JP5196687B2 - All plastic resin heating / cooling radiator - Google Patents

All plastic resin heating / cooling radiator Download PDF

Info

Publication number
JP5196687B2
JP5196687B2 JP2011012961A JP2011012961A JP5196687B2 JP 5196687 B2 JP5196687 B2 JP 5196687B2 JP 2011012961 A JP2011012961 A JP 2011012961A JP 2011012961 A JP2011012961 A JP 2011012961A JP 5196687 B2 JP5196687 B2 JP 5196687B2
Authority
JP
Japan
Prior art keywords
pipe
panel
heat
header main
main pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011012961A
Other languages
Japanese (ja)
Other versions
JP2012154536A (en
Inventor
高光 櫻庭
Original Assignee
株式会社 テスク資材販売
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 テスク資材販売 filed Critical 株式会社 テスク資材販売
Priority to JP2011012961A priority Critical patent/JP5196687B2/en
Publication of JP2012154536A publication Critical patent/JP2012154536A/en
Application granted granted Critical
Publication of JP5196687B2 publication Critical patent/JP5196687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は、温水循環による室内暖房と、冷水循環による室内冷房の可能な、全プラスチック樹脂製放熱器に関するものであり、より詳しくは、軽量で、奥行き厚さが小で、放熱量が大で、エアー抜きの不要な、建物の間仕切内等の収納奥行きの狭い空間内の配置に有効な放熱器に関するものであって、建物の室内暖冷房の技術分野に属するものである。   The present invention relates to an all-plastic resin radiator that can perform indoor heating by hot water circulation and indoor cooling by cold water circulation. More specifically, the present invention relates to a lightweight, small depth thickness, and large heat dissipation. The present invention relates to a radiator that is effective for placement in a space with a small storage depth such as a partition of a building that does not require air venting, and belongs to the technical field of indoor heating and cooling of a building.

温水循環放熱部をプラスチック製とした放熱器は、図6に示す従来例1、図7に示す従来例2、及び図8に示す従来例3等により既に提案されている。
従来例1(図6)は、特許文献1に開示された温水循環放熱器であって、図6(A)は、プラスチック製のパイプの1本を屈曲延展して放熱部としたものであり、(B)は複数のパイプを並列配置して両端をソケットで連通し、一端のソケットの上端には往き側パイプを、ソケットの下端には戻り側パイプを接続し、往き側パイプから戻り側パイプへ、温水を全パイプに循環させるものであり、(C)はソケット部の流水説明図、(D)はソケット部の斜視図である。
A heat radiator in which the hot water circulation heat dissipating part is made of plastic has already been proposed by Conventional Example 1 shown in FIG. 6, Conventional Example 2 shown in FIG. 7, Conventional Example 3 shown in FIG.
Conventional Example 1 (FIG. 6) is a hot water circulating radiator disclosed in Patent Document 1, and FIG. 6 (A) is a heat radiating part by bending and extending one of plastic pipes. , (B), a plurality of pipes are arranged in parallel and both ends are connected by a socket, a forward pipe is connected to the upper end of the socket at one end, a return pipe is connected to the lower end of the socket, and the return side pipe is connected to the return side pipe. The hot water is circulated through all the pipes, (C) is an explanatory view of water flow in the socket part, and (D) is a perspective view of the socket part.

また、従来例2(図7)は、特許文献2として挙げたものであり、本願発明者が、床面載置用の温水循環暖房器に好適な放熱器として開発した、2枚の放熱パネルを重層一体化した全プラスチック製放熱器であって、図7(A)は第1放熱パネル側の正面図、(B)は放熱器の左側面図、(C)は放熱部の右側面図、(D)は裏面用、即ち第2放熱パネル側の正面図である。
即ち、第1放熱パネルは、図7(A)に示す如く、上下横パイプ間に縦パイプ群を、横パイプの嵌入孔に縦パイプ先端を嵌合熱融着して連通一体化すると共に、上下横パイプの端部を閉止板で閉止し、下部横パイプの一端(右端)から供給口を下方突出する。
Further, Conventional Example 2 (FIG. 7) is cited as Patent Document 2, and the present inventor has developed two heat dissipating panels developed as a heat dissipator suitable for a hot water circulation heater for floor mounting. 7A is a front view of the first heat radiating panel side, FIG. 7B is a left side view of the radiator, and FIG. 7C is a right side view of the heat radiating section. (D) is a front view for the back side, that is, the second heat radiation panel side.
That is, as shown in FIG. 7 (A), the first heat radiating panel is integrated with the vertical pipe group between the upper and lower horizontal pipes, the vertical pipe tip is fitted into the insertion hole of the horizontal pipe, and is fused and fused. The ends of the upper and lower horizontal pipes are closed with a closing plate, and the supply port projects downward from one end (right end) of the lower horizontal pipe.

また、第2放熱パネルは、図7(D)に示す如く、上下横パイプ間に縦パイプ群を、横パイプの嵌入孔に縦パイプ先端を嵌合熱融着して連通一体化すると共に、上下横パイプの端部を閉止板で閉止し、上側横パイプの他端(左端)では、閉止板から1本の縦パイプ分を保って仕切板を配置し、下側横パイプの一端(右端)では、閉止板から1本の縦パイプ分を保って仕切板を配置し、閉止板と仕切板との間から下方に排出口を配置する。
そして、第1放熱パネルと第2放熱パネルとを、図7(B)に示す如く、左端(他端)の、上側では横パイプ端間を連通パイプで接続し、下側では横パイプ端間をスペーサーパイプで接続し、右端(一端)の上側及び下側では、横パイプ端間をスペーサーパイプで接続したものである。
In addition, as shown in FIG. 7 (D), the second heat radiating panel is integrated with the vertical pipe group between the upper and lower horizontal pipes, and the vertical pipe tip is fitted into the insertion hole of the horizontal pipe and thermally integrated. The end of the upper and lower horizontal pipes is closed with a closing plate, and at the other end (left end) of the upper horizontal pipe, a partition plate is arranged while maintaining one vertical pipe from the closing plate, and one end (right end of the lower horizontal pipe) ), The partition plate is disposed while maintaining one vertical pipe from the closing plate, and the discharge port is disposed below between the closing plate and the partition plate.
Then, as shown in FIG. 7 (B), the first heat radiating panel and the second heat radiating panel are connected to the left end (the other end) on the upper side by a communicating pipe on the upper side, and on the lower side, between the end of the horizontal pipe. Are connected by a spacer pipe, and the upper and lower sides of the right end (one end) are connected by a spacer pipe between the ends of the horizontal pipe.

従って、図7に示す如く、第1放熱パネルの一端下部の供給口から供給する温水は、供給口のf1流→下側横パイプ内の左行f2流→縦パイプ群の上昇f3流→上側横パイプの左行f4流→連通パイプ内の第1放熱パネルから第2放熱パネル内へのf5流→第2放熱パネルの上側横パイプ他端(左端)の閉止板と仕切板による左端縦パイプ内の下降f6流→下側横パイプの仕切板までの右行f7流→縦パイプ群の上昇f8流→上側横パイプの仕切板から右側の右行f9流→一端(右端)縦パイプ内の下降f10流→排出口からのf11流と、重層形態の2枚のパネル内を温水が循環するものである。   Accordingly, as shown in FIG. 7, the hot water supplied from the supply port at the lower end of the first heat radiating panel is f1 flow at the supply port → left flow f2 flow in the lower horizontal pipe → upflow f3 flow of the vertical pipe group → upper side. Left side f4 flow of horizontal pipe → f5 flow from the first heat dissipating panel to the second heat dissipating panel in the communication pipe → left end vertical pipe by the closing plate and partition plate at the other end (left end) of the upper horizontal pipe of the second heat dissipating panel Downward f6 flow in the right row f7 flow to the partition plate of the lower horizontal pipe → Upward f8 flow of the vertical pipe group → Right row f9 flow from the partition plate of the upper horizontal pipe to one end (right end) in the vertical pipe The descending f10 flow → the f11 flow from the discharge port, and the hot water circulates in the two panels in the form of multiple layers.

また、従来例3(図8)は、本願発明者が、建物の間仕切内での隠蔽配置に好適な温冷水循環放熱器として開発したものであって、特許文献3として挙げたものであり、2枚の放熱パネルを重層一体化した全プラスチック樹脂製放熱器であって、図8の、(A)はヘッダーの一部横断平面図、(B)はヘッダーと縦パイプとの関係構造縦断側面図、(C)は放熱パネルの部分拡大平面図である。   In addition, Conventional Example 3 (FIG. 8) was developed by the inventor as a hot / cold water circulation radiator suitable for concealment arrangement in a building partition, and is cited as Patent Document 3, This is an all-plastic resin heatsink in which two heat radiation panels are integrated, with (A) showing a partial cross-sectional plan view of the header and (B) showing the relationship between the header and the vertical pipe. FIG. 4C is a partially enlarged plan view of the heat dissipation panel.

即ち、従来例3(図8)は、大径(27mm)のヘッダー主管から側方に中径(17mm)の継手用枝管群を、中心間距離20mmで並列突出したヘッダーを射出成形で用意し、上下ヘッダー間に小径(13mm)の縦パイプ2C群を連通接続して全プラスチック樹脂製放熱パネルとし、該放熱パネルの2枚を、重層形態で連通一体化して放熱器としたものである。
そして、ヘッダーと縦パイプ群との連通接続は、ヘッダーの継手用枝管の内周に、先端から10mm深さで配置した取付孔に、縦パイプの端部を1本ずつの手作業で嵌合当接し、加熱工具で継手用枝管外周を溶融して、外周部の継手用枝管と挿入縦パイプとを融着したものである。
In other words, Conventional Example 3 (Fig. 8) is prepared by injection molding of a joint branch pipe group with a medium diameter (17mm) laterally projecting from a large diameter (27mm) header main pipe to the side with a center distance of 20mm by injection molding. A vertical pipe 2C group having a small diameter (13 mm) is connected between the upper and lower headers to form an all-plastic resin heat dissipating panel, and the two heat dissipating panels are connected and integrated in a multilayered structure to form a heat radiator. .
The connection between the header and the vertical pipe group is made by manually fitting the ends of the vertical pipes one by one into the mounting hole located at a depth of 10 mm from the tip on the inner periphery of the joint pipe for the header. The outer periphery of the joint branch pipe is melted by a heating tool, and the joint branch pipe and the insertion vertical pipe in the outer peripheral portion are fused.

特開2001−116475号公報JP 2001-116475 A 特開2009−192144号公報JP 2009-192144 A 登録実用新案第3163477号公報Registered Utility Model No. 3163477

従来例1(図6)の放熱器にあっては、パイプが横方向配置であるため、流水抵抗が大であり、パイプ本数が多い場合は、各パイプが偏流となって放熱面の温度が不均斉となる。
そして、放熱器内の空気は流水経路の最上部に溜まるため、放熱器の上端にエアー抜き装置の配置が必要である。
また、融着板、ソケット、閉止板、パイプ群等の融着個所が多くて製作が煩雑であり、製作作業に熟練を要する。
In the radiator of the conventional example 1 (FIG. 6), since the pipes are arranged in the lateral direction, the flowing water resistance is large, and when the number of pipes is large, each pipe is drifted and the temperature of the heat radiation surface is increased. It becomes inhomogeneous.
And since the air in a radiator accumulates in the uppermost part of a flowing water path, arrangement | positioning of the air venting apparatus is required for the upper end of a radiator.
In addition, there are many fusion parts such as a fusion plate, a socket, a closing plate, and a pipe group, and the production is complicated, and the production work requires skill.

また、従来例2(図7)の放熱器は、全プラスチック樹脂製で、輻射熱放熱に優れた放熱パネルの2枚を重層連通一体化しているため、軽量で、熱効率に優れた、画期的な放熱器であるが、第1パネルと第2パネルとの、下端横パイプ間隔及び上端緯パイプ間隔が、放熱面としての縦パイプ面間隔より小さいため、両パネル間の空間の上下貫通空気流は、空気流が澱んで、対流熱伝達がスムーズに実施出来ない。
また、全面均斉な放熱を得るためには、各縦パイプ群を横パイプに連通歪無く取付ける必要があり、大径横パイプへの小径の縦パイプ群の均斉密集接合は、煩雑で熟練を要する作業である。
In addition, the heat radiator of Conventional Example 2 (FIG. 7) is made of all plastic resin and has two layers of heat radiation panels excellent in radiant heat radiation. However, since the lower end horizontal pipe interval and the upper end weft pipe interval between the first panel and the second panel are smaller than the vertical pipe surface interval as the heat dissipating surface, the vertical through-air flow in the space between both panels The air flow is stagnant and convective heat transfer cannot be carried out smoothly.
Also, in order to obtain uniform heat dissipation over the entire surface, it is necessary to attach each vertical pipe group to the horizontal pipe without any communication distortion, and the uniform dense joining of the small diameter vertical pipe group to the large diameter horizontal pipe is cumbersome and requires skill. Work.

しかも、第1放熱パネルには、下側横パイプの一端(右端)に供給口を付設し、第2放熱パネルには、下側横パイプの一端(右端)に排出口を付設すると共に、右端の縦パイプと左端の縦パイプとに流路変更用仕切板を介在することとなり、第1放熱パネルと第2放熱パネルとは構造が異なるため、放熱パネルの製作、及び放熱パネルからの放熱器の製作が煩雑である。
しかも、循環水中の空気は上端横パイプ内に溜まるため、従来例1(図6)同様、放熱器の上端に、エアー抜き装置の配置が必要である。
In addition, the first heat radiating panel is provided with a supply port at one end (right end) of the lower horizontal pipe, and the second heat radiating panel is provided with a discharge port at one end (right end) of the lower horizontal pipe. Since the flow path changing partition plate is interposed between the vertical pipe and the leftmost vertical pipe, the structure of the first heat radiating panel is different from that of the second heat radiating panel. Is complicated.
And since the air in circulating water accumulates in an upper end horizontal pipe, like the prior art example 1 (FIG. 6), arrangement | positioning of the air venting apparatus is required at the upper end of a radiator.

また、従来例3(図8)の放熱器は、大径(外径27mm)のヘッダー主管の側方から中径(外径17mm)の継手用枝管群を、中心間距離20mm、即ち継手用枝管相互の間隔を3mmで突出させ、継手用枝管の先端から10mm深さの取付孔を備えたヘッダーを射出成形するための、金型の製造が、煩雑且つ高価である。
しかも、溶融樹脂の、型内での流動廻り込み作用の面から、継手枝管の肉厚の薄肉化が制約され、継手用枝管とヘッダー主管との接続部での、巣の発生、使用中のヒートストレス及び水圧負荷による亀裂の発生の危険等を避けるためにも、継手用枝管の薄肉化が制約される。
In addition, the radiator of the conventional example 3 (FIG. 8) has a branch pipe group for joints having a medium diameter (outer diameter of 17 mm) from the side of a header main pipe having a large diameter (outer diameter of 27 mm), a center distance of 20 mm, that is, a joint. It is complicated and expensive to manufacture a mold for injection-molding a header having a mounting hole having a depth of 10 mm from the tip of the joint branch pipe, with the interval between the branch pipes protruding at 3 mm.
In addition, the thickness of the joint branch pipe is limited from the viewpoint of the flow-in effect of the molten resin in the mold, and the formation and use of nests at the joint between the joint branch pipe and the header main pipe is restricted. In order to avoid the risk of cracking due to heat stress and hydraulic load, the thickness of the joint branch pipe is limited.

そして、各継手用枝管に対する各縦パイプの融着接合は、各継手用枝管外周面を上下一対の加熱工具(図示せず)で被覆挟着しての溶融接合となるため、放熱器の放熱量増大を意図して縦パイプ群の密集化を目指しても、各継手用枝管の融着用間隔は、上下一対の加熱工具を挿入介在させるための必要最小限の間隔(標準:3mm)は必要となる。
そのため、継手用枝管内に縦パイプを嵌入して、縦パイプを継手用枝管内に融着一体化する従来例3(図8)の放熱器にあっては、継手用枝管相互間の融着用間隔の、必要最小限の寸法の制約の下に、縦パイプを継手用枝管内に嵌入して融着一体化するため、縦パイプ間隔の最小化も継手用枝管相互の間隔より大(標準:7mm)となり、放熱器の発熱量増加のための、単位幅寸法当りの縦パイプ配置本数の最大化が制約を受ける。
Then, the fusion bonding of each vertical pipe to each joint branch pipe is a fusion joint obtained by covering and sandwiching the outer peripheral surface of each joint branch pipe with a pair of upper and lower heating tools (not shown). Even when aiming to increase the density of the vertical pipe group with the aim of increasing the heat dissipation of the pipe, the fusion interval of the branch pipes for each joint is the minimum necessary for inserting and interposing a pair of upper and lower heating tools (standard: 3 mm) ) Is required.
Therefore, in the radiator of the conventional example 3 (FIG. 8) in which a vertical pipe is inserted into the joint branch pipe and the vertical pipe is fused and integrated into the joint branch pipe, The vertical pipes are fitted into the joint branch pipes and fused and integrated under the minimum required dimensions of the wearing interval, so the vertical pipe spacing is also minimized compared to the joint branch pipes ( Standard: 7mm), and the maximum number of vertical pipes per unit width is limited to increase the heat generation of the radiator.

本発明は、従来例2(図7)、従来例3(図8)の機能上優れた放熱器を、より放熱量を増大させ、より合理的に製作可能としたものであって、ヘッダーの射出成形型の問題を軽減し、縦パイプ間の間隔をより小さくして単位面積当りの放熱量の増大を可能とし、且つ、放熱器上端へのエアー抜き装置の付設も不要としたもので、機能上も、デザイン上も、制作上も優れた、新規、且つ実用性の極めて高い全プラスチック樹脂製の放熱器を提供するものである。   In the present invention, the heat radiator excellent in function of the conventional example 2 (FIG. 7) and the conventional example 3 (FIG. 8) can be manufactured more rationally by increasing the heat radiation amount. The problem of the injection mold is reduced, the distance between the vertical pipes is made smaller, the heat radiation amount per unit area can be increased, and the installation of the air venting device at the upper end of the radiator is also unnecessary. It is a new and extremely practical heatsink made of all plastic resin that is superior in function, design, and production.

本発明は、図1に示す如く、プラスチック樹脂製の左右のヘッダー1間に、プラスチック樹脂製で同径同長の放熱用緯パイプ2A群を密集並列連通した、第1放熱パネル101と、第2放熱パネル102との2枚を、重層形態で一体化連通した全プラスチック樹脂製放熱器であって、第1及び第2放熱パネルは、ヘッダー1の、大径の主管1Aの側面の取付孔Ha群に小径の緯パイプ2A群が嵌合連通して、緯パイプ2A群が両側のヘッダー1と連通し、第1放熱パネル101の一端のヘッダー1の上端には供給口1Sを、第2放熱パネル102の一端のヘッダー1の上端には排出口1Rを備え、第1及び第2放熱パネルの全緯パイプ2A群の水流は、各ヘッダー主管1Aからの流入、各ヘッダー主管1Aへの流出共、ヘッダー主管1A内の上昇流で実施するものである。   As shown in FIG. 1, the present invention includes a first heat radiating panel 101 in which a group of heat dissipating weft pipes 2A made of plastic resin and having the same diameter and the same length are connected between the left and right headers 1 made of plastic resin. 2 is an all-plastic resin radiator in which two sheets of the heat radiating panel 102 are integrated and communicated in a layered form, and the first and second heat radiating panels are mounting holes on the side surface of the large-diameter main pipe 1A of the header 1 A small-diameter weft pipe 2 </ b> A group is fitted and communicated with the Ha group, the weft pipe 2 </ b> A group communicates with the headers 1 on both sides, and a supply port 1 </ b> S is provided at the upper end of the header 1 at one end of the first heat radiation panel 101. A discharge port 1R is provided at the upper end of the header 1 at one end of the heat radiating panel 102, and the water flow of the entire weft pipe 2A group of the first and second heat radiating panels flows in from each header main pipe 1A and out to each header main pipe 1A. Both in header main 1A Those carried out at elevated flow.

この場合、ヘッダー主管1A、緯パイプ2Aは、相互に熱融着出来る熱可塑性プラスチック樹脂製であれば良く、典型的には、ポリプロピレン、ランダム、コポリマー樹脂(PP−R樹脂)製であり、大径のヘッダー主管1Aは、外径d1が27mm、肉厚5mmで、図2(A)に示す如く、一側面に緯パイプ嵌合融着用の取付孔Ha群を備えた射出成形品であり、小径の緯パイプ2Aは、外径d2が13mm、肉厚1.6mmの押出成形品であり、典型的な放熱パネルとしては、図1(B)に示す如く、ヘッダー主管1Aの上下を閉止板1Fで閉止した全高h1が451mmのヘッダー1に、緯パイプ2Aが、露出長946mm(L2)で一体化連通したものである。   In this case, the header main pipe 1A and the weft pipe 2A may be made of a thermoplastic resin that can be heat-sealed to each other, and are typically made of polypropylene, random, copolymer resin (PP-R resin). The diameter header main pipe 1A is an injection-molded product having an outer diameter d1 of 27 mm and a wall thickness of 5 mm, and as shown in FIG. The small-diameter weft pipe 2A is an extruded product having an outer diameter d2 of 13 mm and a wall thickness of 1.6 mm. As a typical heat radiation panel, the upper and lower sides of the header main pipe 1A are closed plates as shown in FIG. A weft pipe 2A is integrally connected with an exposed length of 946 mm (L2) to a header 1 having a total height h1 of 451 mm closed at 1F.

また、図1に示す如く、第1放熱パネル101の一端(右側)ヘッダー1の上端に供給口1Sを、第2放熱パネル102の一端(右側)ヘッダー1の上端に排出口1Rを供えた放熱器にあっては、図5に示す如く、第1放熱パネル101の、供給口1Sからの水流f1をヘッダー主管1Aでは下降流f2で案内し、ヘッダー主管1Aの下端で上昇流f3に方向変換して、ヘッダー主管1Aの上昇流f3から各緯パイプ2Aに供給し、他端(左側)のヘッダー主管1Aで収集した上昇流f5を、連通パイプ片1Dで第2放熱パネルの他端(左側)ヘッダー主管1A上端に横水流f6で供給し、第2放熱パネル102の他端(左側)ヘッダー主管1Aでは、下端までの下降流f7を、下端で方向転換して上昇流f8とし、上昇流f8から各緯パイプ2Aに横流f9で供給し、一端(右側)のヘッダー主管1Aで収集した上昇流f10を排出口1Rから排出流f11として循環させれば、放熱器の全緯パイプ2A群の水流は、供給水も、排出水も、全てヘッダー主管1A内の上昇流での実施となる。   In addition, as shown in FIG. 1, heat dissipation with a supply port 1 </ b> S at the upper end of one end (right side) header 1 of the first heat radiation panel 101 and a discharge port 1 </ b> R at the upper end of one end (right side) header 1 of the second heat radiation panel 102. As shown in FIG. 5, the water flow f1 from the supply port 1S of the first heat radiating panel 101 is guided by the downflow f2 in the header main pipe 1A, and the direction is changed to the upflow f3 at the lower end of the header main pipe 1A. Then, the upward flow f5 supplied from the upward flow f3 of the header main pipe 1A to each weft pipe 2A and collected by the header main pipe 1A at the other end (left side) is connected to the other end (left side) of the second heat radiation panel by the communication pipe piece 1D. ) In the other end (left side) of the header main pipe 1A of the second heat radiating panel 102, the downward flow f7 up to the lower end is changed to the upward flow f8 by changing the direction to the upward flow f8. Each pie from f8 If the upflow f10 collected in the header main pipe 1A at one end (right side) is circulated as the discharge flow f11 from the discharge port 1R, the water flow in the entire weir pipe 2A group of the radiator is In addition, all the discharged water is carried out in the upward flow in the header main pipe 1A.

従って、本発明の放熱器は、第1放熱パネル101は、供給口1Sを備えた一端のヘッダー主管1Aの下端位置、即ち第1放熱パネル101の緯パイプ2A群への実質上の水流供給位置から、他端のヘッダー主管1Aの上端位置、即ち第1放熱パネル101の流水の第2放熱パネル102への排出位置、までの各緯パイプ2Aを経由する各流水経路は同一長となって、一端のヘッダー主管1A内の上昇流が各緯パイプ2A群に分配流入し、各緯パイプ2A群の流水を他端のヘッダー主管1A内の上昇流として収集するため、緯パイプ2A群で構成する放熱面は実質上、均斉な放熱作用を奏する。   Therefore, in the radiator of the present invention, the first heat radiating panel 101 has a lower end position of the header main pipe 1A provided with the supply port 1S, that is, a substantially water flow supply position to the weft pipe 2A group of the first heat radiating panel 101. To the upper end position of the header main pipe 1A at the other end, that is, the discharge position of the flowing water of the first heat dissipating panel 101 to the second heat dissipating panel 102, each flowing water path through each weft pipe 2A has the same length, Ascending flow in the header main pipe 1A at one end is distributed and flows into the respective weft pipes 2A, and the flowing water of each weft pipe 2A group is collected as the ascending flow in the header main pipe 1A at the other end. The heat dissipating surface has a substantially uniform heat dissipating action.

そして、第2放熱パネル102も、他端(左側)のヘッダー主管1Aの下端位置、即ち第2放熱パネル102の各緯パイプ群への実質上の水流供給位置、から一端(右側)のヘッダー主管1Aの上端位置、即ち第2放熱パネル102の流水排出位置、までの各緯パイプ2Aを経由する各流水経路は同一長となって、他端のヘッダー主管1Aの下端位置からの上昇流が、各緯パイプ2Aに流入し、一端のヘッダー主管1A内の上昇流として収集するため、第2放熱パネル102も、実質上、均斉な放熱作用を奏する、
そのため、第1放熱パネル101の全面及び第2放熱パネル102の全面が、面内で、実質上、均斉な加熱又は冷却発熱作用を奏し、高品質のパネル放熱器を提供する。
The second heat radiating panel 102 also has a header main pipe at one end (right side) from the lower end position of the header main pipe 1A at the other end (left side), that is, a substantially water flow supply position to each weft pipe group of the second heat radiating panel 102. Each flowing water path passing through each weft pipe 2A up to the upper end position of 1A, that is, the flowing water discharge position of the second radiator panel 102 has the same length, and the upward flow from the lower end position of the header main pipe 1A at the other end is In order to flow into each weft pipe 2A and collect as an upward flow in the header main pipe 1A at one end, the second heat dissipating panel 102 also has a substantially uniform heat dissipating action.
Therefore, the entire surface of the first heat radiating panel 101 and the entire surface of the second heat radiating panel 102 exhibit substantially uniform heating or cooling heat generating action within the surface, thereby providing a high-quality panel radiator.

そして、全プラスチック樹脂製であるため、軽量で、取扱いが容易であり、材質自体の輻射熱線の高吸収、高放射性に基づいた高性能輻射熱暖冷房器を提供する。
そして、放熱器は、大径のヘッダー主管1Aが両側に存在するため、第1放熱パネル101と第2放熱パネル102との、緯パイプ2A群面間の間隔、即ち両放熱パネル間の間隔は、下端から上端まで同一寸法で上下開通形態となって、放熱器内での、加熱又は冷却空気の上下貫流が、澱むことなくスムーズとなり、対流熱伝達が向上する。
Further, since it is made of all plastic resin, it is lightweight, easy to handle, and provides a high-performance radiant heat heater / cooler based on high absorption and high radiation of the radiant heat rays of the material itself.
And since the heat sink has a large-diameter header main pipe 1A on both sides, the distance between the weft pipe 2A group surfaces of the first heat radiating panel 101 and the second heat radiating panel 102, that is, the distance between both heat radiating panels is The upper and lower openings have the same dimensions from the lower end to the upper end, and the up and down flow of the heating or cooling air in the radiator is smooth without stagnation and convective heat transfer is improved.

また、放熱器の構成材としての、ヘッダー主管1Aは、単純、且つ安価な形状の射出金型で準備出来、緯パイプ2Aは押出成形で準備出来、ヘッダー主管1Aへの取付孔Haの配置も自在であるため、緯パイプ2Aを、密集並列配置した高性能放熱パネルの製作が簡便、且つ安価に実施出来、高性能放熱器が合理的に製作出来る。
しかも、循環水で生ずる放熱器内の空気も、最上端の緯パイプ2Aから排出口1Rへと放出するようになって、放熱器毎のエアー抜き装置は不要となり、高性能で、稼働率に優れた放熱器の提供が可能となる。
In addition, the header main pipe 1A as a constituent material of the radiator can be prepared with a simple and inexpensive shape injection mold, the weft pipe 2A can be prepared by extrusion molding, and the arrangement of the mounting holes Ha to the header main pipe 1A is also possible. Since it is flexible, it is possible to easily and inexpensively manufacture a high performance heat dissipating panel in which weft pipes 2A are closely arranged in parallel, and a high performance heat radiator can be rationally manufactured.
In addition, the air in the radiator generated by the circulating water is also discharged from the uppermost weft pipe 2A to the discharge port 1R, eliminating the need for an air venting device for each radiator, resulting in high performance and availability. An excellent heat radiator can be provided.

また、本発明の放熱器にあっては、図1に示す如く、第1放熱パネル101の他端、即ち図1(A)で左側、のヘッダー主管1Aの上端と、第2放熱パネル102の他端のヘッダー主管1A上端とが、連通パイプ片1Dで連通し、第1放熱パネル101の一端、即ち図1(A)の右側、のヘッダー主管1A及び第2放熱パネル102の他端、即ち図1(A)の左側、のヘッダー主管1Aが、上端から流入する下降流を下端で上端への上昇流に変換して各緯パイプ2Aに供給するのが好ましい。   In the radiator of the present invention, as shown in FIG. 1, the other end of the first heat radiating panel 101, that is, the upper end of the header main pipe 1A on the left side in FIG. The upper end of the header main pipe 1A at the other end communicates with the communication pipe piece 1D, and one end of the first heat radiating panel 101, that is, the other end of the header main pipe 1A and the second heat radiating panel 102 on the right side in FIG. It is preferable that the header main pipe 1A on the left side of FIG. 1A converts the downward flow flowing from the upper end into the upward flow at the lower end and supplies it to each weft pipe 2A.

この場合、第1放熱パネル101と第2放熱パネル102との重層一体化は、上下左右の四隅で一体化すれば良く、他端、即ち左側、上隅の連通パイプ片1Dは流水供給機能と共に、連結一体化機能を奏する構造とし、他の三隅は、スペーサーパイプ1Eで単に両パネルを一体化すれば良い。
また、ヘッダー主管1A内の下降流の上昇流への変換手段は、下降流用のパイプをヘッダー主管1Aの下端までヘッダー主管1A内に延出垂下して、パイプ内部を下降流用、パイプ外部を上昇流用に分割しても、或いは、ヘッダー主管1A内を下降流ルートと緯パイプ2A群に連通する上昇流ルートとに分離しても良い。
In this case, the first heat dissipating panel 101 and the second heat dissipating panel 102 may be integrated at the upper, lower, left and right corners, and the other end, that is, the communication pipe piece 1D on the left and upper corners, together with the flowing water supply function. The other three corners may be simply integrated with the spacer pipe 1E.
Also, the means for converting the downward flow in the header main pipe 1A into the upward flow extends and hangs down the pipe for the downward flow into the header main pipe 1A to the lower end of the header main pipe 1A, for the downward flow inside the pipe and ascends the outside of the pipe The header main pipe 1A may be divided into a downward flow route and an upward flow route communicating with the weft pipe 2A group.

従って、第1放熱パネル101の各緯パイプ2A群への循環水の供給は、一端の供給口1Sを備えたヘッダー主管1Aの下端から他端へのヘッダー主管1Aの上端への上下各緯パイプ2Aを経由する流水ルートとなり、各緯パイプ2Aのルートでの流水抵抗は実質同一となり、第2放熱パネル102内にあっても、他端のヘッダー主管1Aの下端から各緯パイプ2Aを経由した一端ヘッダー主管1Aの上端への流水ルートとなって、各緯パイプ2A内の流水抵抗は実質同一となる。
そのため、第1放熱パネル101も第2放熱パネル102も、共に、緯パイプ2A群のパネル面は、全面が実質的に均斉な発熱作用を奏することとなり、発熱斑の生じない高性能な放熱器となる。
Accordingly, the circulating water is supplied to each weft pipe 2A group of the first heat radiating panel 101 from above and below each weft pipe from the lower end of the header main pipe 1A having the supply port 1S to the other end to the upper end of the header main pipe 1A. The flow resistance through the weft pipe 2A is substantially the same, and even within the second heat radiating panel 102, it passes through the weft pipe 2A from the lower end of the header main pipe 1A at the other end. It becomes a flowing water route to the upper end of the one-end header main pipe 1A, and the flowing water resistance in each weft pipe 2A becomes substantially the same.
Therefore, both the first heat dissipating panel 101 and the second heat dissipating panel 102 have a substantially uniform heat generating action on the entire panel surface of the weft pipe 2A group, and a high performance heat dissipator that does not generate heat generation spots. It becomes.

また、本発明の放熱器にあっては、図3に示す如く、第1放熱パネル101の一端のヘッダー主管1Aは、上端から最下端の緯パイプ2A下面レベルまでの流れ変換用の挿入管1Bを備え、第2放熱パネル102の他端のヘッダー主管1Aは、上端から最下端の緯パイプ2A下面レベルまでの流れ変換用の挿入管1Cを備え、且つ、挿入管1Cは、第1放熱パネル101の他端のヘッダー主管1Aと、上部で連通パイプ片1Dで連通しているのが好ましい。
この場合、各挿入管1B,1C共、下端が最下端の緯パイプ2Aの下面レベルで、且つ下端の閉止板1Fとの間に、挿入管1B,1Cを下降する供給水をヘッダー主管1A内へ噴出する間隔が存在すれば良く、典型的には、挿入管1B及び1Cと下端の閉止板1Fとの間隔は2mmである。
In the radiator of the present invention, as shown in FIG. 3, the header main pipe 1A at one end of the first heat radiating panel 101 is an insertion pipe 1B for flow conversion from the upper end to the lower surface level of the lowermost weft pipe 2A. The header main pipe 1A at the other end of the second heat radiating panel 102 is provided with an insertion pipe 1C for converting the flow from the upper end to the lower surface of the lowermost weft pipe 2A, and the insertion pipe 1C is the first heat radiating panel. It is preferable to communicate with the header main pipe 1A at the other end of 101 by a communication pipe piece 1D at the top.
In this case, in each of the insertion pipes 1B and 1C, the feed water that descends the insertion pipes 1B and 1C is placed in the header main pipe 1A between the lower end of the lowermost weft pipe 2A and the lower end closing plate 1F. It is only necessary that there is a gap for jetting out, and typically, the gap between the insertion tubes 1B and 1C and the closing plate 1F at the lower end is 2 mm.

従って、挿入管1B,1Cのヘッダー主管1A内への配置は、ヘッダー主管1Aの上端の閉止板1Fを介して容易であり、挿入管1B,1C共、最下端の緯パイプ2Aの下面のレベルで、下降供給水流を上昇供給水流に方向変換噴出するため、最下端の緯パイプ2Aも、上部の各緯パイプ2Aと同一の反転上昇流からの横方向流入作用を受け、最下端の緯パイプ2Aから最上端の緯パイプ2Aまでの全緯パイプ2Aに、実質上、均斉な流水抵抗での循環水供給が付与出来る。   Therefore, the insertion pipes 1B and 1C can be easily arranged in the header main pipe 1A via the closing plate 1F at the upper end of the header main pipe 1A, and both the insertion pipes 1B and 1C are at the level of the lower surface of the lowermost weft pipe 2A. Therefore, the lowermost weft pipe 2A is also subjected to the lateral inflow action from the same reverse upflow as the upper weft pipes 2A, and the lowermost weft pipe is subjected to the direction-changing jet of the descending feedwater stream to the upward feedwater stream. Circulating water supply with substantially uniform flow resistance can be imparted to all the weft pipes 2A from 2A to the uppermost weft pipe 2A.

また、本発明の放熱器にあっては、図3(D)に示す如く、第1放熱パネル101の一端のヘッダー主管1A及び第2放熱パネル102の他端のヘッダー主管1Aは、流水仕切片1Pを最下端の緯パイプ2Aの下面レベルまで備えており、且つ第2放熱パネル102の他端のヘッダー主管1Aの流水仕切片1Pで区画された一半の下降用流路の上端と、第1放熱パネル101の他端のヘッダー主管1Aとが、連通パイプ片1Dで連通しているのが好ましい。
この場合、流水仕切片1Pは、ヘッダー主管1Aと一体成形で容易に付設出来る。
In the radiator of the present invention, as shown in FIG. 3D, the header main pipe 1A at one end of the first heat radiating panel 101 and the header main pipe 1A at the other end of the second heat radiating panel 102 1P is provided up to the lower surface level of the lowermost weft pipe 2A, and the upper end of a half of the descending flow path defined by the flowing water partitioning piece 1P of the header main pipe 1A at the other end of the second heat radiating panel 102, It is preferable that the header main pipe 1A at the other end of the heat radiation panel 101 communicate with the communication pipe piece 1D.
In this case, the flowing water partition piece 1P can be easily attached to the header main pipe 1A by integral molding.

従って、ヘッダー主管1Aは、流水仕切片1Pが補強リブの機能を奏するため、放熱器全体の剛性が向上し、取扱い容易となると共に、第1放熱パネル101と第2放熱パネル102とを連通する短寸の連通パイプ片1Dの融着接続、又は接着剤接続も容易となる。
そして、流水仕切片1Pを備えたヘッダー主管1Aは、仕切片1Pの下端が最下端の緯パイプ2Aの下面レベルに位置決めすることにより、反転上昇流が各緯パイプ2A群への均斉な一斉循環水供給流となる。
Therefore, in the header main pipe 1A, since the flowing water partition piece 1P functions as a reinforcing rib, the rigidity of the entire radiator is improved, the handling becomes easy, and the first heat radiating panel 101 and the second heat radiating panel 102 are communicated. The splicing connection or the adhesive connection of the short communication pipe piece 1D is also facilitated.
The header main pipe 1A provided with the flowing water partitioning piece 1P is positioned at the lower surface level of the lowermost weft pipe 2A with the lower end of the partitioning piece 1P, so that the reverse upflow is uniformly circulated to each weft pipe 2A group. Water supply flow.

また、本発明の放熱器にあっては、図1に示す如く、第1及び第2放熱パネル101,102は、複数本数の密接一体化した緯パイプ2Aのブロック2を、空気流横断用の間隔g2を介在して反復配置するのが好ましい。
この場合、緯パイプ2Aの密接一体化ブロック2は、緯パイプ2A群のヘッダー主管1Aへの融着一体化時に、手作業で各緯パイプ2A相互を1本ずつ当節形態で形成しても良いが、典型的には、複数本(標準:3本)の緯パイプ2Aを並列当接形態の押出成形で準備する。
また、空気流横断用の間隔g2は、大きくすれば空気横断機能が大となるが、放熱面内への間隔g2の配置は、同時に、単位面積当りの緯パイプ2Aの配置本数の減少を招き、放熱量の低下を招くため、典型的には、緯パイプ2A群は、3本の一体ブロック2を間隔g2が5mmで配置する。
Further, in the radiator of the present invention, as shown in FIG. 1, the first and second heat radiating panels 101 and 102 are provided with a plurality of blocks 2 of closely weft pipes 2A for crossing the air flow. It is preferable to arrange them repeatedly with an interval g2.
In this case, the closely integrated block 2 of the weft pipes 2A may be formed in the form of this section one by one by hand when the weft pipes 2A are fused to the header main pipe 1A. Typically, however, a plurality (standard: 3) of weft pipes 2A are prepared by extrusion in a parallel contact form.
Further, if the gap g2 for crossing the air flow is increased, the air crossing function is increased. However, the arrangement of the gap g2 in the heat radiating surface simultaneously reduces the number of the weft pipes 2A arranged per unit area. In order to reduce the heat radiation amount, typically, in the weft pipe 2A group, three integrated blocks 2 are arranged with a gap g2 of 5 mm.

従って、放熱パネル101,102は、空気流横断用間隔g2を適所に備え、且つ各緯パイプ2Aのブロック2内では、各緯パイプ2Aが隙間なく密集した形態であるため、緯パイプ2Aの密接配置による放熱量の増大の下に、放熱器内の上下貫通開口空間、即ち両パネル間空間、と放熱器外側との間の、間隔g2を介した空気の乱流出入によって、放熱表面の接面空気の動きが大となり、放熱部と周囲の空気との熱伝達を向上し、放熱器全体の対流熱放出効果が向上する。
しかも、間隔g2は、軽量な放熱器の吊下げ保持部位としても使用可能である。
Therefore, the heat dissipating panels 101 and 102 have the air flow crossing gap g2 in place, and the weft pipes 2A are closely packed without gaps in the block 2 of each weft pipe 2A. Under the increase in the heat radiation amount due to the arrangement, the heat radiation surface contact is caused by the turbulent flow of air through the gap g2 between the upper and lower through-opening spaces in the radiator, that is, the space between both panels, and the outside of the radiator. The movement of the surface air becomes large, improving the heat transfer between the heat radiating portion and the surrounding air, and improving the convective heat release effect of the entire radiator.
Moreover, the gap g2 can be used as a suspended holding portion of a lightweight radiator.

また、本発明の放熱器にあっては、図1に示す如く、第1放熱パネル101と第2放熱パネル102とは、放熱パネル間の空気流の上下貫流を保証する最小の間隔gpを備え、各パネル内のブロック2間の空気流横断用の間隔g2が、パネル間空間とパネル外面との間に乱気流の出入を許容する4〜6mmの小間隔であるのが好ましい。   In the radiator of the present invention, as shown in FIG. 1, the first heat radiating panel 101 and the second heat radiating panel 102 have a minimum gap gp that guarantees the up-down flow of the air flow between the heat radiating panels. The gap g2 for crossing the air flow between the blocks 2 in each panel is preferably a small gap of 4 to 6 mm that allows turbulence to flow in and out between the inter-panel space and the panel outer surface.

この場合、放熱パネル間の間隔gpは、両方の放熱パネルの各緯パイプ2A群面の相互の離間寸法である。
そして、パネル面間の間隔gpは、大であれば、放熱面で加熱された空気はスムーズな上昇流となるが、大きすぎると両加熱面の中央部への上下からの非加熱対向流を許容することとなり、小さければ、加熱空気のドラフト上昇を空気粘性によって抑制することとなる。
In this case, the gap gp between the heat dissipating panels is a distance between the weft pipe 2A group surfaces of both heat dissipating panels.
And if the space | interval gp between panel surfaces is large, the air heated by the heat radiating surface will become a smooth upward flow, but if too large, the non-heating counterflow from the upper and lower to the center part of both heating surfaces will be carried out. If it is small, the draft rise of heated air will be suppressed by air viscosity.

また、ブロック2間の間隔g2は、パネル両間の間隔gp内とパネル外面との横断空気の出入流のための寸法であり、空気の加熱層と常温層の並行縦層間移動を許容するものであり、該寸法g2は、大であれば、横断空気流は大となるが、パネル面の単位寸法当りの緯パイプ2Aの配置本数は減少するため、ブロック2内の間隔g2は、4〜6mmの範囲であれば、緯パイプ2Aの単位寸法当りの配置本数の減少を抑え、且つパネル横断空気流の有効発生が得られる。   Further, the interval g2 between the blocks 2 is a dimension for inflow and outflow of the transverse air between the interval gp between the panels and the outer surface of the panel, and permits the parallel vertical interlayer movement of the air heating layer and the normal temperature layer. If the dimension g2 is large, the transverse air flow becomes large, but the number of weft pipes 2A arranged per unit dimension on the panel surface decreases, so the interval g2 in the block 2 is 4 to 4 If it is in the range of 6 mm, it is possible to suppress a decrease in the number of weft pipes 2A arranged per unit dimension and to effectively generate an air flow across the panel.

従って、本発明の放熱器は、第1放熱パネル101と第2放熱パネル102のパネル面間がドラフト空気流の上下貫流を保障する形態を備え、且つ、縦パネル2Aの各ブロック2間が間隔g2を備えているため、パネル面間で発生したドラフト気流、即ち暖房時の上昇流及び冷房時の下降流と、パネル面両外側で発生する上昇流又は下降流とが、放熱表面に乱流を生起して、間隔g2を介してパネル表面の接面空気の動きを大きくして出入合流することとなり、緯パイプブロック2間の間隔g2の存在によって、間隔gpが小さくても、パネル面間スペースでの空気流澱みが解消出来、放熱器からの対流熱放散がスムーズとなり、対流熱伝達による放熱作用が向上する。   Therefore, the radiator of the present invention has a configuration in which the panel surfaces of the first heat radiating panel 101 and the second heat radiating panel 102 ensure the up and down flow of the draft air flow, and the spaces between the blocks 2 of the vertical panel 2A. Since g2 is provided, the draft airflow generated between the panel surfaces, that is, the upward flow during heating and the downward flow during cooling, and the upward or downward flow generated on both sides of the panel surface are turbulent on the heat dissipation surface. And the flow of air on the surface of the panel through the gap g2 is increased and flows in and out. The presence of the gap g2 between the weft pipe blocks 2 allows the gap between the panel planes even if the gap gp is small. Air flow stagnation in the space can be eliminated, convection heat dissipation from the radiator is smooth, and heat dissipation action by convection heat transfer is improved.

本発明の放熱器は、全プラスチック樹脂製であるため、軽量で、製作、運搬取付作業が容易である。
そして、ヘッダー主管1Aは、大径のパイプの側面に取付孔Ha群を備えた構造に単純化したため、射出成形型の製作が安価で容易となり、均質、且つ高品質のヘッダー主管1Aが準備出来る。
そして、放熱パネル101,102の製作も、押出成形で準備した緯パイプ2A群の、ヘッダー主管1Aへの嵌合融着接合での実施となるため、均質の放熱パネル101,102の製作が簡単、且つ低コストで実施出来る。
Since the heat radiator of the present invention is made of all plastic resin, it is lightweight and easy to manufacture and carry.
Since the header main pipe 1A is simplified to a structure having a mounting hole Ha group on the side surface of a large-diameter pipe, the injection mold can be manufactured inexpensively and easily, and a homogeneous and high quality header main pipe 1A can be prepared. .
The heat radiation panels 101 and 102 are manufactured by fitting and welding the weft pipe 2A group prepared by extrusion molding to the header main pipe 1A. And can be implemented at low cost.

そして、2枚の放熱パネルを重層形態で一体化した放熱器は、大径のヘッダー主管1Aを有する各ヘッダー1が両側部位となり、密集並列した緯パイプ2Aの放熱面の2枚は、ドラフト空気流の上下貫流を許容する等間隔gpのスペースが上下に開通した形態であるため、両放熱面間、即ち間隔gpのスペースは、加熱及び冷却空気流が澱むことなく、上下に貫流して、対流熱伝達が向上する。   In the heat radiator in which two heat dissipating panels are integrated in a multilayered form, each header 1 having a large-diameter header main pipe 1A serves as both sides, and two heat dissipating surfaces of closely parallel weft pipes 2A are draft air. Since the space of equidistant gp allowing the up and down flow of the flow is opened up and down, the space between the heat radiating surfaces, that is, the space of the space gp, flows up and down without heating and cooling air flow stagnating, Convective heat transfer is improved.

また、放熱器内の循環水経路も、第1放熱パネル101の一端のヘッダー上端の供給口1Sから、第2放熱パネル102の一端のヘッダー上端の排出口1Rへの経路を、第1及び第2放熱パネル共、各パネル内では、全緯パイプ2A群の水流が、各ヘッダー主管1Aからの流入→緯パイプ2A→各ヘッダー主管への流出共、ヘッダー主管1A内の上昇流で実施するため、供給口1Sから排出口1Rまでの、各パネル内での各緯パイプ2A毎の水経路長が同一で、各パネル面は、実質上均斉な発熱作用を奏する。   Further, the circulating water path in the radiator also includes a path from the supply port 1S at the upper end of the header at one end of the first heat dissipation panel 101 to the discharge port 1R at the upper end of the header at the one end of the second heat dissipation panel 102. 2 In each panel, the water flow of the entire weft pipe 2A group is carried out by the inflow from each header main pipe 1A → the weft pipe 2A → the outflow to each header main pipe, and the upward flow in the header main pipe 1A. The water path length for each weft pipe 2A in each panel from the supply port 1S to the discharge port 1R is the same, and each panel surface exhibits a substantially uniform heat generating action.

しかも、放熱器の供給口1Sも、排出口1Rも、共に同一側のヘッダー主管1Aの上端に配置するため、天井配管等の上方配管と接続が一側で容易に実施出来ると共に、第1及び第2放熱パネルの最上端の緯パイプ2Aは、ヘッダー主管1Aの上昇流からの導入流で充満して流通するため、パネル最上端部位での空気溜りが抑制出来て、水流循環経路中の空気溜りの発生の無い、エアー抜き装置の付設の不要な放熱器を提供する。   In addition, since both the supply port 1S and the discharge port 1R of the radiator are arranged at the upper end of the header main pipe 1A on the same side, the upper pipe such as a ceiling pipe can be easily connected on one side, Since the weft pipe 2A at the uppermost end of the second heat radiating panel is filled and circulated by the introduction flow from the upward flow of the header main pipe 1A, air accumulation at the uppermost end of the panel can be suppressed, and the air in the water flow circulation path Provided is a heat radiator that does not cause accumulation and does not require an air vent.

本発明放熱器の全体略示図であって、(A)は斜視図、(B)は縦断側面図、(C)は横断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic diagram of this invention heat radiator, Comprising: (A) is a perspective view, (B) is a vertical side view, (C) is a cross-sectional view. 本発明の放熱パネルの部分説明図であって、(A)はヘッダーの分解斜視図、(B)はヘッダー主管1Aと縦パイプの分解縦断面図、(C)は縦パイプブロックの断面図、(D)はヘッダー主管と緯パイプの関係構造断面図である。It is a partial explanatory view of the heat dissipation panel of the present invention, (A) is an exploded perspective view of the header, (B) is an exploded longitudinal sectional view of the header main pipe 1A and the vertical pipe, (C) is a sectional view of the vertical pipe block, (D) is a sectional view of the relational structure between the header main pipe and the weft pipe. 本発明放熱パネルの部分拡大図であって、(A)は第1放熱パネルの一端ヘッダーの表面図、(B)は第2放熱パネルの他端ヘッダーの表面図である。It is the elements on larger scale of this invention heat dissipation panel, Comprising: (A) is a surface view of the one end header of a 1st heat dissipation panel, (B) is a surface view of the other end header of a 2nd heat dissipation panel. 本発明の部分説明図であって、(A)は第1放熱パネルの一端のヘッダー主管に適用する挿入管1Cの斜視図、(B)は(A)の縦断側面図、(C)は第2放熱パネルの他端のヘッダー主管に適用する挿入管1Cの斜視図、(D)は(A)の変形例横断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is partial explanatory drawing of this invention, Comprising: (A) is a perspective view of the insertion pipe | tube 1C applied to the header main pipe | tube of the end of a 1st thermal radiation panel, (B) is a vertical side view of (A), (C) is the 1st. 2 is a perspective view of an insertion tube 1C applied to the header main tube at the other end of the heat radiating panel, and (D) is a modified cross-sectional view of (A). 本発明放熱器の説明図であって、(A)は左側面図、(B)は正面図、(C)は右側面図、(D)は裏面図である。It is explanatory drawing of this invention radiator, Comprising: (A) is a left view, (B) is a front view, (C) is a right view, (D) is a back view. 従来例1の説明図であって、(A)は1本タイプで形成した放熱パネルの正面図、(B)は並列パイプの放熱面正面図、(C)は(B)の要部拡大図、(D)は(B)の要部斜視図である。It is explanatory drawing of the prior art example 1, Comprising: (A) is a front view of the thermal radiation panel formed with one type, (B) is a thermal radiation front view of a parallel pipe, (C) is a principal part enlarged view of (B). (D) is a principal part perspective view of (B). 従来例2の説明図であって、(A)は第1放熱パネルの正面図、(B)は放熱器の左側面図、(C)は放熱器の右側面図、(D)は第2放熱パネルの正面図である。It is explanatory drawing of the prior art example 2, Comprising: (A) is a front view of a 1st heat radiating panel, (B) is a left view of a radiator, (C) is a right view of a radiator, (D) is 2nd It is a front view of a thermal radiation panel. 従来例3の説明図であって、(A)はヘッダーの一部横断平面図、(B)はヘッダーと縦パイプの関係構造縦断側面図、(C)は放熱パネルの部分拡大平面図である。It is explanatory drawing of the prior art example 3, (A) is a partial cross section top view of a header, (B) is a related structure vertical side view of a header and a vertical pipe, (C) is the elements on larger scale of the heat dissipation panel. .

〔放熱器の構造(図1)〕
製作する放熱器の全体形状は、図1に示す如く、左右の外径27mmのヘッダー主管1A間に、外径d2が13mmの緯パイプ2A群を、露出長L2が946mmで、且つ各緯パイプ2A群は、3本1組の一体化密接形態のブロック2で、各ブロック2間の間隔g2が2mmで連通一体化した、全長L1が1000mm、全高h1が451mmの、同形状の第1放熱パネル101と第2放熱パネル102とを、第1放熱パネル101の緯パイプ2A群面と第2放熱パネル102の緯パイプ2A群面との間隔gpが18.5mmで、第1放熱パネル101のヘッダー主管1Aと第2放熱パネル102のヘッダー主管1Aとの隙間gsが4.5mmで、両放熱パネル101と102とを、上下左右の四隅で接合一体化して前後幅、即ち奥行きW1が58.5mmであり、放熱器の一端の、第1放熱パネルのヘッダー主管1Aの上端には供給口1Sを、第2放熱パネル102のヘッダー主管1Aの上端には排出口1Rを突設したものである。
[Structure of heat radiator (Fig. 1)]
As shown in FIG. 1, the overall shape of the radiator to be manufactured is a weft pipe 2A group having an outer diameter d2 of 13 mm between the left and right header main pipes 1A, an exposed length L2 of 946 mm, and each weft pipe. The 2A group is a block 2 in a unitary close-packed form of 3 pieces, and the first heat radiation of the same shape with a total length L1 of 1000 mm and an overall height h1 of 451 mm, which is integrated with a gap g2 between the blocks 2 of 2 mm. The distance between the weft pipe 2A group surface of the first heat dissipating panel 101 and the weft pipe 2A group surface of the second heat dissipating panel 102 is 18.5 mm. The gap gs between the header main pipe 1A and the header main pipe 1A of the second heat radiating panel 102 is 4.5 mm, and both the heat radiating panels 101 and 102 are joined and integrated at the four corners of the upper, lower, left and right sides, that is, the front and rear width, that is, the depth W1 is 58. 5mm, free Vessels of one end of the upper end of the header main 1A of the first radiator panel supply ports 1S, the upper end of the header main 1A of the second heat radiating panel 102 is obtained by projecting the outlet 1R.

また、第1放熱パネル101の一端のヘッダー主管1A内には、図3(A)に示す如く、上端閉止板1F下面から最下端の緯パイプ2Aの下端面まで、流れ変換用の挿入管1Bを延出して、供給口1Sからの供給水が、挿入管1B内を下降して、下端の閉止板1Fと挿入管1Bとの隙間h4(標準:2mm)から挿入管1Bの外周に噴出して、ヘッダー主管1A内の挿入管1Bの外周域を上昇するようにする。
また、第2放熱パネル102の他端のヘッダー主管1A内にも、流れ変換用の挿入管1Cを配置し、第1放熱パネル101の他端のヘッダー主管1Aの上端と第2放熱パネル102の他端のヘッダー主管1A内の挿入管1Cとを連通パイプ片1Dで一体化したものである。
Further, in the header main pipe 1A at one end of the first heat radiating panel 101, as shown in FIG. 3A, an insertion pipe 1B for flow conversion from the lower surface of the upper end closing plate 1F to the lower end surface of the lowermost weft pipe 2A. The supply water from the supply port 1S descends in the insertion tube 1B and is sprayed to the outer periphery of the insertion tube 1B from the gap h4 (standard: 2 mm) between the lower end closing plate 1F and the insertion tube 1B. Thus, the outer peripheral area of the insertion pipe 1B in the header main pipe 1A is raised.
Also, a flow converting insertion tube 1C is arranged in the header main pipe 1A at the other end of the second heat radiating panel 102 so that the upper end of the header main pipe 1A at the other end of the first heat radiating panel 101 and the second heat radiating panel 102 The insertion pipe 1C in the header main pipe 1A at the other end is integrated with a communication pipe piece 1D.

〔放熱パネルの製作(図2、図3、図4)〕
第1放熱パネル101も第2放熱パネル102も、両側のヘッダー主管1A間に緯パイプ2A群を連通一体化した放熱パネル基体は、同一物である。
放熱パネル基体は、図2(A),(D)に示す如く、外径d1が27mmで、肉厚t1が5mmで、側面に緯パイプ2Aを嵌合一体化する取付孔Ha群を備えたヘッダー主管1Aを、ポリプロピレン、ランダム、コポリマー樹脂(PP−R樹脂)の射出成形で準備する。
[Production of heat dissipation panel (Fig. 2, Fig. 3, Fig. 4)]
Both the first heat dissipating panel 101 and the second heat dissipating panel 102 have the same heat dissipating panel base body in which the weft pipe 2A group is connected and integrated between the header main pipes 1A on both sides.
2 (A) and 2 (D), the heat dissipating panel base body has an outer diameter d1 of 27 mm, a wall thickness t1 of 5 mm, and a mounting hole Ha group for fitting and integrating the weft pipe 2A on the side surface. The header main pipe 1A is prepared by injection molding of polypropylene, random, copolymer resin (PP-R resin).

この場合、各取付孔Haは、孔径が、緯パイプ2Aの内径d3(9.8mm)と同寸の9.8mmで、外面から深さ(奥行き)2mmで、幅、即ち段差厚が、緯パイプ2Aの肉厚t2(1.6mm)と同厚の1.6mmの嵌合用段差孔Hbを備えたものであり、各取付孔Haの配置間隔は、緯パイプ2A群の配置間隔と整合させておく。
また、緯パイプ2Aとしては、外径d2が13mm、肉厚t2が1.6mmの緯パイプ2Aを、図2(C)の如く、3本密接形態のブロック2として、ポリプロピレン、ランダム、コポリマー樹脂(PP−R樹脂)で押出成形し、所定長さ、即ち露出長L2(946mm)+両端の嵌合寸法(4mm)に切揃えて準備する。
In this case, each mounting hole Ha has a hole diameter of 9.8 mm which is the same as the inner diameter d3 (9.8 mm) of the weft pipe 2A, a depth (depth) of 2 mm from the outer surface, and a width, that is, a step thickness. The pipe 2A has a fitting step hole Hb of 1.6 mm having the same thickness t2 (1.6 mm) as that of the pipe 2A. The arrangement intervals of the mounting holes Ha are matched with the arrangement intervals of the weft pipe 2A group. Keep it.
Further, as the weft pipe 2A, a weft pipe 2A having an outer diameter d2 of 13 mm and a wall thickness t2 of 1.6 mm is used as a block 2 in close contact with three, as shown in FIG. (PP-R resin) is extruded and prepared to have a predetermined length, that is, an exposed length L2 (946 mm) + fitting dimensions (4 mm) at both ends.

次いで、ヘッダー主管1Aの取付孔Ha群に対して各緯パイプ2Aのブロック2の一端を、例えば、本件出願人が特願2010−188655号公報で提示した加熱融着機等で、加熱溶融接合で一体化し、緯パイプ2A群の他端も、同様にヘッダー主管1Aと嵌合融着し、両側のヘッダー主管1A間を、緯パイプ2Aが各ブロック2間の間隔g2が5mmの反復形態で連通一体化した、且つ各緯パイプ2Aの内周面が、図2(D)に示す如く、ヘッダー主管1Aの取付孔Haの内周面と面一で、緯パイプ先端2fが段差孔Hbに衝合して一体化した放熱パネル基体を得る。   Subsequently, one end of the block 2 of each weft pipe 2A is attached to the mounting hole Ha group of the header main pipe 1A by, for example, a heat fusion bonding machine or the like presented by the present applicant in Japanese Patent Application No. 2010-188655. In the same manner, the other end of the weft pipe 2A group is also fitted and fused with the header main pipe 1A, and between the header main pipes 1A on both sides, the weft pipe 2A is a repetitive form in which the interval g2 between the blocks 2 is 5 mm. As shown in FIG. 2 (D), the inner peripheral surface of each weft pipe 2A that is integrated with the communication is flush with the inner peripheral surface of the mounting hole Ha of the header main pipe 1A, and the weft pipe tip 2f is a step hole Hb. A heat-radiating panel substrate integrated by abutting is obtained.

〔第1放熱パネル(図3(A)、図4(A),(B)〕
次いで、放熱パネル基体の一端(右側)のヘッダー主管1Aの上端には、上面に供給口1Sを突設し、下面に挿入管1Bを垂下した上端閉止板1Fで融着接合閉止する。
この場合、上端閉止板1Fは、図4(B)に示す如く、PP−R樹脂製で、肉厚t4が6mm、外径がヘッダー主管1Aの外径d1(27mm)と同径の閉止板1Fの中央上部に、PP−R樹脂製の外径d2が13mm、内径d3が9.8mmで、長さh2が50mmのパイプ片を、閉止板1F上面の深さ2mm、厚さ1.6mmの嵌合用段差孔Hcに融着立設し、該閉止板1Fの下面には、深さ2mm、厚さ1mmの嵌合用段差孔Hdを介して、外径d4が10mm、内径d5が8mm、長さh3が424mmの水流変換用の挿入管1Bを融着一体化連通し、供給口1Sと挿入管1Bとは閉止板1Fの中央部の傾斜孔Hsで連通し、且つ挿入管1Bは、図3(A)に示す如く、ヘッダー主管1A内を、最下端の緯パイプ2Aの下面レベルまで、且つ閉止板1F内面と、高さ2mm(h4)の水流噴出用スペースSを保つ形態に延出させておく。
[First heat radiation panel (FIG. 3 (A), FIG. 4 (A), (B)]
Next, at the upper end of the header main pipe 1A at one end (right side) of the heat radiating panel base, a supply port 1S protrudes from the upper surface, and the upper end closing plate 1F with the insertion tube 1B hanging from the lower surface is fused and closed.
In this case, as shown in FIG. 4B, the upper end closing plate 1F is made of PP-R resin and has a wall thickness t4 of 6 mm and an outer diameter that is the same as the outer diameter d1 (27 mm) of the header main pipe 1A. A pipe piece made of PP-R resin with an outer diameter d2 of 13 mm, an inner diameter d3 of 9.8 mm, and a length h2 of 50 mm at the center upper part of 1F is 2 mm deep and 1.6 mm thick on the upper surface of the closing plate 1F. The outer diameter d4 is 10 mm and the inner diameter d5 is 8 mm through the fitting step hole Hd having a depth of 2 mm and a thickness of 1 mm on the lower surface of the closing plate 1F. An insertion pipe 1B for water flow conversion having a length h3 of 424 mm is fused and integrated, the supply port 1S and the insertion pipe 1B are communicated by an inclined hole Hs at the center of the closing plate 1F, and the insertion pipe 1B is As shown in FIG. 3 (A), inside the header main pipe 1A to the lower surface level of the lowermost weft pipe 2A, the inner surface of the closing plate 1F, and a height of 2 m It is made to extend in the form which maintains the space S for water-flow ejection of m (h4).

次いで、一端のヘッダー主管1A、即ち挿入管1Bを備えたヘッダー主管1Aの下端、及び他端のヘッダー主管1Aの上下端を肉厚t4が6mm、外径がヘッダー主管1Aと同径(27mm)の閉止板1Fで融着接合閉止して、第1放熱パネル101を得る。   Next, the header main pipe 1A at one end, that is, the lower end of the header main pipe 1A having the insertion pipe 1B, and the upper and lower ends of the header main pipe 1A at the other end have a thickness t4 of 6 mm and the outer diameter is the same as the header main pipe 1A (27 mm). The first heat dissipating panel 101 is obtained by fusing and closing with the closing plate 1F.

〔第2放熱パネル(図3(B)、図4(C))〕
また、第2放熱パネル102の製作は、放熱パネル基体の、一端(右側)のヘッダー主管1Aの上端には、供給口1Sと同一物の、パイプ片の排出口1Rを上方に連通突設した上端閉止板1Fを融着接合し、他端(左側)のヘッダー主管1Aの上端閉止板1Fから、下方に流れ変換用の挿入管1Cを、最下端の緯パイプ2Aの下面のレベルまで垂下し、該ヘッダー主管1Aの下端及び一端のヘッダー主管1Aの下端を閉止板1Fで融着閉止すれば良い。
[Second heat dissipation panel (FIG. 3B, FIG. 4C)]
Further, the second heat radiating panel 102 is manufactured by providing a pipe piece discharge port 1R, which is the same as the supply port 1S, at the upper end of the header main pipe 1A at one end (right side) of the heat radiating panel base. The upper end closing plate 1F is fused and joined, and the insertion tube 1C for flow conversion is lowered downward from the upper end closing plate 1F of the header main pipe 1A at the other end (left side) to the level of the lower surface of the lowermost weft pipe 2A. The lower end of the header main pipe 1A and the lower end of the header main pipe 1A at one end may be fused and closed with a closing plate 1F.

この場合、第2放熱パネル102の挿入管1Cは、第1放熱パネル101のそれと同径同寸であるが、図4(C)に示す如く、挿入管1Cは、上端閉止板1Fの下面の嵌合用孔H3に、挿入管1B同様に嵌合融着して、挿入管1C下端に水流噴出用スペースSを確保し、上端閉止板1Fの直下に、連通パイプ片1D用の挿入用孔H2を穿設し、ヘッダー主管1Aの挿入用孔H2の対応位置にも挿入用孔H2´を穿設しておく。   In this case, the insertion tube 1C of the second heat radiation panel 102 has the same diameter and the same size as that of the first heat radiation panel 101. However, as shown in FIG. 4C, the insertion tube 1C is formed on the lower surface of the upper end closing plate 1F. The fitting hole H3 is fitted and fused in the same manner as the insertion pipe 1B to secure a water jetting space S at the lower end of the insertion pipe 1C, and the insertion hole H2 for the communication pipe piece 1D immediately below the upper end closing plate 1F. And an insertion hole H2 ′ is also formed at a position corresponding to the insertion hole H2 of the header main pipe 1A.

〔放熱器Heの製作(図1、図5)〕
放熱器Heは、第1放熱パネル101と第2放熱パネル102の2枚を、図1(A),(C)に示す如く、上下左右の四隅で連結一体化固定すれば良く、第1放熱パネル101の他端(図1(A)の左側)のヘッダー主管1Aの、上端閉止板1Fの直下には、第2放熱パネル102の他端のヘッダー主管1Aの挿入用孔H2´に対向する、挿入用孔H2´と同径の連通パイプ片1D嵌合孔を穿設し、連通パイプ片1Dを、第1放熱パネル101の該嵌合孔と、第2放熱パネル102の挿入管1Cの挿入用孔H2とに連通して接合固定する。
[Production of radiator He (Figs. 1 and 5)]
The heat radiator He may be formed by connecting and fixing the first heat radiation panel 101 and the second heat radiation panel 102 at the four corners of the top, bottom, left and right as shown in FIGS. 1 (A) and 1 (C). The header main pipe 1A at the other end of the panel 101 (left side in FIG. 1A) is directly below the upper end closing plate 1F, and is opposed to the insertion hole H2 ′ of the header main pipe 1A at the other end of the second heat radiation panel 102. , A communication pipe piece 1D fitting hole having the same diameter as that of the insertion hole H2 ′ is formed, and the communication pipe piece 1D is connected to the fitting hole of the first heat radiation panel 101 and the insertion pipe 1C of the second heat radiation panel 102. It is connected and fixed to the insertion hole H2.

また、他の三隅の連結部は、ヘッダー主管1Aの対向表面間に、差し渡し状にスペーサーパイプ1Eを介して一体化する。
この場合、連通パイプ片1D及びスペーサーパイプ1Eの接合固着は、熱融着手段の適用も可能であるが、典型的には、セメダイン(株)製の、下地調整用プライマー(商品番号:PP7F)を接合部に塗布して、一液常温速硬化型接着剤のスーパーX NO.8088ホワイト(商品名)を用いて実施する。
Further, the connecting portions at the other three corners are integrated with each other between the opposing surfaces of the header main pipe 1A via the spacer pipe 1E.
In this case, the joining and fixing of the communication pipe piece 1D and the spacer pipe 1E can be applied by means of heat fusion, but typically, a primer for primer preparation (product number: PP7F) manufactured by Cemedine Co., Ltd. Is applied to the joint, and a one-component room temperature fast-curing adhesive, Super X NO. Implemented using 8088 white (trade name).

この場合、前後放熱パネル間の間隔は、図1(C)の如く、ヘッダー主管1A間の間隔gsが4.5mmで一体化すれば、第1放熱パネル101の緯パイプ2A群と第2放熱パネル102の緯パイプ2A群との対向内面間の間隔gpが18.5mmとなり、放熱器Heは、同一形状の2枚の放熱パネル101と102が重層形態で、全横長L1が1000mm、緯パイプ2Aの露出長L2が946mm、前後幅W1が58.5mm、供給口1S及び排出口1Rを含めた高さが500mmのものとなる。   In this case, as shown in FIG. 1C, when the gap gs between the header main pipes 1A is integrated with 4.5 mm as shown in FIG. 1C, the weft pipe 2A group of the first heat radiating panel 101 and the second heat radiating panel are integrated. The gap gp between the inner surfaces of the panel 102 and the weft pipe 2A group is 18.5 mm, and the heat radiator He is composed of two heat radiation panels 101 and 102 having the same shape in a multi-layer form, the total lateral length L1 is 1000 mm, the weft pipe The exposed length L2 of 2A is 946 mm, the front-rear width W1 is 58.5 mm, and the height including the supply port 1S and the discharge port 1R is 500 mm.

〔完成放熱器〕
得られた放熱器は、図5に示す如く、第1放熱パネル101の上方突出パイプ片の供給口1Sから温水(標準:60℃)又は冷却水(標準:14℃)を圧送供給すれば、供給水流f1は、供給口1Sと連通する流れ変換用の挿入管1B内の下降流f2となって右側(一端)ヘッダー主管1Aの中心を流下し、最下端の緯パイプ2Aの下面で、挿入管1B下端からヘッダー主管1A内へ噴流してヘッダー主管1A内の上昇流f3及び緯パイプ2A群の横流f4となって他端(右側)のヘッダー主管1A内の上昇流f5から連通パイプ片1Dの横流f6で第2放熱パネル102内に入り、第2放熱パネル102内を、挿入管1C内の下降流F7→ヘッダー主管1A内の上昇流f8→緯パイプ2A内横流f9→右側(一端)ヘッダー主管1A内の上昇流f10→排出流f11の経路で循環流出する。
[Completed radiator]
If the obtained radiator is pumped and supplied with hot water (standard: 60 ° C.) or cooling water (standard: 14 ° C.) from the supply port 1S of the upper protruding pipe piece of the first heat radiating panel 101, as shown in FIG. The supply water flow f1 becomes a downward flow f2 in the flow converting insertion pipe 1B communicating with the supply port 1S, flows down the center of the right (one end) header main pipe 1A, and is inserted at the lower surface of the lowermost weft pipe 2A. From the lower end of the pipe 1B, the jet pipe flows into the header main pipe 1A to become the upflow f3 in the header main pipe 1A and the lateral flow f4 of the weft pipe 2A group, and the communicating pipe piece 1D from the upflow f5 in the header main pipe 1A at the other end (right side). Enters the second heat dissipating panel 102 in the second heat dissipating panel 102, and descends in the second heat dissipating panel 102 through the downflow F7 in the insertion pipe 1C → the upflow f8 in the header main pipe 1A → the crossflow f9 in the weft pipe 2A → right side (one end) Above the header main pipe 1A Flow f10 → to the circulating flow in the path of the exhaust flow f11.

従って、供給口1Sから排出口1Rまでの、全緯パイプ2Aのそれぞれの経路は、長さが同一であって、全緯パイプ2A内を横流が充満通水するため、第1放熱パネル101も第2放熱パネル102も、実質上、全面均斉な加熱又は冷却の発熱作用を奏する。
そして、水流経路中の空気溜りの生じ易い、最上部の緯パイプ2A内は、ヘッダー主管1Aからの一斉上昇流f3,f8で充満されて空気溜りが抑制され、排出口1Sが放熱器の最上部に存在するため、放熱器の稼働中は、放熱器内に空気溜りが生じない。
Accordingly, each path of the all weft pipes 2A from the supply port 1S to the discharge port 1R has the same length, and the cross current fills and flows through the all weft pipes 2A. The second heat radiating panel 102 also has a substantially uniform heating or cooling heat generation effect.
The uppermost weft pipe 2A, in which air accumulation in the water flow path is likely to occur, is filled with simultaneous ascending flows f3 and f8 from the header main pipe 1A to suppress the air accumulation, and the discharge port 1S becomes the top of the radiator. Since it exists in the upper part, an air pocket does not arise in a radiator during operation of a radiator.

また、放熱器Heは、前後厚さW1が58.5mmで薄く、高さh1が451mmと小さく、横長(1000mm)であって、2枚の放熱パネルのパネル間の間隔(gp)が18.5mmの重層タイプであること、各緯パイプ2Aが3本一体のブロック2の形態で各ブロック間に間隔5mm(g2)を保持したため、2枚の放熱パネルの間隔内は、澱みなく上下貫流を発揮し、ブロック2間の横方向間隔g2(5mm)が、2枚のパネル間内とパネル外側との、空気流の乱流出入を生じ、緯パイプ2A面の接面空気(境界層)を大きく動かして、周囲空気への対流熱伝達が向上する。   The radiator He is thin with a front and rear thickness W1 of 58.5 mm, a height h1 as small as 451 mm, is horizontally long (1000 mm), and the distance (gp) between the panels of the two radiator panels is 18. 5mm multi-layer type, each weft pipe 2A is in the form of three integrated blocks 2 with a spacing of 5mm (g2) between each block, so that the flow between the two heat dissipating panels does not stagnate up and down. Demonstrate that the horizontal gap g2 (5mm) between the blocks 2 causes the turbulent flow of air between the two panels and the outside of the panels, and the interface air (boundary layer) on the weft pipe 2A surface Larger movement improves convective heat transfer to ambient air.

尚、本実施例の放熱器Heは、現在、高性能放熱器として評価されている従来例2(図7)の放熱器と、北海道立工業試験場で、発熱量の比較試験をした結果、本件放熱器は、発熱量51%増の結果が得られた。
従って、本願実施例で得られる放熱器は、例えば、建物の間仕切壁に吊下げ形態で配置して、天井配管と接続すれば、放熱器He内には空気溜りが生じない、即ち空気抜きメンテナンスが不要な、発熱量の大きな暖冷房システムの構築が可能となる。
In addition, the heat radiator He of the present example is the result of a comparative heat generation test conducted at the Hokkaido Industrial Research Institute and the heat radiator of Conventional Example 2 (FIG. 7), which is currently evaluated as a high performance heat radiator. As for the heat radiator, the result of 51% increase in calorific value was obtained.
Therefore, if the heat radiator obtained in the embodiment of the present invention is arranged in a suspended form on the partition wall of the building and connected to the ceiling pipe, for example, no air accumulation occurs in the heat radiator He, that is, air venting maintenance is performed. It is possible to construct an unnecessary heating / cooling system with a large calorific value.

〔ヘッダー内流水変換の変形例(図4(D))〕
図4(D)は、図4(A),(C)の実施例に示す、挿入管配置ヘッダー主管1Aに対する変形例横断面図である。
即ち、ヘッダー主管1A´として、流水仕切片1Pを一体化成形して、流水仕切片1Pの下端を、ヘッダー主管1A´の下端に対して、流れ変換用スペース(標準:2mm)を保った上方位置とし、流水仕切片1Pで分割された管路の一半PAに、供給口1S又は連通パイプ片1Dを接続し、分割管路の他半PBを緯パイプ2A群と連通させれば、変形ヘッダー主管1A´は、実施例のヘッダー主管1Aに流れ変換用の、挿入管1B又は挿入管1Cを配置したヘッダー主管1Aと同効機能を奏し、発明の所期の目的が達成出来る。
[Modified example of running water conversion in the header (FIG. 4D)]
FIG. 4D is a modified cross-sectional view of the insertion pipe arrangement header main pipe 1A shown in the embodiment of FIGS. 4A and 4C.
That is, as the header main pipe 1A ′, the flowing water partition piece 1P is integrally formed, and the lower end of the flowing water partition piece 1P is kept above the lower end of the header main pipe 1A ′ while maintaining a flow conversion space (standard: 2 mm). If the feed port 1S or the communication pipe piece 1D is connected to one half PA of the pipe divided by the running water partition piece 1P and the other half PB of the division pipe is communicated with the weft pipe 2A group The main pipe 1A 'has the same function as the header main pipe 1A in which the insertion pipe 1B or the insertion pipe 1C for flow conversion is arranged in the header main pipe 1A of the embodiment, and the intended purpose of the invention can be achieved.

1 ヘッダー
1A,1A´ ヘッダー主管
1B,1C 挿入管
1D 連通パイプ片
1E スペーサーパイプ
1F 閉止板
1P 流水仕切片
1R 排出口
1S 供給口
2 緯パイプブロック(ブロック)
2A 緯パイプ
101 第1放熱パネル
102 第2放熱パネル
He 放熱器
Ha 取付孔
Hb,Hc,Hd 嵌合用段差孔
Hs 傾斜孔
H2,H2´ 挿入用孔
S 水流噴出用スペース
DESCRIPTION OF SYMBOLS 1 Header 1A, 1A 'Header main pipe 1B, 1C Insertion pipe 1D Communication pipe piece 1E Spacer pipe 1F Closing plate 1P Flowing water partition piece 1R Discharge port 1S Supply port 2 Weft pipe block (block)
2A Weft Pipe 101 First Heat Dissipation Panel 102 Second Heat Dissipation Panel He Heat Dissipator Ha Mounting Holes Hb, Hc, Hd Fitting Stepped Holes Hs Inclined Holes H2, H2 ′ Insertion Holes S Water Jetting Space

Claims (6)

プラスチック樹脂製の左右のヘッダー(1)間に、プラスチック樹脂製で同径同長の放熱用緯パイプ(2A)群を密集並列連通した、第1放熱パネル(101)と、第2放熱パネル(102)との2枚を、重層形態で一体化連通した全プラスチック樹脂製放熱器であって、第1及び第2放熱パネルは、ヘッダー(1)の、大径の主管(1A)の側面の取付孔(Ha)群に小径の緯パイプ(2A)群が嵌合連通して、緯パイプ(2A)群が両側のヘッダー(1)と連通し、第1放熱パネル(101)の一端のヘッダー(1)の上端には供給口(1S)を、第2放熱パネル(102)の一端のヘッダー(1)の上端には排出口(1R)を備え、第1及び第2放熱パネルの全緯パイプ(2A)群の水流は、各ヘッダー主管(1A)からの流入、各ヘッダー主管(1A)への流出共、ヘッダー主管(1A)内の上昇流で実施する、全プラスチック樹脂製暖冷房放熱器。   A first heat dissipating panel (101) and a second heat dissipating panel (a pair of heat dissipating weft pipes (2A) made of plastic resin and having the same diameter and the same length are connected between the left and right headers (1) made of plastic resin. 102) is an all-plastic resin radiator that is integrally communicated with each other in the form of a multilayer, and the first and second radiator panels are provided on the side surface of the large-diameter main pipe (1A) of the header (1). A small-diameter weft pipe (2A) group is fitted and communicated with the mounting hole (Ha) group, the weft pipe (2A) group communicates with the headers (1) on both sides, and a header at one end of the first heat radiating panel (101). The upper end of (1) is provided with a supply port (1S) and the upper end of the header (1) at one end of the second heat radiation panel (102) is provided with a discharge port (1R). The water flow of the pipe (2A) group is the inflow from each header main pipe (1A), Outflow co to Zehnder main (1A), carried out in upflow in the header main (1A), all the plastic resin heating and cooling radiators. 第1放熱パネル(101)の他端のヘッダー主管(1A)の上端と、第2放熱パネル(102)の他端のヘッダー主管(1A)上端とが、連通パイプ片(1D)で連通し、第1放熱パネル(101)の一端のヘッダー主管(1A)及び第2放熱パネル(102)の他端のヘッダー主管(1A)が、上端から流入する下降流を下端で上端への上昇流に変換して各緯パイプ(2A)に供給する、請求項1に記載の放熱器。   The upper end of the header main pipe (1A) at the other end of the first heat dissipating panel (101) and the upper end of the header main pipe (1A) at the other end of the second heat dissipating panel (102) communicate with each other through a communication pipe piece (1D). The header main pipe (1A) at one end of the first heat radiating panel (101) and the header main pipe (1A) at the other end of the second heat radiating panel (102) convert the downward flow flowing from the upper end into the upward flow at the lower end. The radiator according to claim 1, wherein the radiator is supplied to each weft pipe (2A). 第1放熱パネル(101)の一端のヘッダー主管(1A)は、上端から最下端の緯パイプ(2A)下面レベルまでの流れ変換用の挿入管(1B)を備え、第2放熱パネル(102)の他端のヘッダー主管(1A)は、上端から最下端の緯パイプ(2A)下面レベルまでの流れ変換用の挿入管(1C)を備え、且つ、挿入管(1C)は、第1放熱パネル(101)の他端のヘッダー主管(1A)と、上部で連通パイプ片(1D)で連通している、請求項2に記載の放熱器。   The header main pipe (1A) at one end of the first heat radiating panel (101) includes an insertion pipe (1B) for flow conversion from the upper end to the lower surface level of the lowermost weft pipe (2A), and the second heat radiating panel (102). The header main pipe (1A) at the other end includes an insertion pipe (1C) for flow conversion from the upper end to the lower surface level of the lowermost weft pipe (2A), and the insertion pipe (1C) is a first heat radiation panel. The radiator according to claim 2, wherein the other end of the header main pipe (1 </ b> A) is communicated with a communication pipe piece (1 </ b> D) at an upper part. 第1放熱パネル(101)の一端のヘッダー主管(1A)及び第2放熱パネル(102)の他端のヘッダー主管(1A)は、流水仕切片(1P)を最下端の緯パイプ(2A)の下面レベルまで備えており、且つ第2放熱パネル(102)の他端のヘッダー主管(1A)の流水仕切片(1P)で区画された一半の下降用流路の上端と、第1放熱パネル(101)の他端のヘッダー主管(1A)とが、連通パイプ片(1D)で連通している、請求項2に記載の放熱器。   The header main pipe (1A) at one end of the first heat dissipating panel (101) and the header main pipe (1A) at the other end of the second heat dissipating panel (102) are connected to the flowing water partition piece (1P) of the lowermost weft pipe (2A). The lower end of the second heat radiating panel (102) and the other end of the header main pipe (1A) at the other end partitioned by the flowing water partition piece (1P), and the first heat radiating panel ( The radiator according to claim 2, wherein the header main pipe (1A) at the other end of 101) communicates with the communication pipe piece (1D). 第1及び第2放熱パネル(101,102)は、複数本数の密接一体化した緯パイプ(2A)のブロック(2)を、空気流横断用の間隔(g2)を介在して反復配置した、請求項1乃至4のいずれか1項に記載の放熱器。   In the first and second heat radiating panels (101, 102), blocks (2) of a plurality of closely integrated weft pipes (2A) are repeatedly arranged with an air flow crossing interval (g2) interposed therebetween. The heat radiator according to any one of claims 1 to 4. 第1放熱パネル(101)と第2放熱パネル(102)とは、放熱パネル間の空気流の上下貫流を保証する最小の間隔(gp)を備え、各パネル内のブロック(2)間の空気流横断用の間隔(g2)が、パネル間空間とパネル外面との間に乱気流の出入りを許容する4〜6mmの小間隔である、請求項に記載の放熱器。 The first heat dissipating panel (101) and the second heat dissipating panel (102) have a minimum gap (gp) that guarantees the vertical flow of the air flow between the heat dissipating panels, and the air between the blocks (2) in each panel. The heat radiator according to claim 5 , wherein the gap (g2) for crossing the flow is a small gap of 4 to 6 mm that allows turbulence to enter and exit between the inter-panel space and the outer surface of the panel.
JP2011012961A 2011-01-25 2011-01-25 All plastic resin heating / cooling radiator Expired - Fee Related JP5196687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012961A JP5196687B2 (en) 2011-01-25 2011-01-25 All plastic resin heating / cooling radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012961A JP5196687B2 (en) 2011-01-25 2011-01-25 All plastic resin heating / cooling radiator

Publications (2)

Publication Number Publication Date
JP2012154536A JP2012154536A (en) 2012-08-16
JP5196687B2 true JP5196687B2 (en) 2013-05-15

Family

ID=46836450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012961A Expired - Fee Related JP5196687B2 (en) 2011-01-25 2011-01-25 All plastic resin heating / cooling radiator

Country Status (1)

Country Link
JP (1) JP5196687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813027B2 (en) * 2013-02-25 2015-11-17 株式会社 テスク資材販売 Heating and cooling panel system
JP2015072107A (en) * 2013-10-04 2015-04-16 株式会社 テスク資材販売 Radiator and air conditioning system using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470162U (en) * 1977-10-28 1979-05-18
JP2002162050A (en) * 2000-11-28 2002-06-07 Sanyo Electric Co Ltd Radiator of hot-water heater
JP4213997B2 (en) * 2003-05-29 2009-01-28 大阪瓦斯株式会社 Hot water terminal

Also Published As

Publication number Publication date
JP2012154536A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5142987B2 (en) Multiple fluid heat exchanger
JP3165552U (en) All plastic resin heating / cooling radiator
CN103517620A (en) Two-phase cooling system for electronic components
JP2006148047A (en) Modularization radiator
CN106887419B (en) Steam cavity combined radiator and electronic device
JP6951452B2 (en) heat sink
CN106486433B (en) IGBT radiator
JP4913333B2 (en) Heat sink and uniform cooling method
US20190284973A1 (en) Vehicle oil warmer and heat exchange system
JP5196687B2 (en) All plastic resin heating / cooling radiator
JP3163477U (en) All plastic resin heating / cooling radiator
CN105526813A (en) Microchannel heat radiator
JP2007192441A (en) Radiator, its manufacturing method, and cooling device comprising the same
JP7353164B2 (en) Heat exchanger
TWI470181B (en) Heat exchanger
TWI707116B (en) Liquid cooling device
TW201826470A (en) Cold plate
JP5740119B2 (en) Cooling system
CN104768356B (en) A kind of water cooling hardened structure of application 3D printing technique
JP2009228916A (en) Heat exchanger
KR101385266B1 (en) Heat exchanger
JP2010007867A (en) Radiator tank and its manufacturing method
CN100432589C (en) Expansion tank device, process for fabricating expansion tank device, and liquid cooling radiator
CN206471325U (en) Liquid cooling structure
EP2647939A2 (en) Heat exchange apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees