JP5196961B2 - Wings for gyromill type windmills - Google Patents

Wings for gyromill type windmills Download PDF

Info

Publication number
JP5196961B2
JP5196961B2 JP2007286628A JP2007286628A JP5196961B2 JP 5196961 B2 JP5196961 B2 JP 5196961B2 JP 2007286628 A JP2007286628 A JP 2007286628A JP 2007286628 A JP2007286628 A JP 2007286628A JP 5196961 B2 JP5196961 B2 JP 5196961B2
Authority
JP
Japan
Prior art keywords
blade
wing
wind
concave portion
gyromill type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007286628A
Other languages
Japanese (ja)
Other versions
JP2009114897A (en
Inventor
忠宏 深山
幸夫 平松
隆景 新井
昇史 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Priority to JP2007286628A priority Critical patent/JP5196961B2/en
Publication of JP2009114897A publication Critical patent/JP2009114897A/en
Application granted granted Critical
Publication of JP5196961B2 publication Critical patent/JP5196961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

本発明は、ジャイロミル型風車用の翼及び此に用いた風車に関し、特に、低い風速で自己起動し、高い回転トルクを生み出すジャイロミル型風車用の翼及び此に用いた風車に関するものである。   The present invention relates to a wing for a gyromill type windmill and a windmill used therein, and more particularly to a wing for a gyromill type windmill that self-activates at a low wind speed and generates a high rotational torque, and the windmill used therein. .

先進諸国のエネルギー源が石炭から石油へと転換されて以降、石油利権を巡って大小様々な争いが繰り返されてきたことは、これまでの歴史が物語っている。化石燃料枯渇への不安が高まる昨今、石油エネルギーへの依存度を減らし、此に代替する(此を補う)エネルギー源へとシフトする必要性が益々高まっている。   The history so far shows that various struggles over oil rights have been repeated since the energy source of developed countries was switched from coal to oil. With the growing concern about fossil fuel depletion, there is an increasing need to reduce dependence on petroleum energy and to shift to alternative energy sources.

石油エネルギーを代替し(補い)得るものとして、最近、特に「風力」の利用が見直されている。何故なら「風」は、太陽エネルギーにより地球上の空気が熱せられることによって無尽蔵に生み出されるものであり、特定人に利用が独占されることもなく、誰もが永続的に利用し得るものだからである。   Recently, the use of “wind power” has been reviewed especially as an alternative to oil energy. Because “wind” is produced inexhaustably by heating the air on the earth by solar energy, and it can be used permanently by anyone without being monopolized by a specific person. It is.

上記「風」をエネルギーへと変換する「風車」に関しては、有史以来、様々な方式・形態のものが提案されてきたが、大別すると、「水平軸風車」と「垂直軸風車」とに区分することができる。   Regarding the “wind turbine” that converts the “wind” into energy, various methods and forms have been proposed since history, but broadly divided into “horizontal axis wind turbine” and “vertical axis wind turbine”. Can be classified.

まず「水平軸風車」(特に、「プロペラ型風車」)は、風を回転エネルギー(電気エネルギー)に変換する効率が高いという利点を有している。しかし乍ら当該方式の風車は、大径の回転翼を高速で回転させる構造上、当該風車の周囲に広い空間を確保する必要があり、また、回転翼を回転させるためにはその正面から風を受ける必要があり、更に、自己起動させるためには高い風速が必要であると共に、回転時には非常に大きな風切り音を伴うことから、その設置場所は、常時ある程度の風量を確保でき風向きも安定している海岸付近や、山々の稜線付近に限定され、風量・風向きが安定しない住宅地等に設置するのは大きな障壁を伴うものであった。   First, a “horizontal axis windmill” (particularly, “propeller type windmill”) has an advantage of high efficiency in converting wind into rotational energy (electric energy). However, the wind turbine of this method needs to secure a wide space around the wind turbine because of the structure that rotates the large-diameter rotor blade at high speed. In addition, a high wind speed is necessary for self-starting, and a very loud wind noise is generated during rotation.Therefore, a certain amount of air flow can be secured at the installation location, and the wind direction is stable. Installation in residential areas where the air volume and direction are limited and is limited to the vicinity of the coastline and the ridgeline of the mountains involved a large barrier.

一方「垂直軸風車」は、風を回転エネルギー(電気エネルギー)に変換する効率は上記水平軸風車ほどではないにしても、風向きに制限されることなく全方位からの風を回転エネルギーへと変換することができ、また、自己起動に際しては上記水平軸風車ほど高い風速を要しないため、風量・風向きが安定しない住宅地等でも設置可能である。   On the other hand, the “vertical axis windmill” converts wind from all directions into rotational energy without being limited by the wind direction, even though the efficiency of converting wind into rotational energy (electrical energy) is not as high as that of the horizontal axis windmill. In addition, since it does not require as high a wind speed as the horizontal axis wind turbine at the time of self-starting, it can be installed in a residential area where the air volume and direction are not stable.

この点、特に「ジャイロミル型風車」は、複数の翼(ブレード)どうしを略平行状態に対向させて配置するため回転翼の直径が小径となり、狭いスペースでも設置することができる。また、比較的低い風速でも自己起動すると共に、作動時の騒音は極めて小さいという利点がある。このように当該「ジャイロミル型風車」は、住宅地等へ設置して発電に用いるのに特に好都合である。   In this respect, in particular, in the “gyromill type windmill”, a plurality of blades (blades) are arranged so as to face each other in a substantially parallel state, so that the diameter of the rotating blades becomes small and can be installed even in a narrow space. In addition, there is an advantage that it is self-starting even at a relatively low wind speed and that noise during operation is extremely small. As described above, the “gyromill type windmill” is particularly advantageous when installed in a residential area or the like and used for power generation.

この「ジャイロミル型風車」に関しては、特許文献1或いは特許文献2に記載の発明が従来より提案されている。これらの特許文献に各々記載された発明は、揚力を発生させる各ブレードの後縁に窪みを形成し、其処へ風を受けることによりサボニウス型風車の如く抗力を利用して、低い風速での自己起動を実現するものであり、非常に優れた発明といえる。   Regarding this “gyromill type windmill”, the invention described in Patent Document 1 or Patent Document 2 has been proposed. The inventions described in each of these patent documents form a recess at the trailing edge of each blade that generates lift, and by receiving wind there, the drag is utilized like a Savonius type windmill, and the self at a low wind speed. It realizes start-up and can be said to be a very excellent invention.

しかし乍ら、上記特許文献1に記載のブレードは、一枚の金属板を端面視「略つ字形状」に屈曲させると共に、その両端は開放された状態であるため、当該ブレード後縁側から風を受けた場合には、該ブレード両端の開放部から風を逃がしてしまい、充分な抗力を得られない虞がある。この点特許文献2に記載の発明においては、ブレード後縁の窪みの両サイドが翼端板により遮蔽されているため、上記文献1のような「開放部からの逃げ」という問題はないものの、当該窪みが高い風速の風を受けた場合、該窪み内が高圧となり、風が当該窪み内に入り込まず翼の下面上を流れてしまうため、一定値以上の抗力が得られない虞がある。
特開2005−307850号公報 特開2006−46306号公報
However, since the blade described in Patent Document 1 bends a single metal plate into an “approximate character shape” when viewed from the end, and both ends thereof are open, the wind from the trailing edge side of the blade. In the case of receiving, there is a possibility that wind will escape from the open portions at both ends of the blade, and sufficient drag force may not be obtained. In this respect, in the invention described in Patent Document 2, since both sides of the dent of the trailing edge of the blade are shielded by the blade end plate, there is no problem of “escape from the open portion” as in the above Document 1, When the hollow receives a wind with a high wind speed, the inside of the hollow becomes a high pressure, and the wind does not enter the hollow and flows on the lower surface of the wing. Therefore, there is a possibility that a drag exceeding a certain value cannot be obtained.
JP 2005-307850 A JP 2006-46306 A

本発明は上記諸問題に鑑みなされたものであり、その解決しようとする課題は、低い風速域でも自己起動することができ、あらゆる風速域で高い回転トルクを発生させるジャイロミル型風車用の翼及び此に用いた風車をシンプルな構成で提供することにある。   The present invention has been made in view of the above-mentioned problems, and a problem to be solved is a blade for a gyromill type windmill that can self-start even in a low wind speed region and generates a high rotational torque in any wind speed region. And it is providing the windmill used here with a simple structure.

上記課題を解決すべく本発明が採った手段は以下の通りである。   Means taken by the present invention to solve the above problems are as follows.

まず請求項1に係る発明のジャイロミル型風車用の翼10は、当該翼10の下面であって、翼後縁を基点とし翼前縁に向けて形成した空間からなる凹部11と、当該凹部11と翼10の上面とが相互に連通する開口部12と、を備えたことを特徴とするものである。   First, a blade 10 for a gyromill type windmill according to the first aspect of the present invention is a lower surface of the blade 10, and includes a recessed portion 11 formed of a space formed from a blade trailing edge toward a blade leading edge, and the recessed portion 11 and an opening 12 in which the upper surface of the blade 10 communicates with each other.

さらに請求項に係る発明は、ジャイロミル型風車用の翼10において、翼10の下面に形成した凹部11と翼10の上面とが相互に連通する開口部12の、翼幅方向への寸法の総和は、翼幅に対し60%以下とし、当該開口部12の、翼弦方向への寸法は、翼弦長に対し1%としたことを特徴とするものである。 Furthermore the invention according to claim 1, the dimensions of the blade 10 for di Yairomiru windmill, the openings 12 and the upper surface of the concave portion 11 and wings 10 formed on the lower surface of the wing 10 are communicated with each other, the spanwise Is characterized in that 60% or less of the blade width is less than the blade width, and the dimension of the opening 12 in the direction of the blade chord is 1% of the chord length.

また請求項に係る発明は、請求項1に記載したジャイロミル型風車用の翼10において、翼10の下面に形成した凹部11の翼端部分からの気流の流出を防ぐべく、前記当該凹部11の翼端部分を塞ぐ翼端板13を設けたことを特徴とするものである。 According to a second aspect of the present invention, in the blade 10 for a gyromill type wind turbine according to the first aspect, the concave portion is formed in order to prevent airflow from flowing out from the blade tip portion of the concave portion 11 formed on the lower surface of the blade 10. 11 is provided with a wing tip plate 13 for closing the wing tip portion.

さらに請求項に係る発明は、請求項1又は請求項に記載したジャイロミル型風車用の翼10において、翼10の下面に形成した凹部11を翼幅方向に区画するための仕切板14を、当該凹部11内に立設したことを特徴とするものである。 Further, the invention according to claim 3 is the partition plate 14 for partitioning the concave portion 11 formed in the lower surface of the blade 10 in the blade width direction in the blade 10 for the gyromill type windmill according to claim 1 or 2. In the concave portion 11.

上記解決手段を採用したことにより得られる効果は以下の通りである。   The effects obtained by adopting the above solution are as follows.

まず請求項1に係る発明のジャイロミル型風車用の翼10は、当該翼10の下面であって、翼後縁を基点とし翼前縁に向けて形成した空間からなる「凹部11」を有するため、当該凹部11が翼後縁方向からの風を受けた場合には抗力を得ることとなる。そして、当該凹部11と翼10の上面とは「開口部12」を介して相互に連通しているため、該凹部11が高圧になり得る程度の高い風速の風を受けた際は、風の一部が前記開口部12を通過して翼10の上面へと抜けていくため、当該凹部11内が高圧になることに起因して翼下面上を流れてしまうという現象(以下、「凹部11上の上滑り」という)を解消でき、更なる抗力を得ることができる。そのため、本請求項に係る発明の翼10を用いてジャイロミル型風車100を構成し、翼後縁方向からの風を受けた場合には、低い風速域でも自己起動することができ、あらゆる風速域で当該風車100の回転トルクの向上を図ることが可能となるのである。   First, a blade 10 for a gyromill type wind turbine according to the first aspect of the present invention has a “recess 11” which is a lower surface of the blade 10 and includes a space formed from a blade trailing edge toward a blade leading edge. Therefore, when the concave portion 11 receives wind from the blade trailing edge direction, a drag force is obtained. And since the said recessed part 11 and the upper surface of the wing | blade 10 are mutually connected via the "opening part 12," when the wind of the wind speed high to such an extent that this recessed part 11 may become a high pressure is received, Since a part passes through the opening 12 and escapes to the upper surface of the blade 10, the phenomenon that the inside of the concave portion 11 flows on the lower surface of the blade due to the high pressure (hereinafter referred to as "the concave portion 11"). It is possible to eliminate the “upslip” and obtain further drag. Therefore, when the gyromill type windmill 100 is configured using the blade 10 of the invention according to the present invention and receives wind from the blade trailing edge direction, it can be self-started even in a low wind speed region, This makes it possible to improve the rotational torque of the windmill 100 in the region.

また、当該翼10が翼前縁方向からの風を受けた場合には、該翼10の下面側を流れる風の一部が、前記開口部12を通過して翼10の上面へと抜けて当該上面側を流れる風と交わる(合流する)ので、該上面の流れ(気流)の剥離が防止されて、当該翼10の揚力が増すこととなる。そのため、本請求項に係る発明の翼10を用いてジャイロミル型風車100を構成し、翼前縁方向からの風を受けた場合には、揚力が増して当該風車100の回転トルクを向上させることとなるのである。   Further, when the blade 10 receives wind from the blade leading edge direction, a part of the wind flowing on the lower surface side of the blade 10 passes through the opening 12 and escapes to the upper surface of the blade 10. Since it crosses (joins) with the wind flowing on the upper surface side, separation of the flow (airflow) on the upper surface is prevented, and the lift of the blade 10 is increased. Therefore, when the gyromill type windmill 100 is configured using the blade 10 of the invention according to the present invention and the wind from the blade leading edge direction is received, the lift is increased and the rotational torque of the windmill 100 is improved. It will be.

さらに請求項に係る発明は、翼10の下面に形成した凹部11と翼10の上面とが相互に連通する開口部12の、翼幅方向への寸法の総和を、翼幅に対して60%以下とし、当該開口部12の、翼弦方向への寸法は、翼弦長に対し1%としたため、当該開口部12から過大に風が抜けてしまうことに起因する回転トルクの減少を防止して、確実に、当該風車100の回転トルクの向上を図ることが可能となるのである。 Furthermore, in the invention according to claim 1 , the sum of the dimensions in the blade width direction of the opening 12 where the concave portion 11 formed on the lower surface of the blade 10 and the upper surface of the blade 10 communicate with each other is 60 with respect to the blade width. %, And the dimension of the opening 12 in the direction of the chord is 1% with respect to the chord length, thereby preventing a reduction in rotational torque caused by excessive wind escape from the opening 12. Thus, the rotational torque of the windmill 100 can be reliably improved.

また請求項に係る発明は、翼10の下面に形成した凹部11の翼端に翼端板13を備えているため、当該凹部11が翼後縁方向から受けた風を、翼端から逃がしてしまうことを防止できるので、確実に抗力を得ることができ、発生するトルクのバラツキを抑えることとなる。 In the invention according to claim 2 , since the blade end plate 13 is provided at the blade tip of the concave portion 11 formed on the lower surface of the blade 10, the wind received by the concave portion 11 from the blade trailing edge direction is released from the blade tip. Therefore, it is possible to reliably obtain a drag force and to suppress variation in generated torque.

さらに請求項に係る発明は、翼10の下面に形成した凹部11を翼幅方向に区画するための仕切板14を当該凹部11内に立設しているため、当該凹部11が翼後縁方向から受けた風を、該凹部11の小さな区画ごとに受け止めることができるので、確実に抗力を得ることができるのである。また、当該仕切板14が凹部11内の風(気流)を整流するため、発生するトルクのバラツキを抑えることとなる。 Further, in the invention according to claim 3 , since the partition plate 14 for partitioning the concave portion 11 formed on the lower surface of the blade 10 in the blade width direction is erected in the concave portion 11, the concave portion 11 is the trailing edge of the blade. Since the wind received from the direction can be received for each small section of the recess 11, a drag can be obtained with certainty. In addition, since the partition plate 14 rectifies the wind (airflow) in the recess 11, variations in generated torque are suppressed.

以下、好適な実施形態(以下、「実施例1」とする)を示す図1乃至図7を用いて、本発明の技術思想を説明する。   The technical idea of the present invention will be described below with reference to FIGS. 1 to 7 showing a preferred embodiment (hereinafter referred to as “Example 1”).

まず図1及び図2は、実施例1に係る翼10を用いて構成したジャイロミル型風車100を示すものである。この風車100は、3枚の翼10(ブレード)を各々2本のアーム20を介して出力軸30に接続してなるものである。尚、上記図面に示す本実施例に係る翼10はデータ収集を目的とした実験用(ミニ翼)であるため、実用化する際には更に翼幅が延ばされることとなる。   First, FIG.1 and FIG.2 shows the gyromill type windmill 100 comprised using the blade | wing 10 which concerns on Example 1. FIG. This windmill 100 is formed by connecting three blades 10 (blades) to the output shaft 30 via two arms 20 respectively. Note that the blade 10 according to the present embodiment shown in the above drawings is for experimentation (mini blade) for the purpose of collecting data, and therefore the blade width is further extended when put into practical use.

本発明において翼10は、下面に凹部11を有するものである。この凹部11は、翼後縁を基点とし翼前縁に向け切り欠いて形成した空間からなるものである。この凹部11の形状・大きさ如何により、当該翼10の性能が変わることとなる。本実施例では、低い風速でも大きな揚力が得られる翼型「NACA6521」を採用し、翼弦長30cm・翼幅40cmの寸法でFRP成形すると共に、図4に示すように当該翼10の翼弦長の15%を後縁から切り欠くことによって当該凹部11を構成している。   In this invention, the wing | blade 10 has the recessed part 11 in a lower surface. The recess 11 is formed of a space formed by cutting away from the blade trailing edge toward the blade leading edge. Depending on the shape and size of the recess 11, the performance of the blade 10 changes. In this embodiment, an airfoil “NACA6521” which can obtain a large lift even at a low wind speed is adopted, and FRP molding is performed with dimensions of a chord length of 30 cm and a blade width of 40 cm, and as shown in FIG. The recess 11 is formed by cutting out 15% of the length from the rear edge.

図5に示すように、上記凹部11における翼前縁側には開口部12が穿設され、該凹部11と翼10の上面とが相互に連通している。この開口部12は、上記凹部11内に入り込んだ風の一部が翼10の上面側へと抜けるものである。即ち、図6(a)に示すように、上記凹部11が翼後縁方向からの風を受けて、当該凹部11内が高圧になる程度の高い風速の風を受けた際は、風の一部が前記開口部12を通過して翼10の上面へと抜けることにより、当該凹部11内が高圧になることに起因する「凹部11上の上滑り」を解消して、更なる抗力を得ることが可能となる。また、図6(b)に示すように、当該翼10が翼前縁方向からの風を受けた場合には、該翼10の下面側を流れる風の一部が、前記開口部12を通過して翼10の上面へと抜けて当該上面側を流れる風と交わる(合流する)ので、該上面の流れ(気流)の剥離が防止されて、当該翼10の揚力が増すこととなるのである。本発明において当該開口部12は、「穴状」、「スリット状」、「開口窓状」等々、その形態は特段限定されるものではないが、図表1(図8)が示す実験結果によれば以下の数値が導き出される。まず、翼弦方向の大きさを翼弦長の1%(3mm)で一定とした場合には、翼幅(40cm)の60%以下に相当する寸法(240mm以下)とし、好適には、翼幅(40cm)の10%に相当する寸法(40mm)のスリットを採用するとよい。参考例として、翼幅方向の大きさを70%(40mm×7個)で一定とした場合には、翼弦長(30cm)の1.5%以下に相当する幅寸法(4.5mm以下)とし、好適には、翼弦長(30cm)の1%に相当する幅寸法(3mm)のスリットを採用するとよい。 As shown in FIG. 5, an opening 12 is formed on the blade leading edge side of the recess 11, and the recess 11 and the upper surface of the blade 10 communicate with each other. The opening 12 allows a part of the wind that has entered the recess 11 to escape to the upper surface side of the blade 10. That is, as shown in FIG. 6 (a), when the concave portion 11 receives wind from the blade trailing edge direction and receives wind with a high wind speed that causes the inside of the concave portion 11 to have a high pressure, When the portion passes through the opening 12 and escapes to the upper surface of the blade 10, “upslip on the concave portion 11” caused by high pressure in the concave portion 11 is eliminated, and further drag is obtained. Is possible. In addition, as shown in FIG. 6B, when the blade 10 receives wind from the blade leading edge direction, part of the wind flowing on the lower surface side of the blade 10 passes through the opening 12. Then, the air flows into the upper surface of the blade 10 and intersects (combines) with the wind flowing on the upper surface side, so that the separation of the flow (airflow) on the upper surface is prevented and the lift of the blade 10 is increased. . In the present invention, the shape of the opening 12 is not particularly limited, such as “hole shape”, “slit shape”, “open window shape”, etc., but according to the experimental results shown in Chart 1 (FIG. 8). The following numbers are derived: First, when the size in the chord direction is constant at 1% (3 mm) of the chord length, a dimension corresponding to 60 % or less of the blade width (40 cm) ( 240 mm or less) is preferable. A slit having a dimension (40 mm) corresponding to 10% of the blade width (40 cm) may be employed. As a reference example, when the size in the blade width direction is constant at 70% (40 mm × 7), the width dimension (4.5 mm or less) corresponding to 1.5% or less of the chord length (30 cm) Preferably, a slit having a width dimension (3 mm) corresponding to 1% of the chord length (30 cm) may be employed.

また上記凹部11は、図3に示すように、当該凹部11の翼端に配置した翼端板13に加え、内部を区画する仕切板14を立設してもよい。翼端板13を翼端に配置した場合には、当該凹部11が翼後縁方向から受けた風を、翼端から逃がしてしまうことを防止できるため、確実に抗力を得ることができ、発生するトルクのバラツキを抑えることができるのである。一方、仕切板14を当該凹部11内に立設した場合には、当該凹部11が翼後縁方向から受けた風を、該凹部11の小さな区画ごとに受け止めることができるため、確実に抗力を得ることができるのである。また、当該仕切板14が凹部11内の風を整流するため、発生するトルクのバラツキを抑えることとなるのである。   Further, as shown in FIG. 3, the concave portion 11 may be provided with a partition plate 14 that partitions the inside in addition to the blade end plate 13 disposed at the blade tip of the concave portion 11. When the wing tip plate 13 is arranged at the wing tip, it is possible to prevent the wind that the concave portion 11 has received from the wing trailing edge direction from escaping from the wing tip. Thus, the variation in torque can be suppressed. On the other hand, when the partition plate 14 is erected in the recess 11, the wind received by the recess 11 from the direction of the trailing edge of the blade can be received for each small section of the recess 11. You can get it. In addition, since the partition plate 14 rectifies the wind in the recess 11, the generated torque variation is suppressed.

続いて、上記実施例に係る翼10の性能につき、計測データを用いて説明する。
以下の図表2(図9)乃至図表5(図13)に示すデータは、本実施例に係る翼10単体の性能を計測したものである。尚、それぞれの図表中「迎角α」(deg)とあるのは、図7に示すそれぞれの方位から風を当てたことを意味するものである。
Next, the performance of the blade 10 according to the above embodiment will be described using measurement data.
The data shown in the following chart 2 (FIG. 9) to chart 5 (FIG. 13) is obtained by measuring the performance of the blade 10 according to this embodiment. Note that “attack angle α” (deg) in each chart means that the wind is applied from each direction shown in FIG.

図表2乃至図表5は、4種類のサンプルにつき計測して性能を比較したものである。4種類のサンプルとは、(1)翼型「NACA6521」をなす翼10a、(2)翼10aに凹部11を付加した翼10b、(3)翼10bの翼端に翼端板13を付加した翼10c、(4)翼10cに開口部12を付加した翼10dである。尚、当該風車の回転トルク(CT:無次元量)は、揚力係数(Cl)、抗力(Cd)及び迎角(α)により次式で表すことができる。
CT=Cl(α)sinα−Cd(α)cos(α)
この式から、風車の回転トルクを大きくするにあたり、先ず、「揚力係数」(Cl)については、迎角0°(deg)〜180°(deg)の範囲では大きく、迎角180°(deg)〜360°(deg)の範囲では小さくする方が良い。一方、「抗力係数」(Cd)については、迎角90°(deg)〜270°(deg)の範囲では大きく、迎角0°(deg)〜90°(deg)及び迎角270°(deg)〜360°(deg)の範囲では小さくする方が良い。
Charts 2 to 5 compare the performance of four types of samples. The four types of samples are: (1) a wing 10a of the wing type “NACA6521”, (2) a wing 10b with a recess 11 added to the wing 10a, and (3) a wing tip plate 13 added to the wing tip of the wing 10b. Wings 10c, (4) Wings 10d with openings 12 added to the wings 10c. In addition, the rotational torque (CT: dimensionless amount) of the wind turbine can be expressed by the following equation using a lift coefficient (Cl), a drag force (Cd), and an angle of attack (α).
CT = Cl (α) sinα−Cd (α) cos (α)
From this equation, when increasing the rotational torque of the wind turbine, first, the “lift coefficient” (Cl) is large in the range of angles of attack of 0 ° (deg) to 180 ° (deg), and the angle of attack is 180 ° (deg). It is better to make it smaller in the range of ˜360 ° (deg). On the other hand, the “drag coefficient” (Cd) is large in the range of the angle of attack of 90 ° (deg) to 270 ° (deg), and the angle of attack of 0 ° (deg) to 90 ° (deg) and the angle of attack 270 ° (deg). ) To 360 ° (deg), it is better to make it smaller.

まず図表2は、上記サンプル(1)乃至(4)に対し、迎角0°(deg)〜360°(deg)の方向から同一風速の風を当てたことによって得られた揚力係数の数値を比較したものである。この図表2が示すように、迎角30°(deg)〜90°(deg)付近において、凹部11を備えたサンプル(2),(3),(4)の揚力の向上が見られる。これは、風を受けた凹部11内が高圧となり揚力が大きくなったためである。   First, Chart 2 shows the numerical value of the lift coefficient obtained by applying the same wind speed to the samples (1) to (4) from the angle of attack of 0 ° (deg) to 360 ° (deg). It is a comparison. As shown in FIG. 2, improvement in lift of the samples (2), (3), and (4) provided with the recesses 11 is observed near the angle of attack of 30 ° (deg) to 90 ° (deg). This is because the inside of the concave portion 11 receiving the wind becomes high pressure and the lift is increased.

更に、上記図表2が示すように、開口部12を備えたサンプル(4)は、迎角180°(deg)〜230°(deg)付近では、翼の上面から下面へと開口部12から空気が流れて当該下面の圧力が高くなり揚力が小さくなっている。更に、当該図表2における迎角100°(deg)〜190°(deg)の範囲を拡大した図表3(図10)が示すように、迎角160°(deg)〜180°(deg)付近において、飛躍的な揚力の向上が認められる。この迎角範囲においては、開口部12を介して下面から上面へと気流が抜けて当該上面の気圧が高くなり揚力の低下が抑えられるためである。   Further, as shown in FIG. 2 above, the sample (4) having the opening 12 has air from the opening 12 to the bottom surface at the angle of attack of 180 ° (deg) to 230 ° (deg). Flows, the pressure on the lower surface increases and the lift decreases. Further, as shown in Chart 3 (FIG. 10) in which the range of the angle of attack of 100 ° (deg) to 190 ° (deg) in Chart 2 is enlarged, the angle of attack is around 160 ° (deg) to 180 ° (deg). A dramatic improvement in lift is recognized. This is because in this angle-of-attack range, the airflow passes from the lower surface to the upper surface through the opening 12, and the air pressure on the upper surface increases, so that the reduction in lift is suppressed.

また図表4(図11)は、上記サンプル(1)乃至(4)の抗力係数の数値を比較したものである。この図表4が示すように、凹部11が風を受けることにより、迎角90°(deg)〜150°(deg)の範囲で抗力が大きくなっている。更に、当該図表4における迎角160°(deg)〜180°(deg)の範囲を拡大した図表5が示すように、迎角160°(deg)〜175°(deg)の範囲では、サンプル(2)及びサンプル(3)はサンプル(1)の数値を下回るまで低下してしまうが、本発明に係るサンプル(4)によれば、その数値の低下を改善して、高い抗力を得ることができるのである。   Chart 4 (FIG. 11) compares the drag coefficient values of the samples (1) to (4). As shown in FIG. 4, when the concave portion 11 receives wind, the drag is increased in a range of angles of attack of 90 ° (deg) to 150 ° (deg). Furthermore, as shown in Chart 5 in which the range of angles of attack of 160 ° (deg) to 180 ° (deg) in Chart 4 is enlarged, in the range of angles of attack of 160 ° (deg) to 175 ° (deg), samples ( 2) and sample (3) will fall to below the numerical value of sample (1), but according to sample (4) according to the present invention, the reduction in the numerical value can be improved and high drag can be obtained. It can be done.

続いて図表6(図13)は、上記サンプル(1)乃至(4)に係る翼10a〜翼10dを2本のアーム20を介して出力軸30に接続して構成した1枚翼風車100に対し、迎角0°(deg)〜360°(deg)の方向から同一風速の風を当てたことによって得られた、回転トルクの数値(計算値)を比較したものである。この図表6が示すように、迎角のほぼ全域にわたり、開口部12を備えたサンプル(4)の回転トルクが、サンプル(2)及びサンプル(3)のピーク値をトレースしている。これは、凹部11に風が入り込むことに起因する、迎角30°(deg)〜90°(deg)の範囲での揚力向上(図表2参照)、及び、迎角115°(deg)〜150°(deg)の範囲での抗力向上(図表4参照)に加え、迎角230°(deg)〜270°(deg)の範囲では、開口部12を備えたことにより高い回転トルクを得ることができる(図表6参照)ためである。   Subsequently, FIG. 6 (FIG. 13) shows a one-blade wind turbine 100 configured by connecting the blades 10a to 10d according to the samples (1) to (4) to the output shaft 30 through the two arms 20. On the other hand, the numerical values (calculated values) of the rotational torque obtained by applying the wind of the same wind speed from the direction of the angle of attack of 0 ° (deg) to 360 ° (deg) are compared. As FIG. 6 shows, the rotational torque of the sample (4) provided with the opening 12 traces the peak values of the sample (2) and the sample (3) over almost the entire angle of attack. This is because lift is improved in the range of 30 ° (deg) to 90 ° (deg) of angle of attack (see Chart 2) and 115 ° (deg) to 150 of angle of attack due to wind entering the recess 11. In addition to improving drag in the range of ° (deg) (see Chart 4), in the range of angle of attack 230 ° (deg) to 270 ° (deg), the provision of the opening 12 can provide high rotational torque. This is because it can be done (see Chart 6).

更に、上記サンプル(1)乃至(4)に係る翼10a〜翼10dを2本のアーム20を介して出力軸30に接続して構成した直径80cmの3枚翼風車100に対し、風速8m毎秒の風を当てたことによって得られた回転数(rpm)を20回計測して得られた平均値を示すと、サンプル(1)は218.7rpm、サンプル(2)は212.2rpm、サンプル(3)は218.3rpm、そしてサンプル(4)は219.6rpmであった。即ち、サンプル(4)の風車の回転数は、従来の風車に比して約1%向上することとなる。回転数が向上するということは、当該風車を発電機に接続した場合に得られる電力量の向上も見込まれる。長期的に運用した場合には大きな差が生まれるのは自明である。また、上記実施例に係る翼10dはデータ収集を目的とした実験用(ミニ翼)であるが、実用化する際には、その翼幅は4倍から5倍程度にまで延ばされることとなる。即ち、上記実施例は「ミニ翼」であるが故に、「開口部12を設けたことによる効果」が、翼10(ブレード)と出力軸30とを結ぶ2本のアーム20が受ける空気抵抗によって減殺されてしまう。しかし乍ら、実用モデルの如き大きな翼幅を備えた場合には「開口部12を設けたことによる効果」も大きくなり、アーム20が受ける空気抵抗が相対的に小さいものとなるのである。そのような条件の下、上記サンプル(1)乃至(4)に係る翼10a〜翼10dの翼幅を各々大きく構成して回転数を計測した場合には、本発明に係るサンプル(4)の優位性は更に明らかとなる。   Further, for a three-blade wind turbine 100 having a diameter of 80 cm configured by connecting the blades 10a to 10d according to the samples (1) to (4) to the output shaft 30 via the two arms 20, the wind speed is 8 m per second. The average value obtained by measuring the number of rotations (rpm) obtained by applying the wind of 20 times is 218.7 rpm for sample (1), 212.2 rpm for sample (2), 3) was 218.3 rpm and sample (4) was 219.6 rpm. That is, the rotation speed of the wind turbine of the sample (4) is improved by about 1% as compared with the conventional wind turbine. The improvement in the number of revolutions is also expected to improve the amount of electric power obtained when the wind turbine is connected to the generator. It is self-evident that there will be a big difference in long-term operation. Further, the wing 10d according to the above embodiment is an experimental wing (mini wing) for the purpose of data collection. However, when put into practical use, the wing width is extended to about 4 to 5 times. . That is, since the above embodiment is a “mini wing”, the “effect by providing the opening 12” is caused by the air resistance received by the two arms 20 connecting the wing 10 (blade) and the output shaft 30. Will be killed. However, when a large wingspan such as a practical model is provided, the “effect due to the provision of the opening 12” becomes large, and the air resistance received by the arm 20 becomes relatively small. Under such conditions, in the case where the blade widths of the blades 10a to 10d according to the samples (1) to (4) are configured to be large and the rotational speed is measured, the sample (4) according to the present invention is measured. The superiority becomes clearer.

産業上の利用分野Industrial application fields

上記実施例では、低い風速でも大きな揚力が得られる「NACA6521」を採用しているが、本発明の技術思想は特段この翼型に限定されるものではない。即ち、本発明の上記作用が、翼に作用する圧力分布に起因することに鑑みれば、「NACA2412」や「NACA23012」等々をはじめとするあらゆる翼型に適用しても、上記と同様な効果が得られると予想される。   In the above embodiment, “NACA6521” which can obtain a large lift even at a low wind speed is adopted, but the technical idea of the present invention is not particularly limited to this airfoil. That is, in view of the fact that the above action of the present invention is caused by the pressure distribution acting on the blade, the same effect as described above can be obtained even when applied to any airfoil including “NACA2412”, “NACA23012”, etc. Expected to be obtained.

実施例1に係る翼10(ミニ翼)を用いて構成したジャイロミル型風車100を斜め上方から示した図である。It is the figure which showed the gyromill type | mold windmill 100 comprised using the wing | blade 10 (mini wing | blade) which concerns on Example 1 from diagonally upward. 図1に示すジャイロミル型風車100の平面図である。It is a top view of the gyromill type windmill 100 shown in FIG. 他の実施例に係る翼10を斜め上方から示した図である。It is the figure which showed the wing | blade 10 which concerns on another Example from diagonally upward. 実施例1に係る翼10の翼断面を模式的に示した図であって、凹部11の位置を示すものである。FIG. 3 is a diagram schematically showing a blade cross section of a blade 10 according to the first embodiment, and shows the position of a recess 11. 実施例1に係る翼10の翼断面を模式的に示した図であって、開口部12の位置を示すものである。FIG. 3 is a diagram schematically showing a blade cross section of a blade 10 according to the first embodiment, and shows a position of an opening 12. (a)図4に模式的に示した翼10が、その翼後縁方向から受けた風の流れを表した図である。(b)図4に模式的に示した翼10が、その翼前縁方向から受けた風の流れを表した図である。(A) It is the figure which represented the flow of the wind which the wing | blade 10 typically shown in FIG. 4 received from the wing | tip trailing edge direction. (B) It is the figure which represented the flow of the wind which the wing | blade 10 typically shown in FIG. 4 received from the wing leading edge direction. 翼10単体の性能を計測する際、何れの方位から風を当てるかを示すものである。This indicates from which direction the wind is applied when measuring the performance of the blade 10 alone. 開口部12の好適な寸法比率の計測データを示す図表1である。4 is a chart 1 showing measurement data of a preferred dimensional ratio of the opening 12. サンプル(1)乃至(4)に対し、迎角0°(deg)〜360°(deg)の方向から同一風速の風を当てたことによって得られた揚力係数の数値を比較した図表2である。It is the chart 2 which compared the numerical value of the lift coefficient obtained by having applied the wind of the same wind speed from the direction of angle of attack 0 degree (deg)-360 degrees (deg) with respect to samples (1) thru | or (4). . 図表2における迎角100°(deg)〜190°(deg)の範囲を拡大して示した図表3である。FIG. 3 is an enlarged diagram 3 showing a range of angles of attack of 100 ° (deg) to 190 ° (deg) in FIG. サンプル(1)乃至(4)に対し、迎角90°(deg)〜180°(deg)の方向から同一風速の風を当てたことによって得られた抗力の数値を比較した図表4である。FIG. 5 is a chart 4 comparing drag values obtained by applying winds of the same wind speed from the direction of angles of attack of 90 ° (deg) to 180 ° (deg) to samples (1) to (4). 図表4における迎角160°(deg)〜180°(deg)の範囲を拡大して示した図表5である。6 is an enlarged diagram 5 showing a range of angles of attack of 160 ° (deg) to 180 ° (deg) in the diagram 4; サンプル(1)乃至(4)の、迎角(α)毎に計測した揚力係数(Cl)、抗力(Cd)を用い、次式で回転トルク(CT:無次元量)を求め比較した図表6である。 CT=Cl(α)sinα−Cd(α)cos(α)Chart 6 of samples (1) to (4), using the lift coefficient (Cl) and drag (Cd) measured for each angle of attack (α), and calculating and comparing the rotational torque (CT: dimensionless amount) using the following equation It is. CT = Cl (α) sinα−Cd (α) cos (α)

符号の説明Explanation of symbols

10 翼
11 凹部
12 開口部
13 翼端板
14 仕切板
20 アーム
30 出力軸
100 ジャイロミル型風車
10 Wings 11 Recesses 12 Openings 13 Wing End Plates 14 Partition Plates 20 Arms 30 Output Shafts 100 Gyromill Wind Turbine

Claims (3)

翼の下面であって、翼後縁を基点とし翼前縁に向けて形成した空間からなる凹部と、
当該凹部と翼の上面とが相互に連通する開口部と、
を備えており、
前記開口部の、翼幅方向への寸法の総和を翼幅に対し60%以下とし、
且つ前記開口部の、翼弦方向への寸法を翼弦長に対し1%としたことを特徴とするジャイロミル型風車用の翼。
A lower surface of the wing, a concave portion formed of a space formed from the trailing edge of the wing toward the leading edge of the wing;
An opening through which the recess and the upper surface of the wing communicate with each other;
Equipped with a,
The sum of the dimensions of the openings in the wing span direction is 60% or less of the wing span,
A blade for a gyromill type windmill, characterized in that the dimension of the opening in the direction of the chord is 1% of the chord length .
請求項1に記載したジャイロミル型風車用の翼において、
翼の下面に形成した凹部の翼端部分からの気流の流出を防ぐべく、前記当該凹部の翼端部分を塞ぐ翼端板を設けたことを特徴とするジャイロミル型風車用の翼。
In the wing for the gyromill type windmill according to claim 1 ,
A blade for a gyromill type windmill, wherein a blade end plate for closing the blade end portion of the concave portion is provided to prevent outflow of airflow from the blade tip portion of the concave portion formed on the lower surface of the blade.
請求項1又は請求項2に記載したジャイロミル型風車用の翼において、
翼の下面に形成した凹部を翼幅方向に区画するための仕切板を、当該凹部内に立設したことを特徴とするジャイロミル型風車用の翼。
In the blade for a gyromill type windmill according to claim 1 or claim 2 ,
A blade for a gyromill type windmill, characterized in that a partition plate for partitioning a recess formed on the lower surface of the blade in the blade width direction is provided upright in the recess.
JP2007286628A 2007-11-02 2007-11-02 Wings for gyromill type windmills Expired - Fee Related JP5196961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286628A JP5196961B2 (en) 2007-11-02 2007-11-02 Wings for gyromill type windmills

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286628A JP5196961B2 (en) 2007-11-02 2007-11-02 Wings for gyromill type windmills

Publications (2)

Publication Number Publication Date
JP2009114897A JP2009114897A (en) 2009-05-28
JP5196961B2 true JP5196961B2 (en) 2013-05-15

Family

ID=40782320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286628A Expired - Fee Related JP5196961B2 (en) 2007-11-02 2007-11-02 Wings for gyromill type windmills

Country Status (1)

Country Link
JP (1) JP5196961B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0810094D0 (en) * 2008-06-03 2008-07-09 Slipstream Energy Ltd Wind turbine blades
GB2477509A (en) * 2010-02-04 2011-08-10 Rolls Royce Plc A vertical axis turbine foil structure with surface fluid transfer openings
KR101498684B1 (en) * 2013-12-31 2015-03-06 한국에너지기술연구원 Flat Back Airfoil having Diagonal type Trailing Edge Shape and Blade for Wind Turbine Generator having the Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046306A (en) * 2004-08-02 2006-02-16 Akihisa Matsuzono Windmill for wind power generation, and power generator driving method
WO2007064155A1 (en) * 2005-11-30 2007-06-07 Geumpoong Energy Aerogenerator

Also Published As

Publication number Publication date
JP2009114897A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
Jain et al. Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching
Cheng et al. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method
Rassoulinejad-Mousavi et al. Experimental study of a combined three bucket H-rotor with savonius wind turbine
Roy et al. Numerical investigation to assess an optimal blade profile for the drag based vertical axis wind turbine
JP4723264B2 (en) 3D rotor blade and horizontal axis wind turbine
Chong et al. Performance analysis of the deflector integrated cross axis wind turbine
JP5196961B2 (en) Wings for gyromill type windmills
Sarma et al. Hybrid/combined Darrieus–Savonius wind turbines: Erstwhile development and future prognosis
Didane et al. Development and performance investigation of a unique dual-rotor Savonius-type counter-rotating wind turbine
Balduzzi et al. Some design guidelines to adapt a Darrieus vertical axis turbine for use in hydrokinetic applications
KR20180017101A (en) A rotor blade shaped to improve wake diffusion
KR101851102B1 (en) Electric car having wind power generation function using lift force
Celik et al. Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine
CN105545583B (en) Wind power generation blade and lee face go out to flow the determination method at tangent line inclination angle
KR20150069066A (en) Lift-Drag Blade and Rotor for Vertical Axis Wind-Turbine
Islam et al. Aerodynamic factors affecting performance of straight-bladed vertical axis wind turbines
Meddane et al. Numerical prediction of a tandem straight-bladed wind turbine performance
KR20110083476A (en) The vertical axis wind turbine using drag force and lift force simultaneouly
Ajedegba Effects of blade configuration on flow distribution and power output of a zephyr vertical axis wind turbine.
CN106837683B (en) The optimal value for going out to flow tangent line inclination angle of windward side determines method
BRPI1107459A2 (en) vertically wind driven multi-directional wind deflection device
Mayeed et al. Optimization of the wind turbine designs for areas with low wind speeds
Saini et al. Effect of hydrofoils on the starting torque characteristics of the Darrieus hydrokinetic turbine
KR20100079522A (en) Rotor blade for wind power generation and wind power generator having the same
Ali et al. Theoretical Investigation of H-rotor Darrieus Turbine Performance with Different Airfoil Shapes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees