JP5201247B2 - Electrostatic speaker - Google Patents
Electrostatic speaker Download PDFInfo
- Publication number
- JP5201247B2 JP5201247B2 JP2011168326A JP2011168326A JP5201247B2 JP 5201247 B2 JP5201247 B2 JP 5201247B2 JP 2011168326 A JP2011168326 A JP 2011168326A JP 2011168326 A JP2011168326 A JP 2011168326A JP 5201247 B2 JP5201247 B2 JP 5201247B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrodes
- electrostatic
- vibrating membrane
- electrostatic speaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Description
本発明は、静電型スピーカの構造に関する。 The present invention relates to a structure of an electrostatic speaker.
静電型スピーカ(コンデンサスピーカ)といわれるスピーカが知られている。静電型スピーカは、その構造が比較的簡易であるため、軽量、コンパクトに設計することができるという点、および理論的な取り扱いも簡単であるという点などにおいて注目されている。静電型スピーカは、典型的には、空隙を隔てて向かい合う2枚の平行平面電極と、電極の間に挿入されその両端等を筐体等に支持された導電性のシート状の部材(以下、振動板または振動膜という)とから構成される(いわゆるプッシュ・プル型)。振動膜に所定のバイアス電圧を印加しておき、電極に印加する電圧を変化させると、振動膜に作用する静電力は変化し、これにより振動膜は変位する。この印加電圧を入力楽音信号に応じて変化させれば、それに応じて振動膜は変位を繰り返し(すなわち振動し)、入力楽音信号に応じた音響波が振動膜から発生する。発生した楽音は、例えば金属板電極に空けられた孔やその他の多孔質層を通り抜けて外部へ放音される(特許文献1を参照)。 A speaker called an electrostatic speaker (condenser speaker) is known. Since the structure of the electrostatic speaker is relatively simple, it has been attracting attention because it can be designed to be lightweight and compact, and the theoretical handling is also simple. An electrostatic loudspeaker typically includes two parallel flat electrodes facing each other across a gap, and a conductive sheet-like member (hereinafter referred to as “inserted between the electrodes” supported by a housing or the like). , Called a diaphragm or diaphragm) (so-called push-pull type). When a predetermined bias voltage is applied to the vibrating membrane and the voltage applied to the electrode is changed, the electrostatic force acting on the vibrating membrane changes, and thereby the vibrating membrane is displaced. If this applied voltage is changed according to the input musical sound signal, the vibrating membrane repeats displacement (that is, vibrates) accordingly, and an acoustic wave corresponding to the input musical sound signal is generated from the vibrating membrane. The generated musical sound is emitted to the outside through, for example, a hole or other porous layer formed in the metal plate electrode (see Patent Document 1).
しかしながら、電極として、例えば金属板に多数の貫通孔を形成したもの(いわゆるパンチングメタル)や、多孔質性材料を用いた場合、孔が全く無い場合に比べ、極板間に発生させる電場に寄与する部分(有効電極面積)が減少することになり、この結果、電極間の静電容量が低下して、印加電圧が同じでも振動膜に作用させる力(駆動力)が減少する(以下、有効電極面積の大きさを静電スピーカの静電容量性能という)。電極と振動膜との距離を大きくすれば、孔の影響は相対的に小さくなるが、スピーカのサイズが大きくならざるを得ないし、振動膜と電極との間の距離が大きくなると振動膜に作用する静電量が小さくなるため、音圧を維持するために印加電圧を多くする必要があるなるなどのデメリットがある。また、孔の大きさや数を小さくすることによっても孔の影響を小さくすることはできるが、この場合は音響透過性能が悪化する。 However, as an electrode, for example, when a large number of through holes are formed in a metal plate (so-called punching metal) or a porous material is used, it contributes to the electric field generated between the electrode plates compared to the case where there is no hole at all. The effective area (effective electrode area) decreases, and as a result, the capacitance between the electrodes decreases, and the force (driving force) that acts on the diaphragm even when the applied voltage is the same (hereinafter referred to as effective) The size of the electrode area is called the electrostatic capacity performance of the electrostatic speaker). If the distance between the electrode and the diaphragm is increased, the effect of the hole is relatively reduced, but the size of the speaker must be increased, and if the distance between the diaphragm and the electrode is increased, the effect on the diaphragm is increased. Since the amount of static electricity is small, there is a demerit such that it is necessary to increase the applied voltage in order to maintain the sound pressure. Although the influence of the holes can be reduced by reducing the size and number of the holes, the sound transmission performance is deteriorated in this case.
このように、従来の静電型スピーカにおいては、音響透過性能と静電容量性能の両立を図ることが困難であった。そこで、本発明は、音響透過率と有効電極面積を同時に一定の基準を満たす音響素子、および静電型スピーカを提供することを目的とする。 Thus, it has been difficult for conventional electrostatic speakers to achieve both sound transmission performance and capacitance performance. Accordingly, an object of the present invention is to provide an acoustic element and an electrostatic speaker that simultaneously satisfy a certain standard for acoustic transmittance and effective electrode area.
本発明は、一の態様において、静電力によって変位可能な振動膜と、前記振動膜に対向して設けられ網状構造を有する電極と、前記振動膜と前記電極との間に設けられる緩衝部材と、前記平面電極を前記振動膜の振動方向に支持する支持部とを有し、前記支持部は前記電極との接触面が曲面であることを特徴とする静電型スピーカを提供する。 In one aspect, the present invention provides a vibrating membrane that can be displaced by an electrostatic force, an electrode that is provided opposite to the vibrating membrane and has a network structure, and a buffer member that is provided between the vibrating membrane and the electrode. And a support portion that supports the planar electrode in the vibration direction of the vibrating membrane, wherein the support portion has a curved contact surface with the electrode.
好ましい態様において、前記電極は前記振動膜の両側に各々設けられる平面電極であって、前記電極を金属で構成したときと略同等の静電容量となる。In a preferred aspect, the electrodes are planar electrodes provided on both sides of the vibrating membrane, respectively, and have substantially the same capacitance as when the electrodes are made of metal.
本発明に係る静電型スピーカによれば、音響透過性能と静電容量性能の両者に関して一定の基準が満たされる。 According to the electrostatic speaker according to the present invention, a certain standard is satisfied with respect to both sound transmission performance and capacitance performance.
<実施例1>
図1は、本発明の一実施例に係る静電型スピーカ1の大略構造の斜視図である。同図に示すように、静電型スピーカ1には、振動膜10と、これに対向する2つの平行平面電極(以下、単に電極という)20Lおよび20Rと、振動膜10および電極20L、20Rの間にそれぞれ設けられたクッション材30L、30Rとから大略構成される。同図では、電極20L、20Rの電極面がX方向およびY方向に固定されており、振動膜10がこの電極面に垂直なZ方向に振動することができる配置の例を示している。なお、以下、電極20Lと20Rの構造を同じであるので、両者を区別する必要が特に無い場合は「L」および「R」を省略することとする。「L」および「R」の省略については、他の構成要素についても同様である。
<Example 1>
FIG. 1 is a perspective view of a schematic structure of an
また、静電型スピーカ1は、図示せぬ電源から、所望の電圧がそれぞれの電極20に印加されるとともに、振動膜10上にバイアス電圧を印加される。電極20への給電方法については従来技術を採用することができるため、給電に関係する構成要素は図示を省略している。静電型スピーカ1は、更に、外部から音声信号を入力する入力部を備え、この音声信号に応じて印加電圧の値を変化させることにより、振動膜10に音声信号に応じた振動をさせることができるようになっている。振動膜10の振動によって発生した音波は、少なくとも一方の電極20を通り抜けてスピーカ外部に放音される。図面が煩雑になるのを防ぐため、音声信号生成や供給を行う構成要素についても、図示を省略している。
Further, in the
振動膜10は、例えば、PET(polyethylene terephthalate、ポリエチレンテレフタレート)、PP(polypropylene、ポリプロピレン)などのフィルムに金属膜を蒸着あるいは導電性塗料を塗布したものであって、例えば厚さ数ミクロン〜数十ミクロン程度の導電性の板状(膜状)部材である。あるいは、金属薄膜をラミネートしたものや、絶縁性フィルムに高電圧をかけて分極されたものであってもよい。また、振動膜10は、塩化ビニル、アクリル(メチルメタアクリレート)、ゴム等の絶縁材料により形成された固定手段(図示せず)において、所定の張力が振動膜10に作用している状態で、例えばその縁の一辺が静電型スピーカ1の筐体(図示せず)に支持されていてもよいし、このような支持部を設けず、クッション材30Lおよび30Rの作用で支持されるような構成であってもよい。
The
電極20は、その電極面の形状が正方形であり、静電型スピーカ1の筐体(図示せず)に固定される。このとき、振動膜10から両電極20L、20Rまでの距離d(例えば0.1〜10mm程度)が等しくなるように配置される。換言すれば、対向する電極のちょうど中間の位置が、振動膜10(正確には、信号が入力されていないときの状態である無変位状態における振動膜10)の固定位置となる。なお、電極面の形状は正方形に限らず、例えば長方形や円形などであっても構わない。
The electrode 20 has a square electrode surface and is fixed to a housing (not shown) of the
図2は、静電型スピーカ1の電極面に垂直な方向の断面図であり、この図を用いて電極20の詳細な構造を説明する。電極20は、不織布層201および導電層202からなる。導電層202は、不織布層201の表面全面に亘って形成されるものであり、例えば不織布層201にアルミニウム等の金属をスパッタリングすることによって生成される。あるいは、不織布層201に金属印刷を行ってもよい。あるいは、不織布層201に導電性塗料を塗布してもよい。
FIG. 2 is a cross-sectional view in a direction perpendicular to the electrode surface of the
ここで、不織布とはポーラス(多孔質)の構造繊維を持つ繊維であって、シート状の形状を有するものである。例えば、一定方向やランダムに集積して接着樹脂で化学的に結合させたり、機械的に絡ませたり、圧力をかけた水流で絡ませたり、熟融着繊維で結合させて作られる。本発明においては、孔のない平板電極を用いた場合と比べて静電容量が実質的に同じにとなるように、且つ空気透過性(すなわち音響透過性能)がパンチングメタル(以下、PM)を用いて電極を構成した場合と比べて高い構造を有する不織布を用いる。例えば、目付40g/m^2、厚み0.1mm、繊維径2デニールのものが好適である。ただし、本実施例に係る不織布は上記の値で特定される構造を有する物に限定されず、これ以外の値を有する構造のものを使用することができる。以下、静電容量性能および音響透過性能のそれぞれの観点から、好適な不織布の構造について更に説明する。 Here, the nonwoven fabric is a fiber having a porous (porous) structural fiber, and has a sheet-like shape. For example, it is produced by collecting in a certain direction or randomly, chemically bonding with an adhesive resin, mechanically entangled, entangled with a water stream under pressure, or bonded with a matured fused fiber. In the present invention, punching metal (hereinafter referred to as PM) is used so that the capacitance is substantially the same as in the case of using a flat electrode without holes and the air permeability (that is, the sound transmission performance). The nonwoven fabric which has a high structure compared with the case where an electrode is comprised using is used. For example, those having a basis weight of 40 g / m ^ 2, a thickness of 0.1 mm, and a fiber diameter of 2 denier are suitable. However, the nonwoven fabric which concerns on a present Example is not limited to the thing which has a structure specified by said value, The thing of the structure which has a value other than this can be used. Hereinafter, the structure of a suitable nonwoven fabric is further demonstrated from each viewpoint of electrostatic capacity performance and sound transmission performance.
クッション材30は、絶縁性材料から構成され、例えば、スポンジ、シート状の綿、絶縁性の不織布である。クッション材30を挿入することにより、振動膜10を筐体に対して支持し、または適度な弾性応力を振動膜10に対して付与することが可能である。その機械的性質等は特に限定されないが、電極20の空気透過性よりも大きい空気透過性を有するものであって、例えば空気透過率95%以上ものが好ましい。
The cushion material 30 is made of an insulating material, and is, for example, a sponge, a sheet-like cotton, or an insulating nonwoven fabric. By inserting the cushion material 30, it is possible to support the
(1)静電容量性能
図3は、金属で構成された一対の平行平面電極(孔が開いていないもの)で測定した静電容量を1(100%)とした場合に、片方の電極を同面積の上記例示した値の構造の不織布を用いた不織布を用いた電極(以下、不織布電極という)で置き換えて測定した静電容量の値と、幾つかの孔径および開孔率を有するPMで置き換えて測定した静電容量の値を、電極間隔とともに示したものである。図中、Aは不織布電極で置き換えた場合のデータを示し、E〜Iは、孔径、開口率がそれぞれ{2mm、20%}、{2mm、40%}、{3mm、40%}、{6mm、40%}、{8mm、40%}のPMで置き換えた場合のデータを示す。同図から判るように、PMを用いた場合、電極間距離を小さくしていくと静電容量は著しく減少する。これは、上述したように、電極間距離が小さくなると孔の影響が大きくなるからである。これに対し本実施例に係る不織布電極を用いた場合、電極間距離を小さくしても静電容量の落ち込みがみられず、ほぼ一定の値(約100%)をとっており、金属で構成された平面電極の場合と実質的に同等の静電容量性能を有するといえる。
(1) Capacitance performance FIG. 3 shows a case where one electrode is measured when the capacitance measured with a pair of parallel plane electrodes made of metal (having no holes) is 1 (100%). The capacitance value measured by replacing the electrode using the nonwoven fabric with the structure of the above exemplified value of the same area (hereinafter referred to as the nonwoven fabric electrode), and PM having several pore diameters and aperture ratios. The capacitance value measured by replacement is shown together with the electrode spacing. In the figure, A shows the data when replaced with a non-woven fabric electrode, and E to I have pore diameters and aperture ratios of {2 mm, 20%}, {2 mm, 40%}, {3 mm, 40%}, {6 mm, respectively. , 40%} and {8 mm, 40%}. As can be seen from the figure, when PM is used, the capacitance is remarkably reduced as the distance between the electrodes is reduced. This is because, as described above, the influence of the holes increases as the distance between the electrodes decreases. On the other hand, when the nonwoven fabric electrode according to the present example is used, the capacitance does not drop even when the distance between the electrodes is reduced, and takes a substantially constant value (about 100%). It can be said that it has substantially the same electrostatic capacity performance as the case of the planar electrode formed.
(2)音響透過性能
図4は、一般的なスピーカと、そこから所定の距離離れた場所に当該スピーカから放音された音の周波数特性を解析する測定器を設置し、スピーカと測定器との間にPMを置いて測定を行った場合と、本実施例に係る不織布電極を置いて測定を行った場合に測定器で得られた周波数特性のずれ具合(音響波の歪み具合)を比較したものである。図中、PM(1)〜(3)はそれぞれ孔径を8mm、2mm、2.5mmのPMを置いた場合のデータであり、NWは不織布電極を置いた場合のデータである。スピーカと測定器との間に何も遮蔽物が無ければ、スピーカで放音された音と測定器の周波数特性は実質的に一致するので、得られるデータは周波数によらずゼロとなる。すなわち、ゼロからのずれが小さいほど音響透過性能が優れているといえる。遮蔽物としてPMを用いた場合、音波がPMを透過する際の影響で周波数帯によって測定器に到達までに音響波が歪められていることが判る。一方、遮蔽物として不織布電極を用いた場合、多少の歪みは測定されているが、PMの場合に比べれば、音圧レベルにおいて総じて1/3〜1/4程度となっている。このように、本実施例に係る不織布で構成された電極20は、一般的なPMに比べて音響透過性能の点で優れているといえる。
(2) Sound transmission performance FIG. 4 shows a general speaker and a measuring device for analyzing the frequency characteristics of the sound emitted from the speaker at a predetermined distance from the speaker. Compare the frequency characteristics deviation (acoustic wave distortion) obtained with the measuring instrument when the measurement was performed with the PM placed between the measurement and the nonwoven fabric electrode according to this example. It is a thing. In the figure, PM (1) to (3) are data when PM having a hole diameter of 8 mm, 2 mm, and 2.5 mm is placed, and NW is data when a nonwoven fabric electrode is placed. If there is no shielding object between the speaker and the measuring instrument, the sound emitted from the speaker and the frequency characteristic of the measuring instrument substantially coincide with each other, so that the obtained data becomes zero regardless of the frequency. That is, it can be said that the smaller the deviation from zero, the better the sound transmission performance. When PM is used as the shielding object, it can be seen that the acoustic wave is distorted by the frequency band before reaching the measuring instrument due to the influence of the sound wave passing through the PM. On the other hand, when a nonwoven fabric electrode is used as the shield, some distortion is measured, but compared to the case of PM, the sound pressure level is generally about 1/3 to 1/4. Thus, it can be said that the electrode 20 comprised with the nonwoven fabric which concerns on a present Example is excellent in the point of the sound transmission performance compared with general PM.
<実施例2>
図5は、本発明の他の実施例に係る静電型スピーカ2の断面図である。静電型スピーカ2が静電型スピーカ1と異なる点は、電極20Rおよび20Lに替えて電極40Rおよび40Lを用いる点である。
図6は、電極40の構造の詳細を示したものである。同図に示すように、電極40は金属等の導電性材料で形成された格子である。例えば、JIS規格G3555、3556等の織金網であって、メッシュ♯20〜#500のものを用いることができる。ここで、メッシュとは一辺における25.4mm間の目数をいう。
図7は、一対の平行平面金属電極(孔が開いていないもの)で測定した静電容量を1(100%)とした場合に、片方の電極を同面積の上記例示した値の構造の金網を用いた不織布を用いた電極(金網電極という)で置き換えて測定した静電容量の値(有効静電容量という)と、幾つかの孔径および開口率を有するPMで置き換えて測定した静電容量の値を、電極間隔とともに示したものである。図中、B〜Dはそれぞれ金網電極で置き換えた場合のデータを示し、E〜Iについては、図3で示したPMのデータと同じである。同図から判るように、本実施例に係る金属電極を用いた場合、電極間距離を小さくしても静電容量の落ち込みはPMを用いた場合に比べて僅かである。例えば、電極間隔を1mmにしても95%以上の有効静電容量を得ることができる。
例えばメッシュ♯40、線径0.16mmの平織の金網を用いた場合、音響透過性能に影響する空間率(PMにおける開孔率に相当)は、約40%となる。すなわち、本実施例に係る電極40を用いれば、PMと同等の音響透過性能を実現しつつ、同程度の開孔率を有するPMより高いも静電容量性能が得られる。
なお、電極40に用いる金網としては、例えばオーディオ用スピーカとして用いる場合に音響透過性能を実質的に悪化させないような空間率(例えば20〜50%)であれば、織り方、線径、目合い、材質については任意のものを用いることができる。
<Example 2>
FIG. 5 is a cross-sectional view of an
FIG. 6 shows details of the structure of the electrode 40. As shown in the figure, the electrode 40 is a lattice formed of a conductive material such as metal. For example, woven wire meshes of JIS standards G3555 and 3556, etc., and those having meshes # 20 to # 500 can be used. Here, the mesh refers to the number of eyes between 25.4 mm on one side.
FIG. 7 shows a wire mesh having the above-mentioned exemplified value of the same area when one of the electrodes has an electrostatic capacity measured by a pair of parallel flat metal electrodes (having no holes) of 1 (100%). Capacitance value measured by replacing the electrode with a non-woven fabric electrode (referred to as a wire mesh electrode) (referred to as effective capacitance) and PM measured with several pore sizes and aperture ratios. Is shown together with the electrode spacing. In the figure, B to D show data when replaced with wire mesh electrodes, respectively, and E to I are the same as the PM data shown in FIG. As can be seen from the figure, when the metal electrode according to the present embodiment is used, even if the distance between the electrodes is reduced, the drop in the capacitance is small compared to the case where PM is used. For example, an effective capacitance of 95% or more can be obtained even when the electrode spacing is 1 mm.
For example, when a plain weave wire mesh having a mesh # 40 and a wire diameter of 0.16 mm is used, the space ratio affecting the sound transmission performance (corresponding to the aperture ratio in PM) is about 40%. That is, if the electrode 40 according to the present embodiment is used, a capacitance performance higher than that of a PM having the same degree of aperture ratio can be obtained while realizing a sound transmission performance equivalent to that of PM.
The wire mesh used for the electrode 40 is, for example, a weaving method, a wire diameter, and a mesh size so long as the space ratio (for example, 20 to 50%) does not substantially deteriorate the sound transmission performance when used as an audio speaker. Any material can be used.
<その他の実施例>
図8は、本発明に係る静電型スピーカ3の断面図を示したものである。同図に示すように、静電型スピーカ3は、静電型スピーカ1の電極20L、20Rの外側にそれぞれ支持部材50L、50Rを設けて構成される。支持部材50は、例えば金属素材で構成され、好ましくは螺旋状のスプリングに三角形の形状をしたワイヤーを巻きつけてなる、曲げた形状を保持して屈曲耐久性にも優れたいわゆるフレキシブルチューブが用いられる。また、支持部材50は筐体に固定されてもよいし、電極20に固定されても良いが、電極20に固定する場合は固定部に所定の絶縁処理が施される。
図9は、支持部材50の構造を説明するための図である。同図に示すように、支持部材50は、音響透過性能を実質的に損なわないよう格子形状をしている。この形状は、例えば上記フレキシブルチューブを編みこむことによって得ることができる。
電極20を構成する不織布が一定の柔軟性を有するもの(例えばシート状のもの)である場合、印加電圧や電極20の設置条件によってはなどの条件によっては、自身の弾性のために電極20が撓む場合がある。電極20が内側に力がかかっても、クッション材30があるために撓みをある程度抑制することができるが、外側に力がかかった場合、電極20は撓みが発生する。しかし、本実施例によれば、電極20の外側に支持部材50を用いることで、その撓みを防止することができる。
<Other examples>
FIG. 8 is a sectional view of the
FIG. 9 is a view for explaining the structure of the support member 50. As shown in the figure, the support member 50 has a lattice shape so as not to substantially impair the sound transmission performance. This shape can be obtained, for example, by braiding the flexible tube.
When the non-woven fabric constituting the electrode 20 has a certain flexibility (for example, a sheet-like one), depending on conditions such as an applied voltage and an installation condition of the electrode 20, the electrode 20 It may bend. Even if the force is applied to the inside of the electrode 20, the bending can be suppressed to some extent because of the cushion material 30, but when the force is applied to the outside, the electrode 20 is bent. However, according to the present embodiment, by using the support member 50 outside the electrode 20, it is possible to prevent the bending thereof.
さらに、図10に示すように、支持部材50を予め同図z方向に撓ました状態で固定しておくことも可能である。図10に示す例では、支持部材の中央が最も撓んであり、周囲にいくに従って撓みが緩やかになるように構成されている。この場合、電極20の撓み具合を所定の形状(例えば図10に示す場合のように放物面形状)に強制することができる。この撓み具合を調節することにより、電極20から放音される音響波の指向特性を制御することが可能となる。 Furthermore, as shown in FIG. 10, it is also possible to fix the support member 50 in a state where it is bent in the z direction in the same figure. In the example shown in FIG. 10, the center of the support member is most bent, and the bending becomes gentler toward the periphery. In this case, the bending state of the electrode 20 can be forced to a predetermined shape (for example, a parabolic shape as shown in FIG. 10). By adjusting the degree of bending, the directivity characteristic of the acoustic wave emitted from the electrode 20 can be controlled.
上記実施例においては、クッション材30を電極20と振動膜10との間に設けた例を示したが、クッション材30を省略してもかまわない。この場合、振動膜10と電極との接触を防ぐため、例えば振動膜の四隅にスペーサを設けておくのが好ましい。
In the above embodiment, the cushion material 30 is provided between the electrode 20 and the
また、電極20に用いた上述した構造を有する絶縁性不織布でクッション材30を構成し、このクッション材30の外側(すなわち電極側)表面に導電層を設けてもよい。この場合、電極20を設けず、クッション材30に電極20の機能を兼ねさせることができる。 Further, the cushioning material 30 may be formed of the insulating nonwoven fabric having the above-described structure used for the electrode 20, and a conductive layer may be provided on the outer surface (that is, the electrode side) of the cushioning material 30. In this case, the electrode 20 is not provided, and the cushion material 30 can also function as the electrode 20.
また、実施例1において、不織布の表面に導電層が形成された電極20の例を示したが、この層の厚みは任意である。要は、本発明に係る電極を構成する不織布は上述した音響透過性能および静電容量性能を発揮する構造のものであればよく、必ずしも層構造になっている必要はない。例えば、繊維の一本一本に導電性を持たせ、不織布の内部の任意の場所で導電性を有するようなものでも構わない。 Moreover, in Example 1, although the example of the electrode 20 in which the conductive layer was formed on the surface of the nonwoven fabric was shown, the thickness of this layer is arbitrary. In short, the non-woven fabric constituting the electrode according to the present invention may be of any structure as long as it exhibits the above-described sound transmission performance and capacitance performance, and does not necessarily have a layer structure. For example, each fiber may have conductivity, and may have conductivity at an arbitrary location inside the nonwoven fabric.
支持部材50を設ける箇所は電極20または40の外側に限らず、内側(すなわち、振動膜10(あるいはクッション材30)と電極20または40の間)に設けてもよいし、内側と外側の両方であってもよい。 The place where the support member 50 is provided is not limited to the outside of the electrode 20 or 40, but may be provided inside (that is, between the vibrating membrane 10 (or the cushion material 30) and the electrode 20 or 40), or both inside and outside It may be.
以上説明した実施例においては、静電型スピーカの構成要素として、振動膜10、電極20または40、クッション材30および支持部材50について、特定の組み合わせのみを例示したが、これは説明の便宜上のためであり、例えばクッション材30の有無および支持部材50有無について、上述した以外の任意の組み合わせを採用することが可能である。
In the embodiments described above, only specific combinations of the
また、以上説明した実施例においては対向する一対の電極20または40を用いたプッシュ・プル型の静電型スピーカの例を示したが、これに限らず、本発明に係る電極を1つのみ用いてプッシュ型の静電型スピーカを構成することも可能である。 In the embodiment described above, an example of a push-pull type electrostatic speaker using a pair of opposing electrodes 20 or 40 has been shown. However, the present invention is not limited to this, and only one electrode according to the present invention is provided. It is also possible to configure a push-type electrostatic speaker by using it.
1、2、3・・・静電型スピーカ、10・・・振動膜、20、20L、20R、40L、40R・・・電極、・・・不織布電極、30L、30R・・・クッション材、50L、50R・・・支持部材、201L、201R・・・不織布層、202L、202R・・・導電層 1, 2, 3 ... electrostatic speaker, 10 ... vibrating membrane, 20, 20L, 20R, 40L, 40R ... electrode, non-woven fabric electrode, 30L, 30R ... cushion material, 50L , 50R ... support member, 201L, 201R ... non-woven fabric layer, 202L, 202R ... conductive layer
Claims (2)
前記振動膜に対向して設けられ網状構造を有する電極と、
前記振動膜と前記電極との間に設けられる緩衝部材と、
前記平面電極を前記振動膜の振動方向に支持する支持部と
を有し、
前記支持部は前記電極との接触面が曲面である
ことを特徴とする静電型スピーカ。 A diaphragm that can be displaced by an electrostatic force;
An electrode provided opposite to the vibrating membrane and having a network structure;
A buffer member provided between the vibrating membrane and the electrode ;
A support portion for supporting the planar electrode in the vibration direction of the vibrating membrane;
Have
The support portion has a curved contact surface with the electrode.
An electrostatic speaker characterized by that.
前記電極を金属で構成したときと略同等の静電容量となる
ことを特徴とする請求項1に記載の静電型スピーカ。 The electrodes are electrodes provided on both sides of the vibrating membrane,
The electrostatic speaker according to claim 1, wherein the electrostatic capacity is substantially the same as when the electrode is made of metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011168326A JP5201247B2 (en) | 2011-08-01 | 2011-08-01 | Electrostatic speaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011168326A JP5201247B2 (en) | 2011-08-01 | 2011-08-01 | Electrostatic speaker |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007061970A Division JP4862700B2 (en) | 2007-03-12 | 2007-03-12 | Electrostatic speaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011244479A JP2011244479A (en) | 2011-12-01 |
JP5201247B2 true JP5201247B2 (en) | 2013-06-05 |
Family
ID=45410577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011168326A Active JP5201247B2 (en) | 2011-08-01 | 2011-08-01 | Electrostatic speaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5201247B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013201512A (en) * | 2012-03-23 | 2013-10-03 | Yamaha Corp | Electrostatic speaker |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07336797A (en) * | 1994-06-09 | 1995-12-22 | Sony Corp | Speaker system |
JP2003189390A (en) * | 2001-12-20 | 2003-07-04 | Daido Electronics Co Ltd | Low-profile electromagnetic transducer |
US6943448B2 (en) * | 2003-01-23 | 2005-09-13 | Akustica, Inc. | Multi-metal layer MEMS structure and process for making the same |
JP2005207959A (en) * | 2004-01-26 | 2005-08-04 | Mitsubishi Electric Corp | Thin-film hollow structure |
JP2006148612A (en) * | 2004-11-22 | 2006-06-08 | Yamaha Corp | Acoustic device |
-
2011
- 2011-08-01 JP JP2011168326A patent/JP5201247B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011244479A (en) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210090908U (en) | Display device | |
EP1972178B1 (en) | Electrostatic loudspeakers | |
US20180035200A1 (en) | Vibration transfer structure and piezoelectric speaker | |
JP5677639B2 (en) | SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE | |
JP2007275819A (en) | Piezoelectric vibration unit and piezoelectric loudspeaker | |
CN112099298B (en) | Display device, sound substrate, and projection screen | |
JP2008054154A (en) | Plane loudspeaker | |
US9584922B2 (en) | Hybrid speaker | |
JP4862700B2 (en) | Electrostatic speaker | |
JP5977473B1 (en) | Vibration transmission structure and piezoelectric speaker | |
JP4830933B2 (en) | Electrostatic speaker | |
JP5201247B2 (en) | Electrostatic speaker | |
JP2009038637A (en) | Electrostatic speaker | |
JP4899590B2 (en) | Electrostatic speaker | |
JP2008259158A (en) | Electrostatic speaker | |
JP2007318554A (en) | Electrostatic speaker | |
US20220278267A1 (en) | Sound pressure-electrical signal conversion device and conversion method for same | |
JP5206087B2 (en) | Speaker system | |
EP2911413B1 (en) | Loudspeaker with piezoelectric elements | |
JP2009296125A (en) | Electrostatic loudspeaker | |
JP4697007B2 (en) | Electrostatic speaker | |
JP5030168B2 (en) | Electrostatic speaker | |
JP7099110B2 (en) | Electro-acoustic converter | |
JP2013162141A (en) | Piezoelectric sounder device | |
JP2009232405A (en) | Electrostatic speaker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5201247 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |