差圧式流量センサー20Aの二次側に圧力制御弁部50を配置したことにより、前記圧力制御弁部50が一次側流体(差圧式流量センサー20Aの二次側流体)の圧力を常に所望する値に維持するように作用する。これにより、差圧式流量センサー20Aの二次側に常に所定の圧力が確保されて負圧になることがなくなるため、差圧式流量センサー20Aの各ダイヤフラム30,35に対しては常に所定の加圧力が作用して、各ダイヤフラム30,35が各受圧部41,46方向にたわんで密着する。このように、差圧式流量センサー20Aの二次側に常に所定の圧力を確保することによってダイヤフラム30,35と受圧部41,46とを密着させて両者の間の隙間をなくし、各ダイヤフラム30,35が受けた圧力(荷重)をより正確に各受圧部41,46に伝えることが可能となるので、流体圧力の検知精度が向上する。   Further, in the flow rate measuring device 10, the pressure control valve unit 50 is disposed on the secondary side of the differential pressure type flow sensor 20A, so that the pressure control valve unit 50 is connected to the primary side fluid (secondary side of the differential pressure type flow sensor 20A). The pressure of the fluid is always maintained at a desired value. As a result, a predetermined pressure is always ensured on the secondary side of the differential pressure type flow sensor 20A and no negative pressure is generated. Therefore, a predetermined pressure is always applied to the diaphragms 30 and 35 of the differential pressure type flow sensor 20A. The diaphragms 30 and 35 bend in the direction of the pressure receiving portions 41 and 46 and are in close contact with each other. In this way, by always ensuring a predetermined pressure on the secondary side of the differential pressure type flow sensor 20A, the diaphragms 30 and 35 and the pressure receiving portions 41 and 46 are brought into close contact with each other, thereby eliminating the gap between the two. Since the pressure (load) received by 35 can be transmitted to each of the pressure receiving portions 41 and 46 more accurately, the detection accuracy of the fluid pressure is improved.

次に、図4に図示した第二実施例に係る圧力制御弁部50Aについて説明する。この圧力制御弁部50Aは、例えば、特許第3467438号に記載の背圧制御弁が好適に使用されるものであって弁体60Aを弁室52の一次側52Aに配置される第1ダイヤフラム61及び弁室52の二次側52Bに配置される第2ダイヤフラム62と一体に形成し、第1ダイヤフラム61が第一加圧手段56によって弁室52方向に常時加圧されるとともに、第2ダイヤフラム62が第二加圧手段58によって弁室52方向に常時加圧されるように構成される。図4において、前述の実施例と同一符号は同一の構成を表すものとして、その説明を省略する。 Next, the pressure control valve unit 50A according to the second embodiment illustrated in FIG. 4 will be described. The pressure control valve unit 50A, for example, those in which the back pressure control valve described in Japanese Patent No. 3467438 are preferably used, first diaphragm disposed the valve body 60A to the primary side 52A of the valve chamber 52 61 and the second diaphragm 62 disposed on the secondary side 52B of the valve chamber 52, the first diaphragm 61 is constantly pressurized in the direction of the valve chamber 52 by the first pressurizing means 56, and the second diaphragm The diaphragm 62 is configured to be constantly pressurized in the direction of the valve chamber 52 by the second pressurizing means 58. In FIG. 4, the same reference numerals as those in the above-described embodiment denote the same components, and the description thereof is omitted.

この実施例において、第二加圧手段58は、一定のスプリング荷重によってダイヤフラム62を常時弁室52方向に付勢保持するスプリングである。また、図4において、符号59は二次側加圧室、59Aは二次側加圧室59の呼吸路、63はスプリングによる加圧手段58のスプリングホルダーである。   In this embodiment, the second pressurizing means 58 is a spring that constantly biases and holds the diaphragm 62 toward the valve chamber 52 by a constant spring load. In FIG. 4, reference numeral 59 denotes a secondary pressurizing chamber, 59A denotes a breathing path of the secondary pressurizing chamber 59, and 63 denotes a spring holder of the pressurizing means 58 using a spring.

この圧力制御弁部50Aでは、一次側流体の圧力に対応して第一加圧手段56による加圧力を調圧することにより、弁体60Aを進退させて弁座55の開度を調整して一次側流体の圧力を一定に制御すると同時に、第二加圧手段58によって常時弁室52方向に付勢保持されたダイヤフラム62が二次側流体の圧力変動に起因する影響を抑制することによって、前記弁体60Aの進退動作時の反復精度を向上させるように構成される。これにより、一次側流体の圧力制御をより精度よく行うことが可能となる。したがって、差圧式流量センサー20Aの二次側に当該圧力制御弁部50Aを配置することによって、より正確な流量測定を実施することができる。   In this pressure control valve portion 50A, the pressure applied by the first pressurizing means 56 is adjusted in accordance with the pressure of the primary side fluid, thereby moving the valve body 60A forward and backward to adjust the opening degree of the valve seat 55 and thereby adjusting the primary pressure. At the same time as controlling the pressure of the side fluid, the diaphragm 62 constantly biased and held in the direction of the valve chamber 52 by the second pressurizing means 58 suppresses the influence caused by the pressure fluctuation of the secondary side fluid. It is configured to improve the repeatability during the advance / retreat operation of the valve body 60A. Thereby, the pressure control of the primary side fluid can be performed with higher accuracy. Therefore, more accurate flow measurement can be performed by arranging the pressure control valve unit 50A on the secondary side of the differential pressure type flow sensor 20A.

なお、本発明の流量測定装置は、前述の実施例のみに限定されるものではなく、発明の趣旨を逸脱しない範囲において構成の一部を適宜に変更して実施することができる。例えば、実施例では流量測定装置を単一の供給ラインに配置するように構成したが、流量測定装置の二次側に他の供給ラインを接続して流体を混合する場合等にも適用することができる。   The flow rate measuring device of the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing a part of the configuration without departing from the spirit of the invention. For example, in the embodiment, the flow measuring device is configured to be arranged on a single supply line. However, the present invention is also applicable to the case where fluid is mixed by connecting another supply line to the secondary side of the flow measuring device. Can do.

また、図4に示す圧力制御弁部50Aでは、第二加圧手段58をスプリングとして構成したが、調圧気体であっても構わない。さらに、図4の例ではスプリングによる第二加圧手段58を流出側に設けられた第二加圧室59内に配置したが、これに限定されることなく、第1ダイヤフラムの後方側にスプリングによる第二加圧手段を配置してもよい。その場合、第1ダイヤフラムの後方側には、第二加圧手段を介して弁体と一体に形成される付勢部が設けられる。そして、スプリングによる第二加圧手段が前記付勢部を後方側(弁室と反対側)に加圧することによって、第2ダイヤフラムを常時弁室方向に付勢保持するように構成される。   Further, in the pressure control valve portion 50A shown in FIG. 4, the second pressurizing means 58 is configured as a spring, but it may be pressure-regulated gas. Further, in the example of FIG. 4, the second pressurizing means 58 by the spring is disposed in the second pressurizing chamber 59 provided on the outflow side, but the present invention is not limited to this, and the spring is disposed on the rear side of the first diaphragm. You may arrange | position the 2nd pressurization means by. In that case, an urging portion formed integrally with the valve body is provided on the rear side of the first diaphragm via the second pressurizing means. And the 2nd pressurization means by a spring pressurizes the said urging | biasing part to the back side (opposite side to a valve chamber), and it is comprised so that a 2nd diaphragm may always be urged | biased and hold | maintained in a valve chamber direction.

開示の実施例では、差圧式流量センサーとして、2つの受圧部に対して1つのセンサーで検知するように構成されたものを使用した。これらに限らず、例えば、図5に示す差圧式流量センサー20Bを用いることができる。差圧式流量センサー20Bは、一のボディ本体20Bの中に流体流路内にオリフィス26Bを挟んで2つの圧力センサー40B,40Cを配置し、オリフィス26Bの前後に差圧を発生させるように構成されている。そして、各ダイヤフラム30B,35Bが受ける流体の圧力変動による圧力差を2つの圧力センサー40B,40Cによってそれぞれ検知し、その差圧に基づいて流量測定が行われる。図5において、符号25Bは流体を流通させる流路、27Bは被測定流体の流入部、28Bは被測定流体の流出部、S1は圧力センサー40Bからの検知信号を送信する信号線、S2は圧力センサー40Cからの検知信号を送信する信号線である。   In the disclosed embodiment, a differential pressure type flow rate sensor that is configured to detect with one sensor for two pressure receiving units was used. For example, a differential pressure type flow sensor 20B shown in FIG. 5 can be used. The differential pressure type flow rate sensor 20B is configured such that two pressure sensors 40B and 40C are disposed in a fluid flow path in one body body 20B with an orifice 26B interposed therebetween, and a differential pressure is generated before and after the orifice 26B. ing. And the pressure difference by the pressure fluctuation of the fluid which each diaphragm 30B and 35B receives is each detected by the two pressure sensors 40B and 40C, and flow volume measurement is performed based on the differential pressure. In FIG. 5, reference numeral 25 </ b> B is a flow path through which the fluid flows, 27 </ b> B is an inflow portion of the fluid to be measured, 28 </ b> B is an outflow portion of the fluid to be measured, S <b> 1 is a signal line that transmits a detection signal from the pressure sensor 40 </ b> B, and S <b> 2 is a pressure. This is a signal line for transmitting a detection signal from the sensor 40C.

このような差圧式流量センサー20Bを使用した流量測定装置であっても、想定外の圧力変動が起こった場合に、圧力制御弁部50が差圧式流量センサー20Bの二次側圧力を一定に保つことができるため、負圧になることがなくなり、差圧式流量センサー20Bの各ダイヤフラム30B,35Bに作用する流体圧力が常に一定に保持される。そのため、想定外の圧力変動の影響が抑制されて従来に比して誤差を極めて小さくすることができ、大きいレンジアビリティで高い測定精度を維持した流量測定を実施することが可能である。また、差圧式流量センサー20Bの二次側に常に所定の圧力を確保することによってダイヤフラム30B,35Bと圧力センサー40B,40Cとを密着させて、ダイヤフラム30B,35Bが受けた圧力をより正確に圧力センサー40B,40Cに伝えることができ、流体圧力の検知精度を向上させることができる。   Even in the flow measurement device using such a differential pressure type flow sensor 20B, when an unexpected pressure fluctuation occurs, the pressure control valve unit 50 keeps the secondary pressure of the differential pressure type flow sensor 20B constant. Therefore, the negative pressure is not lost, and the fluid pressure acting on the diaphragms 30B and 35B of the differential pressure type flow sensor 20B is always kept constant. Therefore, the influence of unexpected pressure fluctuations is suppressed, the error can be made extremely small compared to the conventional case, and it is possible to perform flow rate measurement with high range accuracy and high measurement accuracy. Further, the diaphragms 30B and 35B and the pressure sensors 40B and 40C are brought into close contact with each other by always ensuring a predetermined pressure on the secondary side of the differential pressure type flow sensor 20B, so that the pressure received by the diaphragms 30B and 35B is more accurately pressured. This can be transmitted to the sensors 40B and 40C, and the detection accuracy of the fluid pressure can be improved.

本発明の一実施例に係る流量測定装置を用いた流体の供給ラインの概略図である。It is the schematic of the supply line of the fluid using the flow measuring device concerning one example of the present invention. 差圧式流量センサーの断面図である。It is sectional drawing of a differential pressure type flow sensor. 第一実施例に係る圧力制御弁部の断面図である。It is sectional drawing of the pressure control valve part which concerns on a 1st Example. 第二実施例に係る圧力制御弁部の断面図である。It is sectional drawing of the pressure control valve part which concerns on a 2nd Example. 他の実施例に係る差圧式流量センサーの断面図である。It is sectional drawing of the differential pressure type flow sensor which concerns on another Example.

10 流量測定装置
11 供給部
12 使用部
13 ポンプ
20 差圧式流量センサー
50 圧力制御弁部
52 弁室
55 弁座
60 弁体
L 供給ライン
DESCRIPTION OF SYMBOLS 10 Flow measuring device 11 Supply part 12 Use part 13 Pump 20 Differential pressure type flow sensor 50 Pressure control valve part 52 Valve chamber 55 Valve seat 60 Valve body L Supply line

Claims (2)

液体からなる流体の供給ラインに配される流量測定装置であって、
前記供給ラインを流通する液体からなる流体にオリフィス部を介して所定の差圧を生じさせ、前記オリフィス部を介して配置された2つのダイヤフラムが受ける前記流体の圧力変動による差圧を検出して流量を測定する差圧式流量センサーと、
前記差圧式流量センサーの二次側に配置され、弁室内に弁座に対して進退する弁体と、前記弁室の一次側に配置されて前記弁体と一体に形成された第1ダイヤフラムと、該第1ダイヤフラムを弁室方向に常時加圧する第一加圧手段とを有し、前記差圧式流量センサーの二次側流体の圧力変動に対応して前記弁体が前記弁座に対して進退して一次側流体を所定の圧力に維持することにより前記差圧式流量センサーの二次側流体の圧力を一定に保持する圧力制御弁部
とを備えたことを特徴とする流量測定装置。
A flow rate measuring device arranged in a fluid supply line made of liquid ,
A predetermined differential pressure is generated in the fluid composed of the liquid flowing through the supply line through the orifice, and the differential pressure due to the pressure fluctuation of the fluid received by the two diaphragms arranged through the orifice is detected. A differential pressure type flow sensor to measure the flow rate,
A valve body that is disposed on the secondary side of the differential pressure type flow sensor and moves forward and backward in the valve chamber with respect to the valve seat; and a first diaphragm that is disposed on the primary side of the valve chamber and is formed integrally with the valve body; And a first pressurizing means that constantly pressurizes the first diaphragm in the direction of the valve chamber, and the valve body with respect to the valve seat in response to the pressure fluctuation of the secondary side fluid of the differential pressure type flow rate sensor And a pressure control valve unit for maintaining a constant pressure of the secondary fluid of the differential pressure type flow sensor by moving forward and backward to maintain the primary fluid at a predetermined pressure.
前記圧力制御弁部の弁体が前記弁室の二次側に配置される第2ダイヤフラムと一体に形成され、前記第2ダイヤフラムが第二加圧手段によって前記弁室方向に常時加圧されている請求項に記載の流量測定装置。 The valve body of the pressure control valve part is formed integrally with a second diaphragm disposed on the secondary side of the valve chamber, and the second diaphragm is constantly pressurized in the direction of the valve chamber by the second pressurizing means. The flow measurement device according to claim 1 .
JP2008261671A 2008-02-26 2008-10-08 Flow measuring device Active JP5203880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261671A JP5203880B2 (en) 2008-02-26 2008-10-08 Flow measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008044293 2008-02-26
JP2008044293 2008-02-26
JP2008261671A JP5203880B2 (en) 2008-02-26 2008-10-08 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2009229444A JP2009229444A (en) 2009-10-08
JP5203880B2 true JP5203880B2 (en) 2013-06-05

Family

ID=41244993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261671A Active JP5203880B2 (en) 2008-02-26 2008-10-08 Flow measuring device

Country Status (1)

Country Link
JP (1) JP5203880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266395A (en) * 2009-05-18 2010-11-25 Advance Denki Kogyo Kk Pressure sensor and flow detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217682A (en) * 2011-04-11 2012-11-12 Omron Healthcare Co Ltd Flow control valve and blood pressure information measuring apparatus equipped with the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138951A (en) * 1992-10-26 1994-05-20 Toyota Central Res & Dev Lab Inc Gas mass flow rate controller
JP3467438B2 (en) * 1999-09-29 2003-11-17 アドバンス電気工業株式会社 Back pressure control valve
JP3845615B2 (en) * 2002-03-12 2006-11-15 アドバンス電気工業株式会社 Flow sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266395A (en) * 2009-05-18 2010-11-25 Advance Denki Kogyo Kk Pressure sensor and flow detection device

Also Published As

Publication number Publication date
JP2009229444A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP3583123B1 (en) Flow control valve and flow control device
JP5079401B2 (en) Pressure sensor, differential pressure type flow meter and flow controller
KR101783680B1 (en) Pressure Sensor, Differential Pressure Type Flowmeter and Flow Controller
JP2837112B2 (en) Mass flow control method and apparatus using sonic nozzle
US8195336B2 (en) Pressure regulator
JP2003337053A (en) Flow sensor
KR20100098431A (en) Flow rate ratio controlling apparatus
KR20150069510A (en) Flow control valve and flow control system using same
US9500503B2 (en) Differential pressure type flowmeter and flow controller provided with the same
JP6484248B2 (en) System and method for providing a pressure-insensitive self-verifying mass flow controller
JP5203880B2 (en) Flow measuring device
JPWO2016035558A1 (en) Mass flow controller
JP6500998B2 (en) Resistivity value adjustment device and resistivity value adjustment method
CN110998227B (en) liquid micrometer
JP2007038179A (en) Gas mixer
JP2008008706A (en) Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method
JP2000292227A (en) Flow measuring method and device
JP2009543247A (en) Flow control device
JP7483265B2 (en) Pressure Generator
JPH1151719A (en) Flow-rate sensor
TW201805058A (en) Fluid mixing system, mixing system and concentration controlling method of mixing fluid using the same
US20230011244A1 (en) Pressure control device
JP5213582B2 (en) Flow measuring device
JP5213583B2 (en) Flow measuring device
KR20110057153A (en) System and method for monitoring control status of an exhaust apparatus pressure control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5203880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250