JP5357478B2 - Differential pressure type flow measuring device - Google Patents

Differential pressure type flow measuring device Download PDF

Info

Publication number
JP5357478B2
JP5357478B2 JP2008244502A JP2008244502A JP5357478B2 JP 5357478 B2 JP5357478 B2 JP 5357478B2 JP 2008244502 A JP2008244502 A JP 2008244502A JP 2008244502 A JP2008244502 A JP 2008244502A JP 5357478 B2 JP5357478 B2 JP 5357478B2
Authority
JP
Japan
Prior art keywords
pressure
fluid
flow path
pressure detection
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008244502A
Other languages
Japanese (ja)
Other versions
JP2010078365A (en
Inventor
広宣 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2008244502A priority Critical patent/JP5357478B2/en
Publication of JP2010078365A publication Critical patent/JP2010078365A/en
Application granted granted Critical
Publication of JP5357478B2 publication Critical patent/JP5357478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential pressure flow measuring apparatus which can measure a plurality of fluid flows with different measurement ranges even by a single apparatus, without affecting the cleanliness of a fluid, or an object under measurement, and easily. <P>SOLUTION: The differential pressure flow measuring apparatus 10A arranges a first pressure detection section 20 and a second pressure detection section 25 for detecting the fluid pressure of the fluid under measurement through a pressure loss section 30. The apparatus includes a connecting flow channel 40 which connects the first pressure detection section 20 and the second pressure detection section 25 through a single flow channel, an on-off valve 60A which is arranged in the connecting flow channel 40 and has a poppet valve member 65A through which a through hole 66 is formed, and an arithmetic section 80 for controlling the opening/closing operation of the on-off valve 60A. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、被計測流体の流体圧力を検知する第1圧力検知部と第2圧力検知部とが圧力損失部を介して配置された差圧式流量測定装置に関する。   The present invention relates to a differential pressure type flow rate measuring device in which a first pressure detection unit and a second pressure detection unit that detect a fluid pressure of a fluid to be measured are arranged via a pressure loss unit.

流体の流量を測定する流量センサーとして、回転式流量センサー、浮子式流量センサー、超音波流量センサー、カルマン渦流量センサー等の種々の流量センサーがある。回転式流量センサーや浮子式流量センサーでは羽根車や浮子が流路内で可動することにより流路にパーティクル(微細なゴミ)が発生してしまう等の問題がある。超音波流量センサーやカルマン渦流量センサーは流体(液体)の流通時に発生する気泡に弱く流体の乱れによって精度にばらつきが生じる等の問題がある。特に、半導体製造や医療現場等のように高清浄度が求められる環境や発泡性流体が用いられる現場での使用には難しい面があった。   There are various flow sensors such as a rotary flow sensor, a float flow sensor, an ultrasonic flow sensor, a Karman vortex flow sensor, and the like as flow sensors for measuring the flow rate of fluid. The rotary flow sensor and the float type flow sensor have a problem that particles (fine dust) are generated in the flow path when the impeller and the float move in the flow path. Ultrasonic flow rate sensors and Karman vortex flow rate sensors are vulnerable to bubbles generated during the flow of fluid (liquid) and have problems such as variations in accuracy due to fluid disturbance. In particular, it has been difficult to use in environments where high cleanliness is required, such as semiconductor manufacturing and medical sites, and sites where foaming fluid is used.

上記の問題点を解決した流量センサーとして、差圧式流量センサーが知られている。従来の差圧式流量センサーは、流体流路内に圧力損失部(オリフィス)を挟んで2つの圧力検知部(圧力センサー)を配置し、オリフィスの前後に差圧を発生させて2つの圧力センサーによってそれぞれ検知された流体圧力の圧力差に基づいて流量の測定が行われる(例えば、特許文献1,2,3等参照。)。   A differential pressure type flow sensor is known as a flow sensor that solves the above problems. In the conventional differential pressure type flow sensor, two pressure detection parts (pressure sensors) are arranged in a fluid flow path with a pressure loss part (orifice) sandwiched between them, and a differential pressure is generated before and after the orifice. The flow rate is measured based on the detected pressure difference between the fluid pressures (see, for example, Patent Documents 1, 2, and 3).

現状、上記差圧式流量センサーを用いて流量測定を行う場合、想定される流量測定範囲に対応した差圧式流量センサーが流通ラインに配置される。そして、現在使用中の流量センサーの流量測定範囲外に測定流量を変化させる際には、想定外の圧力変動が発生するため、流量センサーの流量測定範囲をその変動圧力に対応させて変更しなければならい。流量測定範囲を変更する場合には、単一のオリフィスによって測定可能な測定範囲が限定されることから、流路内に配置されたオリフィスを他の測定範囲に対応したオリフィスに交換したり、差圧式流量センサー自体を他の測定範囲が設定された流量センサーに交換する必要があった。   Currently, when the flow rate is measured using the differential pressure type flow rate sensor, a differential pressure type flow rate sensor corresponding to an assumed flow rate measurement range is arranged in the distribution line. When changing the measured flow rate outside the flow measurement range of the flow sensor currently in use, an unexpected pressure fluctuation occurs, so the flow measurement range of the flow sensor must be changed to correspond to the fluctuating pressure. Goodbye. When changing the flow rate measurement range, the measurement range that can be measured by a single orifice is limited, so the orifice arranged in the flow path can be replaced with an orifice corresponding to another measurement range, or a difference can be made. It was necessary to replace the pressure type flow rate sensor itself with a flow rate sensor having a different measurement range.

しかし、オリフィスや流量センサー自体の交換をする際には、流体の流通を一時的に停止させてオリフィスや流量センサーの取り外しや取り付け作業を行わなければならない。このような交換作業は手間であり、常時、複数の流量センサーを配置しなければならないことから、設備のコストもかさむ。また特に、オリフィスの交換を行う場合には、交換作業の際にゴミ等が流路内に混入する等の汚染の可能性があり、流通させる流体や使用環境の清浄度に悪影響を与えることが懸念される。このことから、各種の流量領域に対応して最適な測定精度を維持することができるようなレンジアビリティの大きい差圧式流量センサーが求められている。   However, when exchanging the orifice or the flow sensor itself, the flow of the fluid must be temporarily stopped to remove or install the orifice or the flow sensor. Such replacement work is laborious, and since a plurality of flow sensors must be arranged at all times, the cost of the equipment is also increased. In particular, when exchanging the orifice, there is a possibility of contamination such as dust mixing into the flow path during the exchanging operation, which may adversely affect the fluid to be circulated and the cleanliness of the usage environment. Concerned. For this reason, there is a demand for a differential pressure type flow rate sensor having a large range ability that can maintain optimum measurement accuracy corresponding to various flow rate regions.

そこで、一の装置において、被計測流体の清浄度に影響を与えることなく、簡便に複数の測定範囲(計測レンジ)の異なる流体流量の測定に対応した差圧式流量測定装置が求められるに至った。
特開2007−78383号公報 特開2006−153677号公報 特開2006−250955号公報
Thus, in one apparatus, a differential pressure type flow measuring device that can easily measure different fluid flow rates in a plurality of measurement ranges (measurement ranges) without affecting the cleanliness of the fluid to be measured has been required. .
JP 2007-78383 A JP 2006-153677 A JP 2006-250955 A

本発明は前記の点に鑑みなされたものであり、一の装置でありながら、計測対象である流体の清浄度に影響を与えることなく、簡便に複数の計測レンジの異なる流体流量を測定することができる差圧式流量測定装置を提供するものである。   The present invention has been made in view of the above points, and can easily measure different fluid flow rates in a plurality of measurement ranges without affecting the cleanliness of the fluid to be measured while being a single device. The present invention provides a differential pressure type flow rate measuring apparatus capable of achieving the above.

すなわち、請求項1の発明は、被計測流体の流体圧力を検知する第1圧力検知部と第2圧力検知部とが圧力損失部を介して配置された差圧式流量測定装置において、前記第1圧力検知部と前記第2圧力検知部とが被計測流体に対してダイヤフラムからなる保護膜を介して配置されており、前記第1圧力検知部と前記第2圧力検知部との間を単一の流路で接続する接続流路部と、前記接続流路部に配置され、ダイヤフラム部と一体に形成されるとともに貫通孔が形成されたポペット弁体を有し、該ポペット弁体が弁室内で前記圧力損失部を有する流出口に対して進退して開閉制御されるとともに、前記流出口の閉鎖時に前記貫通孔を介して前記弁室への流入側流路と前記弁室からの流出側流路とを連通させて、被計測流体が前記貫通孔を流通する際に前記流入側流路と前記流出側流路との間に差圧を生じさせる開閉弁部と、前記開閉弁部の開閉動作を制御する演算部とを備えたことを特徴とする差圧式流量測定装置に係る。 In other words, the first aspect of the present invention is the differential pressure type flow rate measuring device in which the first pressure detection unit and the second pressure detection unit that detect the fluid pressure of the fluid to be measured are arranged via the pressure loss unit . The pressure detection unit and the second pressure detection unit are arranged with respect to the fluid to be measured via a protective film made of a diaphragm, and a single space is provided between the first pressure detection unit and the second pressure detection unit. And a poppet valve body that is disposed in the connection flow path portion, is formed integrally with the diaphragm portion and has a through-hole, and the poppet valve body is in the valve chamber. Is controlled to open and close with respect to the outlet having the pressure loss portion, and when the outlet is closed, the inlet side flow path to the valve chamber and the outlet side from the valve chamber through the through hole The fluid to be measured flows through the through hole in communication with the flow path. Differential pressure, wherein the on-off valve unit to generate a differential pressure, that an arithmetic unit for controlling the opening and closing operation of the movable valve between said inlet-side flow path and the outlet side flow passage when The present invention relates to a flow measurement device.

請求項2の発明は、被計測流体の流体圧力を検知する第1圧力検知部と第2圧力検知部とが圧力損失部を介して配置された差圧式流量測定装置において、前記第1圧力検知部と前記第2圧力検知部とが被計測流体に対してダイヤフラムからなる保護膜を介して配置されており、前記第1圧力検知部と前記第2圧力検知部との間を単一の流路で接続する接続流路部と、前記接続流路部に配置され、ダイヤフラム部と一体に形成されるとともに多段形状に形成されたニードル弁体を有し、該ニードル弁体が弁室内で前記圧力損失部を有する流出口に対して進退して開閉制御されるとともに、前記ニードル弁体の前記流出口に対する挿入状態に応じて前記流出口の開口量を可変させて、被計測流体が前記流出口を流通する際に前記弁室への流入側流路と前記弁室からの流出側流路との間に差圧を生じさせる開閉弁部と、前記開閉弁部の開閉動作を制御する演算部とを備えたことを特徴とする差圧式流量測定装置に係る。 According to a second aspect of the present invention, in the differential pressure type flow rate measuring device in which the first pressure detection unit and the second pressure detection unit that detect the fluid pressure of the fluid to be measured are arranged via the pressure loss unit, the first pressure detection And the second pressure detection unit are arranged with respect to the fluid to be measured via a protective film made of a diaphragm, and a single flow is provided between the first pressure detection unit and the second pressure detection unit. A connection flow path portion connected by a passage, and a needle valve body that is disposed in the connection flow path section, is formed integrally with the diaphragm section and is formed in a multistage shape, and the needle valve body is formed in the valve chamber Opening and closing of the outlet having the pressure loss portion is controlled to open and close, and the opening amount of the outlet is varied in accordance with the insertion state of the needle valve body with respect to the outlet, so that the fluid to be measured flows to the outlet. Inflow side flow into the valve chamber when flowing through the outlet Differential pressure type flow measuring device comprising a movable valve that causes a pressure differential, that an arithmetic unit for controlling the opening and closing operation of the movable valve between the outlet side flow path from the valve chamber and Concerning.

請求項の発明は、前記第1圧力検知部と、前記第2圧力検知部と、前記接続流路部と、前記開閉弁部のいずれもが単一の本体ブロック内に配置されている請求項1又は2のいずれか1項に記載の差圧式流量測定装置に係る。 According to a third aspect of the present invention, all of the first pressure detection unit, the second pressure detection unit, the connection flow path unit, and the on-off valve unit are arranged in a single body block. It concerns on the differential pressure type flow measurement apparatus of any one of claim | item 1 or 2 .

請求項1の発明に係る差圧式流量測定装置は、被計測流体の流体圧力を検知する第1圧力検知部と第2圧力検知部とが圧力損失部を介して配置された差圧式流量測定装置において、前記第1圧力検知部と前記第2圧力検知部とが被計測流体に対してダイヤフラムからなる保護膜を介して配置されており、前記第1圧力検知部と前記第2圧力検知部との間を単一の流路で接続する接続流路部と、前記接続流路部に配置され、ダイヤフラム部と一体に形成されるとともに貫通孔が形成されたポペット弁体を有し、該ポペット弁体が弁室内で前記圧力損失部を有する流出口に対して進退して開閉制御されるとともに、前記流出口の閉鎖時に前記貫通孔を介して前記弁室への流入側流路と前記弁室からの流出側流路とを連通させて、被計測流体が前記貫通孔を流通する際に前記流入側流路と前記流出側流路との間に差圧を生じさせる開閉弁部と、前記開閉弁部の開閉動作を制御する演算部とを備えたため、一の装置でありながら被計測流体の清浄度に影響を与えることなく、簡便に複数の測定範囲の異なる流体流量を測定することができる。 The differential pressure type flow rate measuring apparatus according to claim 1 is a differential pressure type flow rate measuring apparatus in which a first pressure detecting unit and a second pressure detecting unit for detecting a fluid pressure of a fluid to be measured are arranged via a pressure loss unit. The first pressure detection unit and the second pressure detection unit are disposed via a protective film made of a diaphragm with respect to the fluid to be measured, and the first pressure detection unit and the second pressure detection unit And a poppet valve body that is disposed in the connection flow path portion, is formed integrally with the diaphragm portion and has a through-hole formed therein. The valve body is controlled to be opened and closed with respect to the outlet having the pressure loss portion in the valve chamber, and the inlet side flow path to the valve chamber and the valve via the through hole when the outlet is closed. The fluid to be measured is communicated with the outflow side flow path from the chamber. Because having a movable valve to cause pressure differential between said inlet-side flow path and the outlet side flow passage when flowing through the through hole, and a computing unit for controlling the opening and closing operation of the on-off valve unit, one In this apparatus, it is possible to easily measure different fluid flow rates in a plurality of measurement ranges without affecting the cleanliness of the fluid to be measured.

請求項2の発明に係る差圧式流量測定装置は、被計測流体の流体圧力を検知する第1圧力検知部と第2圧力検知部とが圧力損失部を介して配置された差圧式流量測定装置において、前記第1圧力検知部と前記第2圧力検知部とが被計測流体に対してダイヤフラムからなる保護膜を介して配置されており、前記第1圧力検知部と前記第2圧力検知部との間を単一の流路で接続する接続流路部と、前記接続流路部に配置され、ダイヤフラム部と一体に形成されるとともに多段形状に形成されたニードル弁体を有し、該ニードル弁体が弁室内で前記圧力損失部を有する流出口に対して進退して開閉制御されるとともに、前記ニードル弁体の前記流出口に対する挿入状態に応じて前記流出口の開口量を可変させて、被計測流体が前記流出口を流通する際に前記弁室への流入側流路と前記弁室からの流出側流路との間に差圧を生じさせる開閉弁部と、前記開閉弁部の開閉動作を制御する演算部とを備えたため、弁体部分が熱変形の影響を受けにくくなるとともに、一の装置でありながら被計測流体の清浄度に影響を与えることなく、簡便に複数の測定範囲の異なる流体流量を測定することができる。 The differential pressure type flow rate measuring device according to the invention of claim 2 is a differential pressure type flow rate measuring device in which a first pressure detecting unit and a second pressure detecting unit for detecting a fluid pressure of a fluid to be measured are arranged via a pressure loss unit. The first pressure detection unit and the second pressure detection unit are disposed via a protective film made of a diaphragm with respect to the fluid to be measured, and the first pressure detection unit and the second pressure detection unit A connection flow path portion that connects the two with a single flow path, and a needle valve body that is disposed in the connection flow path portion, is formed integrally with the diaphragm portion, and is formed in a multistage shape. The valve body is controlled to open and close with respect to the outlet having the pressure loss portion in the valve chamber, and the opening amount of the outlet is varied according to the insertion state of the needle valve body with respect to the outlet. The fluid to be measured flows through the outlet. An opening and closing valve portion to cause a pressure differential between the outflow side flow path from the valve chamber and the inflow side flow path to the valve chamber, because of an arithmetic unit for controlling the opening and closing operation of the movable valve In addition to being less susceptible to thermal deformation , the valve body portion can easily measure different fluid flow rates in a plurality of measurement ranges without affecting the cleanliness of the fluid to be measured even though it is a single device. .

請求項の発明は、請求項1又は2において、前記第1圧力検知部と、前記第2圧力検知部と、前記接続流路部と、前記開閉弁部のいずれもが単一の本体ブロック内に配置されているため、部品点数等を減らして装置の簡略化及び小型化を実現できるとともに、メンテナンス等の管理も容易となる。 A third aspect of the present invention is the main body block according to the first or second aspect , wherein the first pressure detection unit, the second pressure detection unit, the connection flow path unit, and the on-off valve unit are all a single body block. Therefore, it is possible to reduce the number of parts and the like, thereby realizing simplification and miniaturization of the apparatus, and easy management of maintenance and the like.

以下添付の図面に従ってこの発明を詳細に説明する。
図1は本発明の第1実施例に係る差圧式流量測定装置の縦断面図、図2はポペット弁体を有する開閉弁部の縦断面図、図3は第2実施例に係る差圧式流量測定装置の縦断面図、図4はニードル弁体を有する開閉弁部の縦断面図、図5は多段形状に形成されたニードル弁体の要部断面図ある。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
1 is a longitudinal sectional view of a differential pressure type flow rate measuring apparatus according to a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of an on-off valve portion having a poppet valve body, and FIG. 3 is a differential pressure type flow rate according to a second embodiment. FIG. 4 is a longitudinal sectional view of a measuring device, FIG. 4 is a longitudinal sectional view of an on-off valve portion having a needle valve body, and FIG. 5 is a sectional view of a main part of a needle valve body formed in a multistage shape.

図1に示す本発明の第1実施例に係る差圧式流量測定装置10Aは、被計測流体の流体圧力を検知する第1圧力検知部20と第2圧力検知部25とが圧力損失部30を介して配置され、第1圧力検知部20と第2圧力検知部25との間を単一の流路で接続する接続流路部40と、接続流路部40に配置された開閉弁部50と、開閉弁部50の開閉動作を制御する演算部80とを備える。図1において、符号12は被計測流体の流入流路、13は被計測流体の流出流路、15は電空レギュレータ、41は接続流路部40の流入側流路、42は接続流路部40の流出側流路を表す。   In the differential pressure type flow rate measuring apparatus 10A according to the first embodiment of the present invention shown in FIG. 1, the first pressure detecting unit 20 and the second pressure detecting unit 25 for detecting the fluid pressure of the fluid to be measured are used as the pressure loss unit 30. And a connection flow path portion 40 that connects the first pressure detection section 20 and the second pressure detection section 25 with a single flow path, and an on-off valve section 50 disposed in the connection flow path section 40. And a calculation unit 80 for controlling the opening / closing operation of the opening / closing valve unit 50. In FIG. 1, reference numeral 12 denotes an inflow channel for a fluid to be measured, 13 denotes an outflow channel for the fluid to be measured, 15 denotes an electropneumatic regulator, 41 denotes an inflow side channel of the connection channel unit 40, and 42 denotes a connection channel unit. 40 outflow channels are shown.

この差圧式流量測定装置10Aでは、図示のように、第1圧力検知部20と、第2圧力検知部25と、接続流路部40と、開閉弁部50のいずれもが単一の本体ブロック11内に配置されるように構成されている。単一の本体ブロック11は、第1ブロック11aと第2ブロック11bとからなり、図示しないボルト等によって一体に形成される。   In this differential pressure type flow rate measuring apparatus 10A, as shown in the figure, all of the first pressure detection unit 20, the second pressure detection unit 25, the connection flow path unit 40, and the on-off valve unit 50 are a single body block. 11 is configured to be disposed in the inside. The single main body block 11 includes a first block 11a and a second block 11b, and is integrally formed by a bolt or the like (not shown).

また、本体ブロック11、各圧力検知部20,25、圧力損失部30、接続流路部40,開閉弁部50等における被計測流体が接触する部材は、耐食性、耐薬品性に優れたフッ素樹脂から形成されている。部材の材料となるフッ素樹脂は、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペンコポリマー)、PVDF(ポリビニリデンフルオライド)等である。これらのフッ素樹脂は、流通する流体の性質、加工のしやすさ等を考慮して選択される。これにより、被計測流体の計測時にその清浄度に影響を与えることが抑制される。   In addition, the member in contact with the fluid to be measured in the main body block 11, the pressure detection parts 20 and 25, the pressure loss part 30, the connection flow path part 40, the on-off valve part 50, etc. Formed from. The fluororesin that is the material of the member is PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), FEP (perfluoroethylene propene copolymer), PVDF (polyvinylidene fluoride), or the like. These fluororesins are selected in consideration of the properties of the flowing fluid, ease of processing, and the like. Thereby, it is suppressed that the cleanliness is influenced at the time of measurement of the fluid to be measured.

第1及び第2圧力検知部20,25は、被計測流体に対してダイヤフラム等の保護膜(図示せず)を介して配置され、被計測流体の圧力によって押圧された前記保護膜からの荷重を検知する公知の圧力センサーが用いられる。図1に示すように、第1圧力検知部20は本体ブロック11の流入流路12側(上流となる一次側)に配置され、第2圧力検知部25は本体ブロック11の流出流路13側(下流となる二次側)に配置される。この図において、符号21は第1圧力検知部20が検知した圧力信号を後述する演算部80に送信するための信号線、26は第2圧力検知部25が検知した圧力信号を演算部80に送信するための信号線である。   The first and second pressure detectors 20 and 25 are arranged via a protective film (not shown) such as a diaphragm with respect to the fluid to be measured, and the load from the protective film pressed by the pressure of the fluid to be measured A known pressure sensor for detecting the pressure is used. As shown in FIG. 1, the first pressure detection unit 20 is arranged on the inflow channel 12 side (upstream primary side) of the main body block 11, and the second pressure detection unit 25 is on the outflow channel 13 side of the main body block 11. (Secondary side downstream). In this figure, reference numeral 21 denotes a signal line for transmitting a pressure signal detected by the first pressure detection unit 20 to the calculation unit 80 described later, and 26 denotes a pressure signal detected by the second pressure detection unit 25 to the calculation unit 80. This is a signal line for transmission.

圧力損失部30は、流路面積を絞ることによって、第1圧力検知部20が検知する流体圧力と第2圧力検知部25が検知する流体圧力とに所定の差圧を発生させるように構成される。実施例の圧力損失部30は、着脱可能な公知のオリフィス部31として構成されている。   The pressure loss unit 30 is configured to generate a predetermined differential pressure between the fluid pressure detected by the first pressure detection unit 20 and the fluid pressure detected by the second pressure detection unit 25 by narrowing the flow path area. The The pressure loss part 30 of an Example is comprised as the well-known orifice part 31 which can be attached or detached.

開閉弁部50は、図1,2に示すように、貫通孔66が形成されたポペット弁体65Aを有するポペット弁装置60Aとして構成される。図1,2において、符号62は接続流路部40に形成された弁室、63は被計測流体が流入側流路41から弁室62内に流入する流入口、64は被計測流体が弁室62内から流出側流路42に流出する流出口、67はポペット弁体65Aと一体に形成されたダイヤフラム部、70はポペット弁体65Aの作動機構(シリンダ装置)、71はそのシリンダ室、72はシリンダ室71と弁室62とを区画する区画ブロック、73はポペット弁体65Aと連結されたピストン部材、74,75はピストン部材73を進退させる作動流体の流出入部、76はエア抜き部、77はポペット弁体65Aの取付部材、78はポペット弁体65Aを前進方向に付勢するバネからなる弾性部材である。   As shown in FIGS. 1 and 2, the on-off valve portion 50 is configured as a poppet valve device 60A having a poppet valve body 65A in which a through hole 66 is formed. In FIGS. 1 and 2, reference numeral 62 denotes a valve chamber formed in the connection flow path section 40, 63 denotes an inlet through which the fluid to be measured flows into the valve chamber 62 from the inflow side flow path 41, and 64 denotes a valve for the fluid to be measured Outlet that flows out from the chamber 62 to the outflow side passage 42, 67 is a diaphragm part integrally formed with the poppet valve body 65A, 70 is an operating mechanism (cylinder device) of the poppet valve body 65A, 71 is its cylinder chamber, 72 is a partition block that divides the cylinder chamber 71 and the valve chamber 62, 73 is a piston member connected to the poppet valve body 65A, 74 and 75 are inflow / outflow portions of the working fluid for moving the piston member 73 forward and backward, and 76 is an air vent portion , 77 is an attachment member for the poppet valve body 65A, and 78 is an elastic member made of a spring that biases the poppet valve body 65A in the forward direction.

このポペット弁装置60Aでは、流出口64にオリフィス部31が配置され、ポペット弁体65Aが弁室62内で流出口64に対して進退して開閉制御される。実施例では、電空レギュレータ15が後述の演算部80からの信号に基づいてポペット弁体65Aのを進退させるエアー(作動流体)の供給,停止を行う。これにより、流出口64から流出する流体の流通が制御される。   In this poppet valve device 60A, the orifice portion 31 is disposed at the outflow port 64, and the poppet valve body 65A is advanced and retracted with respect to the outflow port 64 in the valve chamber 62 so as to be opened and closed. In the embodiment, the electropneumatic regulator 15 supplies and stops air (working fluid) for moving the poppet valve body 65A forward and backward based on a signal from the calculation unit 80 described later. Thereby, the flow of the fluid flowing out from the outlet 64 is controlled.

また、ポペット弁体65Aに貫通孔66を形成したことにより、流出口64の閉鎖時には、貫通孔66を介して流入側流路41と流出側流路42とが連通される。そして、被計測流体が流通する際には、貫通孔66により流路面積が絞られていることにより、流入側流路41と流出側流路42との間に差圧を生じる。従って、貫通孔66は、流出口64に配置したオリフィス部31とは異なる圧力損失部30として作用する。   Further, since the through-hole 66 is formed in the poppet valve body 65A, the inflow side channel 41 and the outflow side channel 42 are communicated with each other through the through hole 66 when the outflow port 64 is closed. When the fluid to be measured flows, a pressure difference is generated between the inflow side flow channel 41 and the outflow side flow channel 42 because the flow channel area is narrowed by the through hole 66. Therefore, the through hole 66 acts as a pressure loss part 30 different from the orifice part 31 arranged at the outlet 64.

演算部80は、PLC等の公知の演算手段からなる。この演算部80には、オリフィス部31の流路面積に対応する差圧の値と、該差圧に基づいて決定される流量値又はそれらの折れ線近似と、貫通孔66の流路面積に対応する差圧の値と、該差圧に基づいて決定される流量値又はそれらの折れ線近似があらかじめ記憶され、測定誤差等を考慮して記憶されたそれぞれの流量値に最適な流量測定範囲が設定される。実施例の演算部80では、第1圧力検知部20が検知した圧力値と第2圧力検知部25が検知した圧力値に基づいて差圧を演算し、あらかじめ記憶されている差圧と流量値の関係の折れ線近似から流量測定が行われる。   The calculation unit 80 includes a known calculation means such as a PLC. The calculation unit 80 corresponds to the value of the differential pressure corresponding to the flow area of the orifice 31, the flow rate value determined based on the differential pressure, or their broken line approximation, and the flow area of the through hole 66. The differential pressure value to be measured, the flow value determined based on the differential pressure, or their broken line approximation is stored in advance, and the optimum flow measurement range is set for each stored flow value in consideration of measurement error etc. Is done. In the calculation unit 80 of the embodiment, the differential pressure is calculated based on the pressure value detected by the first pressure detection unit 20 and the pressure value detected by the second pressure detection unit 25, and the differential pressure and flow rate value stored in advance are calculated. The flow rate is measured from the line approximation of the relationship.

この差圧式流量測定装置10Aでは、ポペット弁装置60Aが開放状態である場合、被計測流体は、単一の接続流路部40内を流入側流路41からオリフィス部31を経て流出側流路42に流通する。従って、ポペット弁装置60Aの開放時には、オリフィス部31によって発生される差圧に基づいて流量の測定が行われる。   In the differential pressure type flow rate measuring device 10A, when the poppet valve device 60A is in an open state, the fluid to be measured flows in the single connection flow path portion 40 from the inflow side flow path 41 through the orifice section 31 to the outflow side flow path. 42. Therefore, when the poppet valve device 60A is opened, the flow rate is measured based on the differential pressure generated by the orifice portion 31.

また、ポペット弁装置60Aが閉鎖状態である場合、被計測流体は、単一の接続流路部40内を流入側流路41からポペット弁体65Aの貫通孔66を経て流出側流路42に流通する。従って、ポペット弁装置60Aの閉鎖時には、貫通孔66によって発生される差圧に基づいて流量の測定が行われる。   When the poppet valve device 60A is in the closed state, the fluid to be measured flows from the inflow side channel 41 to the outflow side channel 42 through the through hole 66 of the poppet valve body 65A in the single connection channel portion 40. Circulate. Therefore, when the poppet valve device 60A is closed, the flow rate is measured based on the differential pressure generated by the through hole 66.

そこで、差圧式流量測定装置10Aの作用について、仮に、オリフィス部31により測定可能な流量を20〜100mL/min、貫通孔66により測定可能な流量を5〜20mL/minとして説明する。   Therefore, the operation of the differential pressure type flow measuring device 10A will be described assuming that the flow rate measurable by the orifice 31 is 20 to 100 mL / min and the flow rate measurable by the through hole 66 is 5 to 20 mL / min.

まず、100mL/minの被計測流体を流通させる場合、演算部80の操作に基づいてポペット弁装置60Aのポペット弁体65Aが開放状態に作動される。その際、オリフィス部31に基づく差圧の値と流量値の折れ線近似が選択され、対応する流量測定範囲が設定される。   First, when the fluid to be measured of 100 mL / min is circulated, the poppet valve body 65A of the poppet valve device 60A is operated in an open state based on the operation of the calculation unit 80. At that time, a polyline approximation of the differential pressure value and the flow rate value based on the orifice portion 31 is selected, and a corresponding flow rate measurement range is set.

また、20mL/minの被計測流体を流通させる場合、演算部80の操作に基づいてポペット弁装置60Aのポペット弁体65Aが閉鎖状態に作動される。その際、貫通孔66に基づく差圧の値と流量値の折れ線近似が選択され、対応する流量測定範囲が設定される。   Further, when the fluid to be measured of 20 mL / min is circulated, the poppet valve body 65A of the poppet valve device 60A is operated in a closed state based on the operation of the calculation unit 80. At that time, a polyline approximation of the differential pressure value and the flow rate value based on the through hole 66 is selected, and a corresponding flow rate measurement range is set.

よって、本発明の差圧式流量測定装置10Aでは、異なる流量の被計測流体を切替選択して流通させる場合であっても、単一の装置でありながら目的とする各流量に対応した測定範囲を容易に設定することができる。   Therefore, in the differential pressure type flow rate measuring device 10A of the present invention, even when the fluid to be measured having different flow rates is switched and circulated, a measurement range corresponding to each target flow rate can be obtained even though it is a single device. It can be set easily.

図3に示す本発明の第2実施例に係る差圧式流量測定装置10Bは、開閉弁部50としてニードル弁体65Bを有するニードル弁装置60Bを用いた例である。なお、以下の実施例において、第1実施例と同一符号は同一の構成を表すものとして、その説明を省略する。   The differential pressure type flow rate measuring device 10B according to the second embodiment of the present invention shown in FIG. 3 is an example using a needle valve device 60B having a needle valve body 65B as the on-off valve portion 50. In the following embodiments, the same reference numerals as those in the first embodiment denote the same components, and the description thereof is omitted.

ニードル弁装置60Bは、図3,4に示すように、ニードル弁体65Bが弁室62内で流出口64に対して進退して開閉制御される。実施例では、電空レギュレータ15が後述の演算部80からの信号に基づいてニードル弁体65Bのを進退させるエアー(作動流体)の供給,停止を行う。これにより、流出口64から流出する流体の流通が制御される。その際、流出口64の開口量が、ニードル弁体65Bの進退位置に応じて微調整されるため、流出口64は、流入側流路41と流出側流路42との間に差圧を生じさせる可変オリフィス部32からなる圧力損失部30として作用する。   As shown in FIGS. 3 and 4, the needle valve device 60 </ b> B is controlled to open and close as the needle valve body 65 </ b> B advances and retreats with respect to the outlet 64 in the valve chamber 62. In the embodiment, the electropneumatic regulator 15 supplies and stops air (working fluid) for moving the needle valve body 65B forward and backward based on a signal from the calculation unit 80 described later. Thereby, the flow of the fluid flowing out from the outlet 64 is controlled. At that time, since the opening amount of the outflow port 64 is finely adjusted according to the advance / retreat position of the needle valve body 65B, the outflow port 64 has a differential pressure between the inflow side channel 41 and the outflow side channel 42. It acts as a pressure loss part 30 consisting of the variable orifice part 32 to be generated.

差圧式流量測定装置10Bの演算部80には、可変オリフィス部32の流路面積に対応する差圧の値と、該差圧に基づいて決定される流量値又はそれらの折れ線近似があらかじめ記憶され、測定誤差等を考慮して記憶されたそれぞれの流量値に最適な流量測定範囲が設定されている。実施例の演算部80では、第1圧力検知部20が検知した圧力値と第2圧力検知部25が検知した圧力値に基づいて差圧を演算し、あらかじめ記憶されている差圧と流量値の関係の折れ線近似から流量測定が行われる。なお、可変オリフィス部32の流路面積は、閉鎖時から開放(全開)時の範囲内で任意の値が段階的に設定される。   The calculation unit 80 of the differential pressure type flow rate measuring apparatus 10B stores in advance a differential pressure value corresponding to the flow path area of the variable orifice unit 32, a flow rate value determined based on the differential pressure, or a polygonal line approximation thereof. The optimum flow rate measurement range is set for each flow rate value stored in consideration of measurement errors and the like. In the calculation unit 80 of the embodiment, the differential pressure is calculated based on the pressure value detected by the first pressure detection unit 20 and the pressure value detected by the second pressure detection unit 25, and the differential pressure and flow rate value stored in advance are calculated. The flow rate is measured from the line approximation of the relationship. Note that the flow area of the variable orifice portion 32 is set to an arbitrary value in a stepwise manner within a range from closing to opening (full opening).

そこで、差圧式流量測定装置10Bの作用について、仮に、可変オリフィス部32により測定可能な流量を、開放(全開)状態から閉鎖状態までの範囲で、開放状態(ニードル弁体65Bは後退位置)の50〜100mL/min、中間状態(ニードル弁体65Bは中間位置)の20〜50mL/min、最小状態(ニードル弁体65Bは前進位置)の5〜20mL/minの3段階に設定したとして説明する。   Therefore, regarding the operation of the differential pressure type flow rate measuring device 10B, it is assumed that the flow rate measurable by the variable orifice portion 32 is in an open state (needle valve body 65B is in a retracted position) in a range from an open (fully open) state to a closed state. The description will be made assuming that the setting is made in three stages of 50 to 100 mL / min, 20 to 50 mL / min in the intermediate state (needle valve body 65B is in the intermediate position), and 5 to 20 mL / min in the minimum state (needle valve body 65B is the forward position). .

まず、100mL/minの被計測流体を流通させる場合、演算部80の操作に基づいてニードル弁装置60Bのニードル弁体65Bが開放(全開)位置に作動される。その際、可変オリフィス部32の開放状態に基づく差圧の値と流量値の折れ線近似が選択され、対応する流量測定範囲が設定される。   First, when a fluid to be measured of 100 mL / min is circulated, the needle valve body 65B of the needle valve device 60B is operated to the open (fully open) position based on the operation of the calculation unit 80. At that time, a polyline approximation of the differential pressure value and the flow rate value based on the open state of the variable orifice portion 32 is selected, and a corresponding flow rate measurement range is set.

また、50mL/minの被計測流体を流通させる場合、演算部80の操作に基づいてニードル弁装置60Bのニードル弁体65Bが中間位置に作動される。その際、可変オリフィス部32の中間状態に基づく差圧の値と流量値の折れ線近似が選択され、対応する流量測定範囲が設定される。   Further, when the fluid to be measured of 50 mL / min is circulated, the needle valve body 65B of the needle valve device 60B is operated to the intermediate position based on the operation of the calculation unit 80. At that time, a polyline approximation of the differential pressure value and the flow rate value based on the intermediate state of the variable orifice portion 32 is selected, and the corresponding flow rate measurement range is set.

また、20mL/minの被計測流体を流通させる場合、演算部80の操作に基づいてニードル弁装置60Bのニードル弁体65Bが前進位置に作動される。その際、可変オリフィス部32の最小状態に基づく差圧の値と流量値の折れ線近似が選択され、対応する流量測定範囲が設定される。   Further, when the fluid to be measured of 20 mL / min is circulated, the needle valve body 65B of the needle valve device 60B is actuated to the advance position based on the operation of the calculation unit 80. At that time, a polyline approximation of the differential pressure value and the flow rate value based on the minimum state of the variable orifice portion 32 is selected, and a corresponding flow rate measurement range is set.

よって、本発明の差圧式流量測定装置10Bでは、異なる流量の被計測流体を切替選択して流通させる場合であっても、単一の装置でありながら目的とする各流量に対応した測定範囲を容易に設定することができる。   Therefore, in the differential pressure type flow rate measuring device 10B of the present invention, even if the fluid to be measured having different flow rates is switched and circulated, a measurement range corresponding to each target flow rate can be obtained even though it is a single device. It can be set easily.

なお、差圧式流量測定装置10Bでは、ニードル弁装置60Bにおいて、図5に示す多段形状に形成されたニードル弁体65Cを用いることができる。このニードル弁体65Cは、多段形状としたことにより、弁体65C部分が熱変形の影響を受けにくくなるという利点がある。   In the differential pressure type flow rate measuring device 10B, the needle valve body 65C formed in a multistage shape shown in FIG. 5 can be used in the needle valve device 60B. Since the needle valve body 65C has a multistage shape, there is an advantage that the valve body 65C portion is less susceptible to thermal deformation.

実施例のニードル弁体65Cは、流出口64のより小径の円筒状に形成された第1弁本体68aと、第1弁本体68aの前進側に設けられたさらに小径の円筒状に形成された第2弁本体68bとによって多段形状に構成されている。このニードル弁体65Cでは、流出口64に対する弁本体68a,68bの挿入状態に応じて、流出口64の開口量を容易に可変させることができる。すなわち、流出口64にニードル弁体65Cが挿入されていない状態(図示せず)では、流出口64の開口量が全開(開放)状態となる。図5(a)に示すように、第2弁本体68bが挿入された状態では、流出口64の開口量が全開状態よりも小さい状態(中間状態)となる。図5(b)に示すように、第1弁体68aが挿入された状態では、流出口64の開口量が第2弁本体68bを挿入した状態よりも小さい状態(最小状態)となる。   The needle valve body 65C of the embodiment is formed in a first valve main body 68a formed in a smaller diameter cylindrical shape of the outflow port 64, and in a further smaller diameter cylindrical shape provided on the forward side of the first valve main body 68a. The second valve body 68b has a multi-stage shape. In the needle valve body 65C, the opening amount of the outflow port 64 can be easily varied according to the insertion state of the valve bodies 68a and 68b with respect to the outflow port 64. That is, when the needle valve body 65C is not inserted into the outflow port 64 (not shown), the opening amount of the outflow port 64 is fully opened (opened). As shown to Fig.5 (a), in the state in which the 2nd valve main body 68b was inserted, the opening amount of the outflow port 64 will be in a state (intermediate state) smaller than a full open state. As shown in FIG. 5B, in the state where the first valve body 68a is inserted, the opening amount of the outlet 64 is smaller than the state where the second valve body 68b is inserted (minimum state).

以上図示し説明したように、本発明の差圧式流量測定装置10A,10Bは、いずれも一つの装置でありながら被計測流体の清浄度に影響を与えることなく、簡便に複数の測定範囲の異なる流体流量を測定することができる。そのため、例えば、半導体製造分野において、必要とされる個々の処理毎に異なる測定範囲の流量測定装置を使い分ける必要がなくなり、設備負担を軽減できる。 Above illustrated as described, the differential pressure type flow measuring device 10A of the present invention, the 10B, both without affecting cleanliness of the fluid to be measured, yet one device, conveniently a plurality of measurement range Different fluid flow rates can be measured. Therefore, for example, in the field of semiconductor manufacturing, there is no need to use different flow rate measuring devices with different measurement ranges for each required process, and the equipment burden can be reduced.

また、医療機器において、人工透析機等に当該差圧式流量測定装置を内蔵すれば、透析を受ける患者が乳幼児、子供、大人等の体格差によって透析機内を透過させる血液量が異なる場合であっても、各患者毎に透析機を使い分ける必要がなくなり、作業効率や設備負担等を大幅に改善することができる。   Also, in medical equipment, if the differential pressure type flow rate measuring device is built into an artificial dialysis machine, etc., the patient undergoing dialysis may have different blood volume permeating through the dialysis machine due to differences in the size of infants, children, adults, etc. However, it is not necessary to use a different dialysis machine for each patient, and the work efficiency and equipment burden can be greatly improved.

さらに、演算部により開閉弁部の開閉動作を制御することにより、圧力損失部の切り替え操作を自動的に行うことができ、測定する流量に対応した流量測定範囲の設定を簡便かつ効率的に行うことができる。   Furthermore, by controlling the opening / closing operation of the opening / closing valve section by the calculation section, the switching operation of the pressure loss section can be automatically performed, and the setting of the flow rate measurement range corresponding to the flow rate to be measured is performed easily and efficiently. be able to.

なお、本発明の差圧式流量測定装置は、前述の実施例のみに限定されるものではなく、発明の趣旨を逸脱しない範囲において構成の一部を適宜に変更して実施することができる。例えば、圧力損失部として着脱可能なオリフィス部を用いたが、圧力損失部としては、流路面積を絞って差圧を生じさせることが可能なものであればどのような構成であってもよく、例えば、流路を公知のベンチュリ管構造とする等、適宜の構成を採用することができる。   The differential pressure type flow rate measuring device of the present invention is not limited to the above-described embodiments, and can be implemented by appropriately changing a part of the configuration without departing from the spirit of the invention. For example, a removable orifice part was used as the pressure loss part, but the pressure loss part may have any configuration as long as it can generate a differential pressure by reducing the channel area. For example, an appropriate configuration such as a known venturi tube structure can be adopted.

本発明の第1実施例に係る差圧式流量測定装置の縦断面図である。1 is a longitudinal sectional view of a differential pressure type flow rate measuring apparatus according to a first embodiment of the present invention. ポペット弁体を有する開閉弁部の縦断面図である。It is a longitudinal cross-sectional view of the on-off valve part which has a poppet valve body. 第2実施例に係る差圧式流量測定装置の縦断面図である。It is a longitudinal cross-sectional view of the differential pressure type flow measuring device concerning a 2nd example. ニードル弁体を有する開閉弁部の縦断面図である。It is a longitudinal cross-sectional view of the on-off valve part which has a needle valve body. 多段形状に形成されたニードル弁体の要部断面図である。It is principal part sectional drawing of the needle valve body formed in the multistage shape.

10A,10 差圧式流量測定装置
20 第1圧力検知部
25 第2圧力検知部
30 圧力損失部
40 接続流路部
50 開閉弁部
10A, 10 B difference pressure type flow measuring device 20 first pressure sensing portion 25 and the second pressure sensing portion 30 the pressure loss portion 40 connecting flow path 50 on-off valve unit

Claims (3)

被計測流体の流体圧力を検知する第1圧力検知部と第2圧力検知部とが圧力損失部を介して配置された差圧式流量測定装置において、
前記第1圧力検知部と前記第2圧力検知部とが被計測流体に対してダイヤフラムからなる保護膜を介して配置されており、
前記第1圧力検知部と前記第2圧力検知部との間を単一の流路で接続する接続流路部と、
前記接続流路部に配置され、ダイヤフラム部と一体に形成されるとともに貫通孔が形成されたポペット弁体を有し、該ポペット弁体が弁室内で前記圧力損失部を有する流出口に対して進退して開閉制御されるとともに、前記流出口の閉鎖時に前記貫通孔を介して前記弁室への流入側流路と前記弁室からの流出側流路とを連通させて、被計測流体が前記貫通孔を流通する際に前記流入側流路と前記流出側流路との間に差圧を生じさせる開閉弁部と、
前記開閉弁部の開閉動作を制御する演算部と
を備えたことを特徴とする差圧式流量測定装置。
In the differential pressure type flow rate measuring device in which the first pressure detection unit and the second pressure detection unit that detect the fluid pressure of the fluid to be measured are arranged via the pressure loss unit,
The first pressure detection unit and the second pressure detection unit are arranged via a protective film made of a diaphragm with respect to the fluid to be measured,
A connection flow path section that connects the first pressure detection section and the second pressure detection section with a single flow path;
The poppet valve body is disposed in the connection flow path portion, is formed integrally with the diaphragm portion and has a through hole formed therein, and the poppet valve body has a pressure loss portion in the valve chamber. The fluid to be measured is controlled by opening and closing and opening and closing, and communicating the inflow side flow path to the valve chamber and the outflow side flow path from the valve chamber through the through-hole when the outflow port is closed. An on- off valve portion for generating a differential pressure between the inflow side flow path and the outflow side flow path when flowing through the through hole ;
A differential pressure type flow rate measuring apparatus comprising: an arithmetic unit that controls an opening / closing operation of the on-off valve unit.
被計測流体の流体圧力を検知する第1圧力検知部と第2圧力検知部とが圧力損失部を介して配置された差圧式流量測定装置において、
前記第1圧力検知部と前記第2圧力検知部とが被計測流体に対してダイヤフラムからなる保護膜を介して配置されており、
前記第1圧力検知部と前記第2圧力検知部との間を単一の流路で接続する接続流路部と、
前記接続流路部に配置され、ダイヤフラム部と一体に形成されるとともに多段形状に形成されたニードル弁体を有し、該ニードル弁体が弁室内で前記圧力損失部を有する流出口に対して進退して開閉制御されるとともに、前記ニードル弁体の前記流出口に対する挿入状態に応じて前記流出口の開口量を可変させて、被計測流体が前記流出口を流通する際に前記弁室への流入側流路と前記弁室からの流出側流路との間に差圧を生じさせる開閉弁部と、
前記開閉弁部の開閉動作を制御する演算部と
を備えたことを特徴とする差圧式流量測定装置。
In the differential pressure type flow rate measuring device in which the first pressure detection unit and the second pressure detection unit that detect the fluid pressure of the fluid to be measured are arranged via the pressure loss unit,
The first pressure detection unit and the second pressure detection unit are arranged via a protective film made of a diaphragm with respect to the fluid to be measured,
A connection flow path section that connects the first pressure detection section and the second pressure detection section with a single flow path;
A needle valve body that is disposed in the connection flow path portion, is formed integrally with the diaphragm portion and is formed in a multistage shape, and the needle valve body has a pressure loss portion in the valve chamber. The opening and closing of the needle valve body is controlled to advance and retreat, and the opening amount of the outlet is varied according to the insertion state of the needle valve body with respect to the outlet, so that the fluid to be measured flows to the valve chamber when flowing through the outlet. An on- off valve portion that generates a differential pressure between the inflow side flow path of the gas flow and the outflow side flow path from the valve chamber ;
A differential pressure type flow rate measuring apparatus comprising: an arithmetic unit that controls an opening / closing operation of the on-off valve unit.
前記第1圧力検知部と、前記第2圧力検知部と、前記接続流路部と、前記開閉弁部のいずれもが単一の本体ブロック内に配置されている請求項1又は2のいずれか1項に記載の差圧式流量測定装置。 Said first pressure sensing portion, and the second pressure detecting portion, and the connecting flow path, either one of claims 1 or 2 are arranged in a single body block of the on-off valve unit 2. The differential pressure type flow rate measuring device according to item 1.
JP2008244502A 2008-09-24 2008-09-24 Differential pressure type flow measuring device Expired - Fee Related JP5357478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244502A JP5357478B2 (en) 2008-09-24 2008-09-24 Differential pressure type flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244502A JP5357478B2 (en) 2008-09-24 2008-09-24 Differential pressure type flow measuring device

Publications (2)

Publication Number Publication Date
JP2010078365A JP2010078365A (en) 2010-04-08
JP5357478B2 true JP5357478B2 (en) 2013-12-04

Family

ID=42209005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244502A Expired - Fee Related JP5357478B2 (en) 2008-09-24 2008-09-24 Differential pressure type flow measuring device

Country Status (1)

Country Link
JP (1) JP5357478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398575B2 (en) 2020-10-19 2023-12-14 株式会社パイオラックス Flow area control valve for fuel tank

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257534A (en) * 1996-03-26 1997-10-03 Hitachi Constr Mach Co Ltd Flow measuring device
JP2000213660A (en) * 1999-01-22 2000-08-02 Samsung Electronics Co Ltd Electronic expansion valve for refrigerating cycle
JP2005114655A (en) * 2003-10-10 2005-04-28 Komatsu Seiki Kk Flowmeter
JP4856905B2 (en) * 2005-06-27 2012-01-18 国立大学法人東北大学 Flow rate variable type flow control device

Also Published As

Publication number Publication date
JP2010078365A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
KR101028213B1 (en) Flow rate control device
KR100800088B1 (en) Chemically inert flow control with non-contaminating body
US7699070B2 (en) Shutoff valve apparatus and mass flow control device with built-in valve
JP5079401B2 (en) Pressure sensor, differential pressure type flow meter and flow controller
JP2009115271A (en) Flow rate measurement valve
JP4071104B2 (en) Variable pressure adjustment flow control device
CN108027618A (en) Pressure flow-rate controller and its method for detecting abnormality
JP4927683B2 (en) Flow control valve
US20050145278A1 (en) Flow control valve and flow control device
CN105020449B (en) The unrelated formula control valve of pressure
US8205635B2 (en) Flowmeter and flow-rate controller
TW201814254A (en) Flow rate control device, method of calibrating flow rate of flow rate control device, flow rate measuring device, and method of measuring flow rate using flow rate measuring device
KR20150069510A (en) Flow control valve and flow control system using same
JPWO2018070464A1 (en) Fluid control device
JP2013232101A (en) Gas distributary supply device for semiconductor manufacturing device
US9500503B2 (en) Differential pressure type flowmeter and flow controller provided with the same
JP2008286812A (en) Differential flow meter
JP5357478B2 (en) Differential pressure type flow measuring device
JPWO2016035558A1 (en) Mass flow controller
US20220197316A1 (en) Flow rate control device
JP5213583B2 (en) Flow measuring device
JP5213582B2 (en) Flow measuring device
JP2006078466A (en) Flowmeter and flowrate control system using the same
KR20140144041A (en) Method for controlling flow rate of liquid or gas
JP2010112923A (en) Differential-pressure type flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees