JP5200101B2 - Ct画像データにおける出血性脳卒中の検出 - Google Patents

Ct画像データにおける出血性脳卒中の検出 Download PDF

Info

Publication number
JP5200101B2
JP5200101B2 JP2010512826A JP2010512826A JP5200101B2 JP 5200101 B2 JP5200101 B2 JP 5200101B2 JP 2010512826 A JP2010512826 A JP 2010512826A JP 2010512826 A JP2010512826 A JP 2010512826A JP 5200101 B2 JP5200101 B2 JP 5200101B2
Authority
JP
Japan
Prior art keywords
candidate region
unit
skull
hematoma
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010512826A
Other languages
English (en)
Other versions
JP2010530270A (ja
Inventor
キルステン メーツ
トーマス ビューロー
スチュワート ヤング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2010530270A publication Critical patent/JP2010530270A/ja
Application granted granted Critical
Publication of JP5200101B2 publication Critical patent/JP5200101B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/41Analysis of texture based on statistical description of texture
    • G06T7/44Analysis of texture based on statistical description of texture using image operators, e.g. filters, edge density metrics or local histograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/501Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20156Automatic seed setting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Probability & Statistics with Applications (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、医療診断において、より具体的には、CT画像データにおける出血性脳卒中(haemorrhagic stroke)の検出において医師を支援する分野に関する。
脳卒中は、心筋梗塞及び癌に次いで米国及び西洋諸国における3番目の死亡原因であり、身体障害の主な原因である。個人のクオリティ・オブ・ライフの劇的な低下のほかに、脳卒中は、1年あたり脳卒中生存者一人あたり35000ないし50000米ドルのコストの明らかな社会経済的影響を持つ。
これらの事実に関して、脳卒中患者の効果的な治療に対する強い要望が存在する。この十年の間、急性虚血性脳卒中患者の再疎通薬及び神経保護剤の研究は、有望な成果を示した。しかしながら、この治療は、脳卒中の後のわずかな時間内に使用されなければならない。6時間後には、前記治療の相対的なリスクは、便益を上回る。前記治療は、急性虚血性脳卒中の患者に使用される場合に有用であるが、急性脳出血、例えば出血性脳卒中又は脳出血に対する体内動態を持つ事象の患者に使用される場合には危険である。
時間的制約及び脳出血の患者に対する危険な効果の両方が、適正な撮像及び画像読み取り技術に基づく脳卒中の速く、資格のある鑑別診断を要求する。しかしながら、これらの技術は、非常に少数の医療専門家にしか利用可能ではなく、したがって現在は急性虚血性脳卒中の患者の3ないし4%のみが、静脈内血栓溶解のような適正な治療を受けている。
CT撮像において、急性出血性脳卒中は、疾患の経過において変化する典型的なグレイ値特性により特徴付けられることができる。急性期において、脳卒中領域は、高濃度(hyperdense)、すなわち比較的明るい領域として描かれるのに対し、慢性出血性脳卒中は、低濃度(hypodense)、すなわち比較的暗い領域として現れる。これらの典型的なグレイ値は、閾値、クラスタ化及び領域拡張のような画像処理アプローチを要求する。
http://ieeexplore.ieee.org/iel2/463/6617/00262976.pdf?arnumber=262976において入手可能な"Image Analysis and 3-D Visualization of Intracerebral Brain Hemorrhage"と題された記事(2007年5月28日)において、Dhawan他は、CT画像に基づいて脳出血を検出する半自動アプローチを提案している。k-meansクラスタリングアルゴリズムは、全体的な画像を前景及び背景に分割する。結果として生じるバイナリ画像において、ユーザは、脳出血を描く後続する領域拡張アルゴリズムに対する適正なシード点を選択する。
より自動化された規則ベースアプローチは、M. Matesin他によりImage and Signal Processing and Analysis, 2001, ページ219-223における"A rule-based approach to stroke lesion analysis from CT images"と題された記事において提示されている。ここで、抽出される領域の輝度及び脳の対称軸に対する対称性のような画像フィーチャは、画像を背景、頭蓋骨、脳脊髄液、灰白質、白質及び脳卒中に分類するのに使用される。脳の対称軸に対して対称的でない脳卒中の領域は、作者により低濃度としてラベルづけされる。これらの仮定は、虚血性脳卒中に対して真であるが、急性期血腫を正しく記述しない。
非造影(non-contrasted)CT画像に基づいて、脳卒中患者の鑑別診断を行う医師を支援することができるシステムを持つことは有利である。
この問題によりよく対処するために、本発明の一態様において、非造影CT画像データにおいて急性期血腫を識別するシステムが提供され、前記システムは、
前記画像データのグレイ値の第1の分析に基づいて、急性期血腫であると疑われる候補領域を抽出する抽出ユニットと、
前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類する分類ユニットと、
を有する。
前記システムは、したがって2つの段階において非造影CT画像において急性脳内血腫を描くように構成される。前記抽出ユニットにより実行される第1の段階は、前記候補領域を抽出するために前記画像データのグレイ値の前記第1の分析に依存する。前記候補領域は、急性期血腫及び同様のグレイ値を持つ他の領域、例えば頭蓋骨の骨構造及び脳の接触面における部分容積効果から生じる領域の両方を有しうる。前記分類ユニットにより実行される新しい第2の段階は、例えば、前記候補領域の頭蓋骨のサイズ、形状及び連結性のような前記候補領域の空間的フィーチャの前記第2の分析に依存する。前記候補領域の空間的フィーチャの使用は、真の又は偽の急性期血腫としての前記候補領域の分類の正確さを向上させる。したがって、前記システムは、前記抽出ユニットにより抽出された前記候補領域をより確実に分類するのに有用である。これは、脳卒中専門家及び特に非脳卒中専門家の両方が正しい診断に到達し、効果的な治療を指示するのを助ける。更に、前記システムは、造影剤を使用して得られるCT画像データを必要としない。
前記システムの一実施例において、前記抽出ユニットは、
頭蓋骨領域を抽出する頭蓋骨ユニットと、
前記抽出された頭蓋骨領域に基づいて、脳領域を抽出する脳ユニットと、
前記脳領域内の前記候補領域を抽出する血腫ユニットと、
を有する。
前記頭蓋骨領域の抽出は、頭蓋骨のグレイ値に基づいて容易に実行されることができる。前記脳領域の抽出は、前記頭蓋骨により囲まれた領域内の脳組織のグレイ値に基づいて容易に実行されることができる。前記脳領域内の前記候補領域の抽出は、前記急性期血腫のグレイ値に基づいて容易に実行されることができる。
前記システムの一実施例において、前記分類ユニットは、
前記候補領域のトポロジフィーチャを計算するトポロジユニット、及び/又は
前記候補領域の幾何学的フィーチャを計算する幾何ユニット、並びに
前記候補領域の前記トポロジフィーチャ及び/又は前記幾何学的フィーチャに基づいて前記候補領域を分類する区別ユニット、
を有する。
前記候補領域の頭蓋骨の計算されたトポロジ及び/又は幾何学的フィーチャに基づいて、前記区別ユニットは、急性期血腫として前記候補領域をより良好に分類することができる。オプションとして、前記計算されたトポロジ及び/又は幾何学的フィーチャは、急性頭蓋内血腫、急性硬膜下血腫、急性硬膜外血腫又は部分容積効果を識別するために前記区別ユニットにより使用されることができる。
前記システムの一実施例において、前記候補領域の前記トポロジ及び/又は幾何学的フィーチャは、前記候補領域の平均グレイ値の距離ベースのヒストグラムに基づいて計算される。第一に、脳のユークリッド距離マップが計算される。第二に、離散的な距離間隔における平均グレイ値を有する距離ベースのヒストグラムが、前記距離マップを使用して計算される。前記距離ヒストグラムは、前記候補領域のタイプを視覚化及び決定する単純な方法を提供する。
前記システムの2以上の上述の実施例が有用に組み合わせられることができることは、当業者により理解される。
本発明の他の態様において、本発明による前記システムは、画像取得装置に含まれる。
本発明の他の態様において、本発明による前記システムは、ワークステーションに含まれる。
本発明の他の態様において、非造影CT画像データにおいて急性期血腫を識別する方法が提供され、前記方法は、
前記画像データのグレイ値の第1の分析に基づいて、前記急性期血腫であると疑われる候補領域を抽出する抽出ステップと、
前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類する分類ステップと、
を有する。
本発明の他の態様において、コンピュータ構成によりロードされるコンピュータプログラムが提供され、前記コンピュータプログラムは、非造影CT画像データにおいて急性期血腫を識別する命令を有し、前記コンピュータ構成は、処理ユニット及びメモリを有し、前記コンピュータプログラムは、ロードされた後に、
前記画像データのグレイ値の第1の分析に基づいて、前記急性期血腫であると疑われる候補領域を抽出するタスクと、
前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類するタスクと、
を実行する能力を前記処理ユニットに提供する。
前記システムの上述の修正及び変更に相当する前記画像取得装置、前記ワークステーション、前記方法及び/又は前記コンピュータプログラムの修正及び変更は、この記載に基づいて当業者により実行されることができる。
本発明のこれら及び他の態様は、添付の図面を参照して以下に記載される実施例に関して説明され、明らかになる。
システムの典型的な実施例のブロック図を概略的に示す。 頭部及び脳のグレイ値プロファイルを示す。 典型的な距離ベースのヒストグラムを示す。 方法の典型的な実施のフローチャートを示す。 画像取得装置の典型的な実施例を概略的に示す。 ワークステーションの典型的な実施例を概略的に示す。
同一の参照番号は、図面を通して同様の部分を示すのに使用される。
図1は、非造影画像データにおいて急性期血腫を識別するシステム100の典型的な実施例のブロック図を概略的に示し、前記システムは、
前記画像データのグレイ値の第1の分析に基づいて、急性期血腫であると疑われる候補領域を抽出する抽出ユニット110と、
前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類する分類ユニット120と、
を有する。
システム100の前記典型的な実施例は、
頭蓋骨領域を抽出する頭蓋骨ユニット111と、
前記抽出された頭蓋骨領域に基づいて、脳領域を抽出する脳ユニット112と、
前記脳領域内の前記候補領域を抽出する血腫ユニット113と、
前記候補領域のトポロジフィーチャを計算するトポロジユニット121と、
前記候補領域の幾何学的フィーチャを計算する幾何ユニット122と、
前記候補領域の前記トポロジフィーチャ及び前記幾何学的フィーチャに基づいて前記候補領域を分類する区別ユニット123と、
システム100のユーザと通信するユーザインタフェース165と、
データを記憶するメモリユニット170と、
を有する。
システム100の一実施例において、受信データに対して3つの入力コネクタ181、182及び183が存在する。第1の入力コネクタ181は、ハードディスク、磁気テープ、フラッシュメモリ又は光学ディスク(ただしこれらに限定されない)のようなデータ記憶手段から入ってくるデータを受信するように構成される。第2の入力コネクタ182は、マウス又はタッチスクリーン(ただしこれらに限定されない)のようなユーザ入力装置から入ってくるデータを受信するように構成される。第3の入力コネクタ183は、キーボードのようなユーザ入力装置から入ってくるデータを受信するように構成される。入力コネクタ181、182及び183は、入力制御ユニット180に接続される。
システム100の一実施例において、出ていくデータに対して2つの出力コネクタ191及び192が存在する。第1の出力コネクタ191は、ハードディスク、磁気テープ、フラッシュメモリ又は光学ディスクのようなデータ記憶手段に前記データを出力するように構成される。第2の出力コネクタ192は、表示装置に前記データを出力するように構成される。出力コネクタ191及び192は、出力制御ユニット190を介してそれぞれのデータを受信する。
当業者は、入力装置を入力コネクタ181、182及び183に、並びに出力装置をシステム100の出力コネクタ191及び192に接続する多くの方法が存在する。これらの方法は、有線及び無線接続、ローカルエリアネットワーク(LAN)及びワイドエリアネットワーク(WAN)(ただしこれらに限定されない)のようなデジタルネットワーク、インターネット、デジタル電話ネットワーク及びアナログ電話ネットワークを含むが、これらに限定されない。
システム100の一実施例において、システム100は、メモリユニット170を有する。システム100は、入力コネクタ181、182及び183の何れかを介して外部装置からの入力データを受信し、前記受信された入力データをメモリユニット170に記憶するように構成される。メモリユニット170への前記入力データのロードは、システム100の前記ユニットによる関連するデータ部分への迅速なアクセスを可能にする。前記入力データは、例えば、前記画像データを有しうる。メモリユニット170は、ランダムアクセスメモリ(RAM)チップ、読み取り専用メモリ(ROM)チップ及び/又はハードディスクドライブ並びにハードディスク(ただしこれらに限定されない)のような装置により実施されうる。メモリユニット170は、前記出力データを記憶するように更に構成されうる。前記出力データは、例えば、真の急性期血腫として分類される前記候補領域の描写を含む前記CT画像データを有しうる。メモリユニット170は、メモリバス175を介して、抽出ユニット110、分類ユニット120、頭蓋骨ユニット111、脳ユニット112、血腫ユニット113、トポロジユニット121、幾何ユニット122、区別ユニット123、制御ユニット160及びユーザインタフェース165を有するシステム100の前記ユニットからデータを受信し、データを送るように構成されることもできる。メモリユニット170は、更に、出力コネクタ191及び192のいずれかにより前記出力データを外部装置に対して利用可能にするように構成される。システム100の前記ユニットからのデータをメモリユニット170に記憶することは、有利には、システム100の前記ユニットの性能、及びシステム100の前記ユニットから外部装置への前記出力データの転送速度を向上させることができる。
代替的には、システム100は、メモリユニット170及びメモリバス175を有さなくてもよい。システム100により使用される入力データは、システム100の前記ユニットに接続された、外部メモリ又はプロセッサのような少なくとも1つの外部装置により供給されることができる。同様に、システム100により生成される出力データは、システム100の前記ユニットに接続された、外部メモリ又はプロセッサのような少なくとも1つの外部装置に供給されることができる。システム100の前記ユニットは、内部接続を介して又はデータバスを介して互いからデータを受信するように構成されることができる。
システム100の一実施例において、システム100は、システム100においてワークフローを制御する制御ユニット160を有する。前記制御ユニットは、システム100の前記ユニットから制御データを受信し、前記ユニットに制御データを提供するように構成されることができる。例えば、前記候補領域が抽出ユニット110により抽出された後に、抽出ユニット110は、制御データ"候補領域が抽出された"を制御ユニット160に送るように構成されることができ、制御ユニット160は、制御データ"候補領域を分類する"を分類ユニット120に提供し、これにより前記候補領域を分類するように分類ユニット120に要求するように構成されることができる。代替的には、制御機能は、システム100の他のユニット内で実施されてもよい。
システム100の一実施例において、システム100は、システム100のユーザと通信するユーザインタフェース165を有する。ユーザインタフェース165は、ユーザ入力、例えば前記画像データから計算されたビュー又は頭蓋骨を抽出するハウンスフィールド単位(HU)の閾値を表示するように要求する入力を得るように構成されることができる。当業者は、より多くの機能が、システム100のユーザインタフェース165において有利に実施されることができることを理解するだろう。
図2は、頭部及び脳のグレイ値プロファイルを示す。左のプロファイル24は、頭部プロファイルであり、CT画像データのスライス21において間隔22に沿って整列されたボクセルに対応する。このプロファイルは、3つの領域、すなわち1133HUの頭蓋骨閾値Tskullより大きいグレイ値に対応する頭蓋骨領域、頭蓋骨閾値Tskullより小さく、500HUの脳閾値Tbrainより大きいグレイ値に対応する脳領域、及び脳閾値Tbrainより小さいグレイ値に対応する背景領域を識別することを可能にする。右のプロファイル25は、脳プロファイルであり、前記CT画像データのスライス21において間隔23に沿って整列されたボクセルに対応する。このプロファイルは、脳内の2つの組織クラス、すなわち1080HUの血腫閾値Thaematomaより小さいグレイ値に対応する正常な脳組織、及び血腫閾値Thaematomaより大きいグレイ値に対応する候補領域を識別することを可能にする。決定された領域を空間的に一貫性があるようにするために、領域拡張アプローチが使用されることができる。更に、前記画像データは、様々なフィルタリングオペレータ、例えば形態オペレータを使用して前処理及び/又は後処理されることができる。
当業者は、前記閾値が、トレーニング画像のセットの専門家評価に基づいて実験的に決定されることができることを理解するだろう。実際の閾値は、前記トレーニング画像のセット及び前記専門家評価に依存し、先行する段落に記載された値と異なってもよい。例えば、腫瘍、モーションアーチファクト及び石灰化に対応するより多くの領域、及びこれらの領域を記述する閾値は、同様に規定及び識別されることができる。
抽出ユニット110は、前記画像データのグレイ値の第1の分析に基づいて、急性期血腫であると疑われる候補領域を抽出するように構成される。前記第1の分析は、領域拡張及び閾値の使用を含みうる。シードの接続されたコンポーネントであって、血腫閾値Thaematomaと頭蓋骨閾値Tskullとの間のグレイ値を持つボクセルを有する前記コンポーネントは、前記候補領域として抽出される。
脳内血腫は、頭蓋骨に囲まれた脳内になければならない。この事実は、抽出ストラテジを改良するのに使用されることができる。システム100の一実施例において、前記抽出ユニットは、頭蓋骨領域を抽出する頭蓋骨ユニット111と、前記抽出された頭蓋骨領域に基づいて、脳領域を抽出する脳ユニット112と、前記脳領域内の前記候補領域を抽出する血腫ユニット113とを有する。第一に、領域拡張アプローチが、前記頭蓋骨領域を抽出するのに使用される。同様のグレイ値を提供する頭蓋骨を囲む他の対象が存在しないと仮定すると、前記シードは、画像体積の境界から線を引くことにより自動的に抽出される。線が所定のグレイ値範囲、例えばTskullより大きい範囲を持ち、3mmより大きい拡張を持つ対象に当たる場合、シードは、この対象内にセットされる。前記頭蓋骨ユニットは、前記頭蓋骨領域を規定する頭蓋骨のバイナリマスクを決定する。
頭蓋骨ユニット111が前記頭蓋骨領域を抽出した後に、脳ユニット112は、前記脳領域を抽出するのに前記領域拡張アプローチを使用するように構成される。ここで、前記シードは、前記頭蓋骨領域の中心、例えば質量中心又は幾何学的中心であることができる。前記シードの接続されたコンポーネントであって、脳閾値Tbrainと頭蓋骨閾値Tskullとの間のグレイ値を持つボクセルを有する前記コンポーネントは、前記脳領域として抽出される。
脳ユニット112が前記脳領域を抽出した後に、血腫ユニット113は、前記脳領域内の候補領域のセットを抽出するように構成される。これは、血腫閾値Thaematomaより大きいグレイ値を持つ前記脳領域内のボクセルを識別することにより達成される。前記識別されたボクセルの連結性コンポーネントのセットは、前記候補領域のセットである。
残念ながら、骨構造及び脳の接触面における部分容積効果は、急性期血腫と同様のグレイ値を提供する。したがって、前記候補領域のセットは、部分容積効果により引き起こされるかなりの量の偽陽性を含みうる。特に、頭蓋骨−脳接触面にある急性硬膜下及び硬膜外血腫は、部分容積効果から区別するのは難しい。
分類ユニット120は、前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類するように構成される。一実施例において、主要な区別基準は、トポロジフィーチャ"骨に接続される"及び幾何学的フィーチャ"頭蓋骨表面に垂直な拡張"の同時発生である。トポロジユニット121は、前記候補領域と前記頭蓋骨との間の距離を計算するように構成される。幾何ユニット122は、前記候補領域の寸法を計算するように構成される。区別ユニット123は、前記候補領域の連結性及び寸法に基づいて、前記候補領域を分類するように構成される。前記候補領域と前記頭蓋骨との間の距離が距離閾値より小さい場合、前記候補領域は、前記頭蓋骨に隣接している。このような候補領域の頭蓋骨表面に垂直な拡張が、寸法閾値より大きい場合、前記候補領域は、急性硬膜下又は硬膜外血腫として分類される。そうでなければ、このような候補領域は、部分容積アーチファクトとして分類される。前記候補領域が頭蓋骨に隣接していない、すなわち、前記候補領域と頭蓋骨との間の距離が、前記距離閾値より大きい又は等しい場合、前記候補領域は、急性頭蓋内血腫として分類される。
代替的には、一実施例において、分類ユニット120は、距離ベースのヒストグラムを計算及び分析するように構成される。第一に、脳のユークリッド距離マップが計算される。前記脳のユークリッド距離マップは、脳の複数の点の各点に対して、前記点から頭蓋骨までのユークリッド距離を割り当てる。脳の前記複数の点の前記点は、頭蓋骨からの距離に基づいてビニングされる。ビン間隔は、例えば、1mmの長さでありうる。各候補領域及び各ビンに対して、前記点のグレイ値の平均が計算される。これは、各ビン間隔に対してほぼ同じ平均グレイ値、おおよそ1100HUを持つが、異なるピーク分布パターンを持つピークを有する典型的な距離ベースのヒストグラムに帰着する。
図3は、典型的な距離ベースのヒストグラムを示す。部分容積効果は、図31に示されるように、骨構造に直接的に接続された狭いピークにより記述される。0mmの距離において開始し、4mmの距離又は4mmより小さい距離において終了するピークを規定する候補領域は、部分容積アーチファクト、すなわち陰性の急性期血腫として分類される。陽性の急性期血腫は、図32に示されるように骨に対する接続を持たないか、又は頭蓋骨に接続されている場合には、図33に示されるように比較的広いピークを示すかのいずれかである。
当業者は、様々な方法並びに多くのトポロジ及び/又は幾何学的フィーチャが、前記候補領域を分類するのに有用でありうると理解するだろう。上記の方法及びフィーチャは、本発明を説明するために使用され、請求項の範囲を限定するように解釈されてはならない。
当業者は、更に、前記システムが、多次元データ、例えば2次元又は3次元画像データに基づいて候補領域を抽出及び分類するように構成されてもよいと理解するだろう。
当業者は、この文書に記載されたシステム100が、医療診断、特に医療画像データから情報を抽出し、判断する際に医師を支援する有益なツールでありうると理解するだろう。
当業者は、更に、システム100の他の実施例も可能であると理解するだろう。とりわけ、前記システムの前記ユニットを再定義し、機能を再分配することが可能である。
システム100の前記ユニットは、プロセッサを使用して実施されることができる。通常は、前記ユニットの機能は、ソフトウェアプログラムの制御下で実行される。実行中に、前記ソフトウェアプログラムは、通常は、RAMのようなメモリにロードされ、そこから実行される。前記プログラムは、ROM、ハードディスク又は磁気及び/若しくは光学記憶装置のような背景メモリからロードされることができるか、又はインターネットのようなネットワークを介してロードされることができる。オプションとして、アプリケーション固有の集積回路が、上記の機能を提供してもよい。
図4は、非造影CT画像データにおいて急性期血腫を識別する方法400の典型的な実施のフローチャートを示す。方法400は、前記画像データのグレイ値の第1の分析に基づいて、急性期血腫であると疑われる候補領域を抽出する抽出ステップ410で開始する。抽出ステップ410の後に、方法400は、前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類する分類ステップ420に続行する。前記分類ステップの後に、方法400は終了する。
示された一実施例において、抽出ステップ410は、以下のステップ、すなわち、頭蓋骨ステップ411、脳ステップ412及び血腫ステップ413を要約する。抽出ステップ410は、頭蓋骨領域を抽出する頭蓋骨ステップ411で開始する。前記頭蓋骨ステップの後に、抽出ステップ410は、前記抽出された頭蓋骨領域に基づいて脳領域を抽出する脳ステップ412に続行する。脳ステップ412の後に、抽出ステップ410は、前記脳領域内の前記候補領域を抽出する血腫ステップ413に続行する。
示された一実施例において、分類ステップ420は、トポロジステップ421、幾何ステップ422及び区別ステップ423を有する。分類ステップ420は、前記候補領域のトポロジフィーチャを計算するトポロジステップ421で開始する。トポロジステップ421の後に、分類ステップ420は、前記候補領域の幾何学的フィーチャを計算する幾何ステップ422に続行する。幾何ステップ422の後に、分類ステップ420は、前記候補領域の前記トポロジフィーチャ及び前記幾何学的フィーチャに基づいて前記候補領域を分類する区別ステップ423に続行する。
方法400のステップの順序は、必須ではなく、当業者は、本発明により意図された概念から逸脱することなしに、幾つかのステップの順序を変更してもよく、又はスレッドモデル、マルチプロセッサシステム又はマルチプルプロセスを使用して同時に幾つかのステップを実行してもよい。オプションとして、本発明の方法400の2以上のステップが、1つのステップに結合されてもよい。オプションとして、本発明の方法400のステップは、複数のステップに分割されてもよい。
図5は、システム100を使用する画像取得装置500の典型的な実施例を概略的に示し、画像取得装置500は、内部接続を介して、システム100と接続されたCT画像取得ユニット510と、入力コネクタ501と、出力コネクタ502とを有する。この構成は、有利に、画像取得装置500の能力を増大し、画像取得装置500にシステム100の有利な能力を提供する。
図6は、ワークステーション600の典型的な実施例を概略的に示す。前記ワークステーションは、システムバス601を有する。プロセッサ610、メモリ620、ディスク入出力(I/O)アダプタ530及びユーザインタフェース(UI)640は、システムバス601に動作可能に接続される。ディスク記憶装置631は、ディスクI/Oアダプタ630に動作可能に結合される。キーボード641、マウス642及びディスプレイ643は、UI640に動作可能に結合される。コンピュータプログラムとして実施される本発明のシステム60は、ディスク記憶装置631に記憶される。ワークステーション600は、前記プログラム及び入力データをメモリ620にロードし、プロセッサ610上で前記プログラムを実行するように構成される。ユーザは、キーボード641及び/又はマウス642を使用してワークステーション600に情報を入力することができる。前記ワークステーションは、ディスプレイ装置643及び/又はディスク631に情報を出力するように構成される。当業者は、ワークステーションの多くの他の実施例が、当技術分野において既知であり、本実施例が、本発明を説明する目的にかない、本発明をこの特定の実施例に限定すると解釈されてはならないと理解するだろう。
上述の実施例が、本発明を限定するのではなく説明し、当業者が、添付の請求項の範囲から逸脱することなしに代替実施例を設計することができることに注意すべきである。請求項において、括弧間に配置された参照符号は、前記請求項を限定すると解釈されるべきでない。単語"有する"は、請求項又は説明に列挙されていない要素又はステップの存在を除外しない。要素に先行する単語"1つの"("a"又は"an")は、複数のこのような要素の存在を除外しない。本発明は、複数の別個の要素を有するハードウェアを用いて及びプログラムされたコンピュータを用いて実施されることができる。複数のユニットを列挙するシステム請求項において、これらのユニットの幾つかは、ハードウェア又はソフトウェアの同一のアイテムにより実施されることができる。単語第1の、第2の及び第3の等の使用は、順序を示さない。これらの単語は、名称として解釈されるべきである。

Claims (8)

  1. 非造影CT画像データにおいて急性期血腫を識別するシステムにおいて、前記システムが、
    前記画像データのグレイ値の第1の分析に基づいて、急性期血腫であると疑われる候補領域を抽出する抽出ユニットと、
    前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類する分類ユニットと、
    を有し、前記分類ユニットが、
    前記候補領域と頭蓋骨との間の距離を計算するトポロジユニットと、
    前記候補領域の寸法を計算する幾何ユニットと、
    前記候補領域と頭蓋骨との間の距離及び前記候補領域の寸法に基づいて前記候補領域を分類する区別ユニットと、
    を有する、システム。
  2. 前記抽出ユニットが、
    頭蓋骨領域を抽出する頭蓋骨ユニットと、
    前記抽出された頭蓋骨領域に基づいて、脳領域を抽出する脳ユニットと、
    前記脳領域内の前記候補領域を抽出する血腫ユニットと、
    を有する、請求項1に記載のシステム。
  3. 前記候補領域と頭蓋骨との間の距離及び前記候補領域の寸法が、前記候補領域の平均グレイ値の距離ベースのヒストグラムに基づいて計算される、請求項1に記載のシステム。
  4. 前記分類ユニットが、急性頭蓋内血腫、急性硬膜下血腫若しくは急性硬膜外血腫又は部分容積効果として前記候補領域を分類する、請求項1に記載のシステム。
  5. 請求項1に記載のシステムを有する画像取得装置。
  6. 請求項1に記載のシステムを有するワークステーション。
  7. 非造影CT画像データにおいて急性期血腫を識別するシステムの作動方法において、前記システムが、抽出ユニット及ぶ分類ユニットを有し、前記方法が、
    前記抽出ユニットが、前記画像データのグレイ値の第1の分析に基づいて、急性期血腫であると疑われる候補領域を抽出する抽出ステップと、
    前記分類ユニットが、前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類する分類ステップと、
    を有し、前記分類するステップが、
    前記候補領域と頭蓋骨との間の距離を計算するステップと、
    前記候補領域の寸法を計算するステップと、
    前記候補領域と頭蓋骨との間の距離及び前記候補領域の寸法に基づいて前記候補領域を分類するステップと、
    を有する、方法。
  8. 処理ユニット及びメモリを有するコンピュータ構成によりロードされ、非造影CT画像データにおいて急性期血腫を識別する命令を有するコンピュータプログラムにおいて、前記コンピュータプログラムが、ロードされた後に、
    前記画像データのグレイ値の第1の分析に基づいて、急性期血腫であると疑われる候補領域を抽出するタスクと、
    前記候補領域の空間的フィーチャの第2の分析に基づいて、陽性又は陰性の急性期血腫として前記候補領域を分類するタスクと、
    を実行する能力を前記処理ユニットに提供し、前記分類するタスクが、
    前記候補領域と頭蓋骨との間の距離を計算するタスクと、
    前記候補領域の寸法を計算するタスクと、
    前記候補領域と頭蓋骨との間の距離及び前記候補領域の寸法に基づいて前記候補領域を分類するタスクと、
    を有する、コンピュータプログラム。
JP2010512826A 2007-06-20 2008-06-17 Ct画像データにおける出血性脳卒中の検出 Active JP5200101B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07110672.8 2007-06-20
EP07110672 2007-06-20
PCT/IB2008/052381 WO2008155718A2 (en) 2007-06-20 2008-06-17 Detecting haemorrhagic stroke in ct image data

Publications (2)

Publication Number Publication Date
JP2010530270A JP2010530270A (ja) 2010-09-09
JP5200101B2 true JP5200101B2 (ja) 2013-05-15

Family

ID=40032452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010512826A Active JP5200101B2 (ja) 2007-06-20 2008-06-17 Ct画像データにおける出血性脳卒中の検出

Country Status (5)

Country Link
US (1) US9159127B2 (ja)
EP (1) EP2158575B1 (ja)
JP (1) JP5200101B2 (ja)
CN (1) CN101689301B (ja)
WO (1) WO2008155718A2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781192B2 (en) 2010-06-14 2014-07-15 Koninklijke Philips N.V. Tissue classification
US8634626B2 (en) * 2010-06-29 2014-01-21 The Chinese University Of Hong Kong Registration of 3D tomography images
US8467585B2 (en) * 2010-10-21 2013-06-18 Genenal Electric Company Methods and apparatus to analyze computed tomography scan data
US10681080B1 (en) 2015-06-30 2020-06-09 Ntt Research, Inc. System and method for assessing android applications malware risk
US10462159B2 (en) 2016-06-22 2019-10-29 Ntt Innovation Institute, Inc. Botnet detection system and method
US10652270B1 (en) 2016-06-23 2020-05-12 Ntt Research, Inc. Botmaster discovery system and method
US10644878B2 (en) 2016-06-24 2020-05-05 NTT Research Key management system and method
US10163040B2 (en) * 2016-07-21 2018-12-25 Toshiba Medical Systems Corporation Classification method and apparatus
WO2018053511A1 (en) 2016-09-19 2018-03-22 Ntt Innovation Institute, Inc. Threat scoring system and method
US10758188B2 (en) 2016-09-19 2020-09-01 Ntt Innovation Institute, Inc. Stroke detection and prevention system and method
US10389753B2 (en) 2017-01-23 2019-08-20 Ntt Innovation Institute, Inc. Security system and method for internet of things infrastructure elements
US11757857B2 (en) 2017-01-23 2023-09-12 Ntt Research, Inc. Digital credential issuing system and method
US10489905B2 (en) 2017-07-21 2019-11-26 Canon Medical Systems Corporation Method and apparatus for presentation of medical images
CN109712122B (zh) * 2018-12-14 2021-02-19 强联智创(北京)科技有限公司 一种基于头颅ct影像的评分方法及系统
EP3948887B1 (en) 2019-04-02 2024-01-10 Koninklijke Philips N.V. Automated system for rapid detection and indexing of critical regions in non-contrast head ct
US11544844B2 (en) 2019-07-25 2023-01-03 Canon Medical Systems Corporation Medical image processing method and apparatus
CN111127427B (zh) * 2019-12-24 2022-12-23 强联智创(北京)科技有限公司 一种基于颅脑影像数据的对称轴/对称面提取方法及系统
TWI767188B (zh) 2020-02-13 2022-06-11 國立中央大學 基於電腦斷層成像分析腦組織成分的系統及其運作方法
CN111445457B (zh) * 2020-03-26 2021-06-22 推想医疗科技股份有限公司 网络模型的训练方法及装置、识别方法及装置、电子设备
JP2024078576A (ja) 2022-11-30 2024-06-11 富士通株式会社 画像処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2263063C (en) 1999-02-26 2004-08-10 Skye Pharmatech Incorporated Method for diagnosing and distinguishing stroke and diagnostic devices for use therein
US7037267B1 (en) 1999-11-10 2006-05-02 David Lipson Medical diagnostic methods, systems, and related equipment
US6792302B2 (en) * 2001-02-21 2004-09-14 Universite De Lausanne Method and apparatus for determining treatment for stroke
AUPR358701A0 (en) 2001-03-07 2001-04-05 University Of Queensland, The Method of predicting stroke evolution
EP2713292A3 (en) * 2002-10-28 2014-05-07 The General Hospital Corporation Tissue disorder imaging analysis
WO2006126970A1 (en) * 2005-05-27 2006-11-30 Agency For Science, Technology And Research Brain image segmentation from ct data
CN1907225B (zh) * 2005-08-05 2011-02-02 Ge医疗系统环球技术有限公司 用于脑内出血损伤分割的方法和设备
WO2008006238A1 (en) * 2006-06-13 2008-01-17 Ge Medical Systems Global Technology Company, Llc. Method and apparatus for cerebral haemorrhage segmentation

Also Published As

Publication number Publication date
WO2008155718A3 (en) 2009-02-12
JP2010530270A (ja) 2010-09-09
EP2158575A2 (en) 2010-03-03
US20100183211A1 (en) 2010-07-22
EP2158575B1 (en) 2018-04-11
US9159127B2 (en) 2015-10-13
WO2008155718A2 (en) 2008-12-24
CN101689301A (zh) 2010-03-31
CN101689301B (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5200101B2 (ja) Ct画像データにおける出血性脳卒中の検出
Maitra et al. Technique for preprocessing of digital mammogram
CN110910405B (zh) 基于多尺度空洞卷积神经网络的脑肿瘤分割方法及系统
CN110678903B (zh) 用于3d图像中异位骨化的分析的系统和方法
JP4879028B2 (ja) 画像処理方法および画像解析方法ならびにプログラム記憶媒体
Banerjee et al. Automated 3D segmentation of brain tumor using visual saliency
Mazurowski et al. Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis
US8175351B2 (en) Computer-aided detection and classification of suspicious masses in breast imagery
Häfner et al. Local fractal dimension based approaches for colonic polyp classification
Zheng et al. STEP: Spatiotemporal enhancement pattern for MR‐based breast tumor diagnosis
US8331641B2 (en) System and method for automatically classifying regions-of-interest
Häfner et al. Delaunay triangulation-based pit density estimation for the classification of polyps in high-magnification chromo-colonoscopy
CN110838114B (zh) 肺结节检测方法、装置及计算机存储介质
Sabouri et al. A cascade classifier for diagnosis of melanoma in clinical images
CN114359277B (zh) 一种脑卒中患者的脑部图像处理方法及系统
Xu et al. Mammographic mass segmentation using multichannel and multiscale fully convolutional networks
Zaaboub et al. Optic disc detection and segmentation using saliency mask in retinal fundus images
Javed et al. Statistical histogram decision based contrast categorization of skin lesion datasets dermoscopic images
Sood et al. Classification and pathologic diagnosis of gliomas in mr brain images
Lau et al. The detection and visualization of brain tumors on T2-weighted MRI images using multiparameter feature blocks
US10192308B2 (en) Image processing apparatus, image processing method, and storage medium
Ye et al. Multi-phase CT image based hepatic lesion diagnosis by SVM
EP2005389B1 (en) Automatic cardiac band detection on breast mri
Riaz et al. Integral scale histogram local binary patterns for classification of narrow-band gastroenterology images
Hentschke et al. Detection of cerebral aneurysms in MRA, CTA and 3D-RA data sets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5200101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250