JP5201957B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP5201957B2
JP5201957B2 JP2007302125A JP2007302125A JP5201957B2 JP 5201957 B2 JP5201957 B2 JP 5201957B2 JP 2007302125 A JP2007302125 A JP 2007302125A JP 2007302125 A JP2007302125 A JP 2007302125A JP 5201957 B2 JP5201957 B2 JP 5201957B2
Authority
JP
Japan
Prior art keywords
optical system
image
imaging
optical
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007302125A
Other languages
Japanese (ja)
Other versions
JP2009128527A (en
Inventor
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007302125A priority Critical patent/JP5201957B2/en
Publication of JP2009128527A publication Critical patent/JP2009128527A/en
Application granted granted Critical
Publication of JP5201957B2 publication Critical patent/JP5201957B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、監視用のデジタルカメラやビデオカメラ等に適した撮影光学系を実現する場合に適用される撮像装置に関する。 The present invention relates to an imaging apparatus that is applied to a case of realizing an imaging optical system suitable for a digital camera, a video camera or the like for monitoring.

従来、例えば、監視用のデジタルカメラやビデオカメラ等の撮影装置において、目的(撮影対象)となる被写体を探索しその詳細画像を得るためには、まず、超広角レンズもしくは魚眼レンズを用いて広域な画界を撮影する。そして、その中から目的の被写体を判別した後に詳細画像を得る方法が一般的である。   2. Description of the Related Art Conventionally, for example, in a photographing apparatus such as a digital camera or a video camera for monitoring, in order to search for a target object (photographing target) and obtain a detailed image thereof, first, a wide area using a super wide angle lens or a fisheye lens is used. Shoot the world. A method of obtaining a detailed image after discriminating a target subject from among them is generally used.

上記のような、被写体の画像の取得方法としては、次のような方法が考えられる。
(1)電子ズームにより目的被写体の拡大画像を得る方法
(2)光学系をズームレンズとして構成し、望遠側に光学系(ズームレンズ)を変倍させることで目的被写体の画像を得る方法
(3)複数の撮影系を用いると共に一方を広角撮影系とし他方を望遠撮影系として、目的被写体の取得画像を切り替える方法
また、光学系に配置した反射部材を駆動することで、撮像素子に導かれる被写体光を切り替える方法が提案されている(例えば、特許文献1、特許文献2、特許文献3参照)。また、凸面形状の反射部材の周辺部における反射像を利用して被写体の全周を観察し、中心部を透過構造として別の光学系にて他の被写体像を観察するような方法が提案されている(例えば、特許文献4参照)。
特開平9−297350号公報 特開2003−9104号公報 特開2006−81089号公報 特開2006−139234号公報
As a method for acquiring the subject image as described above, the following method can be considered.
(1) Method for obtaining an enlarged image of a target subject by electronic zoom (2) Method for obtaining an image of a target subject by configuring the optical system as a zoom lens and changing the magnification of the optical system (zoom lens) on the telephoto side (3 ) A method of switching a captured image of a target subject using a plurality of photographing systems and one of which is a wide-angle photographing system and the other is a telephoto photographing system. Further, a subject guided to an image sensor by driving a reflecting member disposed in an optical system. Methods for switching light have been proposed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). In addition, a method has been proposed in which the entire circumference of a subject is observed using a reflection image at the periphery of a convex reflecting member, and another subject image is observed with another optical system with the central portion as a transmission structure. (For example, see Patent Document 4).
JP-A-9-297350 JP 2003-9104 A JP 2006-81089 A JP 2006-139234 A

しかしながら、上述した従来の画像の取得方法には以下のような問題点があった。   However, the above-described conventional image acquisition method has the following problems.

上記(1)の方法では、画像の一部を取り出して目的被写体の拡大画像を得るため、高繊細な画像を得るためには高画素を有する撮像素子を用いる必要があり、同時に撮影光学系の性能要求が厳しくなる。その結果、コスト高になる。   In the above method (1), in order to obtain a magnified image of the target subject by extracting a part of the image, it is necessary to use an image sensor having high pixels in order to obtain a high-definition image. Performance requirements become stricter. As a result, the cost increases.

上記(2)の方法では、目的被写体が動体であった場合で撮影者がズーミング中に被写体を見てしまった場合には、再び広角方向にズーミングを行う必要が生じる。そのため、素早い被写体観察を行うことができない。また、広角から望遠を包括するような光学系の実現は困難となってくる。   In the method (2), when the target subject is a moving object and the photographer views the subject during zooming, it is necessary to perform zooming again in the wide-angle direction. Therefore, quick subject observation cannot be performed. In addition, it is difficult to realize an optical system that covers a wide angle and a telephoto range.

上記(3)の方法では、複数の撮影系を用いるため、複数のカメラユニットを使用しなくてはならない。そのため、撮影に用いる装置が大型化すると同時に、コスト高になる。また、上記(3)の方法では、1つの撮像素子を用いて撮影光学系の一部を切り替えて、あたかも複数の撮影光学系で撮影したような特性を得るためには、撮影光学系中において撮影光学系の一部を挿入/退避させる機構が一般的である。従来は、撮影光学系の一部を入れ替える機構は2焦点方式の銀塩コンパクトカメラで多く使用されていた。しかし、撮影光学系の一部を入れ替える機構は大掛かりな構造になってしまうという問題がある。   In the method (3), since a plurality of photographing systems are used, a plurality of camera units must be used. This increases the size of the apparatus used for photographing and increases the cost. Further, in the method (3), in order to obtain a characteristic as if images were taken with a plurality of imaging optical systems by switching a part of the imaging optical system using one image sensor, A mechanism for inserting / withdrawing a part of the photographing optical system is generally used. Conventionally, a mechanism for replacing a part of the photographing optical system is often used in a two-focal type silver salt compact camera. However, there is a problem that a mechanism for replacing a part of the photographing optical system has a large structure.

また、上記特許文献1〜3に記載された技術は、大きな撮影画角変化を得にくい構成であり、撮影対象となる目的被写体の方向が大きく変化してしまうものである。そのため、目的被写体を検知することと詳細情報を短時間に取得することが困難になる。   In addition, the techniques described in Patent Documents 1 to 3 have a configuration in which it is difficult to obtain a large change in the shooting angle of view, and the direction of the target subject to be shot changes greatly. Therefore, it becomes difficult to detect the target subject and acquire detailed information in a short time.

また、上記特許文献4に記載された技術は、面精度のよい大型の反射部材の製造は困難でありコストがかかるという問題がある。さらに、上記特許文献4には、実施される光学構成の数値データが提示されていないため、具体的な実現性が不明確なものである。   In addition, the technique described in Patent Document 4 has a problem that it is difficult and costly to manufacture a large reflective member with good surface accuracy. Furthermore, since the numerical data of the optical configuration to be implemented is not presented in Patent Document 4, the specific feasibility is unclear.

本発明は上記従来の問題点に鑑み、次のような撮像装置を提供することを目的とする。即ち、取り込まれた複数の被写体像を同時に撮影できるようにして、広角から望遠を包括するような光学系を小型且つ低コストで実現し、動体撮影時でも素早い被写体観察を行うことができる撮像装置を提供する。 The present invention is the light of the conventional problems, and an object thereof is to provide a following imaging device. That is, to be able to shoot a plurality of subject images captured simultaneously, the optical system as to encompass telephoto from wide-angle to achieve a small size and low cost, that can be performed quickly subject observation even when the moving object photography shooting An imaging device is provided.

上記目的を達成するため、本発明の撮像装置は、光学装置と、該光学装置により結像された被写体像を電気信号に光電変換する撮像手段とを有する撮像装置であって、前記光学装置は、負の屈折力を有する第1の被写体像を撮像するための第1の光学系と、前記第1の光学系の少なくとも一部と共通する光学系を有し、第の被写体像を撮像するための第2の光学系と、前記共通する光学系に設けられた半透過または部分反射特性の反射部材と、前記第1の光学系における被写体像の中央部を含む一部を遮光する第1の遮光手段とを有し、前記第2の光学系は、正レンズと負レンズを有し、前記第1の光学系よりも長焦点であり、前記第2の光学系は、前記撮像手段における前記第1の光学系の遮光領域に対応する領域に前記反射部材を介して前記第の被写体像を結像させると共に、前記撮像手段の画素ピッチを「L」、前記第1の光学系と前記第2の光学系のうちNA値が大きい方の光学系のNA値を「N」、許容差分幅を「ΔIP」としたとき、以下の条件式
ΔIP≧10・L/2・N
を満たすことを特徴とする。
In order to achieve the above object, an imaging apparatus according to the present invention is an imaging apparatus having an optical device and imaging means for photoelectrically converting a subject image formed by the optical device into an electrical signal, A first optical system for capturing a first subject image having negative refractive power and an optical system common to at least a part of the first optical system, and capturing a second subject image A second optical system for transmitting the light, a semi-transmissive or partially reflective reflecting member provided in the common optical system, and a first part that shields a part of the first optical system including a central portion of the subject image. The second optical system includes a positive lens and a negative lens, has a longer focal point than the first optical system, and the second optical system includes the imaging unit. through the reflecting member in a region corresponding to the light shielding region of the first optical system in With imaging the second object image, "L" and the pixel pitch of the imaging means, the NA value of an optical system towards the NA value is large among the first of the second optical system and the optical system When “N” and the allowable difference width is “ΔIP”, the following conditional expression ΔIP ≧ 10 · L / 2 · N
It is characterized by satisfying.

本発明によれば、第1の光学系と第2の光学系からそれぞれ取り込まれた被写体像を同時に撮影することが可能になる。これにより、広角から望遠を包括するような光学系を小型且つ低コストで実現することができ、動体撮影時でも素早い被写体観察を行うことができる。   According to the present invention, it is possible to simultaneously photograph subject images respectively taken from the first optical system and the second optical system. This makes it possible to realize an optical system that covers a wide angle and a telephoto at a small size and at a low cost, and allows a quick subject observation even during moving body shooting.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施の形態]
第1の実施の形態では、広角な画角を得る対物光学系に屈折光学系を用いた構成の光学装置について説明する。
[First Embodiment]
In the first embodiment, an optical device having a configuration in which a refractive optical system is used as an objective optical system for obtaining a wide angle of view will be described.

図1は、本発明の第1の実施の形態に係わる光学装置の概略構成を示す断面図である。   FIG. 1 is a cross-sectional view showing a schematic configuration of an optical device according to a first embodiment of the present invention.

図1に示すように、この光学装置は、被写体像を電気信号に光電変換する撮像素子IPを有し、その光軸方向に赤外吸収フィルターやローパスフィルター等のフィルター群10を介して、共通光学系11、共通反射部材12が配置されている。さらに、共通反射部材12を介して、広角な画角を得るために屈折光学系で構成した第1対物光学系15と、狭角な画角を得るための第2対物光学系13とが配置されている。   As shown in FIG. 1, this optical apparatus has an image sensor IP that photoelectrically converts a subject image into an electric signal, and is shared in the optical axis direction via a filter group 10 such as an infrared absorption filter or a low-pass filter. An optical system 11 and a common reflecting member 12 are arranged. Furthermore, a first objective optical system 15 configured with a refractive optical system for obtaining a wide angle of view and a second objective optical system 13 for obtaining a narrow angle of view are disposed via the common reflecting member 12. Has been.

具体的には、共通反射部材12は、第1対物光学系15と第2対物光学系13の結像面側(被写体像の結像面側)に、それぞれの対物光学系15,13からの入射光線を共通光学系11に共に入射がなされるような反射角度で配置されている。そして、共通反射部材12は、これら2つの対物光学系15、13からのそれぞれの入射光において、一方の入射光を反射させて光路の偏向を行い、他方の入射光は透過させる作用を有する。つまり、共通反射部材12は、半透過または部分反射特性を有する。   Specifically, the common reflecting member 12 is provided on the imaging surface side of the first objective optical system 15 and the second objective optical system 13 (the imaging surface side of the subject image) from each of the objective optical systems 15 and 13. The incident light beams are arranged at a reflection angle such that the incident light beams are incident on the common optical system 11 together. The common reflecting member 12 has a function of reflecting one of the incident lights from the two objective optical systems 15 and 13, deflecting the optical path, and transmitting the other incident light. That is, the common reflection member 12 has semi-transmission or partial reflection characteristics.

そして、共通反射部材12の結像面側には、2つの対物光学系15,13からの複数入射光線を共に結像を行わせる作用を有する共通光学系11が配置され、その結像面上に撮像素子IPが配置されている。   On the imaging surface side of the common reflecting member 12, a common optical system 11 having an effect of imaging a plurality of incident light beams from the two objective optical systems 15 and 13 is disposed. The image pickup device IP is arranged in

また、第1対物光学系15を通過して結象される像の大きさ(結像領域:イメージサイズ)よりも、第2対物光学系13を通過して結象される像のイメージサイズが小さくなるように、第2対物光学系13への被写体画角を規制するように入射開口規制を行っている。   Further, the image size of the image formed through the second objective optical system 13 is larger than the size of the image formed through the first objective optical system 15 (imaging region: image size). The entrance aperture is regulated so as to regulate the object angle of view to the second objective optical system 13 so as to be small.

しかしながら、この状態においては、第2対物光学系13を通過した被写体像(第2の被写体)と第1対物光学系15を通過した被写体像(第1の被写体)とは、互いの像が重複して(被って)結像してしまうため、その形成像を鮮明に捉えることが困難である。 However, in this state, the subject image passing through the second objective optical system 13 (second subject) and the subject image passing through the first objective optical system 15 (first subject) overlap each other. As a result, it is difficult to capture the formed image clearly.

そこで、第1対物光学系15中に光軸の中心部分を遮光するように遮光部材16(第1の遮光手段)の配置を行い第1対物光学系15で取り込まれる形成像中に遮光される部分を生じさせる。その遮光部分に第2対物光学系13から取り込まれる被写体像を結像させることを行えば前記した形成像の被りを低減させることができることとなる。このような構成により、それぞれの対物光学系15,13から取り込まれる複数の被写体像を個々に分離して観察することが容易となる。 Therefore, the light shielding member 16 (first light shielding means) is disposed in the first objective optical system 15 so as to shield the central portion of the optical axis, and the first objective optical system 15 blocks the light. Give part. And thus capable of reducing the fog of forming image by the be performed to image the object scene body image taken in from the second objective optical system 13 to the light shielding portion. With such a configuration, it becomes easy to individually observe and observe a plurality of subject images captured from the objective optical systems 15 and 13.

この際、より鮮明な画像分離を行うためには、第2対物光学系13の光入射側に、イメージサイズを規制するような開口形状を持った遮光部材14(第2の遮光手段)を配置する。そして、その規定されるイメージサイズ領域の遮光を行うように遮光部材16の大きさや形状を決定する。   At this time, in order to perform clearer image separation, a light shielding member 14 (second light shielding means) having an opening shape that restricts the image size is disposed on the light incident side of the second objective optical system 13. To do. Then, the size and shape of the light shielding member 16 are determined so that the prescribed image size region is shielded from light.

図2は、前述した共通反射部材12として用いることが可能な部分反射ミラーの構成を示す概念図である。   FIG. 2 is a conceptual diagram showing a configuration of a partial reflection mirror that can be used as the common reflection member 12 described above.

それぞれ第1及び第2対物光学系15,13からの入射光は、部分反射ミラーの透過領域A1及び反射領域A2に応じて、反射、遮光、透過されるようになっている。共通反射部材12として、このような構成の部分反射ミラーを用いれば、半透過ミラーを用いた際に生じる減光作用を起こすことがなく、暗い被写体に対しても良好な光学特性を得ることができる。   Incident light from the first and second objective optical systems 15 and 13 is reflected, shielded, and transmitted according to the transmission region A1 and the reflection region A2 of the partial reflection mirror, respectively. If the partial reflection mirror having such a configuration is used as the common reflection member 12, the light reduction effect that occurs when the semi-transmission mirror is used does not occur, and good optical characteristics can be obtained even for a dark subject. it can.

図3は、上記した光学装置に関して、例えば長方型の撮像素子IPに結像される形成像の概略形状を示す像面図である。   FIG. 3 is an image view showing a schematic shape of a formed image formed on, for example, a rectangular image pickup device IP in the optical device described above.

図3中では有効撮像範囲B0中に、広角な画角撮影作用を有した第1対物光学系15により撮像される像範囲B1の中心部分において、狭角な画角撮影作用を有した第2対物光学系13によって取り込まれる像範囲B2の形成を行っている。このように、第2対物光学系13は、前述した遮光部材16を用いて形成像を遮光した部分に対して、形成像のイメージサイズがその遮光領域と近似になるような光学構成となっている。   In FIG. 3, in the effective imaging range B0, the second portion having a narrow angle of view photographing action in the central portion of the image range B1 picked up by the first objective optical system 15 having a wide angle of view photographing function. The image range B2 captured by the objective optical system 13 is formed. As described above, the second objective optical system 13 has an optical configuration in which the image size of the formed image approximates the light shielding region with respect to the portion where the formed image is shielded by using the light shielding member 16 described above. Yes.

これにより、第1対物光学系15により取り込まれる画像と、第2対物光学系13により取り込まれる画像とに対応したそれぞれの形成像の干渉が低減し、取り込まれた複数の被写体像を同時に撮影することが可能となる。   As a result, the interference between the formed images corresponding to the image captured by the first objective optical system 15 and the image captured by the second objective optical system 13 is reduced, and a plurality of captured subject images are photographed simultaneously. It becomes possible.

図4は、図1に示した光学装置の第1の具象例を示す光路図である。   FIG. 4 is an optical path diagram illustrating a first concrete example of the optical device illustrated in FIG. 1.

この光学装置においては、第1対物光学系15−1に強い負の屈折作用を与えて大きな負の像面歪曲作用を起こしている。他方、第2対物光学系13−1は、正レンズ群と負レンズ群を組み合わせて配置することにより歪曲収差を補正しており、第1対物光学系15−1よりも長焦点になるように構成されている。第1対物光学系15−1及び第2対物光学系13−1は共に、共通光学系11−1を通過してほぼ光軸上同一の位置に結像を行うように設定されている。   In this optical apparatus, a strong negative refraction action is given to the first objective optical system 15-1 to cause a large negative image surface distortion action. On the other hand, the second objective optical system 13-1 corrects distortion by arranging a combination of a positive lens group and a negative lens group so that the focal length is longer than that of the first objective optical system 15-1. It is configured. Both the first objective optical system 15-1 and the second objective optical system 13-1 are set so as to pass through the common optical system 11-1 and form images at substantially the same position on the optical axis.

このような構成において、同一な被写体を複数の対物光学系で撮影を行う場合は、それぞれの対物光学系において、その光軸上での最良結像位置の差異を、画像入力媒体を撮像素子とした場合には以下の関係を満たすと良い。   In such a configuration, when the same subject is photographed with a plurality of objective optical systems, the difference in the best imaging position on the optical axis in each objective optical system is determined. If so, the following relationship should be satisfied.

ΔIP≧10・L/2・N
L:撮像素子の画素ピッチ
N:NA値が大きい方の光学系のNA値
ΔIP:許容差分幅
この条件は、複数形成像を同時に撮像素子IPに鮮明に取り込むための条件であり、この条件式を外れると各形成像の取り込みごとにピント調整作動を行わなければならなくなってくる。よって、複数形成像を共に尖鋭に取り込むためには、各形成画像域をそのピントが合ったタイミングでそれぞれ分割して取り込まなければならなくなってしまい、結果として画像拾得の処理時間がかかってしまうこととなる。
ΔIP ≧ 10 · L / 2 · N
L: Pixel pitch of the image sensor N: NA value of the optical system having a larger NA value ΔIP: Allowable difference width This condition is a condition for clearly capturing a plurality of formed images simultaneously in the image sensor IP. If it is out of the range, the focus adjustment operation must be performed every time each formed image is captured. Therefore, in order to capture a plurality of formed images sharply, it is necessary to divide each formed image area at a time when the image is in focus, and as a result, it takes a processing time for image acquisition. It becomes.

また、各対物光学系が独立してそれぞれ異なる物体距離の被写体を撮影する場合においては、共通光学系11−1内に、光軸方向へ移動を行うフォーカスレンズ群の配置を行う。そして、各対物光学系の内で目的とする形成像が最良になるようにフォーカスレンズ群の駆動を行うのが良い。また、各対物光学系の形成像を同時に最良にするために、それぞれの対物光学系中にフォーカスレンズ群を配置しても良い。   In addition, when each objective optical system independently photographs subjects with different object distances, a focus lens group that moves in the optical axis direction is arranged in the common optical system 11-1. Then, it is preferable to drive the focus lens group so that the target formed image is the best in each objective optical system. Further, in order to simultaneously optimize the formed image of each objective optical system, a focus lens group may be arranged in each objective optical system.

ピント調整を自動的に行うためには、撮像素子IP上に結像される形成像のコントラスト評価を用いたオートフォーカス方式を採るのが良い。各対物光学系の撮影軸に合わせたアクティブ方式の外部オートフォーカス機構をそれぞれの光学系に独立して用いても良い。   In order to automatically perform the focus adjustment, it is preferable to adopt an autofocus method using a contrast evaluation of a formed image formed on the image sensor IP. An active external autofocus mechanism that matches the imaging axis of each objective optical system may be used independently for each optical system.

図5は、図1に示した光学装置の第2の具象例を示す光路図である。   FIG. 5 is an optical path diagram showing a second concrete example of the optical device shown in FIG.

この光学装置は、360°の全周方向を観察しなくとも良い場合を想定して、広角な第1対物光学系15−1内の遮光部材16をその形成像の半分を遮光するようにして、180°方向を観察するようにした構成したものである。   In this optical apparatus, assuming that it is not necessary to observe the entire 360 ° direction, the light shielding member 16 in the wide-angle first objective optical system 15-1 is shielded from half of the formed image. , 180 ° direction is observed.

これに伴って望遠側の第2対物光学系13−2も上記した遮光部分に像を形成して、第1対物光学系15−1の形成像との被りを減少するように遮光部材の配置を行うと良い。   Accordingly, the second objective optical system 13-2 on the telephoto side also forms an image on the above-described light-shielding portion, and the arrangement of the light-shielding member so as to reduce the covering with the formed image of the first objective optical system 15-1. Good to do.

また、図5の光学装置に際しては、広角光学系の第1対物光学系15−1の被写体像の一部を観察できる角度に望遠側の第2対物光学系13−2の光軸を偏向させるように、図4とは異なった配置角に共通反射部材12−1を設定している。そして、対物光学系の干渉を防止しつつ前記した遮光作用を兼用する目的で第2対物光学系13−2のレンズ形状を一部分削除した光学部材を配置している。   In the optical apparatus shown in FIG. 5, the optical axis of the second objective optical system 13-2 on the telephoto side is deflected to an angle at which a part of the subject image of the first objective optical system 15-1 of the wide-angle optical system can be observed. Thus, the common reflection member 12-1 is set at an arrangement angle different from that in FIG. An optical member in which a part of the lens shape of the second objective optical system 13-2 is partially deleted is disposed for the purpose of preventing the interference of the objective optical system and sharing the above-described light shielding effect.

図6は、後述する数値実施例1に示す数値が適用される上記第1の具象例に係る広角光学系の構成図であり、図7は、後述する数値実施例2に示す数値が適用される上記第1の具象例に係る望遠光学系の構成図である。   FIG. 6 is a configuration diagram of the wide-angle optical system according to the first concrete example to which the numerical value shown in numerical example 1 described later is applied, and FIG. 7 is applied the numerical value shown in numerical example 2 described later. FIG. 2 is a configuration diagram of a telephoto optical system according to the first concrete example.

図6及び図7において共通反射部材12−1は図示されていないが、共通光学系11−1の光入射側の空気間隔中に配置される。また、図6においては、第1対物光学系15−1が2枚の結像面側に強い凹面を向けた負レンズで構成することにより強い負の歪曲収差を与えて画角が90°以上の魚眼光学作用を得ている。   6 and 7, the common reflecting member 12-1 is not illustrated, but is disposed in the air interval on the light incident side of the common optical system 11-1. In FIG. 6, the first objective optical system 15-1 is composed of two negative lenses having a strong concave surface facing the image plane, thereby giving strong negative distortion and an angle of view of 90 ° or more. The fisheye optical action is obtained.

一方、図7の第2対物光学系13−1は、光入射側から正レンズと負レンズで構成して歪曲収差を補正して全体として弱い負の屈折力とすることで、図6の広角光学系に対し望遠である光学特性を得ている。   On the other hand, the second objective optical system 13-1 in FIG. 7 includes a positive lens and a negative lens from the light incident side, corrects distortion aberration, and has a weak negative refractive power as a whole. Optical characteristics that are telephoto with respect to the optical system are obtained.

図8は、図5の光学装置で得られる形成像の概略形状を示す像面図である。このように、図5のような光学構成を用いれば、画面の上下半分ずつを評価、観察が行えるようになり、複数形成像を分離する処理が容易になる利点がある。   FIG. 8 is an image view showing a schematic shape of a formed image obtained by the optical apparatus of FIG. As described above, the use of the optical configuration as shown in FIG. 5 has an advantage that the upper and lower halves of the screen can be evaluated and observed, and the process of separating a plurality of formed images becomes easy.

図9(a),(b),(c)は、図1に示した光学装置の第3の具象例を示す光路図であり、ズームレンズ構成時の変倍光学系に5群構成のものを使用した例である。同図(a)は広角時、同図(b)は中間時、同図(c)は望遠時をそれぞれ示している。図10は、後述する数値実施例6に示す数値が適用される図9における広角光学系の構成図であり、図11は、数値実施例7に示す数値が適用される図9における望遠光学系の構成図である。   FIGS. 9A, 9B, and 9C are optical path diagrams showing a third concrete example of the optical apparatus shown in FIG. 1, and have a five-group configuration in the variable power optical system when the zoom lens is configured. It is an example using. FIG. 4A shows a wide angle state, FIG. 4B shows an intermediate time, and FIG. 4C shows a telephoto state. FIG. 10 is a configuration diagram of the wide-angle optical system in FIG. 9 to which the numerical value shown in Numerical Example 6 described later is applied, and FIG. 11 is the telephoto optical system in FIG. 9 to which the numerical value shown in Numerical Example 7 is applied. FIG.

本例の光学装置は、ズームレンズ構成時の変倍光学系に5群構成(図10のB1〜B5)のものを使用している。広角の第1対物光学系15B−1には数値実施例6に示す数値が適用される魚眼光学系を使用し、望遠側の第2対物光学系13−2には、数値実施例7に示す数値が適用される。また、共通反射部材12に薄型ミラー12−1を用いている。   The optical apparatus of this example uses a five-group configuration (B1 to B5 in FIG. 10) for the variable magnification optical system when the zoom lens is configured. The wide-angle first objective optical system 15B-1 uses a fish-eye optical system to which the numerical values shown in Numerical Example 6 are applied, and the telephoto-side second objective optical system 13-2 includes Numerical Example 7. The numerical values shown apply. In addition, a thin mirror 12-1 is used for the common reflecting member 12.

そして、広角の第1対物光学系15B−1は、前記変倍光学系の広角端で用いる仕様になっており、望遠側に変倍を行うと、第1対物光学系15B−1に配置された遮光部材16によって形成像が徐々に遮光されるようになっている。   The wide-angle first objective optical system 15B-1 is designed to be used at the wide-angle end of the zoom optical system. When zooming is performed on the telephoto side, the first objective optical system 15B-1 is disposed on the first objective optical system 15B-1. The formed image is gradually shielded by the light shielding member 16.

[第2の実施の形態]
第2の実施の形態では、第1対物光学系として、結像面側つまり入射光の進行方向に凸面形状を有した反射部材(または頂点を結像面側に向けた円錐形状の反射部材でもよい)を配置し、その反射像を形成することにより広角な画角を得る光学装置について説明する。
[Second Embodiment]
In the second embodiment, the first objective optical system may be a reflecting member having a convex shape on the imaging surface side, that is, in the traveling direction of incident light (or a conical reflecting member having a vertex facing the imaging surface side). An optical device that obtains a wide angle of view by forming a reflection image thereof will be described.

図12は、本発明の第2の実施の形態に係わる光学装置の概略構成を示す断面図であり、図1と共通の要素には同一の符号を付し、その説明を省略する。   FIG. 12 is a cross-sectional view showing a schematic configuration of an optical device according to the second embodiment of the present invention. Elements common to those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

図12に示すように、この光学装置は、撮像素子IPから、共通光学系11及び共通反射部材12を介して第2対物光学系13及び遮光部材14までの構成が、図1に示した第1の実施の形態と同様である。即ち、図1と異なる点は、第1対物光学系15Aとして、その光入射側から順次、凸面形状を有した全方位反射部材15A−1、遮光部材16、及びレンズ群15A−2を配置し、その反射像を形成することにより広角な画角を得るようにした点である。   As shown in FIG. 12, this optical apparatus has the configuration from the image pickup element IP to the second objective optical system 13 and the light shielding member 14 via the common optical system 11 and the common reflection member 12, as shown in FIG. This is the same as the first embodiment. That is, the difference from FIG. 1 is that as the first objective optical system 15A, an omnidirectional reflecting member 15A-1, a light shielding member 16, and a lens group 15A-2 having a convex shape are arranged in order from the light incident side. A wide angle of view is obtained by forming the reflected image.

ここで、遮光部材16は、反射部材15A−1の凸面の頂点周りからの反射光の遮光を行い、それに対応した、画面中央領域に形成される像の遮光領域を設けるためのものである。   Here, the light shielding member 16 is for shielding the reflected light from around the vertex of the convex surface of the reflecting member 15A-1, and for providing a corresponding light shielding region for the image formed in the center region of the screen.

このように構成される本実施の形態の光学装置は、図1の光学装置と同様な作用を持つものである。   The optical device of the present embodiment configured as described above has the same operation as the optical device of FIG.

図13は、図12に示した光学装置の第1の具象例を示す光路図である。また、図14は、後述する数値実施例3に示す数値が適用される第1の具象例に係る広角光学系の構成図である。   FIG. 13 is an optical path diagram showing a first concrete example of the optical device shown in FIG. FIG. 14 is a configuration diagram of a wide-angle optical system according to a first concrete example to which numerical values shown in numerical example 3 described later are applied.

本例において配置されている望遠光学系(第2対物光学系13−1を含む光学系)は、数値実施例2に示す数値が適用される図7の望遠光学系と同様なものである。   The telephoto optical system (optical system including the second objective optical system 13-1) arranged in this example is the same as the telephoto optical system in FIG. 7 to which the numerical values shown in Numerical Example 2 are applied.

図13及び図14に示すように、本例の第1対物光学系15Aは、凸面を結像面側に向けた双曲面形状の反射部材15A−1aが最も光入射側に配置され、その結像面側に負レンズ群15A−2aが配置された構成である。負レンズ群15A−2aは、反射像を補正して共通光学系11−1に導くための負レンズ群15A−2aが配置された構成である。   As shown in FIGS. 13 and 14, in the first objective optical system 15A of this example, a hyperboloid-shaped reflecting member 15A-1a having a convex surface facing the imaging surface side is disposed closest to the light incident side. In this configuration, the negative lens group 15A-2a is disposed on the image plane side. The negative lens group 15A-2a has a configuration in which a negative lens group 15A-2a for correcting the reflected image and guiding it to the common optical system 11-1 is disposed.

このような反射光学系の構成とすることにより、光軸に対する360°周りの被写体を水平方向の画像範囲とすると、垂直方向の被写体像は光軸と直交する角度方向をまたがった被写体像を取り込める。そのため、魚眼光学系においては設計が困難である被写体画界域を撮影することが容易となる。   By adopting such a reflection optical system configuration, when a subject around 360 ° with respect to the optical axis is set as an image range in the horizontal direction, the subject image in the vertical direction can capture a subject image extending across the angular direction orthogonal to the optical axis. . Therefore, it becomes easy to photograph the subject field area that is difficult to design in the fish-eye optical system.

図15は、図12に示した光学装置の第2の具象例を示す光路図である。   FIG. 15 is an optical path diagram showing a second concrete example of the optical device shown in FIG.

本例は、第1対物光学系15Aを、前記したような反射部材15A−1aを用いた反射光学系とし、また、共通光学系11を変倍構成(11−2)にしている。これにより、望遠光学系(第2対物光学系13−2を含む光学系)を、より望遠側へ変倍させるズーム望遠系とすることにより更なる詳細像の形成を行えるようにしたものである。   In this example, the first objective optical system 15A is a reflection optical system using the reflection member 15A-1a as described above, and the common optical system 11 has a variable magnification configuration (11-2). Thus, the telephoto optical system (the optical system including the second objective optical system 13-2) is a zoom telephoto system that further zooms to the telephoto side, so that further detailed images can be formed. .

そして、共通反射部材12にはビームスプリットプリズム12−2を用い、このプリズムを、2面方向からの光線を1方向へ導光するように配置している。そのために、使用されるプリズムは例として、接合面に半透過特性を持たせた蒸着処理を行ったもの、偏光特性を用いてS波、P波を選択的に反射と透過を行えるように接合面に偏光ミラー特性を持たせたもの等を用いると良い。   A beam split prism 12-2 is used as the common reflecting member 12, and this prism is arranged so as to guide light from two directions in one direction. For this purpose, the prism used is, for example, a vapor-deposited surface with a semi-transmission characteristic on the bonding surface, and the polarization characteristic is used to selectively reflect and transmit S and P waves. It is preferable to use a surface having polarization mirror characteristics.

図16は、後述する数値実施例4に示す数値が適用される上記第2の具象例に係る広角光学系の構成図であり、図17は、後述する数値実施例5に示す数値が適用される上記第2の具象例に係る望遠光学系の構成図である。   FIG. 16 is a configuration diagram of the wide-angle optical system according to the second concrete example to which the numerical value shown in numerical example 4 described later is applied, and FIG. 17 shows the numerical value shown in numerical example 5 described later. It is a block diagram of the telephoto optical system which concerns on the said 2nd concrete example.

前記ズーム望遠系は、光入射側より屈折力が正の第1レンズ群B1、負の第2レンズ群B2、正の第3レンズ群B3、正の第4レンズ群B4、負の第5レンズ群B5で構成されるものである。そして広角から望遠への変倍に際しては、前記第2レンズ群B2を結像面側への移動を行い、第4レンズ群B4で像面位置の補正を行うようにそれぞれ光軸移動を行っている。   In the zoom telephoto system, the first lens unit B1, the negative second lens unit B2, the positive third lens unit B3, the positive fourth lens unit B4, and the negative fifth lens having positive refractive power from the light incident side. It consists of group B5. When zooming from wide angle to telephoto, the second lens group B2 is moved toward the image plane, and the optical axis is moved so that the fourth lens group B4 corrects the image plane position. Yes.

またフォーカスは、前記第4レンズ群B4を光軸移動させるようにするのが好ましい。更に防振機能が必要な際は第3レンズ群B3全体もしくは第3レンズ群B3中の一部のレンズ群を光軸と垂直な方向に移動させて像ブレを補正するように像面変位を与えると良い。   Further, it is preferable that the focusing is performed by moving the fourth lens unit B4 along the optical axis. Further, when the image stabilization function is required, the image plane displacement is corrected so as to correct the image blur by moving the entire third lens unit B3 or a part of the third lens unit B3 in the direction perpendicular to the optical axis. Good to give.

ここで、広角光学系(第1対物光学系15Aを含む光学系)は、前記ズーム望遠系の広角端で用いる仕様になっており、望遠側に変倍を行うと第1対物光学系15Aに配置された遮光部材16によって形成像が徐々に遮光されるものである。   Here, the wide-angle optical system (an optical system including the first objective optical system 15A) is designed to be used at the wide-angle end of the zoom telephoto system, and when zooming is performed on the telephoto side, the first objective optical system 15A The formed image is gradually shielded from light by the arranged light shielding member 16.

第2の実施の形態においても、上記第1の実施の形態と同様に、取り込まれた複数の被写体像を同時に撮影することが可能になる。そのため、例えば任意の位置にいる被写体を認識してその詳細像の取り込みや、動体の追尾撮影を素早く正確に行う際には、複数台のカメラを使用しなくとも、1台のカメラで撮影が可能となり、その結果、小型で且つ低コストの光学装置を実現することが可能となる。   Also in the second embodiment, as in the first embodiment, a plurality of captured subject images can be taken simultaneously. Therefore, for example, when recognizing a subject at an arbitrary position and capturing its detailed image or tracking a moving object quickly and accurately, it is possible to shoot with one camera without using a plurality of cameras. As a result, a compact and low-cost optical device can be realized.

[第3の実施の形態]
第3の実施の形態では、第2対物光学系と共通光学系を合成した光学系が2次結像光学系の作用を有している光学装置について説明する。
[Third Embodiment]
In the third embodiment, an optical apparatus in which an optical system that combines a second objective optical system and a common optical system has the function of a secondary imaging optical system will be described.

図18は、本発明の第3の実施の形態に係わる光学装置の概略構成を示す断面図である。   FIG. 18 is a sectional view showing a schematic configuration of an optical apparatus according to the third embodiment of the present invention.

本実施の形態に係る望遠光学系は、光入射側に全体が正の屈折作用を有する第2対物光学系13Aと、その1次結像位置R1近傍に配置される正の屈折力を有する第2対物光学系13Bとで構成される。そして、第1対物光学系15と第2対物光学系13A,13Bとのそれぞれの被写体光を共に介するような位置に共通反射部材12が配置されている。共通反射部材12は、広角な画角を得るための第1対物光学系15からの被写体光は反射すると共に、第2対物光学系13A,13Bからの被写体光は透過させるような作用を持つ。   The telephoto optical system according to the present embodiment has a second objective optical system 13A having a positive refractive action as a whole on the light incident side, and a first refractive power having a positive refractive power disposed in the vicinity of the primary imaging position R1. 2 objective optical system 13B. The common reflecting member 12 is arranged at a position through which the subject lights of the first objective optical system 15 and the second objective optical systems 13A and 13B are passed. The common reflecting member 12 has an action of reflecting subject light from the first objective optical system 15 for obtaining a wide angle of view and transmitting subject light from the second objective optical systems 13A and 13B.

即ち、本実施の形態では、第2対物光学系13A,13Bと共通光学系11を合成した光学系が2次結像光学系の作用を有している。この際、2次結像光学系の1次結像位置R1近辺に軸外光線を遮光するような遮光部材16を配置することにより、形成像の境界域を明確にすることを容易にしている。   That is, in the present embodiment, the optical system that combines the second objective optical systems 13A and 13B and the common optical system 11 has the function of a secondary imaging optical system. At this time, by arranging a light shielding member 16 that shields off-axis rays near the primary imaging position R1 of the secondary imaging optical system, it is easy to clarify the boundary area of the formed image. .

図19は、図18に示した光学装置の第1の具象例を示す光路図である。図20は、当該第1の具象例に係る望遠光学系の構成図である。   FIG. 19 is an optical path diagram showing a first concrete example of the optical device shown in FIG. FIG. 20 is a configuration diagram of the telephoto optical system according to the first concrete example.

本例は、図19に示すように、広角光学系の第1対物光学系15−1に数値実施例1に示される魚眼光学系を用いている。そして、広角光学系(第1対物光学系15−1を含む光学系)は、共通反射部材12−1の反射特性を用いている。また、望遠光学系(第2対物光学系13A−1,13B−1を含む光学系)は、共通反射部材12−1の透過特性を用いてそれぞれの被写体光を共通光学系12−1に導光するものである。   In this example, as shown in FIG. 19, the fish-eye optical system shown in Numerical Example 1 is used for the first objective optical system 15-1 of the wide-angle optical system. The wide-angle optical system (an optical system including the first objective optical system 15-1) uses the reflection characteristics of the common reflecting member 12-1. The telephoto optical system (the optical system including the second objective optical systems 13A-1 and 13B-1) guides each subject light to the common optical system 12-1 using the transmission characteristics of the common reflecting member 12-1. It is something that shines.

この光学装置においては、望遠光学系には数値実施例8に示す数値が適用される2次結像形式の光学系を配置する構成としている。尚、広角光学系の第1対物光学系15−1には、前述した第2の実施の形態で示したような反射部材15A−1を用いたものとしても構わない。   In this optical apparatus, a secondary imaging type optical system to which the numerical value shown in Numerical Example 8 is applied is arranged in the telephoto optical system. Incidentally, the first objective optical system 15-1 of the wide-angle optical system may use the reflecting member 15A-1 as shown in the second embodiment described above.

図19の構成においては、2次結像光学系における1次結像光学系(第2対物光学系)13A−1と、フィールドレンズ群13B−1との間に反射部材17A(第2の反射部材)を配置し、望遠側の第2対物光学系13A−1の被写体光を偏向させている。また、反射部材17Aと第2対物光学系13A−1は可動である。   In the configuration of FIG. 19, the reflecting member 17A (second reflection) is provided between the primary imaging optical system (second objective optical system) 13A-1 in the secondary imaging optical system and the field lens group 13B-1. Member) to deflect the subject light of the second objective optical system 13A-1 on the telephoto side. The reflecting member 17A and the second objective optical system 13A-1 are movable.

また光学装置を小型にするために、この第1具象例では、共通反射部材12-1の結像面側に配置されている厚い肉厚の正レンズ11−3aを、90°の偏向作用を持たせたプリズム形状とすることにより、光学系を畳んだような構成にしている。   In order to reduce the size of the optical device, in the first concrete example, the thick positive lens 11-3a arranged on the image plane side of the common reflecting member 12-1 is deflected by 90 °. By adopting a prism shape, the optical system is folded.

さらに、前記反射部材17Aと第2対物光学系13A−1(1次結像光学系)を回転駆動(チルト駆動)する事と光学装置全体を回転駆動(パン駆動)することを行うと、様々な方向の被写体を望遠光学系で捉えることが出来るようになる。   Further, when the reflecting member 17A and the second objective optical system 13A-1 (primary imaging optical system) are rotationally driven (tilt driving) and the entire optical device is rotationally driven (pan driving), various operations are performed. A subject in any direction can be captured with a telephoto optical system.

この際に、前述したチルト駆動は、前記反射部材17Aと光軸とが交わる点を回転中心(図19の17A−1)として、前記第2対物光学系13A−1の撮影軸を目的被写体方向になるように回転駆動を行わせる。それに伴う結像位置の変位は、前記反射部材17Aを前記回転中心17A−1と等価な回転中心位置を基準として回転駆動を行わせることで補正する。   At this time, in the tilt drive described above, the point of intersection of the reflecting member 17A and the optical axis is set as the rotation center (17A-1 in FIG. 19), and the photographing axis of the second objective optical system 13A-1 is directed to the target subject direction. Rotation drive is performed so that The displacement of the imaging position associated therewith is corrected by rotating the reflecting member 17A with reference to the rotation center position equivalent to the rotation center 17A-1.

この場合、反射部材17Aと第2対物光学系13A−1それぞれの駆動角度は、反射部材17Aの反射面を平面としたとき、その反射部材17Aの駆動角度の変位に対して偏向角変位は2倍の関係になる。このことから、第2対物光学系13A−1の回転角をA、反射部材17Aの回転角をBとした時に、
A=2・B
の関係にするのが望ましく、この関係を満足することにより第2対物光学系の位置変化による結像位置変位と結像性能変化を防止することが出来る。
In this case, the driving angle of each of the reflecting member 17A and the second objective optical system 13A-1 is 2 with respect to the displacement of the driving angle of the reflecting member 17A when the reflecting surface of the reflecting member 17A is a plane. It becomes a double relationship. From this, when the rotation angle of the second objective optical system 13A-1 is A and the rotation angle of the reflecting member 17A is B,
A = 2 ・ B
It is desirable to satisfy this relationship, and by satisfying this relationship, it is possible to prevent the displacement of the image formation position and the change in image formation performance due to the position change of the second objective optical system.

なお、上記した反射部材17Aと第2対物光学系13A−1(1次結像光学系)の回転駆動関係は、共通反射部材12−1と、それにより入射光が偏向される対物光学系においても同様な効果が得られるものである。   The rotational drive relationship between the reflecting member 17A and the second objective optical system 13A-1 (primary imaging optical system) is the same in the common reflecting member 12-1 and the objective optical system in which incident light is deflected thereby. The same effect can be obtained.

図21は、図18に示した光学装置の第2の具象例を示す光路図である。   FIG. 21 is an optical path diagram showing a second concrete example of the optical device shown in FIG.

この光学装置は、図19の光学装置と同様な光学部材を用いたものであり、前述した反射部材17Aを省いてチルト駆動を無くす代わりに、広角光学系の撮影画界の一部を望遠光学系で観察できるように、共通反射部材12の配置角度を偏向させている。そして、それに伴って、望遠側の第2対物光学系13A−1,13B−1と共通光学系11−3に、広角側の第1対物光学系15−1に相対した傾きを与えたものである。   This optical device uses the same optical member as the optical device of FIG. 19, and instead of eliminating the above-described reflecting member 17A and eliminating the tilt drive, a part of the shooting field of the wide-angle optical system is telephoto optical. The arrangement angle of the common reflecting member 12 is deflected so that it can be observed with the system. Along with this, the second objective optical systems 13A-1 and 13B-1 on the telephoto side and the common optical system 11-3 are given an inclination relative to the first objective optical system 15-1 on the wide angle side. is there.

第3の実施の形態においても、上記第1の実施の形態と同様に、取り込まれた複数の被写体像を同時に撮影することが可能になる。そのため、例えば任意の位置にいる被写体を認識してその詳細像の取り込みや、動体の追尾撮影を素早く正確に行う際には、複数台のカメラを使用しなくとも、1台のカメラで撮影が可能となり、その結果、小型で且つ低コストの光学装置を実現することが可能となる。   Also in the third embodiment, as in the first embodiment, it is possible to simultaneously capture a plurality of captured subject images. Therefore, for example, when recognizing a subject at an arbitrary position and capturing its detailed image or tracking a moving object quickly and accurately, it is possible to shoot with one camera without using a plurality of cameras. As a result, a compact and low-cost optical device can be realized.

[第4の実施の形態]
第4の実施の形態は、上記した第3の実施の形態と同様に、第2対物光学系と共通光学系を合成した光学系が2次結像光学系の作用をもつ光学装置の他の例である。
[Fourth Embodiment]
In the fourth embodiment, as in the third embodiment described above, the optical system in which the second objective optical system and the common optical system are combined has the function of a secondary imaging optical system. It is an example.

図22は、本発明の第4の実施の形態に係わる光学装置の概略構成を示す断面図である。   FIG. 22 is a cross-sectional view showing a schematic configuration of an optical device according to the fourth embodiment of the present invention.

この光学装置の特徴は、上記した第3の実施の形態と同様の作用を持ち、第1対物光学系15Aに、結像面側に凸面形状を有した全方位反射部材15A−1を配置し、その反射像を形成することにより広角な画角を得るように構成されている点である。   This optical device has the same function as that of the third embodiment described above, and an omnidirectional reflecting member 15A-1 having a convex shape on the image forming surface side is arranged in the first objective optical system 15A. In other words, a wide angle of view is obtained by forming the reflected image.

そして、第1対物光学系15Aにおける反射部材15A−1とレンズ15A−2との間には、遮光部材16が配置されている。ここで、遮光部材16は、反射部材1の凸面の頂点周りからの反射光の遮光を行い、それに対応した本来画面中央領域に形成される像に対して遮光領域を設けるものである。   A light shielding member 16 is disposed between the reflecting member 15A-1 and the lens 15A-2 in the first objective optical system 15A. Here, the light shielding member 16 shields the reflected light from around the apex of the convex surface of the reflecting member 1, and provides a light shielding region for the image originally formed in the central region of the screen.

図23は、図22に示した光学装置の具象例を示す光路図である。   FIG. 23 is an optical path diagram showing a concrete example of the optical device shown in FIG.

望遠光学系(第2対物光学系13A−1,13B−1を含む光学系)には、前述した図21と同様な光学要素を用い、第1対物光学系15Aには、光入射側に凸面を結像面側に向けた双曲面形状の反射部材15A−1aを用いたものである。   The telephoto optical system (the optical system including the second objective optical systems 13A-1 and 13B-1) uses the same optical elements as in FIG. 21 described above, and the first objective optical system 15A has a convex surface on the light incident side. Using a hyperboloidal reflecting member 15A-1a facing the image plane side.

第4の実施の形態においても、上記第1の実施の形態と同様に、取り込まれた複数の被写体像を同時に撮影することが可能になる。そのため、例えば任意の位置にいる被写体を認識してその詳細像の取り込みや、動体の追尾撮影を素早く正確に行う際には、複数台のカメラを使用しなくとも、1台のカメラで撮影が可能となり、その結果、小型で且つ低コストの光学装置を実現することが可能となる。   Also in the fourth embodiment, as in the first embodiment, it is possible to simultaneously capture a plurality of captured subject images. Therefore, for example, when recognizing a subject at an arbitrary position and capturing its detailed image or tracking a moving object quickly and accurately, it is possible to shoot with one camera without using a plurality of cameras. As a result, a compact and low-cost optical device can be realized.

[光学装置の変形例]
本発明の光学装置は、図示の実施の形態に限定されず、種々の変形が可能である。例えば、その変形例としては、次のようなものがある。
(1)図19、図21、及び図23に示した光学装置のパン駆動は、装置全体を広角側の対物光学系の光軸を中心に回転させるようにすると良いが、広角側の対物光学系は固定してその他の光学装置を回転させるようにしても良い。
(2)上記した各実施の形態における光学装置の構成は、上述した例に限らず、例えば、前記した反射と透過の関係が逆になるように、第1対物光学系と第2対物光学系の配置を構成しても良い。
(3)像形成媒体は撮像素子に限ったものではなく、必要に応じては銀塩フィルムやピント板を配置してその投影像の観察や、形成像を空中像としてその像をフィールドスコープにて観察を行うようにしても良い。
[Modification of optical device]
The optical apparatus of the present invention is not limited to the illustrated embodiment, and various modifications are possible. For example, there are the following modifications.
(1) The pan driving of the optical apparatus shown in FIGS. 19, 21, and 23 is preferably performed by rotating the entire apparatus around the optical axis of the wide-angle objective optical system. The system may be fixed and other optical devices may be rotated.
(2) The configuration of the optical device in each of the embodiments described above is not limited to the above-described example, and for example, the first objective optical system and the second objective optical system so that the relationship between reflection and transmission described above is reversed. The arrangement may be configured as follows.
(3) The image forming medium is not limited to the image pickup device. If necessary, a silver salt film or a focusing plate is arranged to observe the projected image, or the formed image is an aerial image and the image is used as a field scope. You may make it observe.

[第5の実施の形態]
次に、本実施の形態に係る光学装置の適用例について、図24〜図26を参照して説明する。
[Fifth Embodiment]
Next, application examples of the optical device according to the present embodiment will be described with reference to FIGS.

図24は、本実施の形態に係る光学装置を搭載した撮像装置の設置例を示す概念図である。   FIG. 24 is a conceptual diagram illustrating an installation example of an imaging device equipped with the optical device according to the present embodiment.

図24において、上述した光学装置40を搭載した撮像装置41は、撮像装置内の撮像素子IPが下向きとなるように天井面42に設置することで、斜め下方向の被写体(人物)43を観察できるように構成されている。   In FIG. 24, an imaging device 41 equipped with the above-described optical device 40 is installed on the ceiling surface 42 so that the imaging element IP in the imaging device faces downward, thereby observing a subject (person) 43 in a diagonally downward direction. It is configured to be able to.

図24中の符号44で示すものは、第1対物光学系15で取り込まれた画像であり、符号45で示すものは、第1対物光学系15と第2対物光学系13を合成した合成光学系で取り込まれた画像である。また、符号W1、W2は画角範囲を示し、図25で後述する。図示のωは被写体方向角度を概略的に表したものであり、図26及び図28で後述する。   24 indicates an image captured by the first objective optical system 15, and reference numeral 45 indicates a combined optical in which the first objective optical system 15 and the second objective optical system 13 are combined. This is an image captured by the system. Reference numerals W1 and W2 denote field angle ranges, which will be described later with reference to FIG. Ω shown schematically represents the subject direction angle and will be described later with reference to FIGS.

図25は、図24中の撮像装置の機構の概略構成を示す断面図である。   FIG. 25 is a cross-sectional view showing a schematic configuration of the mechanism of the imaging apparatus in FIG.

図25において、撮像装置41は、筐体内部に光学装置40と撮像素子を備えると共に、パン駆動機構41a、チルト駆動機構41b、保護ドーム41c、第1対物光学系15の光入射側に配置された遮光部材16を備える。パン駆動機構41aは、図中矢印Ya方向(パンニング方向)に駆動し、チルト駆動機構41bは図中矢印Yb方向(チルト方向)に駆動する。   In FIG. 25, the imaging device 41 includes an optical device 40 and an imaging device inside the housing, and is disposed on the light incident side of the pan driving mechanism 41 a, the tilt driving mechanism 41 b, the protective dome 41 c, and the first objective optical system 15. The light shielding member 16 is provided. The pan driving mechanism 41a is driven in the arrow Ya direction (panning direction) in the drawing, and the tilt driving mechanism 41b is driven in the arrow Yb direction (tilting direction) in the drawing.

また、符号W1で示す範囲は、光学装置40の第1対物光学系15と共通光学系11を合成した合成光学系による画角範囲であり、符号W2で示す範囲は光学装置の第2対物光学系13と共通光学系を合成した合成光学系による画角範囲である。   The range indicated by reference sign W1 is a field angle range by a composite optical system in which the first objective optical system 15 of the optical device 40 and the common optical system 11 are combined, and the range indicated by reference sign W2 is the second objective optical of the optical device. This is an angle of view range by a composite optical system in which the system 13 and the common optical system are combined.

撮像装置41においては、光学装置40における第2対物光学系13中の反射部材(図示省略)もしくは第1対物光学系15及び第2対物光学系13がともに介する共通反射部材12を回転駆動することで、これら反射部材を任意の偏向角度に設定する。つまり、チルト駆動を行う。これにより、被写体の距離に合わせて第2対物光学系13による撮影軸調整を行う。更に、少なくとも第2対物光学系13中の光入射側に配置される光学系を含むように、光軸を回転軸として回転駆動する。つまり、パンニング駆動を行う。これにより、被写体の方向に合わせて第2対物光学系13の撮影方向を変化させる。   In the imaging device 41, the reflection member (not shown) in the second objective optical system 13 in the optical device 40 or the common reflection member 12 through which the first objective optical system 15 and the second objective optical system 13 are interposed is rotationally driven. Then, these reflecting members are set to an arbitrary deflection angle. That is, tilt drive is performed. Thereby, the photographing axis is adjusted by the second objective optical system 13 in accordance with the distance of the subject. Further, the optical axis is rotated and driven so as to include at least the optical system arranged on the light incident side in the second objective optical system 13. That is, panning drive is performed. Thereby, the photographing direction of the second objective optical system 13 is changed in accordance with the direction of the subject.

尚、図25の例では、撮像素子IPを含む光学系全体を光軸周りに回転可能とする構成としているが、これに限定されるものではない。少なくとも第2対物光学系13中の反射部材を含むB1群を偏向後の光軸を回転中心として回転駆動させればよい。   In the example of FIG. 25, the entire optical system including the image pickup element IP is configured to be rotatable around the optical axis, but is not limited thereto. What is necessary is just to rotationally drive B1 group containing the reflection member in the 2nd objective optical system 13 centering | focusing on the optical axis after deflection.

また、図24において、撮像装置41で歩行中の被写体(人物)43の上半身像を撮影するために、先ず第1対物光学系15で取り込まれる画像から被写体方向を識別し、パンニング駆動により第2対物光学系13の水平方向への撮影軸を合わせる。その後、被写体43の距離に合わせてチルト駆動により被写体43の上半身の撮影を行う。この動作を繰り返し行うことで、動体(歩行中の被写体43)の追尾を精度良く行うことが可能となる。   In FIG. 24, in order to capture the upper body image of the walking subject (person) 43 with the imaging device 41, the subject direction is first identified from the image captured by the first objective optical system 15, and the second direction is obtained by panning drive. The imaging axis in the horizontal direction of the objective optical system 13 is aligned. Thereafter, the upper body of the subject 43 is photographed by tilt driving in accordance with the distance of the subject 43. By repeating this operation, it is possible to accurately track the moving object (the walking subject 43).

ここで、被写体43の方向検知及び補正移動を行う方法の例について説明する。   Here, an example of a method for performing direction detection and correction movement of the subject 43 will be described.

まず、光学装置において現在設定されている光学系の撮影軸のチルト方向及びパン方向の位置検知を行う。次に、第1対物光学系15により捉えられて形状認識部(不図示)等で判別される目的被写体が、イメージサークル(像範囲)中での同心円方向にて補正移動を行うパンニング回転角を算出する。同時に、イメージサークル中心から放射状方向への目的被写体までの距離により、チルト補正駆動量を算出する。そして、算出結果に応じてパン駆動機構及びチルト駆動機構を駆動する。   First, position detection in the tilt direction and pan direction of the imaging axis of the optical system currently set in the optical device is performed. Next, the panning rotation angle at which the target object captured by the first objective optical system 15 and discriminated by a shape recognition unit (not shown) or the like performs correction movement in the concentric direction in the image circle (image range) is set. calculate. At the same time, the tilt correction driving amount is calculated from the distance from the center of the image circle to the target subject in the radial direction. Then, the pan driving mechanism and the tilt driving mechanism are driven according to the calculation result.

図26は、本実施の形態に係る光学装置を搭載した撮像装置による被写体認識時の初期画像状態を示す概念図である。   FIG. 26 is a conceptual diagram showing an initial image state at the time of subject recognition by an imaging device equipped with the optical device according to the present embodiment.

図26において、光学装置の制御部(図27参照)は、目的被写体61を認識(検知)し、第2対物光学系13で目的被写体61の詳細画像を取り込むために必要なパン方向及びチルト方向の駆動量を算出する。尚、本実施の形態に係る光学装置を搭載した撮像装置の制御部を含む電気的構成については、図27により後述する。   In FIG. 26, the control unit (see FIG. 27) of the optical device recognizes (detects) the target object 61, and the pan direction and the tilt direction necessary for capturing the detailed image of the target object 61 with the second objective optical system 13. Is calculated. The electrical configuration including the control unit of the imaging apparatus equipped with the optical device according to the present embodiment will be described later with reference to FIG.

今、光学装置における第2対物光学系13のパン(水平)方向が図示の(P)方向を向いていると想定する。まず、(P)方向を基準として、そこからの第1対物光学系15で撮影したイメージサークルの外周側領域の画像を基に、目的被写体61の同心円方向の角度θを判別する。次に、第1対物光学系15に入射する光線の角度ωとその光線が撮像素子IPの結像面に結像する像高Yとの関係を、例えば、
ω=AY+BY2+CY3+・・・
但しA,B,C,・・・は、使用される光学系に固有となる係数
と表すような多項次式を、駆動アルゴリズム中に取り入れる。
Now, it is assumed that the pan (horizontal) direction of the second objective optical system 13 in the optical apparatus is directed to the illustrated (P) direction. First, on the basis of the (P) direction, the angle θ of the target subject 61 in the concentric direction is determined based on the image of the outer peripheral side area of the image circle imaged by the first objective optical system 15 therefrom. Next, the relationship between the angle ω of the light beam incident on the first objective optical system 15 and the image height Y at which the light beam forms an image on the imaging surface of the image sensor IP, for example,
ω = AY + BY2 + CY3 + ...
However, A, B, C,... Incorporate a polynomial expression such as a coefficient that is specific to the optical system used in the drive algorithm.

次に、イメージサークル中心(画面中心)から目的被写体中心までの距離(画面像高)Yを算出し、距離Yから上記したような多項次式を用いて被写体方向角度ωを算出する。   Next, the distance (screen image height) Y from the center of the image circle (center of the screen) to the center of the target subject is calculated, and the subject direction angle ω is calculated from the distance Y using the above-described polynomial expression.

これにより、第2対物光学系13におけるチルト移動群(反射部材を含む被写体側の光学構成)の必要チルト駆動角度を得ることができる。   Thereby, the necessary tilt driving angle of the tilt movement group (optical configuration on the subject side including the reflecting member) in the second objective optical system 13 can be obtained.

この際、前述したパンニングとチルト駆動は必ずしも双方の駆動を行う必要は無く、例えば廊下の奥行き、手前方向のみを移動する人物を監視するような場合においてはチルト駆動のみを行えば良い。また、光学装置の周りをあまり距離を変化させずに移動を行う人物等の撮影においては、詳細画像を取り込む第2対物光学系13は必要チルト角に固定しておいてパンニング駆動のみを行えば良いこととなる。   At this time, it is not always necessary to perform both of the panning and tilt driving described above. For example, in the case of monitoring a person who moves only in the depth of the hallway or in the front direction, only the tilt driving may be performed. Further, in photographing a person or the like who moves around the optical apparatus without changing much distance, the second objective optical system 13 for capturing a detailed image is fixed at a necessary tilt angle and only panning driving is performed. It will be good.

以上が、本実施の形態に係る光学装置の適用例において、動体の追尾動作や高視野観察による目標被写体判別と高速な詳細像取りこみに関する説明である。なお、第2対物光学系13のチルト角を第1対物光学系15の画角範囲外を取り込むように設定することで、異方向の被写体を同時に観察することも可能である。   This completes the description of target object discrimination and high-speed detailed image capture by tracking of a moving object or high-field observation in an application example of the optical device according to the present embodiment. Note that by setting the tilt angle of the second objective optical system 13 to be outside the range of the angle of view of the first objective optical system 15, it is possible to simultaneously observe subjects in different directions.

次に、本実施の形態に係る光学装置を搭載した撮像装置の電気的構成例と制御例を、図27及び図28を参照して説明する。   Next, an electrical configuration example and a control example of an imaging apparatus equipped with the optical device according to the present embodiment will be described with reference to FIGS. 27 and 28. FIG.

図27は、本実施の形態に係る光学装置を搭載した撮像装置の電気的構成例を示すブロック図である。   FIG. 27 is a block diagram illustrating an example of an electrical configuration of an imaging apparatus equipped with the optical device according to the present embodiment.

図27において、撮像装置は、図1に示した本実施の形態に係る光学装置101を有している。さらに、撮像素子IP、信号処理部103、記憶部104、操作部105、制御部106、格納部107、表示部108、パン駆動機構109、チルト駆動機構110を備えている。   In FIG. 27, the imaging device has the optical device 101 according to the present embodiment shown in FIG. Further, the imaging device IP, the signal processing unit 103, the storage unit 104, the operation unit 105, the control unit 106, the storage unit 107, the display unit 108, the pan driving mechanism 109, and the tilt driving mechanism 110 are provided.

撮像素子IPは、光学装置101により結像された被写体像を電気信号に光電変換する。信号処理部103は、撮像素子IPから出力される電気信号に信号処理を施し、画像データとして記憶部104に記憶する。記憶部104は、画像データの記憶領域の他に、制御部106の作業領域やデータ一時記憶領域を有する。操作部105は、光学装置101に対する各種指示の入力に使用される。   The image sensor IP photoelectrically converts the subject image formed by the optical device 101 into an electric signal. The signal processing unit 103 performs signal processing on the electrical signal output from the image sensor IP and stores the signal in the storage unit 104 as image data. The storage unit 104 includes a work area and a temporary data storage area for the control unit 106 in addition to the image data storage area. The operation unit 105 is used for inputting various instructions to the optical device 101.

制御部106は、光学装置101を含む撮像装置全体の制御を司ると共に、パン駆動機構109、チルト駆動機構110を駆動制御する。パン駆動機構109は、制御部106の制御に基づきパンニング動作を行う。チルト駆動機構110は、制御部106の制御に基づきチルト動作を行う。また、制御部106は、格納部107に格納された制御プログラムに基づき図28のフローチャートに示す処理を実行する。表示部108は、撮影画像を表示するものであり、撮像装置本体の設置箇所から離間した場所(撮像装置を監視用カメラとして使用する場合は監視センター等)に設置可能である。   The control unit 106 controls the entire imaging apparatus including the optical device 101 and controls the driving of the pan driving mechanism 109 and the tilt driving mechanism 110. The pan driving mechanism 109 performs a panning operation based on the control of the control unit 106. The tilt drive mechanism 110 performs a tilt operation based on the control of the control unit 106. Further, the control unit 106 executes the process shown in the flowchart of FIG. 28 based on the control program stored in the storage unit 107. The display unit 108 displays a captured image, and can be installed at a location away from the installation location of the imaging device body (a monitoring center or the like when the imaging device is used as a monitoring camera).

図28は、本実施の形態に係る光学装置101を搭載した撮像装置による被写体認識を行った後の動体追尾動作の流れを示すフローチャートである。   FIG. 28 is a flowchart showing the flow of the moving object tracking operation after subject recognition by the imaging apparatus equipped with the optical device 101 according to the present embodiment.

図28において、撮像装置の制御部106は、操作部105を介して光学装置101の第2対物光学系13に設定されているパン角度(パン方向に駆動する角度)、チルト角度(チルト方向に駆動する角度)を検出し、記憶部104に記憶する(ステップS1)。   In FIG. 28, the control unit 106 of the imaging apparatus has a pan angle (an angle driven in the pan direction) and a tilt angle (in the tilt direction) set in the second objective optical system 13 of the optical device 101 via the operation unit 105. The driving angle is detected and stored in the storage unit 104 (step S1).

次に、制御部106は、光学装置101の第1対物光学系15により得られる画像範囲(図3のB1)から目的被写体を認識し(ステップS2)、該画像範囲から目的被写体の同心円方向の角度θ(図26)を判定する(ステップS3)。   Next, the control unit 106 recognizes the target subject from the image range (B1 in FIG. 3) obtained by the first objective optical system 15 of the optical device 101 (step S2), and from the image range in the concentric direction of the target subject. The angle θ (FIG. 26) is determined (step S3).

次に、制御部106は、前記画像範囲から、目的被写体の画像中心からの放射状方向の長さY(図26)を検出し(ステップS4)、長さYを基に被写体方向角度ω(図24)を算出する(ステップS5)。つまり、光学装置101に対する目的被写体の相対的な位置を検出する。   Next, the control unit 106 detects the length Y (FIG. 26) in the radial direction from the image center of the target subject from the image range (step S4), and the subject direction angle ω (see FIG. 26) based on the length Y. 24) is calculated (step S5). That is, the relative position of the target subject with respect to the optical device 101 is detected.

次に、制御部106は、現在設定されているパン角度及びチルト角度と、目的被写体の同心円方向の角度θと、被写体方向角度ωから、必要駆動角度を算出し(ステップS6)、必要駆動角度が予め設定された規定値以上か否かを判定する(ステップS7)。ここで、必要駆動角度とは、目的被写体(動体)の追尾に必要なパン方向及びチルト方向の駆動角度である。   Next, the control unit 106 calculates a required drive angle from the currently set pan angle and tilt angle, the angle θ of the target subject in the concentric direction, and the subject direction angle ω (step S6), and the required drive angle. Is determined to be equal to or greater than a preset specified value (step S7). Here, the necessary drive angle is a drive angle in the pan direction and the tilt direction necessary for tracking the target subject (moving body).

上記算出した必要駆動角度が予め設定された規定値未満の場合は、ステップS2へ戻る。他方、上記算出した必要駆動角度が予め設定された規定値以上の場合は、制御部106は、パン駆動機構109によるパン方向の駆動とチルト駆動機構110によるチルト方向の駆動を行う(ステップS8)。この後、制御部106は、前記パン方向の駆動に伴うパン角度と前記チルト方向の駆動に伴うチルト角度を記憶部104に記憶し(ステップS9)、ステップS2へ戻る。   If the calculated required drive angle is less than the preset specified value, the process returns to step S2. On the other hand, when the calculated required drive angle is equal to or greater than a predetermined value set in advance, the control unit 106 performs driving in the pan direction by the pan driving mechanism 109 and driving in the tilt direction by the tilt driving mechanism 110 (step S8). . Thereafter, the control unit 106 stores the pan angle associated with the driving in the pan direction and the tilt angle associated with the driving in the tilt direction in the storage unit 104 (step S9), and returns to step S2.

なお、上記した動作ステップは、パン方向とチルト方向の2方向判別と駆動を共に行う必要はなく、必要に応じてどちらか一方向のみの駆動でも良いものである。   In the above-described operation step, it is not necessary to perform both of the two-direction discrimination and driving in the pan direction and the tilt direction, and driving in only one direction may be performed as necessary.

従来では、例えば、任意の位置にいる被写体を認識してその詳細像の取り込みや、動体の追尾撮影に際して素早く正確に行うには複数台の撮像装置を使用するのが一般的であった。この点について、本実施の形態の撮像装置においては、1台の撮像装置で上記のような撮影が可能となり、その結果、小型で且つ低コストの光学装置を実現することが可能となる。   Conventionally, for example, in order to recognize a subject at an arbitrary position and capture a detailed image thereof or to perform tracking and shooting of a moving object quickly and accurately, a plurality of imaging devices are generally used. With respect to this point, in the imaging apparatus according to the present embodiment, the above-described imaging can be performed with a single imaging apparatus, and as a result, a compact and low-cost optical apparatus can be realized.

[数値実施例]
次に、数値実施例1乃至8における光学装置の収差図を図29乃至図40に示す。
[Numerical example]
Next, aberration diagrams of the optical device according to Numerical Examples 1 to 8 are shown in FIGS.

図29は、数値実施例1の魚眼光学系の縦収差を示す図である。   FIG. 29 is a diagram illustrating longitudinal aberrations of the fish-eye optical system in the numerical value example 1. FIG.

図30は、数値実施例2の望遠光学系の縦収差を示す図である。   FIG. 30 is a diagram illustrating longitudinal aberrations of the telephoto optical system according to Numerical Example 2.

図31は、数値実施例3の広角反射光学系の横収差を示す図である。   FIG. 31 is a diagram showing transverse aberration of the wide-angle reflective optical system in Numerical Example 3.

図32は、数値実施例4の広角反射光学系の広角端における横収差を示す図である。   FIG. 32 is a diagram showing transverse aberration at the wide-angle end of the wide-angle reflective optical system in Numerical Example 4.

図33は、数値実施例5の望遠変倍光学系の広角端における縦収差を示す図である。   FIG. 33 is a diagram illustrating longitudinal aberrations at the wide-angle end of the telephoto variable magnification optical system according to Numerical Example 5.

図34は、数値実施例5の望遠変倍光学系の中間における縦収差を示す図である。   FIG. 34 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 5.

図35は、数値実施例5の望遠変倍光学系の望遠端における縦収差を示す図である。   FIG. 35 is a diagram showing longitudinal aberrations at the telephoto end of the telephoto variable magnification optical system in the numerical value example 5.

図36は、数値実施例6の魚眼光学系の広角端における縦収差を示す図である。   FIG. 36 is a diagram illustrating longitudinal aberrations at the wide-angle end of the fish-eye optical system according to Numerical Example 6.

図37は、数値実施例7の望遠変倍光学系の広角端における縦収差を示す図である。   FIG. 37 is a diagram showing longitudinal aberrations at the wide-angle end of the telephoto variable magnification optical system in the numerical value example 7.

図38は、数値実施例7の望遠変倍光学系の中間における縦収差を示す図である。   FIG. 38 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 7.

図39は、数値実施例7の望遠変倍光学系の望遠端における縦収差を示す図である。   FIG. 39 is a diagram showing longitudinal aberrations at the telephoto end of the telephoto variable magnification optical system in the numerical value example 7.

図40は、数値実施例8の望遠2次結像光学系の縦収差を示す図である。   FIG. 40 is a diagram showing longitudinal aberrations of the telephoto secondary imaging optical system in the numerical value example 8. FIG.

なお、図29乃至図40において、ΔSはサジタル像面であることを示し、ΔMはメリディオナル像面であることを示す。   29 to 40, ΔS indicates a sagittal image plane, and ΔM indicates a meridional image plane.

次に、数値実施例1乃至8における具体的な数値を以下に示す。   Next, specific numerical values in Numerical Examples 1 to 8 are shown below.

各数値実施例において、Riは光入射側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々光入射側より順に第i番目のレンズのガラスの屈折率とアッベ数である。
また非球面係数K,A,B,C,D、Eは、図41に示す式(1)で与えるものとする。
但し、Xはレンズ頂点から光軸方向への変位量、Hは光軸からの距離、Rは曲率半径である。
In each numerical example, Ri is the i-th lens thickness and air spacing in order from the light incident side, and Ni and νi are the refractive index and Abbe number of the glass of the i-th lens in order from the light incident side.
The aspheric coefficients K, A, B, C, D, and E are given by the equation (1) shown in FIG.
Where X is the amount of displacement from the lens apex in the optical axis direction, H is the distance from the optical axis, and R is the radius of curvature.

<数値実施例1>
f= 1.08 Fno= 1.48 NA=0.34 2ω=168.3°
R 1= 18.885 D 1= 1.20 N 1= 1.83481 ν 1= 42.7
R 2= 6.573 D 2= 3.63
R 3= 466.090 D 3= 1.80 N 2= 1.88300 ν 2= 40.8
R 4= 4.664 D 4= 12.85
R 5= 64.434 D 5= 8.09 N 3= 1.84666 ν 3= 23.9
R 6= -15.593 D 6= 4.55
R 7= 27.039 D 7= 1.80 N 4= 1.77250 ν 4= 49.6
R 8= -78.220 D 8= 1.00
R 9= 絞り D 9= 1.50
R10= -6.568 D10= 2.20 N 5= 1.84666 ν 5= 23.9
R11= 6.366 D11= 2.00 N 6= 1.77250 ν 6= 49.6
R12= -14.479 D12= 0.10
R13= 12.093 D13= 1.82 N 7= 1.60311 ν 7= 60.6
R14= -12.636 D14= 0.10
R15= 7.498 D15= 1.50 N 8= 1.83481 ν 8= 42.7
R16= 21.068 D16= 1.50
R17= ∞ D17= 4.00 N 9= 1.51633 ν 9= 64.1
<数値実施例2>
f= 2.51 Fno= 1.50 NA=0.33 2ω=35.4°
R 1= 59.690 D 1= 1.70 N 1= 1.77250 ν 1= 49.6
R 2= -35.198 D 2= 0.15
* R 3= -114.351 D 3= 1.00 N 2= 1.80610 ν 2= 40.9
* R 4= 4.627 D 4= 10.00
R 5= 64.434 D 5= 8.09 N 3= 1.84666 ν 3= 23.9
R 6= -15.593 D 6= 4.46
R 7= 27.039 D 7= 1.80 N 4= 1.77250 ν 4= 49.6
R 8= -78.220 D 8= 1.00
R 9= 絞り D 9= 1.50
R10= -6.568 D10= 2.20 N 5= 1.84666 ν 5= 23.9
R11= 6.366 D11= 2.00 N 6= 1.77250 ν 6= 49.6
R12= -14.479 D12= 0.10
R13= 12.093 D13= 1.82 N 7= 1.60311 ν 7= 60.6
R14= -12.636 D14= 0.10
R15= 7.498 D15= 1.50 N 8= 1.83481 ν 8= 42.7
R16= 21.068 D16= 1.50
R17= ∞ D17= 4.00 N 9= 1.51633 ν 9= 64.1
R18= ∞
・非球面係数
第3面: K=-3.05503e+002 A= 0.00000e+000 B=-4.12397e-004
C= 1.97036e-005 D=-1.79480e-007 E= 0.00000e+000
第4面 K= 1.10373e-001 A= 0.00000e+000 B=-7.40181e-004
C=-5.07705e-005 D= 3.38928e-006 E= 0.00000e+000
<数値実施例3>
Fno= 2.1 NA=0.24
* R 1= -12.000 D 1= 20.00
R 2= 72.840 D 2= 1.80 N 1= 1.77250 ν 1= 49.6
R 3=-2228.821 D 3= 0.12
R 4= 27.317 D 4= 1.60 N 2= 1.77250 ν 2= 49.6
R 5= 88.452 D 5= 0.30
* R 6= 96.287 D 6= 0.80 N 3= 1.80518 ν 3= 25.4
* R 7= 5.285 D 7= 10.00
R 8= 64.434 D 8= 8.09 N 4= 1.84666 ν 4= 23.9
R 9= -15.593 D 9= 4.46
R10= 27.039 D10= 1.80 N 5= 1.77250 ν 5= 49.6
R11= -78.220 D11= 1.00
R12= 絞り D12= 1.50
R13= -6.568 D13= 2.20 N 6= 1.84666 ν 6= 23.9
R14= 6.366 D14= 2.00 N 7= 1.77250 ν 7= 49.6
R15= -14.479 D15= 0.10
R16= 12.093 D16= 1.82 N 8= 1.60311 ν 8= 60.6
R17= -12.636 D17= 0.10
R18= 7.498 D18= 1.50 N 9= 1.83481 ν 9= 42.7
R19= 21.068 D19= 1.50
R20= ∞ D20= 4.00 N10= 1.51633 ν10= 64.1
R21= ∞
・非球面係数
第1面 :K=-2.00000e+000 A= 0.00000e+000 B= 0.00000e+000
C= 0.00000e+000 D= 0.00000e+000 E= 0.00000e+000
第6面 :K=-3.05503e+002 A= 0.00000e+000 B=-1.12677e-003
C=-3.27765e-005 D=-2.22188e-006 E= 0.00000e+000
第7面 :K= 1.15723e-001 A= 0.00000e+000 B=-1.16248e-003
C=-1.50088e-004 D=-3.68542e-006 E= 0.00000e+000
<数値実施例4>
Fno= 2.5 NA= 0.19
* R 1= -12.000 D 1= 19.77
R 2= 21.137 D 2= 3.60 N 1= 1.77250 ν 1= 49.6
R 3= 787.493 D 3= 0.80
* R 4= -132.870 D 4= 1.00 N 2= 1.84666 ν 2= 23.9
* R 5= 17.021 D 5= 6.11
R 6= ∞ D 6= 13.50 N 3= 1.83400 ν 3= 37.2
R 7= ∞ D 7= 0.15
* R 8= 17.745 D 8= 3.20 N 4= 1.58913 ν 4= 61.2
* R 9= -21.515 D 9= 0.00
R10= -189.656 D10= 0.60 N 5= 1.72916 ν 5= 54.7
R11= 9.663 D11= 1.28
R12= -10.856 D12= 0.50 N 6= 1.60311 ν 6= 60.6
R13= 13.442 D13= 1.50 N 7= 1.84666 ν 7= 23.9
R14= 108.847 D14= 0.00
R15= 絞り D15= 0.60
* R16= 13.949 D16= 2.00 N 8= 1.69350 ν 8= 53.2
* R17= -55.208 D17= 0.00
R18= -92.686 D18= 0.60 N 9= 1.64769 ν 9= 33.8
R19= 9.042 D19= 1.60 N10= 1.80518 ν10= 25.4
R20= 22.476 D20= 0.00
R21= 13.130 D21= 0.60 N11= 1.84666 ν11= 23.9
R22= 7.714 D22= 3.50 N12= 1.48749 ν12= 70.2
R23= -15.054 D23= 0.15
* R24= 11.585 D24= 1.80 N13= 1.52280 ν13= 62.3
R25= 16.756 D25= 0.00
R26= 23.806 D26= 1.25 N14= 1.88300 ν14= 40.8
R27= 6.466 D27= 3.77 N15= 1.48749 ν15= 70.2
R28= 258.606 D28= 0.00
R29= ∞ D29= 2.00 N16= 1.51633 ν16= 64.1
R30= ∞
・非球面係数
第1面 :K=-2.20000e+000 A= 0.00000e+000 B= 0.00000e+000
C= 0.00000e+000 D= 0.00000e+000 E= 0.00000e+000
第4面 :K= 7.30117e-004 A= 0.00000e+000 B=-1.63313e-004
C= 1.09260e-006 D= 0.00000e+000 E= 0.00000e+000
第5面 :K=-3.12547e-002 A= 0.00000e+000 B=-2.45102e-004
C= 2.00934e-006 D= 0.00000e+000 E= 0.00000e+000
第8面 :K= 2.89732e+000 A= 0.00000e+000 B=-9.11558e-005
C= 2.46766e-006 D=-8.04498e-008 E= 1.50874e-009
第9面 :K= 2.27135e+000 A= 0.00000e+000 B= 4.75217e-005
C= 3.52674e-006 D=-9.84940e-008 E= 2.04550e-009
第16面 K= 2.61714e+000 A= 0.00000e+000 B= 5.08672e-005
C=-2.05979e-005 D= 3.83826e-006 E=-1.84585e-007
第17面 :K=-1.25046e+002 A= 0.00000e+000 B= 2.53545e-004
C=-2.29193e-005 D= 4.38482e-006 E=-1.97983e-007
<数値実施例5>
f= 6.35 〜 29.98 Fno= 3.55 〜 4.47 NA=0.14〜0.11
2ω=31.6°〜 6.9°
R 1= 27.233 D 1= 1.00 N 1= 1.84666 ν 1= 23.9
R 2= 12.108 D 2= 3.37
R 3= ∞ D 3= 13.50 N 2= 1.83400 ν 2= 37.2
R 4= ∞ D 4= 0.15
* R 5= 17.745 D 5= 3.20 N 3= 1.58913 ν 3= 61.2
* R 6= -21.515 D 6= 可変
R 7= -189.656 D 7= 0.60 N 4= 1.72916 ν 4= 54.7
R 8= 9.663 D 8= 1.28
R 9= -10.856 D 9= 0.50 N 5= 1.60311 ν 5= 60.6
R10= 13.442 D10= 1.50 N 6= 1.84666 ν 6= 23.9
R11= 108.847 D11= 可変
R12= 絞り D12= 0.60
* R13= 13.949 D13= 2.00 N 7= 1.69350 ν 7= 53.2
* R14= -55.208 D14= 可変
R15= -92.686 D15= 0.60 N 8= 1.64769 ν 8= 33.8
R16= 9.042 D16= 1.60 N 9= 1.80518 ν 9= 25.4
R17= 22.476 D17= 可変
R18= 13.130 D18= 0.60 N10= 1.84666 ν10= 23.9
R19= 7.714 D19= 3.50 N11= 1.48749 ν11= 70.2
R20= -15.054 D20= 0.15
* R21= 11.585 D21= 1.80 N12= 1.52280 ν12= 62.3
R22= 16.756 D22= 可変
R23= 23.806 D23= 1.25 N13= 1.88300 ν13= 40.8
R24= 6.466 D24= 3.77 N14= 1.48749 ν14= 70.2
R25= 258.606 D25= 可変
R26= ∞ D26= 2.00 N15= 1.51633 ν15= 64.1
R27= ∞


\焦点距離 6.35 12.39 29.98
可変間隔\
D 6 0.50 7.04 13.59
D11 13.69 7.14 0.60
D14 0.45 0.45 0.45
D17 6.76 4.23 1.62
D22 0.75 3.28 5.89
D25 6.00 6.00 6.00
・非球面係数
第5面 : K= 2.89732e+000 A= 0.00000e+000 B=-9.11558e-005
C= 2.46766e-006 D=-8.04498e-008 E= 1.50874e-009
第 6面 : K= 2.27135e+000 A= 0.00000e+000 B= 4.75217e-005
C= 3.52674e-006 D=-9.84940e-008 E= 2.04550e-009
第13面 : K= 2.61714e+000 A= 0.00000e+000 B= 5.08672e-005
C=-2.05979e-005 D= 3.83826e-006 E=-1.84585e-007
第14面 : K=-1.25046e+002 A= 0.00000e+000 B= 2.53545e-004
C=-2.29193e-005 D= 4.38482e-006 E=-1.97983e-007
第21面 : K= 2.54164e+000 A= 0.00000e+000 B=-1.85457e-004
C=-7.88873e-006 D= 3.08221e-007 E=-9.96643e-009
<数値実施例6>
f= 2.19 Fno= 3.26 NA= 0.15 2ω=171.0°
R 1= 36.775 D 1= 2.50 N 1= 1.77250 ν 1= 49.6
R 2= 18.294 D 2= 16.74
R 3= -97.434 D 3= 2.00 N 2= 1.80610 ν 2= 40.9
R 4= 20.684 D 4= 2.98
R 5= 43.550 D 5= 3.00 N 3= 1.69680 ν 3= 55.5
R 6= 81.881 D 6= 12.22
R 7= -28.470 D 7= 3.00 N 4= 1.84666 ν 4= 23.9
R 8= -25.016 D 8= 21.15
* R 9= 21.335 D 9= 2.50 N 5= 1.61800 ν 5= 63.3
* R10= -49.105 D10= 可変
R11= 77.468 D11= 0.60 N 6= 1.72916 ν 6= 54.7
R12= 9.706 D12= 1.24
R13= -11.629 D13= 0.50 N 7= 1.60311 ν 7= 60.6
R14= 15.020 D14= 1.50 N 8= 1.84666 ν 8= 23.9
R15= 53.093 D15= 可変
R16= 絞り D16= 0.60
* R17= 13.385 D17= 2.00 N 9= 1.69350 ν 9= 53.2
* R18= -56.781 D18= 0.45
R19=-1410.339 D19= 0.60 N10= 1.64769 ν10= 33.8
R20= 8.666 D20= 1.60 N11= 1.80518 ν11= 25.4
R21= 18.656 D21= 可変
R22= 13.719 D22= 0.60 N12= 1.84666 ν12= 23.9
R23= 7.523 D23= 3.50 N13= 1.48749 ν13= 70.2
R24= -19.369 D24= 0.15
* R25= 11.357 D25= 1.80 N14= 1.52280 ν14= 62.3
R26= 19.903 D26= 可変
R27= 16.278 D27= 1.42 N15= 1.88300 ν15= 40.8
R28= 6.564 D28= 3.52 N16= 1.48749 ν16= 70.2
R29= 37.624 D29= 6.00
R30= ∞ D30= 3.00 N17= 1.51633 ν17= 64.1
R31= ∞

\焦点距離 2.19 3.94 10.54
可変間隔\
D10 0.50 7.04 13.59
D15 13.70 7.15 0.61
D21 10.30 6.99 0.61
D26 0.78 4.10 10.48

・非球面係数
第9面 : K= 2.92618e+000 A= 0.00000e+000 B=-5.16439e-005
C= 1.92101e-006 D=-1.05228e-007 E= 9.50325e-010
第10面 : K= 2.21227e+000 A= 0.00000e+000 B= 1.06599e-006
C= 2.05150e-006 D=-1.17857e-007 E= 1.32070e-009
第17面 : K= 1.10143e+000 A= 0.00000e+000 B= 1.00738e-004
C=-1.39131e-005 D= 4.21520e-006 E=-1.57702e-007
第18面 : K=-1.24713e+002 A= 0.00000e+000 B= 2.21519e-004
C=-1.31403e-005 D= 4.80345e-006 E=-1.82939e-007
第25面 : K= 2.15826e+000 A= 0.00000e+000 B=-1.22398e-004
C=-6.06877e-006 D= 4.07232e-007 E=-1.46126e-00
<数値実施例7>
f= 6.35 〜 29.71 Fno= 3.30 〜 5.15 NA= 0.15〜0.97
2ω=31.6°〜 6.9°
R 1= 25.467 D 1= 1.00 N 1= 1.80809 ν 1= 22.8
R 2= 15.992 D 2= 21.15
* R 3= 21.335 D 3= 2.50 N 2= 1.61800 ν 2= 63.3
* R 4= -49.105 D 4= 可変
R 5= 77.468 D 5= 0.60 N 3= 1.72916 ν 3= 54.7
R 6= 9.706 D 6= 1.24
R 7= -11.629 D 7= 0.50 N 4= 1.60311 ν 4= 60.6
R 8= 15.020 D 8= 1.50 N 5= 1.84666 ν 5= 23.9
R 9= 53.093 D 9= 可変
R10= 絞り D10= 0.60
* R11= 13.385 D11= 2.00 N 6= 1.69350 ν 6= 53.2
* R12= -56.781 D12= 0.45
R13=-1410.339 D13= 0.60 N 7= 1.64769 ν 7= 33.8
R14= 8.666 D14= 1.60 N 8= 1.80518 ν 8= 25.4
R15= 18.656 D15= 可変
R16= 13.719 D16= 0.60 N 9= 1.84666 ν 9= 23.9
R17= 7.523 D17= 3.50 N10= 1.48749 ν10= 70.2
R18= -19.369 D18= 0.15
* R19= 11.357 D19= 1.80 N11= 1.52280 ν11= 62.3
R20= 19.903 D20= 可変
R21= 16.278 D21= 1.42 N12= 1.88300 ν12= 40.8
R22= 6.564 D22= 3.52 N13= 1.48749 ν13= 70.2
R23= 37.624 D23= 6.00
R24= ∞ D24= 3.00 N14= 1.51633 ν14= 64.1
R25= ∞

\焦点距離 6.35 11.46 29.71
可変間隔\
D 4 0.50 7.04 13.59
D 9 13.70 7.15 0.61
D15 10.30 7.04 0.61
D20 0.78 4.05 10.48

・非球面係数
第 3面 : K= 2.92618e+000 A= 0.00000e+000 B=-5.16439e-005
C= 1.92101e-006 D=-1.05228e-007 E= 9.50325e-010
第 4面 : K= 2.21227e+000 A= 0.00000e+000 B= 1.06599e-006
C= 2.05150e-006 D=-1.17857e-007 E= 1.32070e-009
第11面 : K= 1.10143e+000 A= 0.00000e+000 B= 1.00738e-004
C=-1.39131e-005 D= 4.21520e-006 E=-1.57702e-007
第12面 : K=-1.24713e+002 A= 0.00000e+000 B= 2.21519e-004
C=-1.31403e-005 D= 4.80345e-006 E=-1.82939e-007
第19面 : K= 2.15826e+000 A= 0.00000e+000 B=-1.22398e-004
C=-6.06877e-006 D= 4.07232e-007 E=-1.46126e-008
<数値実施例8>
f=-2.55 Fno= 2.50 NA= 0.20 2ω=34.8°
R 1= -5.590 D 1= 1.10 N 1= 1.88300 ν 1= 40.8
R 2= -12.089 D 2= 0.12
R 3= 3.848 D 3= 1.80 N 2= 1.48749 ν 2= 70.2
R 4= 17.036 D 4= 1.00
R 5= 副絞り D 5= 1.00
R 6= 13.806 D 6= 2.00 N 3= 1.84666 ν 3= 23.9
R 7= 3.849 D 7= 1.36
R 8= 21.513 D 8= 1.70 N 4= 1.71300 ν 4= 53.9
R 9= -4.104 D 9= 8.75
R10= 54.980 D10= 1.40 N 5= 1.48749 ν 5= 70.2
R11= -13.136 D11= 0.12
R12= 3.641 D12= 2.80 N 6= 1.48749 ν 6= 70.2
R13= -17.920 D13= 0.36
R14= -5.925 D14= 0.80 N 7= 1.88300 ν 7= 40.8
R15= -90.733 D15= 13.86
R16= 64.434 D16= 8.09 N 8= 1.84666 ν 8= 23.9
R17= -15.593 D17= 4.55
R18= 27.039 D18= 1.80 N 9= 1.77250 ν 9= 49.6
R19= -78.220 D19= 1.00
R20= 絞り D20= 1.50
R21= -6.568 D21= 2.20 N10= 1.84666 ν10= 23.9
R22= 6.366 D22= 2.00 N11= 1.77250 ν11= 49.6
R23= -14.479 D23= 0.10
R24= 12.093 D24= 1.82 N12= 1.60311 ν12= 60.6
R25= -12.636 D25= 0.10
R26= 7.498 D26= 1.50 N13= 1.83481 ν13= 42.7
R27= 21.068 D27= 1.50
R28= ∞ D28= 4.00 N14= 1.51633 ν14= 64.1
R29= ∞

なお、本発明の目的は、以下の処理を実行することによっても達成される。即ち、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)が記憶媒体に格納されたプログラムコードを読み出す処理である。
<Numerical Example 1>
f = 1.08 Fno = 1.48 NA = 0.34 2ω = 168.3 °
R 1 = 18.885 D 1 = 1.20 N 1 = 1.83481 ν 1 = 42.7
R 2 = 6.573 D 2 = 3.63
R 3 = 466.090 D 3 = 1.80 N 2 = 1.88300 ν 2 = 40.8
R 4 = 4.664 D 4 = 12.85
R 5 = 64.434 D 5 = 8.09 N 3 = 1.84666 ν 3 = 23.9
R 6 = -15.593 D 6 = 4.55
R 7 = 27.039 D 7 = 1.80 N 4 = 1.77250 ν 4 = 49.6
R 8 = -78.220 D 8 = 1.00
R 9 = Aperture D 9 = 1.50
R10 = −6.568 D10 = 2.20 N 5 = 1.84666 ν 5 = 23.9
R11 = 6.366 D11 = 2.00 N6 = 1.77250 ν6 = 49.6
R12 = -14.479 D12 = 0.10
R13 = 12.093 D13 = 1.82 N 7 = 1.60311 ν 7 = 60.6
R14 = -12.636 D14 = 0.10
R15 = 7.498 D15 = 1.50 N 8 = 1.83481 ν 8 = 42.7
R16 = 21.068 D16 = 1.50
R17 = ∞ D17 = 4.00 N 9 = 1.51633 ν 9 = 64.1
<Numerical Example 2>
f = 2.51 Fno = 1.50 NA = 0.33 2ω = 35.4 °
R 1 = 59.690 D 1 = 1.70 N 1 = 1.77250 ν 1 = 49.6
R 2 = -35.198 D 2 = 0.15
* R 3 = -114.351 D 3 = 1.00 N 2 = 1.80610 ν 2 = 40.9
* R 4 = 4.627 D 4 = 10.00
R 5 = 64.434 D 5 = 8.09 N 3 = 1.84666 ν 3 = 23.9
R 6 = -15.593 D 6 = 4.46
R 7 = 27.039 D 7 = 1.80 N 4 = 1.77250 ν 4 = 49.6
R 8 = -78.220 D 8 = 1.00
R 9 = Aperture D 9 = 1.50
R10 = −6.568 D10 = 2.20 N 5 = 1.84666 ν 5 = 23.9
R11 = 6.366 D11 = 2.00 N6 = 1.77250 ν6 = 49.6
R12 = -14.479 D12 = 0.10
R13 = 12.093 D13 = 1.82 N 7 = 1.60311 ν 7 = 60.6
R14 = -12.636 D14 = 0.10
R15 = 7.498 D15 = 1.50 N 8 = 1.83481 ν 8 = 42.7
R16 = 21.068 D16 = 1.50
R17 = ∞ D17 = 4.00 N 9 = 1.51633 ν 9 = 64.1
R18 = ∞
・ Aspheric surface coefficient 3rd surface: K = -3.05503e + 002 A = 0.000000 + 000 B = -4.12397e-004
C = 1.97036e-005 D = -1.79480e-007 E = 0.00000e + 000
4th surface K = 1.10373e-001 A = 0.00000e + 000 B = -7.40181e-004
C = -5.07705e-005 D = 3.38928e-006 E = 0.00000e + 000
<Numerical Example 3>
Fno = 2.1 NA = 0.24
* R 1 = -12.000 D 1 = 20.00
R 2 = 72.840 D 2 = 1.80 N 1 = 1.77250 ν 1 = 49.6
R 3 = -2228.821 D 3 = 0.12
R 4 = 27.317 D 4 = 1.60 N 2 = 1.77250 ν 2 = 49.6
R 5 = 88.452 D 5 = 0.30
* R 6 = 96.287 D 6 = 0.80 N 3 = 1.80518 ν 3 = 25.4
* R 7 = 5.285 D 7 = 10.00
R 8 = 64.434 D 8 = 8.09 N 4 = 1.84666 ν 4 = 23.9
R 9 = -15.593 D 9 = 4.46
R10 = 27.039 D10 = 1.80 N5 = 1.77250 ν5 = 49.6
R11 = -78.220 D11 = 1.00
R12 = Aperture D12 = 1.50
R13 = −6.568 D13 = 2.20 N 6 = 1.84666 ν 6 = 23.9
R14 = 6.366 D14 = 2.00 N 7 = 1.77250 ν 7 = 49.6
R15 = -14.479 D15 = 0.10
R16 = 12.093 D16 = 1.82 N 8 = 1.60311 ν 8 = 60.6
R17 = -12.636 D17 = 0.10
R18 = 7.498 D18 = 1.50 N 9 = 1.83481 ν 9 = 42.7
R19 = 21.068 D19 = 1.50
R20 = ∞ D20 = 4.00 N10 = 1.51633 ν10 = 64.1
R21 = ∞
-Aspherical coefficient 1st surface: K = -2.00000e + 000 A = 0.00000e + 000 B = 0.00000e + 000
C = 0.00000e + 000 D = 0.00000e + 000 E = 0.00000e + 000
6th surface: K = -3.05503e + 002 A = 0.000000 + 000 B = -1.12677e-003
C = -3.27765e-005 D = -2.22188e-006 E = 0.00000e + 000
Surface 7: K = 1.15723e-001 A = 0.00000e + 000 B =-1.16248e-003
C = -1.50088e-004 D = -3.68542e-006 E = 0.00000e + 000
<Numerical Example 4>
Fno = 2.5 NA = 0.19
* R 1 = -12.000 D 1 = 19.77
R 2 = 21.137 D 2 = 3.60 N 1 = 1.77250 ν 1 = 49.6
R 3 = 787.493 D 3 = 0.80
* R 4 = -132.870 D 4 = 1.00 N 2 = 1.84666 ν 2 = 23.9
* R 5 = 17.021 D 5 = 6.11
R 6 = ∞ D 6 = 13.50 N 3 = 1.83400 ν 3 = 37.2
R 7 = ∞ D 7 = 0.15
* R 8 = 17.745 D 8 = 3.20 N 4 = 1.58913 ν 4 = 61.2
* R 9 = -21.515 D 9 = 0.00
R10 = −189.656 D10 = 0.60 N 5 = 1.72916 ν 5 = 54.7
R11 = 9.663 D11 = 1.28
R12 = -10.856 D12 = 0.50 N6 = 1.60311 ν6 = 60.6
R13 = 13.442 D13 = 1.50 N 7 = 1.84666 ν 7 = 23.9
R14 = 108.847 D14 = 0.00
R15 = Aperture D15 = 0.60
* R16 = 13.949 D16 = 2.00 N 8 = 1.69350 ν 8 = 53.2
* R17 = -55.208 D17 = 0.00
R18 = −92.686 D18 = 0.60 N 9 = 1.64769 ν 9 = 33.8
R19 = 9.042 D19 = 1.60 N10 = 1.80518 ν10 = 25.4
R20 = 22.476 D20 = 0.00
R21 = 13.130 D21 = 0.60 N11 = 1.84666 ν11 = 23.9
R22 = 7.714 D22 = 3.50 N12 = 1.48749 ν12 = 70.2
R23 = -15.054 D23 = 0.15
* R24 = 11.585 D24 = 1.80 N13 = 1.52280 ν13 = 62.3
R25 = 16.756 D25 = 0.00
R26 = 23.806 D26 = 1.25 N14 = 1.88300 ν14 = 40.8
R27 = 6.466 D27 = 3.77 N15 = 1.48749 ν15 = 70.2
R28 = 258.606 D28 = 0.00
R29 = ∞ D29 = 2.00 N16 = 1.51633 ν16 = 64.1
R30 = ∞
-Aspheric coefficient 1st surface: K = -2.20000e + 000 A = 0.00000e + 000 B = 0.00000e + 000
C = 0.00000e + 000 D = 0.00000e + 000 E = 0.00000e + 000
4th surface: K = 7.30117e-004 A = 0.00000e + 000 B = -1.63313e-004
C = 1.09260e-006 D = 0.00000e + 000 E = 0.00000e + 000
Fifth side: K = -3.12547e-002 A = 0.000000 + 000 B = -2.45102e-004
C = 2.00934e-006 D = 0.00000e + 000 E = 0.00000e + 000
8th surface: K = 2.89732e + 000 A = 0.00000e + 000 B = -9.11558e-005
C = 2.46766e-006 D = -8.04498e-008 E = 1.50874e-009
Surface 9: K = 2.27135e + 000 A = 0.00000e + 000 B = 4.75217e-005
C = 3.52674e-006 D = -9.84940e-008 E = 2.04550e-009
16th surface K = 2.61714e + 000 A = 0.000000 + 000 B = 5.08672e-005
C = -2.05979e-005 D = 3.83826e-006 E = -1.84585e-007
17th surface: K = -1.25046e + 002 A = 0.00000e + 000 B = 2.53545e-004
C = -2.29193e-005 D = 4.38482e-006 E = -1.97983e-007
<Numerical example 5>
f = 6.35 to 29.98 Fno = 3.55 to 4.47 NA = 0.14 to 0.11
2ω = 31.6 ° ~ 6.9 °
R 1 = 27.233 D 1 = 1.00 N 1 = 1.84666 ν 1 = 23.9
R 2 = 12.108 D 2 = 3.37
R 3 = ∞ D 3 = 13.50 N 2 = 1.83400 ν 2 = 37.2
R 4 = ∞ D 4 = 0.15
* R 5 = 17.745 D 5 = 3.20 N 3 = 1.58913 ν 3 = 61.2
* R 6 = -21.515 D 6 = Variable R 7 = -189.656 D 7 = 0.60 N 4 = 1.72916 ν 4 = 54.7
R 8 = 9.663 D 8 = 1.28
R 9 = -10.856 D 9 = 0.50 N 5 = 1.60311 ν 5 = 60.6
R10 = 13.442 D10 = 1.50 N 6 = 1.84666 ν 6 = 23.9
R11 = 108.847 D11 = variable
R12 = Aperture D12 = 0.60
* R13 = 13.949 D13 = 2.00 N 7 = 1.69350 ν 7 = 53.2
* R14 = -55.208 D14 = variable R15 = -92.686 D15 = 0.60 N 8 = 1.64769 ν 8 = 33.8
R16 = 9.042 D16 = 1.60 N9 = 1.80518 ν9 = 25.4
R17 = 22.476 D17 = Variable
R18 = 13.130 D18 = 0.60 N10 = 1.84666 ν10 = 23.9
R19 = 7.714 D19 = 3.50 N11 = 1.48749 ν11 = 70.2
R20 = -15.054 D20 = 0.15
* R21 = 11.585 D21 = 1.80 N12 = 1.52280 ν12 = 62.3
R22 = 16.756 D22 = Variable
R23 = 23.806 D23 = 1.25 N13 = 1.88300 ν13 = 40.8
R24 = 6.466 D24 = 3.77 N14 = 1.48749 ν14 = 70.2
R25 = 258.606 D25 = variable
R26 = ∞ D26 = 2.00 N15 = 1.51633 ν15 = 64.1
R27 = ∞


\ Focal length 6.35 12.39 29.98
Variable interval \
D 6 0.50 7.04 13.59
D11 13.69 7.14 0.60
D14 0.45 0.45 0.45
D17 6.76 4.23 1.62
D22 0.75 3.28 5.89
D25 6.00 6.00 6.00
・ Aspheric coefficient
Fifth side: K = 2.89732e + 000 A = 0.00000e + 000 B = -9.11558e-005
C = 2.46766e-006 D = -8.04498e-008 E = 1.50874e-009
Side 6: K = 2.27135e + 000 A = 0.00000e + 000 B = 4.75217e-005
C = 3.52674e-006 D = -9.84940e-008 E = 2.04550e-009
Side 13: K = 2.61714e + 000 A = 0.00000e + 000 B = 5.08672e-005
C = -2.05979e-005 D = 3.83826e-006 E = -1.84585e-007
14th: K = -1.25046e + 002 A = 0.000000 + 000 B = 2.53545e-004
C = -2.29193e-005 D = 4.38482e-006 E = -1.97983e-007
21st surface: K = 2.54164e + 000 A = 0.00000e + 000 B = -1.85457e-004
C = -7.88873e-006 D = 3.08221e-007 E = -9.96643e-009
<Numerical Example 6>
f = 2.19 Fno = 3.26 NA = 0.15 2ω = 171.0 °
R 1 = 36.775 D 1 = 2.50 N 1 = 1.77250 ν 1 = 49.6
R 2 = 18.294 D 2 = 16.74
R 3 = -97.434 D 3 = 2.00 N 2 = 1.80610 ν 2 = 40.9
R 4 = 20.684 D 4 = 2.98
R 5 = 43.550 D 5 = 3.00 N 3 = 1.69680 ν 3 = 55.5
R 6 = 81.881 D 6 = 12.22
R 7 = -28.470 D 7 = 3.00 N 4 = 1.84666 ν 4 = 23.9
R 8 = -25.016 D 8 = 21.15
* R 9 = 21.335 D 9 = 2.50 N 5 = 1.61800 ν 5 = 63.3
* R10 = -49.105 D10 = variable R11 = 77.468 D11 = 0.60 N 6 = 1.72916 ν 6 = 54.7
R12 = 9.706 D12 = 1.24
R13 = -11.629 D13 = 0.50 N7 = 1.60311 ν7 = 60.6
R14 = 15.020 D14 = 1.50 N 8 = 1.84666 ν 8 = 23.9
R15 = 53.093 D15 = variable
R16 = Aperture D16 = 0.60
* R17 = 13.385 D17 = 2.00 N 9 = 1.69350 ν 9 = 53.2
* R18 = -56.781 D18 = 0.45
R19 = -1410.339 D19 = 0.60 N10 = 1.64769 ν10 = 33.8
R20 = 8.666 D20 = 1.60 N11 = 1.80518 ν11 = 25.4
R21 = 18.656 D21 = Variable
R22 = 13.719 D22 = 0.60 N12 = 1.84666 ν12 = 23.9
R23 = 7.523 D23 = 3.50 N13 = 1.48749 ν13 = 70.2
R24 = -19.369 D24 = 0.15
* R25 = 11.357 D25 = 1.80 N14 = 1.52280 ν14 = 62.3
R26 = 19.903 D26 = Variable
R27 = 16.278 D27 = 1.42 N15 = 1.88300 ν15 = 40.8
R28 = 6.564 D28 = 3.52 N16 = 1.48749 ν16 = 70.2
R29 = 37.624 D29 = 6.00
R30 = ∞ D30 = 3.00 N17 = 1.51633 ν17 = 64.1
R31 = ∞

\ Focal length 2.19 3.94 10.54
Variable interval \
D10 0.50 7.04 13.59
D15 13.70 7.15 0.61
D21 10.30 6.99 0.61
D26 0.78 4.10 10.48

・ Aspheric coefficient 9th surface: K = 2.92618e + 000 A = 0.000000 + 000 B = -5.16439e-005
C = 1.92101e-006 D = -1.05228e-007 E = 9.550325e-010
10th surface: K = 2.21227e + 000 A = 0.00000e + 000 B = 1.06599e-006
C = 2.05150e-006 D = -1.17857e-007 E = 1.32070e-009
Surface 17: K = 1.10143e + 000 A = 0.00000e + 000 B = 1.00738e-004
C = -1.39131e-005 D = 4.21520e-006 E = -1.57702e-007
18th surface: K = -1.24713e + 002 A = 0.000000 + 000 B = 2.21519e-004
C = -1.31403e-005 D = 4.80345e-006 E = -1.82939e-007
25th surface: K = 2.15826e + 000 A = 0.000000 + 000 B = -1.22398e-004
C = -6.06877e-006 D = 4.07232e-007 E = -1.46126e-00
<Numerical Example 7>
f = 6.35 to 29.71 Fno = 3.30 to 5.15 NA = 0.15 to 0.97
2ω = 31.6 ° ~ 6.9 °
R 1 = 25.467 D 1 = 1.00 N 1 = 1.80809 ν 1 = 22.8
R 2 = 15.992 D 2 = 21.15
* R 3 = 21.335 D 3 = 2.50 N 2 = 1.61800 ν 2 = 63.3
* R 4 = -49.105 D 4 = variable R 5 = 77.468 D 5 = 0.60 N 3 = 1.72916 ν 3 = 54.7
R 6 = 9.706 D 6 = 1.24
R 7 = -11.629 D 7 = 0.50 N 4 = 1.60311 ν 4 = 60.6
R 8 = 15.020 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.9
R 9 = 53.093 D 9 = variable
R10 = Aperture D10 = 0.60
* R11 = 13.385 D11 = 2.00 N 6 = 1.69350 ν 6 = 53.2
* R12 = -56.781 D12 = 0.45
R13 = -1410.339 D13 = 0.60 N 7 = 1.64769 ν 7 = 33.8
R14 = 8.666 D14 = 1.60 N 8 = 1.80518 ν 8 = 25.4
R15 = 18.656 D15 = Variable
R16 = 13.719 D16 = 0.60 N9 = 1.84666 ν9 = 23.9
R17 = 7.523 D17 = 3.50 N10 = 1.48749 ν10 = 70.2
R18 = -19.369 D18 = 0.15
* R19 = 11.357 D19 = 1.80 N11 = 1.52280 ν11 = 62.3
R20 = 19.903 D20 = variable
R21 = 16.278 D21 = 1.42 N12 = 1.88300 ν12 = 40.8
R22 = 6.564 D22 = 3.52 N13 = 1.48749 ν13 = 70.2
R23 = 37.624 D23 = 6.00
R24 = ∞ D24 = 3.00 N14 = 1.51633 ν14 = 64.1
R25 = ∞

\ Focal length 6.35 11.46 29.71
Variable interval \
D 4 0.50 7.04 13.59
D 9 13.70 7.15 0.61
D15 10.30 7.04 0.61
D20 0.78 4.05 10.48

・ Aspheric coefficient
Third side: K = 2.92618e + 000 A = 0.000000 + 000 B = -5.16439e-005
C = 1.92101e-006 D = -1.05228e-007 E = 9.550325e-010
4th page: K = 2.21227e + 000 A = 0.00000e + 000 B = 1.06599e-006
C = 2.05150e-006 D = -1.17857e-007 E = 1.32070e-009
11th surface: K = 1.10143e + 000 A = 0.00000e + 000 B = 1.00738e-004
C = -1.39131e-005 D = 4.21520e-006 E = -1.57702e-007
12th surface: K = -1.24713e + 002 A = 0.000000 + 000 B = 2.21519e-004
C = -1.31403e-005 D = 4.80345e-006 E = -1.82939e-007
19th surface: K = 2.15826e + 000 A = 0.000000 + 000 B = -1.22398e-004
C = -6.06877e-006 D = 4.07232e-007 E = -1.46126e-008
<Numerical Example 8>
f = -2.55 Fno = 2.50 NA = 0.20 2ω = 34.8 °
R 1 = -5.590 D 1 = 1.10 N 1 = 1.88300 ν 1 = 40.8
R 2 = -12.089 D 2 = 0.12
R 3 = 3.848 D 3 = 1.80 N 2 = 1.48749 ν 2 = 70.2
R 4 = 17.036 D 4 = 1.00
R 5 = Sub-aperture D 5 = 1.00
R 6 = 13.806 D 6 = 2.00 N 3 = 1.84666 ν 3 = 23.9
R 7 = 3.849 D 7 = 1.36
R 8 = 21.513 D 8 = 1.70 N 4 = 1.71300 ν 4 = 53.9
R 9 = -4.104 D 9 = 8.75
R10 = 54.980 D10 = 1.40 N 5 = 1.48749 ν 5 = 70.2
R11 = -13.136 D11 = 0.12
R12 = 3.641 D12 = 2.80 N6 = 1.48749 ν6 = 70.2
R13 = -17.920 D13 = 0.36
R14 = -5.925 D14 = 0.80 N 7 = 1.88300 ν 7 = 40.8
R15 = -90.733 D15 = 13.86
R16 = 64.434 D16 = 8.09 N8 = 1.84666 ν8 = 23.9
R17 = -15.593 D17 = 4.55
R18 = 27.039 D18 = 1.80 N 9 = 1.77250 ν 9 = 49.6
R19 = -78.220 D19 = 1.00
R20 = Aperture D20 = 1.50
R21 = −6.568 D21 = 2.20 N10 = 1.84666 ν10 = 23.9
R22 = 6.366 D22 = 2.00 N11 = 1.77250 ν11 = 49.6
R23 = -14.479 D23 = 0.10
R24 = 12.093 D24 = 1.82 N12 = 1.60311 ν12 = 60.6
R25 = -12.636 D25 = 0.10
R26 = 7.498 D26 = 1.50 N13 = 1.83481 ν13 = 42.7
R27 = 21.068 D27 = 1.50
R28 = ∞ D28 = 4.00 N14 = 1.51633 ν14 = 64.1
R29 = ∞

The object of the present invention can also be achieved by executing the following processing. That is, a storage medium that records a program code of software that realizes the functions of the above-described embodiments is supplied to a system or apparatus, and a computer (or CPU, MPU, etc.) of the system or apparatus is stored in the storage medium. This is the process of reading the code.

この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコード及び該プログラムコードを記憶した記憶媒体は本発明を構成することになる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.

また、プログラムコードを供給するための記憶媒体としては、次のものを用いることができる。例えば、フロッピー(登録商標)ディスク、ハードディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD−ROM、DVD−RAM、DVD−RW、DVD+RW、磁気テープ、不揮発性のメモリカード、ROM等である。または、プログラムコードをネットワークを介してダウンロードしてもよい。   Moreover, the following can be used as a storage medium for supplying the program code. For example, floppy (registered trademark) disk, hard disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD + RW, magnetic tape, nonvolatile memory card, ROM or the like. Alternatively, the program code may be downloaded via a network.

また、コンピュータが読み出したプログラムコードを実行することにより、上記実施の形態の機能が実現される場合も本発明に含まれる。加えて、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれる。   Further, the present invention includes a case where the function of the above-described embodiment is realized by executing the program code read by the computer. In addition, an OS (operating system) running on the computer performs part or all of the actual processing based on an instruction of the program code, and the functions of the above-described embodiments are realized by the processing. Is also included.

更に、前述した実施形態の機能が以下の処理によって実現される場合も本発明に含まれる。即ち、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれる。その後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部または全部を行う場合である。   Furthermore, a case where the functions of the above-described embodiment are realized by the following processing is also included in the present invention. That is, the program code read from the storage medium is written in a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer. Thereafter, based on the instruction of the program code, the CPU or the like provided in the function expansion board or function expansion unit performs part or all of the actual processing.

第1の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 1st Embodiment. 図1中の共通反射部材として用いることが可能な部分反射ミラーの構成を示す概念図である。It is a conceptual diagram which shows the structure of the partial reflection mirror which can be used as a common reflection member in FIG. 図1の光学装置に関して、例えば長方型の撮像素子IPに結像される形成像の概略形状を示す像面図である。FIG. 2 is an image view showing a schematic shape of a formed image formed on, for example, a rectangular imaging element IP in the optical device of FIG. 1. 図1に示した光学装置の第1の具象例を示す光路図である。FIG. 2 is an optical path diagram illustrating a first concrete example of the optical device illustrated in FIG. 1. 図1に示した光学装置の第2の具象例を示す光路図である。FIG. 6 is an optical path diagram illustrating a second concrete example of the optical device illustrated in FIG. 1. 数値実施例1に示す数値が適用される上記第1の具象例に係る広角光学系の構成図である。It is a block diagram of the wide angle optical system which concerns on the said 1st concrete example to which the numerical value shown in Numerical Example 1 is applied. 数値実施例2に示す数値が適用される上記第1の具象例に係る望遠光学系の構成図である。It is a block diagram of the telephoto optical system which concerns on the said 1st concrete example to which the numerical value shown in Numerical Example 2 is applied. 図5の光学装置で得られる形成像の概略形状を示す像面図である。FIG. 6 is an image view showing a schematic shape of a formed image obtained by the optical device of FIG. 5. 図1に示した光学装置の第3の具象例を示す光路図である。FIG. 6 is an optical path diagram illustrating a third concrete example of the optical device illustrated in FIG. 1. 数値実施例6に示す数値が適用される図9における広角光学系の構成図である。It is a block diagram of the wide-angle optical system in FIG. 9 to which the numerical value shown in Numerical Example 6 is applied. 数値実施例7に示す数値が適用される図9における望遠光学系の構成図である。It is a block diagram of the telephoto optical system in FIG. 9 to which the numerical value shown in Numerical Example 7 is applied. 第2の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 2nd Embodiment. 図12に示した光学装置の第1の具象例を示す光路図である。FIG. 13 is an optical path diagram illustrating a first concrete example of the optical device illustrated in FIG. 12. 数値実施例3に示す数値が適用される第1の具象例に係る広角光学系の構成図である。It is a block diagram of the wide angle optical system which concerns on the 1st concrete example to which the numerical value shown in Numerical Example 3 is applied. 図12に示した光学装置の第2の具象例を示す光路図である。FIG. 13 is an optical path diagram illustrating a second concrete example of the optical device illustrated in FIG. 12. 数値実施例4に示す数値が適用される上記第2の具象例に係る広角光学系の構成図である。It is a block diagram of the wide angle optical system which concerns on the said 2nd concrete example to which the numerical value shown in Numerical Example 4 is applied. 数値実施例5に示す数値が適用される上記第2の具象例に係る望遠光学系の構成図である。It is a block diagram of the telephoto optical system which concerns on the said 2nd concrete example to which the numerical value shown in Numerical Example 5 is applied. 第3の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 3rd Embodiment. 図18に示した光学装置の第1の具象例を示す光路図である。FIG. 19 is an optical path diagram illustrating a first concrete example of the optical device illustrated in FIG. 18. 図19の第1の具象例に係る望遠光学系の構成図である。FIG. 20 is a configuration diagram of a telephoto optical system according to the first concrete example of FIG. 19. 図18に示した光学装置の第2の具象例を示す光路図である。FIG. 19 is an optical path diagram illustrating a second concrete example of the optical device illustrated in FIG. 18. 第4の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 4th Embodiment. 図22に示した光学装置の具象例を示す光路図である。FIG. 23 is an optical path diagram illustrating a concrete example of the optical device illustrated in FIG. 22. 実施の形態に係る光学装置を搭載した撮像装置の設置例を示す概念図である。It is a conceptual diagram which shows the example of installation of the imaging device carrying the optical device which concerns on embodiment. 図24中の撮像装置の機構の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the mechanism of the imaging device in FIG. 実施の形態に係る光学装置を搭載した撮像装置による被写体認識時の初期画像状態を示す概念図である。It is a conceptual diagram which shows the initial state image state at the time of the object recognition by the imaging device carrying the optical device which concerns on embodiment. 実施の形態に係る光学装置を搭載した撮像装置の電気的構成例を示すブロック図である。It is a block diagram which shows the electrical structural example of the imaging device carrying the optical apparatus which concerns on embodiment. 実施の形態に係る光学装置を搭載した撮像装置による被写体認識を行った後の動体追尾動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the moving body tracking operation | movement after performing object recognition by the imaging device carrying the optical device which concerns on embodiment. 数値実施例1の魚眼光学系の縦収差を示す図である。It is a figure which shows the longitudinal aberration of the fish-eye optical system of Numerical Example 1. 数値実施例2の望遠光学系の縦収差を示す図である。FIG. 6 is a diagram illustrating longitudinal aberrations of a telephoto optical system according to Numerical Example 2. 数値実施例3の広角反射光学系の横収差を示す図である。FIG. 10 is a diagram illustrating lateral aberration of the wide-angle reflective optical system in Numerical Example 3. 数値実施例4の広角反射光学系の広角端における横収差を示す図である。FIG. 10 is a diagram showing transverse aberration at the wide-angle end of the wide-angle reflective optical system in Numerical Example 4. 数値実施例5の望遠変倍光学系の広角端における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations at the wide-angle end of a telephoto variable magnification optical system according to Numerical Example 5. FIG. 数値実施例5の望遠変倍光学系の中間における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 5. FIG. 数値実施例5の望遠変倍光学系の望遠端における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations at a telephoto end of a telephoto variable magnification optical system according to Numerical Example 5. FIG. 数値実施例6の魚眼光学系の広角端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the wide-angle end of the fisheye optical system of Numerical Example 6. 数値実施例7の望遠変倍光学系の広角端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the wide angle end of the telephoto variable magnification optical system of Numerical Example 7. 数値実施例7の望遠変倍光学系の中間における縦収差を示す図である。FIG. 10 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 7. 数値実施例7の望遠変倍光学系の望遠端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the telephoto end of the telephoto variable magnification optical system of Numerical Example 7. 数値実施例8の望遠2次結像光学系の縦収差を示す図である。FIG. 10 is a diagram illustrating longitudinal aberrations of the telephoto secondary imaging optical system in the numerical value example 8. レンズ頂点から光軸方向への変位量を算出する数式を示す図である。It is a figure which shows the numerical formula which calculates the displacement amount to an optical axis direction from a lens vertex.

符号の説明Explanation of symbols

IP 撮像素子
11 共通光学系
12 共通反射部材
13 第2対物光学系
14 遮光部材
15 第1対物光学系
16 遮光部材
15A 第1対物光学系
15A−1 反射部材
13A 第2対物光学系
13B 第2対物光学系
IP imaging device 11 common optical system 12 common reflecting member 13 second objective optical system 14 light blocking member 15 first objective optical system 16 light blocking member 15A first objective optical system 15A-1 reflecting member 13A second objective optical system 13B second objective Optical system

Claims (8)

光学装置と、該光学装置により結像された被写体像を電気信号に光電変換する撮像手段とを有する撮像装置であって、
前記光学装置は、
負の屈折力を有する第1の被写体像を撮像するための第1の光学系と、前記第1の光学系の少なくとも一部と共通する光学系を有し、第の被写体像を撮像するための第2の光学系と、前記共通する光学系に設けられた半透過または部分反射特性の反射部材と、前記第1の光学系における被写体像の中央部を含む一部を遮光する第1の遮光手段とを有し、
前記第2の光学系は、正レンズと負レンズを有し、前記第1の光学系よりも長焦点であり、
前記第2の光学系は、前記撮像手段における前記第1の光学系の遮光領域に対応する領域に前記反射部材を介して前記第の被写体像を結像させると共に、
前記撮像手段の画素ピッチを「L」、前記第1の光学系と前記第2の光学系のうちNA値が大きい方の光学系のNA値を「N」、許容差分幅を「ΔIP」としたとき、
以下の条件式
ΔIP≧10・L/2・
満たすことを特徴とする撮像装置。
An imaging apparatus comprising: an optical device; and an imaging unit that photoelectrically converts an object image formed by the optical device into an electrical signal,
The optical device comprises:
A first optical system for capturing a first subject image having negative refractive power and an optical system common to at least a part of the first optical system, and capturing a second subject image A first optical system that shields a part of the first optical system including a central portion of a subject image, and a second optical system for reflecting, a semi-transmissive or partially reflective reflecting member provided in the common optical system, and the first optical system. A light shielding means,
The second optical system has a positive lens and a negative lens, and has a longer focal point than the first optical system,
The second optical system forms the second subject image through the reflecting member in an area corresponding to the light-shielding area of the first optical system in the imaging unit ,
The pixel pitch of the imaging means is “L”, the NA value of the optical system having the larger NA value among the first optical system and the second optical system is “N”, and the allowable difference width is “ΔIP”. When
The following conditional expression
ΔIP ≧ 10 · L / 2 · N
An imaging device characterized by satisfying the above.
前記第2の光学系により形成される結像領域は、前記第1の光学系により形成される結像領域よりも小さくなるように設定されていることを特徴とする請求項1に記載の撮像装置。 The imaging region formed by the second optical system, an imaging according to claim 1, characterized in that it is set to be smaller than the imaging area formed by the first optical system apparatus. 前記第1の光学系は、入射光の進行方向に凸面を向けた凸面形状の反射部材もしくは入射光の進行方向に頂点向けた円錐形状の反射部材を有し、該反射部材の反射像を結像することを特徴とする請求項1または2に記載の撮像装置。 The first optical system has a reflecting member of the conical shape with its apex in the traveling direction of the reflection member or the incident light of the convex surface with the convex surface facing the traveling direction of the incident light, the reflected image of the reflective member The imaging apparatus according to claim 1, wherein an image is formed . 前記第1の光学系には、画角が90°以上の広角レンズ又は魚眼レンズの作用を有する光学系が含まれることを特徴とする請求項1または2に記載の撮像装置。 The imaging apparatus according to claim 1, wherein the first optical system includes an optical system having a function of a wide-angle lens or a fish-eye lens having an angle of view of 90 ° or more. 前記第2の光学系の光入射側に、開口を有する第2の遮光手段を設けたことを特徴とする請求項1乃至4の何れか1項に記載の撮像装置。 5. The imaging apparatus according to claim 1, wherein a second light shielding unit having an opening is provided on a light incident side of the second optical system. 前記第2の光学系を通過する光線を偏向するための第2の反射部材を設けたことを特徴とする請求項1乃至5の何れか1項に記載の撮像装置。 The imaging apparatus according to claim 1, further comprising a second reflecting member for deflecting a light beam passing through the second optical system. 前記第2の反射部材と前記第2の光学系は可動であることを特徴とする請求項6に記載の撮像装置。 The imaging apparatus according to claim 6, wherein the second reflecting member and the second optical system are movable. 記光学装置をパン方向に駆動するパン駆動機構と、
前記光学装置をチルト方向に駆動するチルト駆動機構とを備えたことを特徴とする請求項1乃至7の何れか1項に記載の撮像装置。
A pan drive mechanism for driving the pre-SL-optical device in the pan direction,
The imaging apparatus according to claim 1, further comprising a tilt drive mechanism that drives the optical device in a tilt direction.
JP2007302125A 2007-11-21 2007-11-21 Imaging device Expired - Fee Related JP5201957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302125A JP5201957B2 (en) 2007-11-21 2007-11-21 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302125A JP5201957B2 (en) 2007-11-21 2007-11-21 Imaging device

Publications (2)

Publication Number Publication Date
JP2009128527A JP2009128527A (en) 2009-06-11
JP5201957B2 true JP5201957B2 (en) 2013-06-05

Family

ID=40819531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302125A Expired - Fee Related JP5201957B2 (en) 2007-11-21 2007-11-21 Imaging device

Country Status (1)

Country Link
JP (1) JP5201957B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960796A (en) * 2014-02-18 2016-09-21 富士胶片株式会社 Automatic tracking image-capture apparatus
CN110770622A (en) * 2017-06-21 2020-02-07 富士胶片株式会社 Image pickup apparatus and mobile image pickup apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152205A1 (en) 2012-04-05 2013-10-10 Augmented Vision Inc. Wide-field of view (fov) imaging devices with active foveation capability
JP6340889B2 (en) * 2014-04-15 2018-06-13 株式会社リコー Zoom optical system for projection and image display device
JP6165680B2 (en) * 2014-06-27 2017-07-19 富士フイルム株式会社 Imaging device
JP6214481B2 (en) * 2014-06-27 2017-10-18 富士フイルム株式会社 Imaging device
JP6145079B2 (en) * 2014-08-29 2017-06-07 富士フイルム株式会社 Imaging apparatus and imaging method
WO2016068057A1 (en) * 2014-10-31 2016-05-06 富士フイルム株式会社 Imaging device and method for recognizing target object

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153060A (en) * 1992-11-07 1994-05-31 Sony Corp Electronic video camera
JPH1054939A (en) * 1996-06-07 1998-02-24 Mitsubishi Electric Corp Reflection type viewing angle converting optical device and optical system using the device
US6373642B1 (en) * 1996-06-24 2002-04-16 Be Here Corporation Panoramic imaging arrangement
EP1452899A1 (en) * 2001-11-13 2004-09-01 Matsushita Electric Industrial Co., Ltd. Wide-angle imaging optical system and wide-angle imaging device, monitoring imaging device, on-vehicle imaging device and projection device with the wide-angle imaging optical system
JP2006011103A (en) * 2004-06-28 2006-01-12 Yokogawa Electric Corp Spherical mirror imaging apparatus
TWI271549B (en) * 2004-10-14 2007-01-21 Nanophotonics Ltd Rectilinear mirror and imaging system having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960796A (en) * 2014-02-18 2016-09-21 富士胶片株式会社 Automatic tracking image-capture apparatus
CN105960796B (en) * 2014-02-18 2019-08-16 富士胶片株式会社 Automatic tracking camera device
CN110770622A (en) * 2017-06-21 2020-02-07 富士胶片株式会社 Image pickup apparatus and mobile image pickup apparatus
CN110770622B (en) * 2017-06-21 2021-09-10 富士胶片株式会社 Image pickup apparatus and mobile image pickup apparatus

Also Published As

Publication number Publication date
JP2009128527A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5201957B2 (en) Imaging device
JP5201809B2 (en) Zoom lens and imaging apparatus having the same
JP4845492B2 (en) Zoom optical system
JP6150592B2 (en) Zoom lens and imaging apparatus having the same
JP2009122379A (en) Optical device, control method thereof, imaging device and program
JP4817699B2 (en) Zoom lens and imaging apparatus having the same
JP4989152B2 (en) Zoom lens and imaging apparatus having the same
US5771123A (en) Zoom lens having image stabilizing function
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP4750458B2 (en) Zoom lens and imaging apparatus having the same
US6496310B2 (en) Optical system and optical apparatus provided with the same
JP2006337745A (en) Zoom lens and image pickup unit having the same
JP5753000B2 (en) Zoom lens and imaging apparatus having the same
JP6779936B2 (en) Zoom lens and imaging device with it
JP5896825B2 (en) Zoom lens and imaging apparatus having the same
JP5074747B2 (en) Optical apparatus, imaging apparatus, control method, and program
JP2009042270A (en) Zoom lens and imaging apparatus having the same
JP2006058584A (en) Zoom lens and imaging device incorporating it
JP6808382B2 (en) Zoom lens and imaging device with it
JP4545849B2 (en) Variable magnification optical system
JP4630578B2 (en) Zoom lens and imaging apparatus having the same
JP2005215518A (en) Zoom lens, and imaging apparatus using the same
JP2010141671A (en) Image pickup device
JP2006047771A (en) Zoom lens and imaging apparatus using the same
JP6270489B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees