JP5196582B2 - Movable mirror mechanism - Google Patents

Movable mirror mechanism Download PDF

Info

Publication number
JP5196582B2
JP5196582B2 JP2009109061A JP2009109061A JP5196582B2 JP 5196582 B2 JP5196582 B2 JP 5196582B2 JP 2009109061 A JP2009109061 A JP 2009109061A JP 2009109061 A JP2009109061 A JP 2009109061A JP 5196582 B2 JP5196582 B2 JP 5196582B2
Authority
JP
Japan
Prior art keywords
actuator
holding
holding substrate
movable mirror
pulling means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009109061A
Other languages
Japanese (ja)
Other versions
JP2010256772A (en
Inventor
裕生 國森
佳久 高山
守生 豊嶋
俊雄 阿部
隆義 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPACELINK CO., LTD.
National Institute of Information and Communications Technology
Original Assignee
SPACELINK CO., LTD.
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPACELINK CO., LTD., National Institute of Information and Communications Technology filed Critical SPACELINK CO., LTD.
Priority to JP2009109061A priority Critical patent/JP5196582B2/en
Publication of JP2010256772A publication Critical patent/JP2010256772A/en
Application granted granted Critical
Publication of JP5196582B2 publication Critical patent/JP5196582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

本発明は、自由空間中を伝搬する光ビームにより通信を行う光通信装置の光入出力部の構成要素である可動鏡機構に関するものである。   The present invention relates to a movable mirror mechanism that is a component of an optical input / output unit of an optical communication device that performs communication using a light beam propagating in free space.

一般に、自由空間伝搬型光通信を用いた通信方式としては、拡散型通信方式と、狭ビーム型通信方式とが知られている。拡散型通信方式は主に近距離での光通信に用いられ、遠距離の光通信には、狭ビーム型通信方式が用いられることが多い。特に人工衛星と地上との間で光通信を行う場合には、次のような問題があることが知られている。   In general, as a communication method using free space propagation optical communication, a diffusion communication method and a narrow beam communication method are known. The diffusion communication method is mainly used for optical communication at a short distance, and the narrow beam communication method is often used for optical communication at a long distance. In particular, it is known that there are the following problems when optical communication is performed between an artificial satellite and the ground.

例えば、人工衛星は基地局に対して動いているので、互いに常時監視し、そのビームの射出方位を調整する必要がある。また、大気中の伝搬においては、大気の揺らぎによってたえず光路は擾乱を受ける。この擾乱は、1kHz以上の周波数成分を含むため、高速応答動作の可能な調整機構である必要がある。
このため、特に人工衛星と地上との間で光通信を行う場合には、狭ビームできわめて高精度の光軸合せが必要となる。この光軸を合わせる手段として可動鏡機構により光反射鏡を光路に挿入し、その法線の方位を高速に調整して光軸を合わせることが行われている。
For example, since the artificial satellite is moving with respect to the base station, it is necessary to constantly monitor each other and adjust the emission direction of the beam. Further, in propagation in the atmosphere, the optical path is constantly disturbed by fluctuations in the atmosphere. Since this disturbance includes a frequency component of 1 kHz or more, it needs to be an adjustment mechanism capable of high-speed response operation.
For this reason, especially when optical communication is performed between the artificial satellite and the ground, it is necessary to align the optical axis with a narrow beam and extremely high accuracy. As a means for aligning the optical axis, a light reflecting mirror is inserted into the optical path by a movable mirror mechanism, and the normal direction is adjusted at high speed to align the optical axis.

レーザー加工装置などの光軸を調整する機構は、FPM(fine positioning mirror)として知られており、例えばガルバノミラー(galvanometer mirror)が通常用いられている。一般に、ガルバノミラーは、1つの回転軸に固定された鏡である。例えば、レーザービームの照射部を、このガルバノミラーを直交する2軸に配置する構成とすることで、照射点位置を平面上の点から選択することができるようになる。しかし、人工衛星と地上間の光通信用には、口径の大きな反射鏡を用いる必要があるため、従来のガルバノミラーでは、充分に高速な応答特性が得られない。   A mechanism for adjusting an optical axis such as a laser processing apparatus is known as FPM (fine positioning mirror), and for example, a galvanometer mirror is usually used. In general, a galvanometer mirror is a mirror fixed to one rotation axis. For example, the irradiation point position can be selected from points on the plane by arranging the irradiating part of the laser beam on two axes that are orthogonal to each other. However, since it is necessary to use a reflector having a large aperture for optical communication between an artificial satellite and the ground, a sufficiently high-speed response characteristic cannot be obtained with a conventional galvanometer mirror.

高速な応答特性をもった偏光器として、特許文献1(米国特許第5251056号明細書)の開示がある。これは、圧電性物質を平行に並べて反射鏡に可塑性の接着剤を用いて固定し、これを基板に載せて、プッシュプル動作をするように電圧印加を行なうことで、大きな面積の反射鏡を用いた場合でも、その共振周波数を高く設定することができるものである。   As a polarizer having a high-speed response characteristic, there is a disclosure of Patent Document 1 (US Pat. No. 5,215,056). This is because a piezoelectric material is arranged in parallel and fixed to the reflecting mirror using a plastic adhesive, and this is placed on the substrate and a voltage is applied so as to perform a push-pull operation, so that a reflecting mirror with a large area can be obtained. Even when used, the resonance frequency can be set high.

また、圧電性物質のアクチュエータを用いたものが特許文献2(米国特許第7221494号明細書)に開示されている。これは、反射鏡を載せ回転軸の周りに動くプラットフォームにアクチュエータとバネを取り付けて、プラットフォームを駆動する光走査装置であり、アクチュエータとバネをその回転軸の左右に配置してバネの反発力でプラットフォームをアクチュエータで保持するものである。アクチュエータとプラットフォームとはボールベアリングで接触しており、接する角度は自由に変えることができる。   A device using a piezoelectric substance actuator is disclosed in Patent Document 2 (US Pat. No. 7,212,494). This is an optical scanning device that drives a platform by attaching an actuator and a spring to a platform that moves around a rotation axis on which a reflecting mirror is mounted. The actuator and spring are arranged on the left and right of the rotation axis, and the repulsive force of the spring The platform is held by an actuator. The actuator and the platform are in contact with each other by ball bearings, and the contact angle can be freely changed.

また、特許文献3(特開2007−184706号公報)に光軸調整を行うことが可能な光無線伝送装置の記載がある。これに記載の光無線伝送子機は、撮像データに基づいて親機からのガイド光の光軸方向を特定し、その光軸方向から、反射板の反射面の移動方向および移動量を第1の移動情報としてそれぞれ取得する第1の方向検出部と、4分割PDにより受光されたガイド光の受光データから、反射板の反射面の移動方向および移動量を第2の移動情報としてそれぞれ取得する第2の方向検出部と、第1及び第2の方向検出部により取得された第1及び第2の移動情報に基づいて、ピエゾアクチュエータを介して反射板の反射面を移動させることにより、親機からのガイド光の光軸方向とコリメートレンズの光軸方向とを略一致させる駆動制御部とを備えるものである。   Patent Document 3 (Japanese Patent Application Laid-Open No. 2007-184706) describes an optical wireless transmission device that can adjust the optical axis. The optical wireless transmission slave described therein specifies the optical axis direction of the guide light from the master unit based on the imaging data, and the moving direction and moving amount of the reflecting surface of the reflecting plate are first determined from the optical axis direction. The movement direction and the movement amount of the reflecting surface of the reflecting plate are respectively acquired as second movement information from the first direction detection unit to be acquired as the movement information of the first and the received light data of the guide light received by the 4-split PD. Based on the first direction information and the second movement information acquired by the second direction detection unit and the first and second direction detection units, the reflection surface of the reflection plate is moved via the piezo actuator. And a drive control unit that substantially matches the optical axis direction of the guide light from the machine and the optical axis direction of the collimating lens.

本発明に比較的近い従来例の模式図を図1に示す。これは、支持基板21上に光反射鏡27を載せ、この支持基板21を2つの圧電駆動素子23上に2つのバネ35で保持するものである。1軸方向の駆動を考えると、圧電駆動素子23の受け持つ慣性モーメントには、光反射鏡27の分と支持基板21の分とバネ35の分があるために、揺動駆動時の周波数応答性が充分高速にならない。あるいは、充分高速にするためには、駆動用である圧電駆動素子23を大型化する必要があり、消費電力が増大する。また、そのために駆動回路が非常に大きくなる。例えば1kHzで20ミリラジアン動かすために、圧電駆動素子23の1素子あたり75W、4個合計で300Wが必要となる。しかし、このように装置が大型になり消費電力が大きくなるため、衛星に搭載するには消費電力を小さくすることが望まれている。   A schematic diagram of a conventional example relatively close to the present invention is shown in FIG. In this configuration, the light reflecting mirror 27 is placed on the support substrate 21, and the support substrate 21 is held on the two piezoelectric drive elements 23 by the two springs 35. Considering the uniaxial driving, the moment of inertia of the piezoelectric driving element 23 includes the light reflecting mirror 27, the support substrate 21, and the spring 35. Is not fast enough. Alternatively, in order to achieve a sufficiently high speed, it is necessary to increase the size of the piezoelectric drive element 23 for driving, which increases power consumption. For this reason, the drive circuit becomes very large. For example, in order to move 20 milliradians at 1 kHz, 75 W per element of the piezoelectric driving element 23, and a total of 300 W is required. However, since the apparatus becomes large and power consumption increases in this way, it is desired to reduce power consumption for mounting on a satellite.

また、従来例として、図1に類似のもので、圧電駆動素子4本を、4本のバネにより引っ張り力を加えて直動して反射鏡を動かすものもある。具体的には2本で1軸を動かし、これを2個重ねて2軸駆動としている。このような光軸調整機構においては、軸を別々に動かすことや、バネを4本用いるため複雑となり小型軽量化に不利となっている。また、バネや光反射鏡などを揺動する際の慣性モーメントが非常に大きくなるため、高速応答性が悪く、通信光の揺らぎに対応できず、受信が不安定なるという問題がある。この問題を解決するため、例えば、2軸を同時に駆動する機構が知られているが、複雑なジョイントを必要としており、この場合も小型軽量化に不利となっている。   Further, as a conventional example, there is a conventional example similar to FIG. 1, in which four piezoelectric drive elements are moved linearly by applying a pulling force by four springs to move the reflecting mirror. Specifically, two axes move one axis, and two are overlapped to form a two-axis drive. In such an optical axis adjusting mechanism, the shafts are moved separately and four springs are used, which is complicated and disadvantageous for reduction in size and weight. In addition, since the moment of inertia when swinging a spring, a light reflecting mirror, or the like becomes very large, there is a problem that high-speed response is poor, the fluctuation of communication light cannot be handled, and reception is unstable. In order to solve this problem, for example, a mechanism that drives two axes at the same time is known. However, a complicated joint is required, which is disadvantageous for reduction in size and weight.

図14(a)に非特許文献1に記載された精追尾機構の断面図を示す。これは、回転儀で支持された内側可動部上にミラーを固定したもので、その内側可動部を電磁吸引アクチュエータで駆動するものである。図14(b)、(c)に、この精追尾機構を用いて構成した光路差補正機構の閉ループ一巡伝達関数周波数特性の測定結果を示す。(b)は、ゲイン−周波数特性、(c)は、位相−周波数特性である。この結果では、周波数特性の上限は600Hz程度である。   FIG. 14A shows a cross-sectional view of the fine tracking mechanism described in Non-Patent Document 1. This is one in which a mirror is fixed on an inner movable part supported by a rotary rod, and the inner movable part is driven by an electromagnetic suction actuator. FIGS. 14B and 14C show the measurement results of the closed-loop circuit transfer function frequency characteristics of the optical path difference correction mechanism configured using this fine tracking mechanism. (B) is a gain-frequency characteristic, and (c) is a phase-frequency characteristic. In this result, the upper limit of the frequency characteristic is about 600 Hz.

米国特許第5251056号明細書US Pat. No. 5,215,056 米国特許第7221494号明細書US Pat. No. 7,212,494 特開2007−184706号公報JP 2007-184706 A

2008年、第52回宇宙科学技術連合講演会、484−486頁2008, 52nd Space Science and Technology Conference, pages 484-486

本発明の目的は、自由空間伝搬を用いた光通信での通信光の軸のずれを周波数応答性良く補正することができる可動鏡機構を提供することにある。   An object of the present invention is to provide a movable mirror mechanism capable of correcting a shift of the axis of communication light in optical communication using free space propagation with high frequency response.

上述の目的を達成するための本発明に係る可動鏡機構は、光通信装置の入力部または出力部に用いて通信光の光軸あわせを行なう可動鏡機構であって、保持基板に固定された反射鏡と、上記保持基板を動かして、その法線方向の方位を調整するアクチュエータと、上記保持基板と枢結し上記アクチュエータと上記保持基板を連接させるための引っ張り手段と、上記引っ張り手段と上記アクチュエータとを持設する支持基板と、上記アクチュエータを制御する制御器と、を備えるものである。ただし、上記制御器は、上記の法線方向の方位を調整する場合に、上記保持基板と上記引っ張り手段とを枢結する部分が不動点であるように上記アクチュエータを駆動する。   In order to achieve the above object, a movable mirror mechanism according to the present invention is a movable mirror mechanism that performs optical axis alignment of communication light using an input unit or an output unit of an optical communication device, and is fixed to a holding substrate. A reflecting mirror; an actuator for moving the holding substrate to adjust a normal direction thereof; a pulling means for connecting the actuator and the holding substrate in connection with the holding substrate; the pulling means; A support substrate for holding the actuator and a controller for controlling the actuator are provided. However, the controller drives the actuator so that the portion connecting the holding substrate and the pulling means is a fixed point when adjusting the orientation in the normal direction.

上記引っ張り手段と上記保持基板とを枢結するバネ機構を設ける場合は、上記バネ機構は、円環状の板ばね等の回転対称性を有する板バネで実現することができる。このバネ機構は、上記アクチュエータと上記保持基板を連接させるためのものである。引っ張り手段と上記保持基板とは、このバネ機構を通じて枢結されており、互いに自由に動くことができる。   When a spring mechanism for pivotally connecting the pulling means and the holding substrate is provided, the spring mechanism can be realized by a leaf spring having rotational symmetry such as an annular leaf spring. The spring mechanism is for connecting the actuator and the holding substrate. The pulling means and the holding substrate are pivoted through this spring mechanism and can move freely.

また、上記バネ機構は、引っ張り型あるいは圧縮型のコイルバネでも実現することができる。   The spring mechanism can also be realized by a tension type or compression type coil spring.

また、上記引っ張り手段は、引っ張り棒または引っ張りワイヤーでよい。   The pulling means may be a pull rod or a pull wire.

上記アクチュエータは、入力電圧に線形に応答する素子が望ましいが、非線形性や履歴特性を示す圧電駆動素子でも使用することができる。   The actuator is desirably an element that responds linearly to an input voltage, but can be used also with a piezoelectric drive element that exhibits nonlinearity and hysteresis characteristics.

上記アクチュエータは3以上の複数であって、上記引っ張り手段の周りを取り囲むように配置することで、上記アクチュエータと上記保持基板を圧接させることができる。この場合は、反射鏡の方位を2次元内で設定することができる。   The actuator is a plurality of three or more, and is arranged so as to surround the tension means, whereby the actuator and the holding substrate can be brought into pressure contact with each other. In this case, the orientation of the reflecting mirror can be set within two dimensions.

また、反射鏡の方位を1次元内で設定すればよい場合は、上記アクチュエータ数を2とし、さらに上記保持基板を持設する保持棒を用いる。この場合も、上記アクチュエータと上記保持棒とは上記引っ張り手段の周りを取り囲むように配置することが望ましい。上記保持棒と上記引っ張り手段とを同軸に構成してもよい。   When the orientation of the reflecting mirror is set within one dimension, the number of actuators is set to 2, and a holding rod for holding the holding substrate is used. Also in this case, it is desirable that the actuator and the holding rod are arranged so as to surround the tension means. The holding rod and the pulling means may be configured coaxially.

上記引っ張り手段と上記保持基板とを枢結する部分を、反射鏡を固定した保持基板の重心に設けることで、回転運動の慣性モーメントを最小にすることができる。     By providing the portion for connecting the pulling means and the holding substrate at the center of gravity of the holding substrate to which the reflecting mirror is fixed, the moment of inertia of the rotational motion can be minimized.

より具体的には、例えば、2軸方向に揺動する光反射鏡の保持基板と、該保持基板を3個または4個の直進駆動の圧電駆動素子により駆動し、前記保持基板と前記圧電駆動素子との接続間に、3個または4個の球体関節部材を直列に配列し、これら圧電駆動素子を3角または4角の頂点に配置して中央の間隙に引っ張り棒を配置して圧力を加える様にする。   More specifically, for example, the holding substrate of the light reflecting mirror swinging in the biaxial direction, and the holding substrate are driven by three or four linearly driven piezoelectric drive elements, and the holding substrate and the piezoelectric drive are driven. Between the connection to the element, three or four spherical joint members are arranged in series, these piezoelectric drive elements are arranged at the apex of the triangle or the four corners, and a pulling rod is arranged in the central gap to apply pressure. Add it.

上述の構成を有する可動鏡機構では、光反射鏡の法線方向の方位を調整する場合に、高い周波数応答特性を実現することができる。 In the movable mirror mechanism having the above-described configuration, high frequency response characteristics can be realized when adjusting the normal direction of the light reflecting mirror.

従来の可動鏡機構の基本構造を示す断面図である。It is sectional drawing which shows the basic structure of the conventional movable mirror mechanism. 第1の実施例に係わる可動鏡機構の基本構造を示す断面図である。It is sectional drawing which shows the basic structure of the movable mirror mechanism concerning a 1st Example. 第1の実施例に係わる可動鏡機構の詳細構造を示す断面図である。It is sectional drawing which shows the detailed structure of the movable mirror mechanism concerning a 1st Example. 第1の実施例に係わる可動鏡機構の球体関節部材付近の詳細構造を示す断面図である。It is sectional drawing which shows the detailed structure of the spherical-joint member vicinity of the movable mirror mechanism concerning a 1st Example. 第1の実施例に係わる可動鏡機構の全体構造を示す立体ワイヤーフレーム図である。It is a three-dimensional wire frame figure which shows the whole structure of the movable mirror mechanism concerning a 1st Example. 第1の実施例に係わる可動鏡機構の全体構造を別な角度から見た立体ワイヤーフレーム図である。It is the solid wire frame figure which looked at the whole structure of the movable mirror mechanism concerning a 1st Example from another angle. 第1の実施例に係わる可動鏡機構の全体構造の斜視図である。It is a perspective view of the whole structure of the movable mirror mechanism concerning a 1st Example. 第1の実施例に係わる可動鏡機構の応用例を説明するブロック図である。It is a block diagram explaining the application example of the movable mirror mechanism concerning a 1st Example. 第2の実施例に係わる可動鏡機構の詳細構造を示す断面図である。It is sectional drawing which shows the detailed structure of the movable mirror mechanism concerning a 2nd Example. 第2の実施例に係わる可動鏡機構の球体関節部材付近の詳細構造を示す断面図である。It is sectional drawing which shows the detailed structure of the spherical joint member vicinity of the movable mirror mechanism concerning a 2nd Example. 引っ張り手段に(a)圧縮バネ、(b)引っ張りバネを用いる例を示す図である。It is a figure which shows the example which uses (a) compression spring and (b) tension spring for a tension | pulling means. 引っ張り手段にワイヤーを用いる例を示す図である。It is a figure which shows the example which uses a wire for a tension | pulling means. (a)は製造した可動鏡機構の仕様を、(b)は測定に用いた測定系を示す。(A) shows the specifications of the manufactured movable mirror mechanism, and (b) shows the measurement system used for the measurement. 本発明の例における、(a)共振周波数のプリロード値依存性の例を示す図と、(b)振幅の周波数依存性を示す図である。In the example of this invention, (a) The figure which shows the example of the preload value dependence of a resonant frequency, (b) The figure which shows the frequency dependence of an amplitude. 従来の精追尾機構例の断面図と、それを用いて構成した光路差補正機構の周波数特性例を示す図である。It is sectional drawing of the example of the conventional fine tracking mechanism, and a figure which shows the frequency characteristic example of the optical path difference correction mechanism comprised using it.

以下に、この発明の実施の形態を図面に基づいて詳細に説明する。以下の説明においては、同じ機能あるいは類似の機能をもった装置に、特別な理由がない場合には、同じ符号を用いるものとする。   Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description, devices having the same function or similar functions are denoted by the same reference numerals unless there is a special reason.

図2は本発明の可動鏡機構の第1の実施例に係わる基本構造を示す断面図である。図3(b)は図3(a)のA−A’線に沿った断面図であり、同一の符号は同一の部材を示している。図4は上記可動鏡機構の球体関節部材付近の詳細構造を示す断面図である。図3(b)において、21は支持基板であり、22は引っ張り棒で両端にネジが切ってある。アクチュエータである圧電駆動素子23では直流電圧(例えば150V以内)を加えると数十ミクロン程度伸長する。球体関節部材24では直径数ミリの球体が円錐台上に接着されている。位置決めナット25では通常のナットの片面が円錐状になり、円環状の板バネ31を介在して、中央穴28にはまりこむ。光反射鏡保持部材26ではアルミ材をカップ状に削りだしている。光反射鏡27の直径は、例えば20mmである。また、光反射鏡保持部材26の底部に中央穴28が明けられており、また、光反射鏡保持部材26の底部縁部に明けられ球体関節部材24の球がはまりこむ球受け穴29がある。スリーブ30は円筒状で内側にネジが着られ引っ張り棒22にねじ込まれるスリーブである。   FIG. 2 is a cross-sectional view showing the basic structure according to the first embodiment of the movable mirror mechanism of the present invention. FIG. 3B is a cross-sectional view taken along line A-A ′ in FIG. 3A, and the same reference numerals indicate the same members. FIG. 4 is a cross-sectional view showing a detailed structure near the spherical joint member of the movable mirror mechanism. In FIG. 3B, 21 is a support substrate, 22 is a tension bar, and screws are cut at both ends. In the piezoelectric drive element 23 which is an actuator, when a DC voltage (for example, within 150 V) is applied, the piezoelectric drive element 23 extends about several tens of microns. In the spherical joint member 24, a spherical body having a diameter of several millimeters is bonded on a truncated cone. In the positioning nut 25, one side of a normal nut has a conical shape, and is fitted into the central hole 28 via an annular leaf spring 31. In the light reflecting mirror holding member 26, the aluminum material is cut into a cup shape. The diameter of the light reflecting mirror 27 is, for example, 20 mm. A central hole 28 is formed in the bottom of the light reflecting mirror holding member 26, and a ball receiving hole 29 is formed in the bottom edge of the light reflecting mirror holding member 26 and into which the sphere of the spherical joint member 24 is fitted. . The sleeve 30 is a cylindrical sleeve that is screwed on the inner side and screwed into the tension bar 22.

図2において1本の引っ張り棒22が光反射鏡保持部材26の中央に明けられた中央穴28と支持基板21の中央に開けられた穴を貫通し、位置決めナット25で両方から締め付ける。一方、光反射鏡保持部材26に明けられた4個の穴に球体関節部材24の球が嵌合し、回動できるようになっている。光反射鏡保持部材26は、圧電駆動素子23の伸縮によって中央穴28を中心に動いて、その方位を変える。図1の従来例と比較すると、バネ35が運動の中心から離れたところにない分だけ光反射鏡保持部材26の揺動時に発生する慣性モーメントが小さくなることがわかる。   In FIG. 2, a single pulling rod 22 passes through a center hole 28 opened in the center of the light reflecting mirror holding member 26 and a hole opened in the center of the support substrate 21, and is tightened from both by a positioning nut 25. On the other hand, the sphere of the spherical joint member 24 is fitted into the four holes opened in the light reflecting mirror holding member 26 so as to be rotatable. The light reflecting mirror holding member 26 moves around the central hole 28 by the expansion and contraction of the piezoelectric driving element 23 and changes its orientation. Compared with the conventional example of FIG. 1, it can be seen that the moment of inertia generated when the light reflecting mirror holding member 26 swings is reduced by the amount that the spring 35 is not located away from the center of motion.

図3は可動鏡機構の詳細構造を示す断面図である。支持基板21に圧電駆動素子23を4個、4角形頂点上に相当する点に配置し、この上に光反射鏡保持部材26を配置する。光反射鏡保持部材26では、引っ張り棒22を中央に貫通させて、両端で位置決めネジ25により光反射鏡保持部材26を引っ張る。これによって球体間接部材24を通して圧電駆動素子23に圧力を与える。この圧力は、支持基板21と光反射鏡27とを合わせた質量が例えば5gの場合には、100Kgから160Kgの範囲が最良である。   FIG. 3 is a sectional view showing the detailed structure of the movable mirror mechanism. Four piezoelectric driving elements 23 are arranged on the support substrate 21 at points corresponding to the apexes of the quadrangle, and the light reflecting mirror holding member 26 is arranged thereon. In the light reflecting mirror holding member 26, the pulling rod 22 is passed through the center, and the light reflecting mirror holding member 26 is pulled by the positioning screws 25 at both ends. As a result, pressure is applied to the piezoelectric driving element 23 through the spherical indirect member 24. This pressure is best in the range of 100 kg to 160 kg when the total mass of the support substrate 21 and the light reflecting mirror 27 is 5 g, for example.

上記の引っ張り棒は、駆動する周波数帯域に共振点を持たない棒状の物体であればよいが、図12に示す様にワイヤー36であってもよい。ただし、充分な張力が架けられていてその固有振動周波数が駆動する周波数帯域よりも高いものとする。たとえば、上記の光反射鏡保持部材を用いる場合、800〜1000Nの力で引っ張るが、共振周波数が低くてもよい場合には、引っ張る力をより小さくすることができる。   The pulling rod may be a rod-shaped object having no resonance point in the driving frequency band, but may be a wire 36 as shown in FIG. However, it is assumed that sufficient tension is applied and the natural vibration frequency is higher than the driving frequency band. For example, when the above-described light reflecting mirror holding member is used, it is pulled with a force of 800 to 1000 N. However, when the resonance frequency may be low, the pulling force can be further reduced.

図4は前述の機構の一部である球体関節部材24の周辺を説明するもので、光反射鏡27が光反射鏡保持部材26に貼り付けられている。引っ張り棒22の端を中央穴28に貫通し、円環状の板バネ31をはさんで位置決めナット25で締め付ける。位置決めナットは、先端が円錐状になっているので光反射鏡保持部材26の中央穴28にはまりこんで、中央に固定する。一方、位置決め管30が光反射鏡保持部材26を介して反対側で引っ張り部材22にねじ込まれるので、光反射鏡保持部材26の位置ずれを防止できる。   FIG. 4 illustrates the periphery of the spherical joint member 24 which is a part of the above-described mechanism. The light reflecting mirror 27 is attached to the light reflecting mirror holding member 26. The end of the pull rod 22 is passed through the central hole 28 and is tightened with the positioning nut 25 with the annular leaf spring 31 interposed therebetween. Since the tip of the positioning nut has a conical shape, the positioning nut fits into the central hole 28 of the light reflecting mirror holding member 26 and is fixed at the center. On the other hand, since the positioning tube 30 is screwed into the pulling member 22 on the opposite side through the light reflecting mirror holding member 26, the positional deviation of the light reflecting mirror holding member 26 can be prevented.

圧電駆動素子23には球体関節部材24が回転可能に係合され、更に球体関節部材24には、光反射鏡27が固定された光反射鏡保持部材26が、微回転可能に緩嵌合されている。図8において示すように制御駆動回路9の電圧出力が圧電駆動素子23に印加される。圧電駆動素子23は光反射鏡保持部材26を2軸方向に駆動することができる。   A spherical joint member 24 is rotatably engaged with the piezoelectric drive element 23, and a light reflecting mirror holding member 26 to which a light reflecting mirror 27 is fixed is loosely fitted to the spherical joint member 24 so as to be capable of fine rotation. ing. As shown in FIG. 8, the voltage output of the control drive circuit 9 is applied to the piezoelectric drive element 23. The piezoelectric drive element 23 can drive the light reflecting mirror holding member 26 in two axial directions.

図5と図6は可動鏡機構の全体外観のワイヤーフレーム図であり、内側支持部材33が光反射鏡保持部材26と外側支持部材32の間に挟み込まれている。外側支持部材32は円筒状で底部が支持基板21にネジ留めされている。この構造により振動衝撃環境に耐えるものとなる。図7にその斜視図を示す。   5 and 6 are wire frame diagrams of the overall appearance of the movable mirror mechanism, in which the inner support member 33 is sandwiched between the light reflecting mirror holding member 26 and the outer support member 32. FIG. The outer support member 32 is cylindrical and the bottom is screwed to the support substrate 21. This structure can withstand vibration and impact environments. FIG. 7 shows a perspective view thereof.

図8に、以上説明した可動鏡機構の応用例を示す。可動鏡機構1に集光器2で通信光を集光して入射する。この反射光はビームスプリッタ4に入射する。一方、レーザー5の送信光と受信光がここで分離される。つぎに、レンズ3でビームを小さくし、ハーフミラー6を通過して受光素子7にて受信する。また、位置検出素子8に入射した光の位置を駆動制御回路9で検出し、所定の位置に光ビームが受光素子7へ入射するよう可動鏡機構1を駆動し制御する。この一連の動作の制御方法は既によく知られている。   FIG. 8 shows an application example of the movable mirror mechanism described above. The communication light is collected by the condenser 2 and enters the movable mirror mechanism 1. This reflected light is incident on the beam splitter 4. On the other hand, the transmission light and the reception light of the laser 5 are separated here. Next, the beam is reduced by the lens 3, passes through the half mirror 6, and is received by the light receiving element 7. Further, the position of the light incident on the position detection element 8 is detected by the drive control circuit 9, and the movable mirror mechanism 1 is driven and controlled so that the light beam is incident on the light receiving element 7 at a predetermined position. A method for controlling this series of operations is already well known.

図13(a)の仕様で製造した可動鏡機構について、図13(b)に示す測定系を用いて測定した結果として、図14(a)に共振周波数のプリロード値依存性の例を、また、図14(b)に振幅の周波数依存性の例を示す。ここで、共振周波数は、可動鏡機構の固有振動数である。この結果から、引っ張り棒が光反射鏡保持部材を圧電駆動素子に圧し付ける力であるプリロードが増大するに従って、共振周波数も上昇していることが分かる。プリロードが900Nのときには、周波数特性の上限は6kHz余りである。この例を図15に示す従来例の場合と比べると、周波数特性が大幅に改善されていることが分かる。図15(a)は、電磁吸引アクチュエータとフレキシャルピボットを用いた2軸一体型の構成を持った光路差補正機構であり、図15(b)は、その周波数特性である。   As a result of measurement using the measurement system shown in FIG. 13B for the movable mirror mechanism manufactured with the specification of FIG. 13A, FIG. 14A shows an example of the preload value dependency of the resonance frequency. FIG. 14B shows an example of the frequency dependence of the amplitude. Here, the resonance frequency is a natural frequency of the movable mirror mechanism. From this result, it can be seen that the resonance frequency increases as the preload, which is the force with which the pulling rod presses the light reflecting mirror holding member against the piezoelectric driving element, increases. When the preload is 900 N, the upper limit of the frequency characteristic is about 6 kHz. Compared with the case of this example shown in FIG. 15, it can be seen that the frequency characteristics are greatly improved. FIG. 15A shows an optical path difference correction mechanism having a two-axis integrated configuration using an electromagnetic suction actuator and a flexible pivot, and FIG. 15B shows its frequency characteristics.

また、図14(a)に示すように、高い共振周波数を実現するためには、プリロード値を大きくする必要がある。しかし上記の公知例の様に、このために複数のバネなどの引っ張り手段を用いる場合には、力の印加が均一であることが望ましい。不均一である場合は、圧電駆動素子にその不均一を解消する電力を余分に印加する必要が生じるためである。   Further, as shown in FIG. 14A, in order to realize a high resonance frequency, it is necessary to increase the preload value. However, as in the above known example, when a plurality of pulling means such as springs are used for this purpose, it is desirable that the force be applied uniformly. This is because if it is non-uniform, it is necessary to apply extra power to the piezoelectric drive element to eliminate the non-uniformity.

しかし、本発明に於いては、引っ張り手段は単一であり、その周りに圧電駆動素子を配置するため、それぞれの圧電駆動素子には、均一な圧力が印加される。これによって、回転モーメントが小さい状態で光反射鏡を載せた光反射鏡保持部材を動かすことになり、従来のものよりも高い周波数特性を実現できる。   However, in the present invention, the pulling means is single, and the piezoelectric driving elements are arranged around the pulling means. Therefore, a uniform pressure is applied to each piezoelectric driving element. As a result, the light reflecting mirror holding member on which the light reflecting mirror is placed is moved in a state where the rotational moment is small, and a higher frequency characteristic than that of the conventional one can be realized.

次に、3つのアクチュエータを用いる例について説明する。図9は第2の実施例の構成図、図10は図9のA−A’線に沿った断面図であり、引っ張り棒22には3個の球体関節部材24が回転可能に係合され、球体関節部材24には光反射鏡27が固定された光反射鏡保持部34が回転可能に係合されている。また、引っ張り棒22により3本の圧電駆動素子23に圧力をかける。以上のように実施例1の圧電駆動素子23の数を4から3にしたところが異なる。他の構成要素は実施例1と同様である。この3本構成により、小型軽量化が有利になると共に、高速応答性もさらに良くなる。そして光軸ずれ補正の周波数応答性が向上し、装置の低消費電力化及び装置全体の小型化が進む。   Next, an example using three actuators will be described. FIG. 9 is a structural view of the second embodiment, and FIG. 10 is a cross-sectional view taken along the line AA ′ of FIG. 9. Three ball joint members 24 are rotatably engaged with the pull bar 22. The spherical joint member 24 is rotatably engaged with a light reflector holding portion 34 to which a light reflector 27 is fixed. Further, pressure is applied to the three piezoelectric driving elements 23 by the pulling rod 22. As described above, the number of the piezoelectric drive elements 23 of the first embodiment is changed from 4 to 3. Other components are the same as those in the first embodiment. This three-piece structure is advantageous in reducing the size and weight and further improving the high-speed response. Then, the frequency response of optical axis deviation correction is improved, and the power consumption of the apparatus is reduced and the entire apparatus is downsized.

この3つのアクチュエータのうち1つの機能を停止して保持棒とする場合でも、方位の調整を行なうことができる。   Even when one of the three actuators is stopped and used as a holding rod, the orientation can be adjusted.

上記の実施例1、2では、アクチュエータとして圧電駆動素子23を用いているが、一般に、圧電素子は履歴特性を持ち、印加する電圧に対して非線形の変移を与えることが知られている。しかし、制御に際しては、線形の応答特性を持った圧電素子を持つほうが、制御がより容易である。このような場合には、入力電圧に対する伸張量応答が線形である位置フィードバックコントロール付きのピエゾ素子を用いることができる。このような動作制御は、図8の制御駆動回路9で行う。   In the first and second embodiments, the piezoelectric driving element 23 is used as the actuator. However, it is generally known that the piezoelectric element has a hysteresis characteristic and gives a nonlinear transition to the applied voltage. However, in the control, it is easier to have a piezoelectric element having a linear response characteristic. In such a case, it is possible to use a piezo element with position feedback control in which the expansion response to the input voltage is linear. Such operation control is performed by the control drive circuit 9 of FIG.

また、アクチュエータは、上記の圧電素子に限定する必要はなく、ムービングコイルや磁歪素子などの高速動作が可能なアクチュエータであれば、本発明に適用することができる。   The actuator need not be limited to the above-described piezoelectric element, and can be applied to the present invention as long as it is an actuator capable of high-speed operation such as a moving coil or a magnetostrictive element.

上記の実施例では、引っ張り手段として引っ張り棒22と板バネ31を用いる例を示したが、板バネ31は、図11(a)と(b)に示す様に、圧縮バネ34や引っ張りバネ35を用いることもできる。また、引っ張り棒22の代わりに図12に示す様に、ワイヤーを用いることもできる。特に、弾力性のあるワイヤーを用いることで、上記のバネを代用できる。   In the above embodiment, an example in which the tension rod 22 and the leaf spring 31 are used as the tension means has been shown. However, as shown in FIGS. 11A and 11B, the leaf spring 31 is a compression spring 34 or a tension spring 35. Can also be used. Further, instead of the pull bar 22, a wire can be used as shown in FIG. In particular, the spring can be substituted by using an elastic wire.

さらに、上記の引っ張り手段では、バネを用いる例を示したが、鏡の方位の可動範囲が小さくてもよい場合は、上記のバネを省略することができる。   Furthermore, although the example using a spring was shown in said tension | pulling means, when the movable range of the direction of a mirror may be small, said spring can be abbreviate | omitted.

上記の構成に於いて反射鏡の方位を変える際に、支持基板21の中央穴28の位置が変わらない不動点になるように、それぞれのアクチュエータの駆動量を設定することが望ましい。この動作制御は、図8の制御駆動回路9で行う。   In the above configuration, when changing the orientation of the reflecting mirror, it is desirable to set the driving amount of each actuator so that the position of the central hole 28 of the support substrate 21 is a fixed point that does not change. This operation control is performed by the control drive circuit 9 of FIG.

以上述べたように、本発明の可動鏡機構により光通信装置の性能向上や小型軽量化が進む。特に重量や容積に厳しい条件が課せられる人工衛星の光通信装置に応用するとよい。光空間通信を宇宙と地上間で行うときに、大気による揺らぎが大きな問題となる。この揺らぎの周波数成分は2kHz程度にまで及ぶことがわかっている。そのため、可動鏡機構の周波数応答も2kHz以上が必要となる。従来の2軸型のガルバノミラーでは、周波数応答限界は50から100Hz程度であったため、本発明を適用する効果が大きい。さらに、図2に示す可動鏡機構を試作して評価したところ所望の性能が出ることが確認され、重量も40%以上軽量化できることが確認された。   As described above, the movable mirror mechanism of the present invention improves the performance and reduces the size and weight of the optical communication device. In particular, it may be applied to an optical communication device for an artificial satellite in which severe conditions are imposed on weight and volume. When optical space communication is performed between the universe and the ground, fluctuations due to the atmosphere become a major problem. It is known that the frequency component of this fluctuation extends to about 2 kHz. Therefore, the frequency response of the movable mirror mechanism needs to be 2 kHz or more. In the conventional biaxial galvanometer mirror, since the frequency response limit is about 50 to 100 Hz, the effect of applying the present invention is great. Furthermore, when the movable mirror mechanism shown in FIG. 2 was prototyped and evaluated, it was confirmed that the desired performance was obtained, and it was confirmed that the weight could be reduced by 40% or more.

1 可動鏡機構
2 集光器
3 レンズ
4 ビームスプリッタ
5 レーザー
6 ハーフミラー
7 受光素子
8 位置検出素子
9 制御駆動回路
21 支持基板
22 引っ張り棒
23 圧電駆動素子
24 球体関節部材
25 位置決めナット
26 光反射鏡保持部材
27 光反射鏡
28 中央穴
29 球受け穴
30 位置決め管
31 板バネ
32 外側支持部材
33 内側支持部材
34 圧縮バネ
35 引っ張りバネ
36 ワイヤー
DESCRIPTION OF SYMBOLS 1 Movable mirror mechanism 2 Condenser 3 Lens 4 Beam splitter 5 Laser 6 Half mirror 7 Light receiving element 8 Position detection element 9 Control drive circuit 21 Support board 22 Pull rod 23 Piezoelectric drive element 24 Spherical joint member 25 Positioning nut 26 Light reflecting mirror Holding member 27 Light reflecting mirror 28 Center hole 29 Ball receiving hole 30 Positioning tube 31 Leaf spring 32 Outer support member 33 Inner support member 34 Compression spring 35 Tension spring 36 Wire

Claims (3)

周波数応答限界が2kHz以上であり、光通信装置の入力部または出力部に用いて通信光の光軸あわせを行なう可動鏡機構であって、
保持基板に固定された反射鏡と、
上記保持基板を動かして、その法線方向の方位を調整するアクチュエータと、
上記保持基板と枢結し上記アクチュエータと上記保持基板を連接させるための引っ張り手段と、
上記引っ張り手段と上記アクチュエータとを持設する支持基板と、
上記アクチュエータを制御する制御器と、
を備え、
上記制御器は、上記保持基板と上記引っ張り手段とを枢結する部分が不動点であるように上記アクチュエータを駆動するものであり、
上記引っ張り手段と上記保持基板とを枢結するバネ機構を備え、
上記バネ機構は、回転対称性を有する板バネであり、
上記引っ張り手段は、引っ張り棒または引っ張りワイヤーであり、
上記アクチュエータは、圧電駆動素子であり、
上記アクチュエータは3以上の複数であって、
さらに上記保持基板を持設する保持棒を含み、
上記アクチュエータと上記保持棒とは上記引っ張り手段の周りを取り囲むように配置され
上記アクチュエータには球体関節部材が回転可能に係合され、更に該球体関節部材には、上記保持基板が嵌合されていることを特徴とする可動鏡機構。
A movable mirror mechanism having a frequency response limit of 2 kHz or more and performing optical axis alignment of communication light using an input unit or an output unit of an optical communication device;
A reflector fixed to the holding substrate;
An actuator that moves the holding substrate and adjusts the direction of its normal direction;
A pulling means for pivotally connecting the holding substrate and connecting the actuator and the holding substrate;
A support substrate for holding the pulling means and the actuator;
A controller for controlling the actuator;
With
The controller state, and are not part of pivotally and the holding substrate and the pulling means for driving the actuator such that the fixed point,
A spring mechanism for pivotally connecting the pulling means and the holding substrate;
The spring mechanism, Ri Oh a leaf spring having a rotational symmetry,
The tension means, Ri pull rod or pull wire der,
The actuator is Ri Oh piezoelectric drive element,
The actuator is a plurality of three or more ,
Furthermore, including a holding rod for holding the holding substrate,
The actuator and the holding rod are arranged so as to surround the pulling means.
A movable mirror mechanism , wherein a spherical joint member is rotatably engaged with the actuator, and the holding substrate is fitted to the spherical joint member .
上記アクチュエータは、入力電圧に対する伸張量応答が線形である位置フィードバックコントロール付きのものであることを特徴とする請求項1に記載の可動鏡機構。The movable mirror mechanism according to claim 1, wherein the actuator has a position feedback control in which an expansion amount response to an input voltage is linear. 上記引っ張り手段と上記保持基板とを枢結する部分は、反射鏡を固定した保持基板の重心にあることを特徴とする請求項1あるいは2のいずれか1つに記載の可動鏡機構。 3. The movable mirror mechanism according to claim 1, wherein a portion connecting the pulling means and the holding substrate is located at the center of gravity of the holding substrate to which the reflecting mirror is fixed .
JP2009109061A 2009-04-28 2009-04-28 Movable mirror mechanism Expired - Fee Related JP5196582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109061A JP5196582B2 (en) 2009-04-28 2009-04-28 Movable mirror mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109061A JP5196582B2 (en) 2009-04-28 2009-04-28 Movable mirror mechanism

Publications (2)

Publication Number Publication Date
JP2010256772A JP2010256772A (en) 2010-11-11
JP5196582B2 true JP5196582B2 (en) 2013-05-15

Family

ID=43317725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109061A Expired - Fee Related JP5196582B2 (en) 2009-04-28 2009-04-28 Movable mirror mechanism

Country Status (1)

Country Link
JP (1) JP5196582B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017112517B3 (en) * 2017-06-07 2018-12-06 Physik Instrumente (Pi) Gmbh & Co. Kg locking device
CN107942472B (en) * 2017-12-07 2023-05-23 西安工业大学 Light beam phase compensating reflector of sparse aperture imaging system
CN109633602B (en) * 2018-11-30 2023-10-13 河南平原光电有限公司 Fine adjustment device of flat plate mechanism for light path butt joint
CN109814254A (en) * 2019-03-29 2019-05-28 李胜保 A kind of swinging method of laser scanning galvanometer device and scanning mirror

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931916A (en) * 1982-08-17 1984-02-21 Mitsubishi Electric Corp Mirror angle controller for laser
JPH09113793A (en) * 1995-10-17 1997-05-02 Mitsubishi Electric Corp Multiple reflection optical device and tilting mechanism for reflecting mirror
JP3471641B2 (en) * 1998-12-28 2003-12-02 株式会社堀場製作所 Particle size distribution measuring device using position adjustment mechanism of member mounting table and mirror mounting table
JP2000338430A (en) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp Mirror tilting mechanism

Also Published As

Publication number Publication date
JP2010256772A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP4550850B2 (en) Piezoelectric motor system
JP5184839B2 (en) Piezoelectric motor and camera device
JP4751471B2 (en) Method, apparatus and system for self-aligning components, subassemblies and assemblies
US9054636B2 (en) Micromechanical resonator arrangement
JP2020201494A (en) Positioning device for image stabilizer
US6844952B2 (en) Actuator-controlled mirror with Z-stop mechanism
CN108803008B (en) Displacement amplification mechanism, optical fiber scanning device and projector
US9759993B2 (en) Composite scanning mirror systems
CN105301762B (en) A kind of quick arrangement for deflecting of two dimension of low thickness containing two grades of amplifications and its deflection method
JP5196582B2 (en) Movable mirror mechanism
Zhang et al. Development of a low capacitance two-axis piezoelectric tilting mirror used for optical assisted micromanipulation
GB2573669A (en) Drive Device, Optical Instrument and Imaging Apparatus
JP2015070214A (en) Optical device, projection optical system, exposure equipment and method for manufacturing article
CN110095860B (en) Two-stage composite large-stroke high-precision quick reflector
RU181166U9 (en) Two-axis piezoelectric ceramic wavefront tilt corrector
EP2239792A1 (en) Positioning device and use of the same
JP4897016B2 (en) Piezoelectric motor
Mokbel et al. Research on the mechanical design of two-axis fast steering mirror for optical beam guidance
US7482734B2 (en) Piezoelectric/electrostrictive device and method of driving piezoelectric/electrostrictive device
US10558011B2 (en) Vibration actuator and electronic apparatus using vibration actuator
WO2020149108A1 (en) Optical device actuator and lens barrel provided with same
JP5447501B2 (en) Driving device and lens driving device
RU2606520C1 (en) Piezoelectric single-mirror two-axis optical deflector
JP7182980B2 (en) Vibration type actuator and device
WO2019181445A1 (en) Vibration-type actuator having hinge structure, and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees