JP5195313B2 - Electric overcurrent relay control method and thermal overcurrent relay - Google Patents

Electric overcurrent relay control method and thermal overcurrent relay Download PDF

Info

Publication number
JP5195313B2
JP5195313B2 JP2008285489A JP2008285489A JP5195313B2 JP 5195313 B2 JP5195313 B2 JP 5195313B2 JP 2008285489 A JP2008285489 A JP 2008285489A JP 2008285489 A JP2008285489 A JP 2008285489A JP 5195313 B2 JP5195313 B2 JP 5195313B2
Authority
JP
Japan
Prior art keywords
scale
maximum
overcurrent relay
thermal overcurrent
graduation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008285489A
Other languages
Japanese (ja)
Other versions
JP2010113947A (en
Inventor
秀明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008285489A priority Critical patent/JP5195313B2/en
Publication of JP2010113947A publication Critical patent/JP2010113947A/en
Application granted granted Critical
Publication of JP5195313B2 publication Critical patent/JP5195313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breakers (AREA)

Description

この発明は、モーターの過負荷保護などの目的で使用される熱動式過電流継電器の電調方法及び熱動式過電流継電器に関するものである。   The present invention relates to a method for adjusting a thermal overcurrent relay used for the purpose of overload protection of a motor and the like, and a thermal overcurrent relay.

熱動式過電流継電器は、ヒーター部に接続された主回路の電流値が一定値以上になると、ヒーター部の発熱によりバイメタルが湾曲することで機器内の反転機構が作動し、この反転機構により、同じく機器内に設けられている接点が開閉することで、その際の接点信号出力を用いて電磁接触器のコイル励磁を解く等の手段により、モーター焼損等の事故を未然に防ぐ保護機器である。設定される電流値の範囲は、内蔵されたバイメタルやヒーターおよび反転機構部の特性によって決定される。   In the thermal overcurrent relay, when the current value of the main circuit connected to the heater section exceeds a certain value, the reversing mechanism inside the device is activated by the bimetal bending due to the heat generated by the heater section. Similarly, a protective device that prevents accidents such as motor burnout by opening and closing the contacts provided in the device, and using means such as releasing the coil excitation of the magnetic contactor using the contact signal output at that time is there. The range of the current value to be set is determined by the characteristics of the built-in bimetal, heater, and reversing mechanism.

熱動式過電流継電器には、使用可能な電流の最小値から最大値までが表示され、これを整定電流の調整範囲と呼ぶ。また、最小値で最小目盛、最大値で最大目盛、最小値と最大値の概ね中央値で中央目盛がそれぞれ設けられ、各目盛の間はさらにいくつかの間隔に分割され、補間目盛が設けられる。一般的に熱動式過電流継電器は、外形(機種)が同じでヒーター部の仕様が異なり、整定電流の値および幅が異なる複数の仕様(定格)を品揃えしている。使用者は、モーター等の保護対象の仕様に合わせ、熱動式過電流継電器の機種および定格を選定する。   In the thermal overcurrent relay, the minimum value and the maximum value of the usable current are displayed, and this is called a settling current adjustment range. In addition, the minimum scale is the minimum scale, the maximum scale is the maximum scale, the center scale is the center of the minimum and maximum values, and each scale is further divided into several intervals, and the interpolation scale is provided. . Generally, thermal overcurrent relays have the same external shape (model), different heater specifications, and multiple specifications (rated) with different settling current values and widths. The user selects the model and rating of the thermal overcurrent relay according to the specifications of the protection target such as the motor.

上記各目盛における整定電流値を基準とする、過電流通電時の熱動式過電流継電器の動作特性が、IEC60947−4−1(JIS C8201−4−1)等の規格で規定されている。この規定の一節に、整定電流の105%の電流を2時間通じでも動作しないが、この状態(整定電流の105%の電流を通電した状態)で温度一定となったのち、引き続き通電電流を整定電流の120%にした場合には、2時間以内に熱動式過電流継電器が動作しなければならないという規定がある。   The operating characteristics of the thermal overcurrent relay at the time of overcurrent energization based on the settling current value at each scale are defined by standards such as IEC 60947-4-1 (JIS C8201-4-1). In this clause, 105% of the settling current does not operate for 2 hours, but after this temperature (the current of 105% of the settling current is energized), the temperature becomes constant and the settling current is continued. There is a stipulation that when over 120% of the current is reached, the thermal overcurrent relay must operate within 2 hours.

しかし、バイメタルの板厚・幅・長さ・湾曲定数・体積抵抗率・先端部の初期位置、ヒーターの線径・長さ・体積抵抗率、またはそれぞれの部品の寸法精度のばらつき等によって、熱動式過電流継電器の動作する時間および電流値は、同一機種における同一定格の中でも、熱動式過電流継電器の製品個々において異なってしまう。   However, due to variations in bimetal plate thickness, width, length, curvature constant, volume resistivity, initial position of the tip, wire diameter, length, volume resistivity of the heater, or dimensional accuracy of each component, etc. The operating time and current value of the dynamic overcurrent relay are different for each product of the thermal overcurrent relay, even within the same rating in the same model.

一方、熱動式過電流継電器は前記規格化された動作特性の範囲内で動作しなければならず、これを満たすように製造される必要があるため、熱動式過電流継電器の製品個々に動作特性を調整する必要がある。この調整作業を電調と呼ぶ。   On the other hand, a thermal overcurrent relay must operate within the range of the standardized operating characteristics and must be manufactured to meet this requirement. It is necessary to adjust the operating characteristics. This adjustment work is called electric adjustment.

例えば、特開2007−213991号公報には、従来の熱動式過電流継電器の電調方法が示されている。具体的には、はじめに強制トリップにより最小目盛位置と中央目盛位置を定め、次に一般的にバイメタルの変形量が通電電流の2乗に比例することを利用し、算出された最小目盛位置と中央目盛位置との角度を用いて、最小・中央・最大のそれぞれの電流値から、中央目盛位置と最大目盛位置との間の角度を算出する技術が開示されている。(特許文献1)   For example, Japanese Unexamined Patent Application Publication No. 2007-213991 discloses a conventional method for adjusting a thermal overcurrent relay. Specifically, the minimum graduation position and the central graduation position are first determined by forced trip, and then the calculated minimum graduation position and the central graduation position are generally utilized by utilizing the fact that the deformation amount of the bimetal is generally proportional to the square of the energization current. A technique for calculating an angle between a center graduation position and a maximum graduation position from each of current values of minimum, center, and maximum using an angle with the graduation position is disclosed. (Patent Document 1)

すなわち、バイメタルの変形量が近似的にn・Iで与えられる。ここでnは、バイメタルの湾曲定数や作動長や板圧およびバイメタルの抵抗値やヒーターの抵抗値から求められる定数であり、またIは、バイメタルへの通電電流量を示す。上述より、最小目盛における動作電流をI、中央目盛における動作電流をI、最大目盛における動作電流をIとしたとき、最小目盛位置、中央目盛位置、最大目盛位置の各目盛位置におけるバイメタルの変形量はそれぞれ、n・(I 、n・(I、n・(I となる。ここで、中央目盛におけるバイメタル変形量と最小目盛におけるバイメタル変形量との差n・(I−n・(Iが最小目盛と中央目盛間の角度に比例し、最大目盛におけるバイメタル変形量と中央目盛におけるバイメタル変形量との差n・(I−n・(Iが中央目盛と最大目盛間の角度に比例する。したがって、上記強制トリップにより求められる、最小目盛と中央目盛間の角度をθ1とし、中央目盛と最大目盛間の角度をθ2とすると、
θ2/θ1={(I−(I}/{(I−(I}・・・(式1)
となり、θ2を算出することができる。
特開2007−213991号公報
That is, the deformation amount of the bimetal is approximately given by n · I 2 . Here, n is a constant obtained from the bending constant, operating length, plate pressure, bimetal resistance value, and heater resistance value of the bimetal, and I represents the amount of current flowing to the bimetal. As described above, when the operating current at the minimum scale is I 1 , the operating current at the central scale is I 2 , and the operating current at the maximum scale is I 3 , the bimetal at each of the minimum scale position, the central scale position, and the maximum scale position. The deformation amounts are n · (I 1 ) 2 , n · (I 2 ) 2 , and n · (I 3 ) 2 , respectively. Here, the difference n · (I 2 ) 2 −n · (I 1 ) 2 between the amount of bimetal deformation at the center scale and the amount of bimetal deformation at the minimum scale is proportional to the angle between the minimum scale and the center scale, The difference n · (I 3 ) 2 −n · (I 2 ) 2 between the amount of bimetal deformation and the amount of bimetal deformation at the center scale is proportional to the angle between the center scale and the maximum scale. Therefore, when the angle between the minimum scale and the center scale, which is obtained by the forced trip, is θ1, and the angle between the center scale and the maximum scale is θ2,
θ2 / θ1 = {(I 3 ) 2 − (I 2 ) 2 } / {(I 2 ) 2 − (I 1 ) 2 } (Formula 1)
Thus, θ2 can be calculated.
JP 2007-213991 A

しかしながら上述の特許文献1の技術によれば、最小目盛と中央目盛間の角度θ1の熱動式過電流継電器製品個々のばらつきσに比べ、中央目盛と最大目盛間の角度θ2のばらつきがさらに大きくなるという課題があった。そのことにつき以下で詳細に説明する。   However, according to the technique of the above-mentioned patent document 1, the variation of the angle θ2 between the central scale and the maximum scale is further larger than the variation σ of the individual thermal overcurrent relay products of the angle θ1 between the minimum scale and the central scale. There was a problem of becoming. This will be described in detail below.

ここで、最小目盛位置の狙い値をθLおよびそのばらつきをa、中央目盛位置の狙い値をθMおよびそのばらつきをbとし、最小目盛位置はθL±a、中央目盛位置はθM±bで与えられるとすると、最小目盛と中央目盛間の角度θ1および熱動式過電流継電器製品個々のばらつきσは、下式で与えられる。
θ1=(θM−θL)±(a+b)・・・(式2)
σ =a+b ・・・(式3)
仮に最小目盛位置および中央目盛位置が完璧に狙い通りの動作特性が得られる位置となるように電調することができたのであれば、θ1=θM−θLでありσ=0である。しかし実際には、上述の通り熱動式過電流継電器の動作特性は、熱動式過電流継電器製品個々において異なるため、最小目盛および中央目盛どちらにおいても、狙いの位置から多少なりとも外れるため、σは少なからず存在することになる。
Here, the aim value of the minimum scale position is θL and its variation is a, the aim value of the center scale position is θM and its dispersion is b, the minimum scale position is given by θL ± a, and the center scale position is given by θM ± b. Then, the angle θ1 between the minimum scale and the center scale and the variation σ of each thermal overcurrent relay product are given by the following expressions.
θ1 = (θM−θL) ± (a + b) (Expression 2)
σ = a + b (Formula 3)
If electrical adjustment can be made so that the minimum graduation position and the central graduation position are perfectly at the position where the desired operating characteristics can be obtained, θ1 = θM−θL and σ = 0. However, in actuality, as described above, the operating characteristics of the thermal overcurrent relay are different in each thermal overcurrent relay product, and therefore, in both the minimum scale and the center scale, it slightly deviates from the target position. There are not a few σ.

ここで、最大目盛位置についても熱動式過電流継電器製品個々の動作特性に応じた位置を定めることの出来る電調方法を採用すれば、最大目盛位置の狙い値をθHおよびそのばらつきをcとし、最大目盛位置はθH±cで与えられる時、中央目盛と最大目盛間の角度θ2は、次式で与えられる。
θ2=(θH−θM)±(b+c) ・・・(式4)
しかし、3点の目盛位置を個々に調整する方法においては、電調作業が煩雑になったり、特に最大電流側の電調作業時には大電流を流す必要があるために、電調作業の用いる装置の構造が複雑になるという問題点があることから、上述の特許文献1に記載されている電調方法、すなわち最小目盛および中央目盛の両目盛位置から3点目の最大目盛位置を算出する技術が用いられてきた。
Here, with regard to the maximum graduation position, if an electrical adjustment method that can determine the position according to the operating characteristics of each thermal overcurrent relay product is adopted, the target value of the maximum graduation position is θH and its variation is c. When the maximum scale position is given by θH ± c, the angle θ2 between the center scale and the maximum scale is given by the following equation.
θ2 = (θH−θM) ± (b + c) (Formula 4)
However, in the method of individually adjusting the graduation positions at the three points, the electric adjustment work becomes complicated, and it is necessary to flow a large current particularly during electric adjustment work on the maximum current side. Therefore, the electric adjustment method described in the above-mentioned Patent Document 1, that is, a technique for calculating the third maximum scale position from both of the minimum scale and the center scale. Has been used.

この従来の技術によれば、上述の式1より{(I−(I}/{(I−(I}=αとすると、θ2は次式で与えられる。
θ2=α・θ1 ・・・(式5)
ここで、式2および式3により、式5は次式のようになる。
θ2=α・(θM―θL)±α・σ ・・・(式6)
式6により、θ1では±σであった目盛位置のばらつきが、θ2では±α・σとα倍になることがわかる。なお、式1で与えられるαは、Iが使用可能な最小電流Iと最大電流Iの概中央値であることから、αは次式に示す関係にある。
α>1 ・・・(式7)
例えば、使用可能な電流の最小値が2.8A、最大値が4.4Aの熱動式過電流継電器の場合、中央値は3.6Aとなる。ここで式1よりα=1.25>1となる。表1に熱動式過電流継電器の定格に対するαの値の一例を示す。
According to this conventional technique, when {(I 3 ) 2 − (I 2 ) 2 } / {(I 2 ) 2 − (I 1 ) 2 } = α is obtained from the above equation 1, θ2 is expressed by the following equation: Given.
θ2 = α · θ1 (Formula 5)
Here, from the formulas 2 and 3, the formula 5 becomes the following formula.
θ2 = α · (θM−θL) ± α · σ (Formula 6)
From Equation 6, it can be seen that the variation of the graduation position, which was ± σ at θ1, is α times as large as ± α · σ at θ2. Note that alpha is given by Equation 1, since the I 2 is a schematic median of the minimum current I 1 and the maximum current I 3 available, alpha is the relationship shown in the following equation.
α> 1 (Expression 7)
For example, in the case of a thermal overcurrent relay having a minimum usable current value of 2.8 A and a maximum value of 4.4 A, the median value is 3.6 A. Here, α = 1.25> 1 from Equation 1. Table 1 shows an example of the value of α with respect to the rating of the thermal overcurrent relay.

Figure 0005195313
Figure 0005195313

一般的に、バイメタルの変形量が小さい位置では、周囲温度による影響や反転機構部からの作動圧により変形が押し戻される影響などが大きいため、バイメタルの変形量が小さい位置で動作する最小目盛位置側の方が、バイメタルの変形量が大きい位置で動作する最大目盛位置側に比べて、狙い位置からのばらつきが大きくなる傾向にあり、次式が成り立つ。
a>b>c ・・・(式8)
よって、
α・σ=α・a+α・b>b+c ・・・(式9)
となり、上述の特許文献1に記載されている技術を用いると、最小目盛位置、中央目盛位置、最大目盛位置の3点で電調を実施する場合よりも、ばらつきが大きくなってしまう。
Generally, at the position where the amount of deformation of the bimetal is small, the influence of the ambient temperature and the influence of the deformation being pushed back by the operating pressure from the reversing mechanism are large. Compared to the maximum scale position side that operates at a position where the amount of deformation of the bimetal is large, there is a tendency that the variation from the target position becomes larger, and the following equation is established.
a>b> c (Formula 8)
Therefore,
α · σ = α · a + α · b> b + c (Equation 9)
Thus, when the technique described in the above-mentioned Patent Document 1 is used, the variation becomes larger than when electric adjustment is performed at three points of the minimum scale position, the center scale position, and the maximum scale position.

従って、最小目盛位置および中央目盛位置の2点のみで電調を実施する場合では、最小目盛位置、中央目盛位置、最大目盛位置の3点で電調を実施する場合に比べて、中央目盛位置と最大目盛位置の間の角度のばらつきが大きくなり、強制トリップにより精度よく最小目盛位置および中央目盛位置を決定しても、最大目盛側において狙い位置に対して精度よく最大目盛位置を得られ難いという問題があった。   Therefore, in the case where electric adjustment is performed only at two points of the minimum scale position and the central scale position, the central scale position is compared with the case where electric adjustment is performed at the minimum scale position, the central scale position, and the maximum scale position. And the maximum graduation position has a large angle variation, and even if the minimum graduation position and the central graduation position are accurately determined by forced trip, it is difficult to obtain the maximum graduation position with high accuracy relative to the target position on the maximum graduation side. There was a problem.

また、中央目盛と最大目盛間の角度θ2に含まれるばらつきが大きいため、θ2が本来の狙い値を超えて大きくなり、結果として整定電流の調整範囲角度(=θ1+θ2)が調整機構部におけるツマミの可動範囲を超えてしまい、最小目盛または最大目盛、もしくはそのどちらにおいても目盛位置まで調整することができない状態、すなわち調整不能状態に陥ってしまう場合があるという課題があった。   Further, since the variation included in the angle θ2 between the central scale and the maximum scale is large, θ2 becomes larger than the original target value, and as a result, the adjustment range angle (= θ1 + θ2) of the settling current is increased by the knob in the adjustment mechanism section. There is a problem that the movable range may be exceeded, and the minimum scale or the maximum scale, or both of them, may not be able to be adjusted to the scale position, that is, may not be adjusted.

上述の通りバイメタルの変形量は通電電流の2乗に比例するため、通常は最小目盛位置と中央目盛位置間の角度θ1よりも、バイメタルへの通電電流が多くなる、中央目盛位置と最大目盛位置間の角度θ2の方が角度は広くなる。さらに上述の特許文献1に記載されている電調方法では、中央目盛位置と最大目盛位置間の角度θ2に上述の通り大きなばらつきα・σが含まれるため、θ2が過大に設定されてしまうことがあった。また、従来の熱動式過電流継電器においては、中央目盛位置から最小目盛側の可動限界までの角度と最大目盛側の可動限界の角度が等しい構造となっていた。以上のことより、中央目盛位置を基準として各目盛位置を設定する場合に、最小目盛位置を設定する際は、ツマミの最小目盛方向可動限界までの余裕度が大きいのに対して、最大目盛位置を設定する際は、中央目盛位置と最大目盛位置間の角度のバラツキが大きいために、結果的にツマミの最大目盛方向可動限界までの余裕度が小さくなる。そのことにより、最大目盛位置までツマミを回しきる前に、調整機構部においてツマミがケースに当接する等して可動限界に達してしまい、熱動式過電流継電器が調整不能に陥りやすいという問題があった。   As described above, since the deformation amount of the bimetal is proportional to the square of the energization current, normally, the central graduation position and the maximum graduation position where the energization current to the bimetal is larger than the angle θ1 between the minimum graduation position and the central graduation position. The angle θ2 in the middle is wider. Furthermore, in the electric tuning method described in Patent Document 1 described above, the angle θ2 between the center graduation position and the maximum graduation position includes the large variation α · σ as described above, and therefore θ2 is set excessively. was there. In the conventional thermal overcurrent relay, the angle from the central scale position to the movable limit on the minimum scale side is equal to the angle of the movable limit on the maximum scale side. From the above, when setting each scale position with the center scale position as a reference, when setting the minimum scale position, the margin to the minimum scale direction movable limit of the knob is large, whereas the maximum scale position Is set, the angle variation between the center graduation position and the maximum graduation position is large, and as a result, the margin to the maximum graduation direction movable limit of the knob is small. As a result, before the knob is fully turned to the maximum scale position, the knob reaches the movable limit by contacting the case in the adjustment mechanism, and the thermal overcurrent relay is likely to fall out of adjustment. there were.

上述の最大目盛位置までツマミを回しきる前に調整機構部におけるツマミが可動限界となってしまう問題を回避すべく、中央目盛位置から最大目盛方向調整側の可動限界までの調整範囲を広く確保するように構成すると、逆に中央目盛位置から最小目盛方向調整側の可動限界までの調整可能範囲が狭くなってしまう。従って、中央目盛を基準として最小目盛を設定する際に、最小目盛位置までツマミを回しきる前に調整機構部におけるツマミがケースに当接する等して可動限界となってしまい、熱動式過電流継電器が調整不能に陥りやすいという問題があった。   Before turning the knob all the way to the maximum graduation position, ensure a wide adjustment range from the central graduation position to the maximum graduation direction adjustment limit in order to avoid the problem that the knob in the adjustment mechanism will become the movement limit. If comprised in this way, conversely, the adjustable range from the center scale position to the movable limit on the minimum scale direction adjustment side will be narrow. Therefore, when setting the minimum scale on the basis of the central scale, before the knob is fully turned to the minimum scale position, the knob in the adjustment mechanism part comes into contact with the case and becomes a movable limit. There was a problem that the relay could easily fall out of adjustment.

さらに、調整機構部のツマミを回す際には、ツマミが回動しながら、ケースと相対する面に対して垂直方向にも移動する。また、このツマミには、熱動式過電流継電器の生産工程においてツマミをパーツフィーダに通す際、ツマミが回転することなくパーツフィーダ内を滞りなく移動できるように、パーツフィーダ内の溝と当接する二面が設けられている。しかしながらこれらの面の高さが高いこと、及び上述のツマミが垂直方向に移動するために、整定電流の調整範囲角度(=θ1+θ2)が大きいと、最小目盛位置もしくは最大目盛位置までツマミを回しきる前に、上述のツマミに設けられた面がケース等と当接することにより、調整機構部が可動限界となり調整不能状態に陥ってしまうという問題があった。   Furthermore, when turning the knob of the adjustment mechanism section, the knob also moves in a direction perpendicular to the surface facing the case while rotating. In addition, this knob comes into contact with the groove in the parts feeder so that the knob can move smoothly in the parts feeder without rotating when passing the knob through the parts feeder in the production process of the thermal overcurrent relay. Two sides are provided. However, since the height of these surfaces is high and the above-mentioned knob moves in the vertical direction, if the adjustment current angle of the settling current (= θ1 + θ2) is large, the knob can be rotated to the minimum scale position or the maximum scale position. Previously, when the surface provided on the above-mentioned knob comes into contact with the case or the like, there is a problem that the adjustment mechanism part becomes a movable limit and falls into an unadjustable state.

本発明は上述の問題を鑑みてなされたものであり、最小目盛位置および中央目盛位置の2点でのみ電調を実施した場合でも、最小目盛位置、中央目盛位置だけでなく、最大目盛位置の各位置においても、ばらつきの少ない調整精度を確保する熱動式過電流継電器の電調方法、および最小目盛位置から最大目盛位置に至るまでの整定電流調整範囲において、調整不能状態に陥りにくい熱動式過電流継電器を提供することを目的とする。   The present invention has been made in view of the above-described problem, and even when electrical adjustment is performed only at two points of the minimum scale position and the center scale position, not only the minimum scale position and the center scale position but also the maximum scale position. Thermal control of thermal overcurrent relays that ensure adjustment accuracy with little variation at each position, and thermal operation that is difficult to fall into an unadjustable state in the settling current adjustment range from the minimum graduation position to the maximum graduation position An object is to provide an overcurrent relay.

この発明に係る熱動式過電流継電器の電調方法は、主回路電流に応動して湾曲するバイメタルと、このバイメタルの変位を伝達する連動板と、連動板との当接によりトリップ動作し接点の開閉状態を反転させる反転機構部と、反転機構部を移動させ接点の開閉状態が反転する位置を調整することができる調整機構部と、熱動式過電流継電器本体に表示され整定電流の最小値、中央値、最大値をそれぞれ示す、最小目盛、中央目盛、最大目盛を備えた目盛表示部とを備えた熱動式過電流継電器における、規格で定められた動作特性の範囲内で動作するように、熱動式過電流継電器個々の動作特性を調整する熱動式過電流継電器の電調方法において、前記最小目盛位置と中央目盛位置の電調作業が完了した所定数の熱動式過電流継電器を用いて、前記整定電流の最大値の105%から120%の範囲となる電流を供給しつつ前記調整機構部の角度を調整し、前記熱動式過電流継電器がトリップ動作する前記調整機構部の中央目盛位置から最大目盛位置までの角度をサンプル角度として実験的に求め、これら所定数の熱動式過電流継電器の中央目盛位置から最大目盛位置までのサンプル角度の平均値を、同一定格における中央目盛位置から最大目盛位置までの角度としてあらかじめ設定しておく第一の工程と、前記最小目盛位置、中央目盛位置を熱動式過電流継電器の動作特性により定める第二の工程と、前記第二の工程により定められた中央目盛位置から、前記第一の工程によりあらかじめ設定さられた同一定格における最大目盛位置までの角度を与えることにより、最大目盛位置を定める第三の工程とを有することを特徴とする。 The method of controlling the thermal overcurrent relay according to the present invention includes a bimetal that bends in response to a main circuit current, an interlocking plate that transmits the displacement of the bimetal, and a contact that contacts the interlocking plate to perform a trip operation. The reversing mechanism that reverses the open / close state of the switch, the adjustment mechanism that can move the reversing mechanism and adjust the position where the open / close state of the contact is reversed, and the minimum settling current displayed on the thermal overcurrent relay body Operates within the range of operating characteristics defined by the standard in a thermal overcurrent relay with a minimum scale, a central scale, and a scale display with a maximum scale, each indicating the value, median, and maximum As described above, in the electrical adjustment method of the thermal overcurrent relay that adjusts the individual operating characteristics of the thermal overcurrent relay, a predetermined number of thermal overcurrent relays that have completed electrical adjustment work at the minimum scale position and the central scale position. Using current relay, Adjusting the angle of the adjustment mechanism while supplying a current in the range of 105% to 120% of the maximum value of the settling current, and the central scale position of the adjustment mechanism where the thermal overcurrent relay trips the angle of up to scale positions experimentally determined as a sample angles, the mean value of the sample angle from the center of the scale positions of a predetermined number of thermally activated overcurrent relay to full scale position, the center of the scale positions on the same rating from A first step that is set in advance as an angle to the maximum graduation position, a second step that determines the minimum graduation position and the central graduation position by operating characteristics of the thermal overcurrent relay, and the second step. The maximum graduation position is determined by giving an angle from the determined central graduation position to the maximum graduation position at the same rating preset in the first step. And having a third step that.

また、主回路電流に応動して湾曲するバイメタルと、このバイメタルの変位を伝達する連動板と、連動板との当接によりトリップ動作し接点の開閉状態を反転させる反転機構部と、反転機構部を移動させ接点の開閉状態が反転する位置を調整することができ、最小目盛方向調整側と最大目盛方向調整側それぞれに可動限界を備えた調整機構部と、製品本体に表示され整定電流の最小値、中央値、最大値をそれぞれ示す、最小目盛、中央目盛、最大目盛を備えた目盛表示部とを備えた熱動式過電流継電器において、前記調整機構部のツマミのケースに相対する面と、熱動式過電流継電器本体のケースの前記ツマミに相対する面にそれぞれ突起を備え、両突起が互いに当接することにより調整機構部の可動限界が、前記中央目盛の位置から最小目盛方向調整側の調整機構部可動限界までの回動量よりも、中央目盛位置から最大目盛方向調整側の調整機構部可動限界までの回動量の方が広くなるように定められ、且つ、前記最大目盛方向側可動限界は、最小目盛位置と中央目盛位置の電調作業が完了した所定数の熱動式過電流継電器を用いてあらかじめ機種定格毎に決定された中央目盛位置から最大目盛位置までの角度に、誤差を考慮して設定されることを特徴とする。 A bimetal that bends in response to the main circuit current; an interlocking plate that transmits the displacement of the bimetal; an inversion mechanism that reverses the open / closed state of the contact by tripping by contact with the interlocking plate; To adjust the position where the open / closed state of the contact is reversed, the adjustment mechanism part with the movable limit on each of the minimum scale direction adjustment side and the maximum scale direction adjustment side, and the minimum settling current displayed on the product body In a thermal overcurrent relay having a scale, a center scale, and a scale display with a maximum scale, each indicating a value, a median value, and a maximum value, a surface facing the knob case of the adjustment mechanism section; comprises a projection respectively on opposite surfaces to the knob of thermally activated overcurrent relay main body of the case, the movable limit of the adjusting mechanism by both projections abut with each other, the minimum counted from the position of the central scale Than the pivot amount of up adjusting mechanism movable limit of the direction adjusting side, defined as toward the rotation amount from the center of the scale positions to the adjusting mechanism movable limit of the full scale direction adjustment side is wide, and the full scale The direction-side movable limit is the angle from the center scale position to the maximum scale position that is determined in advance for each model rating using a predetermined number of thermal overcurrent relays that have been electrically controlled at the minimum and center scale positions. Further, it is characterized in that it is set in consideration of an error .

また、前記ツマミには、熱動式過電流継電器の生産工程にて該ツマミを滞りなく装着するために設けた、互いに平行な二面が形成され、それらの面の長さは該ツマミの半径以上の長さであり、かつ、該ツマミを最小目盛側可動限界と最大目盛側可動限界との間で回動する際、該ツマミに設けた二面の先端位置が、前記調整機構部の可動限界を定めるケースに設けられた突起と所定間隙離間していることを特徴とする。   In addition, the knob is formed with two parallel planes, which are provided in order to mount the knob without any delay in the production process of the thermal overcurrent relay, and the length of the faces is the radius of the knob. When the knob is rotated between the minimum scale side movable limit and the maximum scale side movable limit, the tip positions of the two surfaces provided on the knob are the movable lengths of the adjusting mechanism section. It is characterized in that it is spaced apart from a protrusion provided on the case for defining the limit by a predetermined gap.

以上のように本発明に記載の熱動式過電流継電器の電調方法によれば、あらかじめ実施する電調により精度よく最小目盛位置および中央目盛位置を決定すれば、最小目盛位置・中央目盛位置に加えて、中央目盛位置を基準として上述の通り機種定格毎に定められた一定角度離れた位置にある最大目盛位置においても、従来技術と同等の動作精度を維持しつつ、調整ばらつきを抑制することができる。   As described above, according to the electrical adjustment method of the thermal overcurrent relay described in the present invention, if the minimum scale position and the central scale position are accurately determined by electrical adjustment performed in advance, the minimum scale position and the central scale position In addition, even at the maximum graduation position at a certain angular distance determined for each model rating as described above with reference to the central graduation position, the adjustment variation is suppressed while maintaining the same operation accuracy as the conventional technology. be able to.

また、本発明に記載の熱動式過電流継電器によれば、最小目盛から最大目盛に至るまでの整定電流調整範囲において、調整不能状態になりにくく、特に最大目盛位置までは確実に調整可能な熱動式過電流継電器を提供することができる。   Further, according to the thermal overcurrent relay described in the present invention, in the settling current adjustment range from the minimum graduation to the maximum graduation, it is difficult to be in an unadjustable state, and particularly the maximum graduation position can be reliably adjusted. A thermal overcurrent relay can be provided.

さらに、ツマミのケースに相対する面に設けた二面の先端位置が、ツマミを最小目盛側可動限界から最大目盛側可動限界まで回動させる間においては、ツマミの可動限界を定めるケース突起に所定間隙離間しているように構成されているため、調整不能状態になりにくい、熱動式過電流継電器を提供することができる。   Furthermore, while the tip positions of the two surfaces provided on the surface facing the knob case rotate the knob from the minimum graduation side movable limit to the maximum graduation side movable limit, a predetermined value is provided on the case protrusion that defines the movable limit of the knob. Since it is configured to be separated from the gap, it is possible to provide a thermal overcurrent relay that is unlikely to be adjusted.

実施の形態1.
この発明による熱動式過電流継電器の電調方法及び熱動式過電流継電器の一実施形態を、図面に基づいて説明する。なお、この実施の形態によりこの発明が限定されるものではない。
Embodiment 1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a thermal overcurrent relay electric conditioning method and a thermal overcurrent relay according to the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1(a)から図1(e)は、この熱動式過電流継電器の構成図であり、図1(a)は熱動式過電流継電器のカバーを取り外して正面から見た場合の内部構造図、図1(b)は図1(a)の断面A−Aに沿う矢視図、図1(c)は熱動式過電流継電器の左側面図、図1(d)は熱動式過電流継電器の背面図、図1(e)は熱動式過電流継電器の上面図である。また、図2は図1(a)の拡大図である。   FIG. 1A to FIG. 1E are configuration diagrams of this thermal overcurrent relay, and FIG. 1A shows the interior when the cover of the thermal overcurrent relay is removed and viewed from the front. FIG. 1 (b) is a structural view, FIG. 1 (b) is an arrow view along the section AA in FIG. 1 (a), FIG. 1 (c) is a left side view of the thermal overcurrent relay, and FIG. FIG. 1E is a top view of the thermal overcurrent relay. FIG. 2 is an enlarged view of FIG.

図1(a)および図2において、熱動式過電流継電器は、各部品が収められているケース1と、ケース1を覆うカバー2と、主回路電流に応動して湾曲するバイメタル3と、バイメタル3に巻回され主回路に電流が通電されることにより発熱するヒーター4と、バイメタル3の変位を伝達する連動板5と、連動板5より加えられる力で接点の開閉状態を反転させる反転機構部20とを有している。ここで、反転機構部20は、温度補償バイメタル6と反転板7そして引きばね8およびそれらを支持する反転支持部材9により構成されている。そして、連動板5は、バイメタル3の先端に当接しバイメタル3の湾曲変位を反転機構部20の温度補償バイメタル6に伝える。   1 (a) and 2, a thermal overcurrent relay includes a case 1 in which each component is housed, a cover 2 that covers the case 1, a bimetal 3 that is curved in response to a main circuit current, A heater 4 that is wound around the bimetal 3 and generates heat when a current is supplied to the main circuit, an interlocking plate 5 that transmits the displacement of the bimetal 3, and a reversal that reverses the open / closed state of the contact by the force applied from the interlocking plate 5 And a mechanism unit 20. Here, the reversing mechanism 20 is constituted by the temperature compensating bimetal 6, the reversing plate 7, the tension spring 8, and the reversing support member 9 that supports them. Then, the interlocking plate 5 contacts the tip of the bimetal 3 and transmits the bending displacement of the bimetal 3 to the temperature compensation bimetal 6 of the reversing mechanism unit 20.

熱動式過電流継電器は、さらに、反転板7に設けられた常閉可動接点7aと、常閉固定接点10aが設けられた常閉固定接触子10と、螺旋回転することで図2の上下方向に変位し反転機構支持部材9を回動させるための調整ねじ11と、調整可能な範囲の電流値および目盛が印字された状態で調整ねじ11にかぶせられるツマミ12と、反転機構部20の動作に応じて回転する回転レバー13と、回転レバー13に持ち上げられることで湾曲変形する常開可動接触子14と、常開可動接触子14に設けられた常開可動接点14aと、常開固定接点15aが設けられた常開固定接触子15と、反転機構部20をトリップ状態から定常状態へと戻すためのリセットバー16と、リセットの方法を手動リセットまたは自動リセットに切り換えるための切換板17と、反転機構支持部材9に押圧力を加える板ばね18と、リセットバー16に付勢力を与えるリセットばね19を有している。ここで、調整ねじ11とツマミ12とおよび反転機構支持部材9および板ばね18は、接点の開閉状態が反転する位置を調整する調整機構部21を構成している。   The thermal overcurrent relay further includes a normally closed movable contact 7a provided on the reversing plate 7 and a normally closed fixed contact 10 provided with a normally closed fixed contact 10a. An adjustment screw 11 for rotating the reversing mechanism support member 9 in a direction, a knob 12 that is put on the adjusting screw 11 in a state where a current value and a scale within an adjustable range are printed, and a reversing mechanism portion 20 A rotating lever 13 that rotates according to the operation, a normally-open movable contact 14 that is curved and deformed by being lifted by the rotating lever 13, a normally-open movable contact 14a provided on the normally-open movable contact 14, and a normally-open fixed The normally open fixed contact 15 provided with the contact 15a, the reset bar 16 for returning the reversing mechanism unit 20 from the trip state to the steady state, and the reset method are switched to manual reset or automatic reset. And the switching plate 17, a leaf spring 18 applying a pressing force to the reversing mechanism support member 9 has a reset spring 19 which gives a biasing force to the reset bar 16. Here, the adjustment screw 11, the knob 12, the reversing mechanism support member 9, and the leaf spring 18 constitute an adjusting mechanism portion 21 that adjusts the position where the contact open / close state is reversed.

まず、熱動式過電流継電器の基本的な動作について述べる。モーター等の負荷に何らかの異常が生じ主回路に通電されている電流値が大きくなると、ヒーター4の発熱量も大きくなる。これにより、バイメタル3が湾曲しその先端位置が変位する。この変位によって、連動板5が図2の左方向へと移動する。そして、その移動量が一定量に達すると温度補償バイメタル6の下端部6bと当接する。そこからさらに連動板5が図2の左方向へ移動すると、温度補償バイメタル6は連動板5に下端部6bを押圧されることによって反転機構支持部材9に設けられた温度補償バイメタル6の支点部9aを支点として図2の時計方向へと回動する。   First, the basic operation of the thermal overcurrent relay will be described. If some abnormality occurs in a load such as a motor and the current value energized in the main circuit increases, the amount of heat generated by the heater 4 also increases. As a result, the bimetal 3 is bent and its tip position is displaced. Due to this displacement, the interlocking plate 5 moves to the left in FIG. When the amount of movement reaches a certain amount, the lower end 6b of the temperature compensation bimetal 6 comes into contact. When the interlocking plate 5 further moves to the left in FIG. 2, the temperature compensating bimetal 6 is pressed against the lower end portion 6 b by the interlocking plate 5, and the fulcrum portion of the temperature compensating bimetal 6 provided on the reversing mechanism support member 9. It rotates clockwise in FIG. 2 using 9a as a fulcrum.

そして、温度補償バイメタル6に設けられた引きばね8の引掛け部6aが、反転板7に設けられた引きばね8の引掛け部7bと反転機構支持部材9に設けられた反転板7の支点部9bとを結ぶ直線よりも図2における右側に位置したとき、引きばね8により反転板7に生じる力の方向が図2の反時計方向から時計方向へと反転するために、反転板7は支点部9bを軸に図2における時計方向へと回動を始める。反転板7が図2の時計方向へ回動することで、反転板7に設けられた常閉可動接点7aと常閉固定接触子10に設けられた常閉固定接点10aが開成する。つまり、温度補償バイメタル6、反転板7、引きばね8、および反転機構支持部材9から構成される反転機構部20は、トグル機構の動作をする。   The hook 6 a of the pull spring 8 provided on the temperature compensating bimetal 6 is supported by the hook 7 b of the pull spring 8 provided on the reverse plate 7 and the fulcrum of the reverse plate 7 provided on the reverse mechanism support member 9. Since the direction of the force generated in the reversing plate 7 by the tension spring 8 is reversed from the counterclockwise direction in FIG. 2 to the clockwise direction when positioned on the right side in FIG. 2 with respect to the straight line connecting the portion 9b, the reversing plate 7 The rotation starts in the clockwise direction in FIG. 2 with the fulcrum 9b as an axis. When the reversing plate 7 is rotated in the clockwise direction in FIG. 2, the normally closed movable contact 7 a provided on the reversing plate 7 and the normally closed fixed contact 10 a provided on the normally closed fixed contact 10 are opened. That is, the reversing mechanism unit 20 including the temperature compensating bimetal 6, the reversing plate 7, the tension spring 8, and the reversing mechanism support member 9 operates as a toggle mechanism.

また、反転板7が回転レバー13を押圧することで、回転レバー13はケース1に設けられた突出軸1aを中心として図2の反時計方向へと回転し、常開可動接触子14は回転レバー13の突出片13aによって持ち上げられ、常開可動接触子14に設けられた常開可動接点14aと常開固定接触子15に設けられた常開固定接点15aが閉成する。この一連の動作をトリップと呼び、トリップ動作によって接点の開閉状態が反転した状態(すなわち常閉接点が開き且つ常開接点が閉じた状態)をトリップ状態と呼ぶ。なお、トリップ状態においては、常開可動接触子14および常開固定接触子15は、回転レバー13によって図2の上方向に持ち上げられることで湾曲変形し、回転レバー13の回転が止まった位置で安定している。   Further, when the reversing plate 7 presses the rotation lever 13, the rotation lever 13 rotates about the protruding shaft 1a provided in the case 1 in the counterclockwise direction of FIG. 2, and the normally open movable contact 14 rotates. The normally open movable contact 14a provided on the normally open movable contact 14 and the normally open fixed contact 15a provided on the normally open fixed contact 15 are closed by being lifted by the protruding piece 13a of the lever 13. This series of operations is referred to as a trip, and a state in which the contact open / close state is reversed by the trip operation (that is, a state in which the normally closed contact is open and the normally open contact is closed) is referred to as a trip state. In the trip state, the normally open movable contact 14 and the normally open fixed contact 15 are bent and deformed by being lifted upward by the rotation lever 13 in FIG. 2, and the rotation of the rotation lever 13 is stopped. stable.

リセットバー16は、リセットばね19により図2の上方向に付勢力を与えられた状態で、ケース1に組み付けられる。ここで、トリップ状態から、モータ等の負荷が異常状態から回復したことにより、接点の開閉状態を定常状態(すなわち常閉接点が閉じ且つ常開接点が開いた状態)へとリセットされるためには、上述のリセットばね16の付勢力に抗してリセットバー16を図2の下方向へ押圧することにより回転レバー13を図2の時計方向へ回転させる。そのことにより、反転板7が回転レバー13に押圧され図2の反時計方向へと回動し、反転板7の角度がリセットラインである反転機構支持部材9に設けられた反転板7の支点部9bと温度補償バイメタル6の支点部9aとを結ぶ直線よりも図2における左側に倒れ込む。これにより、引きばね8により反転板7に生じる力の方向が再び図2の時計方向から反時計方向へと復転し、リセットすることができる。   The reset bar 16 is assembled to the case 1 with an urging force applied upward in FIG. Here, because the load of the motor or the like has recovered from the abnormal state from the trip state, the contact open / close state is reset to the steady state (that is, the normally closed contact is closed and the normally open contact is opened). 2 rotates the rotating lever 13 clockwise in FIG. 2 by pressing the reset bar 16 downward in FIG. 2 against the urging force of the reset spring 16 described above. As a result, the reversing plate 7 is pressed by the rotating lever 13 and rotates counterclockwise in FIG. 2 falls on the left side in FIG. 2 with respect to a straight line connecting the portion 9b and the fulcrum portion 9a of the temperature compensation bimetal 6. As a result, the direction of the force generated in the reversing plate 7 by the tension spring 8 is reversed again from the clockwise direction in FIG. 2 and can be reset.

ここで、熱動式過電流継電器において、上述のリセットをする方法としては手動リセットと自動リセットの2種類の方法がある。すなわち、切換板17を切換板17に設けられた軸17aを中心として、図2の反時計方向へと回動させることにより、リセットバー16を使用者が押圧してリセットさせる手動リセット設定から、リセットバー16を使用者が押圧する必要なくリセットする自動リセット設定へとリセット方法を変更することができる。   Here, in the thermal overcurrent relay, there are two types of methods for performing the above-described reset, manual reset and automatic reset. That is, from the manual reset setting in which the reset bar 16 is pressed and reset by the user by rotating the switching plate 17 about the shaft 17a provided on the switching plate 17 in the counterclockwise direction of FIG. The reset method can be changed to an automatic reset setting that resets the reset bar 16 without requiring the user to press the reset bar 16.

切換板17により自動リセット設定となると、切換板17の突出片17bによって常開固定接触子15が押し下げられ、常開固定接点15aと常開可動接点14aとの間の接点ギャップが小さくなると同時に回転レバー13の反時計方向の回転量が抑制される。このため、反転板7に設けられた引きばね8の引掛け部7bのトリップ状態における位置が、リセットラインである反転機構支持部材9に設けられた反転板7の支点部9bと、温度補償バイメタル6の支点部9aとを結ぶ直線よりも図2の右側へ倒れ込むことがないように構成される。そのことにより、負荷の異常が回復しヒーター4の発熱が抑えられてバイメタル3の湾曲がなくなり、連動板5が図2の右方向に移動することで温度補償バイメタル6に連動板5からの力が加わらなくなると、自動的に反転機構部20が定常状態へと戻る。   When the automatic reset is set by the switching plate 17, the normally open fixed contact 15 is pushed down by the protruding piece 17b of the switching plate 17, and the contact gap between the normally open fixed contact 15a and the normally open movable contact 14a is reduced and rotated at the same time. The amount of rotation of the lever 13 in the counterclockwise direction is suppressed. For this reason, the position of the hooking portion 7b of the pulling spring 8 provided on the reversing plate 7 in the trip state is such that the fulcrum portion 9b of the reversing plate 7 provided on the reversing mechanism support member 9 serving as the reset line and the temperature compensation bimetal. 6 so as not to fall to the right side of FIG. 2 rather than the straight line connecting the six fulcrum portions 9a. As a result, the abnormality of the load is recovered, the heat generation of the heater 4 is suppressed, the bimetal 3 is not bent, and the interlocking plate 5 moves to the right in FIG. Is no longer applied, the reversing mechanism 20 automatically returns to the steady state.

ツマミ12を図1(e)の時計方向へ回すと、調整ねじ11は螺旋回転しながら図2の下方向へ反転機構支持部材9を押圧し、反転機構支持部材9は反転機構支持部材9のL字曲げ部9zとケース1に設けられた突起1zとの係合部を支点として、図2の時計方向に回動する。逆にツマミ12を図1(e)の反時計方向へ回すと、調整ねじ11は螺旋回転しながら図2の上方向へと戻り、反転機構支持部材9は板ばね18からの押圧力により反転機構支持部材9のL字曲げ部9zとケース1に設けられた突起1zとの係合部を支点として、図2の反時計方向に回動する。   When the knob 12 is rotated clockwise in FIG. 1 (e), the adjusting screw 11 presses the reversing mechanism support member 9 in the downward direction of FIG. It rotates in the clockwise direction of FIG. 2 with the engaging portion between the L-shaped bent portion 9z and the protrusion 1z provided on the case 1 as a fulcrum. Conversely, when the knob 12 is turned counterclockwise in FIG. 1E, the adjusting screw 11 returns to the upper direction in FIG. 2 while spirally rotating, and the reversing mechanism support member 9 is reversed by the pressing force from the leaf spring 18. 2 is rotated counterclockwise in FIG. 2 with an engaging portion between the L-shaped bent portion 9z of the mechanism support member 9 and the protrusion 1z provided on the case 1 as a fulcrum.

このように反転機構支持部材9が回動することで、反転機構支持部材9に設けられた反転板7の支点部9bおよび温度補償バイメタル6の支点部9aの位置が移動し、なおかつ連動板5と温度補償バイメタル6の下端部6bとが当接するまでの距離も変化するため、トリップ動作までに必要となる連動板5の移動量を変化させることができる。   As the reversing mechanism support member 9 rotates in this way, the positions of the fulcrum portion 9b of the reversing plate 7 and the fulcrum portion 9a of the temperature compensating bimetal 6 provided on the reversing mechanism supporting member 9 move, and the interlocking plate 5 And the distance until the lower end 6b of the temperature compensation bimetal 6 abuts also changes, so that the amount of movement of the interlocking plate 5 required before the trip operation can be changed.

ここで、連動板5はバイメタル3の変位に応じて移動し、バイメタル3は主回路電流によるヒーター4の発熱量に応じて湾曲するから、ツマミ12を回すことにより、熱動式過電流継電器がトリップ動作するのに要する電流値を調整することができる。そして、ツマミ12には、ヒーター呼びと呼ばれる代表的電流値を概ね中央値として最小値から最大値までの使用可能電流域(これを整定電流の調整範囲と呼ぶ)およびそれらの目盛が表示される。   Here, the interlocking plate 5 moves according to the displacement of the bimetal 3, and the bimetal 3 bends according to the amount of heat generated by the heater 4 due to the main circuit current. Therefore, by turning the knob 12, the thermal overcurrent relay is The current value required for the trip operation can be adjusted. The knob 12 displays a usable current range from a minimum value to a maximum value (referred to as a settling current adjustment range) and a scale thereof, with a representative current value called a heater as a median value. .

ところで、熱動式過電流継電器の動作特性は、バイメタル3の板圧・幅・長さ・湾曲定数・体積抵抗率、またはそれぞれの部品の寸法精度のばらつき等によって、熱動式過電流継電器製品個々にばらつきが生じる。そのため、熱動式過電流継電器を調整せずにIEC60947−4−1(JIS C8201−4−1)等の規格で規定された特性を満足することは難しく、上述した、熱動式過電流継電器製品それぞれの動作特性を調整する、いわゆる電調工程が必要となる。この電調の具体的な作業の一つとして、最小・中央・最大それぞれの目盛における熱動式過電流継電器の最小動作電流をUTC(Ultimate Trip Current)と定義すると、このUTCが整定電流の105%から120%の範囲に入るように調整しなければならない。例えば、ヒーター呼び3.6A(整定電流の調整範囲が2.8Aから4.4A)の熱動式過電流継電器の場合、最小目盛のUTCは2.94Aから3.36Aの範囲に、中央目盛のUTCは3.78Aから4.32Aの範囲に、最大目盛のUTCは4.62Aから5.28Aの範囲に入る必要がある。   By the way, the operating characteristics of the thermal overcurrent relay are the thermal overcurrent relay products that depend on the plate pressure, width, length, bending constant, volume resistivity of the bimetal 3, or variations in the dimensional accuracy of each component. Variations occur individually. For this reason, it is difficult to satisfy the characteristics defined in the standards such as IEC 60947-4-1 (JIS C8201-4-1) without adjusting the thermal overcurrent relay. A so-called electric tuning process is required to adjust the operating characteristics of each product. As one specific operation of this electrical adjustment, when the minimum operating current of the thermal overcurrent relay at each of the minimum, center, and maximum scales is defined as UTC (Ultimate Trip Current), this UTC is the settling current 105. It must be adjusted to be in the range of% to 120%. For example, in the case of a thermal overcurrent relay with a heater nominal of 3.6 A (the settling current adjustment range is 2.8 A to 4.4 A), the minimum scale UTC is in the range of 2.94 A to 3.36 A, and the center scale UTC should be in the range of 3.78A to 4.32A, and maximum scale UTC should be in the range of 4.62A to 5.28A.

以下、図3、図4および図5を用いて、本実施の形態における熱動式過電流継電器の電調方法および熱動式過電流継電器について説明する。   Hereinafter, with reference to FIGS. 3, 4, and 5, an electric tuning method for the thermal overcurrent relay and the thermal overcurrent relay in the present embodiment will be described.

本実施の形態における熱動式過電流継電器の電調方法は、熱動式過電流継電器製品個々の動作特性に応じて、あらかじめ最小目盛位置および中央目盛位置を定める。このための電調方法として、例えば特許第4085728号公報に開示されている方法や、特開2007−213991号公報に開示されている方法がある。熱動式過電流継電器個々の動作特性に応じて最小目盛位置および中央目盛位置を定める方法については、どのような方法を用いてもよい。   In the electric tuning method of the thermal overcurrent relay in the present embodiment, the minimum scale position and the central scale position are determined in advance according to the operating characteristics of each thermal overcurrent relay product. For this purpose, for example, there are a method disclosed in Japanese Patent No. 4085728 and a method disclosed in Japanese Patent Application Laid-Open No. 2007-213991. Any method may be used as a method for determining the minimum graduation position and the central graduation position in accordance with the operation characteristics of each thermal overcurrent relay.

次に、電調により決定された中央目盛位置を基準として、機種定格毎にあらかじめ算出された一定角度だけ離れた位置に最大目盛位置を定める。なお、中央目盛位置と最大目盛位置が成す一定角度の算出方法としては、熱動式過電流継電器の設計段階で、あらかじめ実験的に求める方法がある。例えば、電調を実施して最小目盛位置と中央目盛位置が定まった、ある機種定格の熱動式過電流継電器製品のサンプルを複数台用意し、それらのサンプルそれぞれで、中央目盛位置から少しずつ角度をずらした位置におけるUTCを測定し、そのUTCが最大目盛値の112.5%(105%と120%の中間値)となる目盛位置を求める。そのようにして求めた目盛位置を仮最大目盛位置とし、複数台のサンプルにおける中央目盛位置と仮最大目盛位置が成す角の平均値を、その機種定格における中央目盛位置と最大目盛位置の間の角度に決定する方法が考えられる。本発明による最大目盛位置の求め方は、特許文献1に記載されているような、熱動式過電流継電器製品個々に電調作業を行うことにより最大目盛位置を求める方法とは異なり、あらかじめ機種定格毎に中央目盛位置と最大目盛位置の間を決定しておくことにより、熱動式過電流継電器製品個々の特性に関らず、熱動式過電流継電器の最大目盛位置が定まることを特徴とする。なお、最大目盛位置を定めるUTCの値は、上述の最大目盛値の112.5%に限られるわけではなく、105%から120%までの範囲内のいずれかにUTCの目標値を定めればよい。ただし、上記複数台のサンプルすべて上記で定めた目標値と同一電流で最大目盛位置を定める必要がある。   Next, the maximum scale position is determined at a position separated by a predetermined angle calculated in advance for each model rating with reference to the center scale position determined by electrical adjustment. In addition, as a method for calculating the constant angle formed by the center graduation position and the maximum graduation position, there is a method of experimentally obtaining in advance at the design stage of the thermal overcurrent relay. For example, prepare multiple samples of thermal overcurrent relay products of a certain model rating that have been calibrated to determine the minimum scale position and the center scale position, and for each of these samples, little by little from the center scale position. The UTC at the position where the angle is shifted is measured, and the scale position where the UTC is 112.5% of the maximum scale value (the intermediate value between 105% and 120%) is obtained. The graduation position thus determined is the provisional maximum graduation position, and the average value of the central graduation position and the provisional maximum graduation position in a plurality of samples is calculated between the central graduation position and the maximum graduation position in the model rating. A method for determining the angle is conceivable. The method of obtaining the maximum scale position according to the present invention is different from the method of obtaining the maximum scale position by performing the electric adjustment work for each of the thermal overcurrent relay products as described in Patent Document 1, in advance of the model. By determining the center scale position and maximum scale position for each rating, the maximum scale position of the thermal overcurrent relay is determined regardless of the individual characteristics of the thermal overcurrent relay product. And Note that the value of UTC that determines the maximum scale position is not limited to 112.5% of the above-mentioned maximum scale value, but if the target value of UTC is defined within any range from 105% to 120%. Good. However, it is necessary to determine the maximum scale position with the same current as the target value determined above for all the plurality of samples.

また、中央目盛位置と最大目盛位置が成す一定角度の算出方法として、中央目盛位置から最大目盛方向へ調整機構部を大きく(少なくとも最大目盛値の120%でトリップ動作することのない位置まで)移動させた状態で、最大目盛値の105%から120%の範囲内であらかじめ定めた電流をバイメタルの変形量が飽和するまでの時間通電させる。その後、再度調整機構部を上記移動後の位置から中央目盛位置側へ移動させて、手動で強制トリップさせることにより、サンプルの最大目盛位置を定めてもよい。   In addition, as a method of calculating the constant angle formed by the center graduation position and the maximum graduation position, the adjustment mechanism is greatly moved from the central graduation position to the maximum graduation direction (at least to 120% of the maximum graduation value so as not to trip) In this state, a predetermined current within a range of 105% to 120% of the maximum scale value is applied for a period of time until the amount of deformation of the bimetal is saturated. Thereafter, the maximum scale position of the sample may be determined by moving the adjustment mechanism portion again from the position after the movement to the center scale position side and manually forcibly tripping.

中央目盛位置を基準として一定角度離れた位置に最大目盛を定める場合、最大目盛位置の狙い位置θHに対しばらつきc’が含まれる。このばらつきc’は、上述の中央目盛位置と最大目盛位置が成す一定角度を算出するための実験的手法により、予め求めることができる。つまり、設定した一定角で定まる最大目盛位置に対して、各サンプルで求められた仮最大目盛位置とのばらつきがc’となる。一方中央目盛位置は、上述の通り様々な手法を用いて熱動式過電流継電器製品個々の特性に応じて定められ、θM±bで与えられる。以上より、本実施の形態における中央目盛位置と最大目盛位置間の角度θ2は、
θ2=(θH−θM)±(b+c’) ・・・(式10)
で与えられる。すなわち、±(b+c’)が中央目盛位置と最大目盛位置間の角度θ2に含まれるばらつきとなる。一方、従来技術の方法によって定められる中央目盛位置と最大目盛位置間の角度θ2は、上述の発明が解決しようとする課題で示す通り
θ2=α・(θM―θL)±α・σ ・・・(式6)
で表される。すなわち、±α・σが従来技術で定められた中央目盛位置と最大目盛位置間の角度に含まれるばらつきとなる。以上及び上述の、
α>1 ・・・(式7)
から
α・σ=α・a+α・b>(b+c’) ・・・(式11)
が成り立てば、従来方法に比べ中央目盛位置と最大目盛位置間の角度θ2に含まれるばらつきが小さいといえる。以下で式11が成り立つことについて説明する。
When the maximum scale is determined at a position apart from the central scale position by a certain angle, a variation c ′ is included with respect to the target position θH of the maximum scale position. The variation c ′ can be obtained in advance by an experimental method for calculating a certain angle formed by the above-described center graduation position and the maximum graduation position. That is, the variation from the temporary maximum graduation position obtained for each sample to the maximum graduation position determined by the set constant angle is c ′. On the other hand, the center graduation position is determined according to the characteristics of each thermal overcurrent relay product using various methods as described above, and is given by θM ± b. From the above, the angle θ2 between the central scale position and the maximum scale position in the present embodiment is
θ2 = (θH−θM) ± (b + c ′) (Equation 10)
Given in. That is, ± (b + c ′) is a variation included in the angle θ2 between the central scale position and the maximum scale position. On the other hand, the angle θ2 between the center graduation position and the maximum graduation position determined by the prior art method is θ2 = α · (θM−θL) ± α · σ as shown in the problem to be solved by the invention described above. (Formula 6)
It is represented by That is, ± α · σ is a variation included in the angle between the central scale position and the maximum scale position determined in the prior art. Above and above,
α> 1 (Expression 7)
Α · σ = α · a + α · b> (b + c ′) (Equation 11)
Therefore, it can be said that the variation included in the angle θ2 between the center graduation position and the maximum graduation position is small as compared with the conventional method. Hereinafter, the fact that Expression 11 holds will be described.

一般的に、バイメタルの変形量が小さい位置では、周囲温度による影響や反転機構部からの作動圧により変形が押し戻される影響などが大きいため、バイメタルの変形量が小さい位置で動作する最小目盛位置側の方が、バイメタルの変形量が大きい位置で動作する最大目盛位置側に比べて、狙い位置からのばらつきが大きくなる傾向にある。従って、バイメタル3の変形量が小さい位置で動作を行う最小目盛位置側の方が、バイメタル3の変形量が大きい位置で動作を行う最大目盛位置側に比べて、狙い位置からのばらつきが大きくなる傾向にある。すなわち、
a>b>c’ ・・・(式12)
となり、次式が成り立つ。
α・a+α・b>(b+c’) ・・・(式13)
よって、上述の式11が成り立ち、従来方法に比べ中央目盛位置と最大目盛位置間の角度θ2に含まれるばらつきが小さいといえる。
Generally, at the position where the amount of deformation of the bimetal is small, the influence of the ambient temperature and the influence of the deformation being pushed back by the operating pressure from the reversing mechanism are large. Compared with the maximum scale position side that operates at a position where the amount of deformation of the bimetal is large, the variation from the target position tends to be larger. Therefore, the variation from the target position is larger on the minimum scale position side where the operation is performed at a position where the deformation amount of the bimetal 3 is small than on the maximum scale position side where the operation is performed at a position where the deformation amount of the bimetal 3 is large. There is a tendency. That is,
a>b> c ′ (Formula 12)
And the following equation holds.
α · a + α · b> (b + c ′) (Formula 13)
Therefore, it can be said that the above formula 11 holds, and that the variation included in the angle θ2 between the central scale position and the maximum scale position is small as compared with the conventional method.

そのため、あらかじめ実施する電調により精度よく最小目盛位置および中央目盛位置を決定すれば、従来技術と同等の動作精度を維持しつつ、最小目盛位置・中央目盛位置に加えて、中央目盛位置を基準として、上述の通り設計段階で機種定格毎に定められた一定角度離れた位置にある、最大目盛位置の調整ばらつきを少なくすることができる。   Therefore, if the minimum graduation position and the central graduation position are accurately determined by electrical adjustment performed in advance, the central graduation position is used as a reference in addition to the minimum graduation position and central graduation position while maintaining the same operation accuracy as the conventional technology. As described above, it is possible to reduce variation in adjustment of the maximum graduation position at a position separated by a certain angle determined for each model rating at the design stage as described above.

ここで、あらかじめ定められた2つの目盛位置をもとに、簡易的に3つ目の目盛位置を算出する手段としては、中央目盛位置と最大目盛位置の2点で電調を実施し、中央目盛位置から一定角度離れた位置に最小目盛位置を定めるといった方法も考えられる。しかし、式9や式12の関係があるため、本実施の形態のように、狙い位置からのばらつきが大きくなる最小目盛位置や中央目盛位置は、熱動式過電流継電器製品個々の特性に応じた位置決めを実施する電調によりその位置を求めることで、熱動式過電流継電器としての動作精度を確保し、一方ばらつきの小さな最大目盛位置は中央目盛位置からの一定角度で決定するという方法のほうが、精度よく各目盛位置を決定することができる。   Here, based on the two predetermined graduation positions, as a means for simply calculating the third graduation position, electric adjustment is performed at two points of the central graduation position and the maximum graduation position, A method is also conceivable in which the minimum graduation position is determined at a position away from the graduation position by a certain angle. However, since there is a relationship of Formula 9 and Formula 12, the minimum scale position and the center scale position where the variation from the target position becomes large as in this embodiment depends on the characteristics of the thermal overcurrent relay product. By determining the position by electrical adjustment that performs positioning, the operation accuracy as a thermal overcurrent relay is ensured, while the maximum graduation position with small variations is determined at a constant angle from the central graduation position. In other words, each scale position can be determined with higher accuracy.

また、上述の熱動式過電流継電器の調整機構部には、ツマミ12の空回りを防止する目的で、また、反転機構支持部材9が回動限界に至る前にその回動を止めるために、最小目盛方向調整側と最大目盛方向調整側にそれぞれ可動限界を設けている。   In addition, the adjustment mechanism of the thermal overcurrent relay described above is provided for the purpose of preventing the knob 12 from spinning freely and for stopping the turning of the reversing mechanism support member 9 before reaching the turning limit. A movable limit is provided on each of the minimum scale direction adjustment side and the maximum scale direction adjustment side.

ここで回動限界について以下に詳述する。反転機構支持部材9は、L字曲げ部9zとケース1に設けられた突起1zとの係合部を支点として時計方向および反時計方向へ回動する。突起1zの先端は鋭角なV字状になっており、この1zのV字先端と9zのL字曲げ部との角度差分により反転機構支持部材9の回動限界が定まる。   Here, the rotation limit will be described in detail below. The reversing mechanism support member 9 rotates clockwise and counterclockwise with the engaging portion of the L-shaped bent portion 9z and the protrusion 1z provided on the case 1 as a fulcrum. The tip of the protrusion 1z has an acute V-shape, and the rotation limit of the reversing mechanism support member 9 is determined by the difference in angle between the 1z V-tip and the 9z L-bend.

反転機構支持部材9が回動限界になった状態で調整ねじ11を押込む方向へツマミ12を回し続ける(空回りさせる)と、調整ねじ11と反転機構支持部材9との当接部に力が加わり続けることにより該当接部が変形してしまい,熱動式過電流継電器を継続して使用できない状態になる恐れがある。また、逆に調整ねじ11が突き出る方向へツマミ12を回しすぎると、調整ねじ11が抜けてしまう恐れがある。これらの状態に陥ることを防ぐために、本実施の形態においては、ツマミ12の中央目盛位置でかつケース1に相対する面に突起12aを設け、またケース1のツマミ12に相対する面に突起1bを設けており、これら2個の突起が当接することにより調整機構部の可動限界が定まるように構成している。   If the knob 12 is continuously rotated (turned idle) in the direction in which the adjustment screw 11 is pushed in a state where the reversing mechanism support member 9 is at the rotation limit, force is applied to the contact portion between the adjustment screw 11 and the reversing mechanism support member 9. If it continues to be added, the corresponding contact may be deformed, and the thermal overcurrent relay may not be used continuously. Conversely, if the knob 12 is turned too far in the direction in which the adjustment screw 11 protrudes, the adjustment screw 11 may come off. In order to prevent falling into these states, in the present embodiment, a protrusion 12a is provided on the surface of the knob 12 at the center scale position and facing the case 1, and the protrusion 1b is formed on the surface of the case 1 facing the knob 12. The movable limit of the adjustment mechanism is determined by the contact of these two protrusions.

以下、上記ツマミ12に設けた突起12aとケース1に設けた突起1bとの位置関係を詳述する。図3(a)から図3(f)はツマミ12の構造図であり、図3(a)はツマミ12を図1(e)の正面から見たときの正面図、図3(b)はツマミ12の右側面図、図3(c)はツマミ12の背面図、図3(d)はツマミ12の左側面図、図3(e)はツマミ12を図3(a)の斜め左方向から見たときの斜視図、図3(f)はツマミ12を図3(d)の斜め左方向から見たときの斜視図である。また、図4(a)および図4(b)はケース1のうちツマミ12が取り付けられる部分を拡大した構造図であり、図4(a)は図1(e)の正面から見たときのケース1の構造図、図4(b)はケース1を図4(a)の斜め右方向から見た場合の斜視図である。さらに、図5(a)は図1(a)のツマミ部分の拡大図であり、図5(b)は中央目盛位置におけるツマミの突起とケースの突起の位置関係を示す図である。   Hereinafter, the positional relationship between the protrusion 12a provided on the knob 12 and the protrusion 1b provided on the case 1 will be described in detail. 3 (a) to 3 (f) are structural views of the knob 12, FIG. 3 (a) is a front view when the knob 12 is viewed from the front of FIG. 1 (e), and FIG. 3 (c) is a rear view of the knob 12, FIG. 3 (d) is a left side view of the knob 12, and FIG. 3 (e) is an oblique left direction of the knob 12 in FIG. 3 (a). FIG. 3F is a perspective view when the knob 12 is viewed from the diagonally left direction of FIG. 3D. 4 (a) and 4 (b) are enlarged structural views of the case 1 to which the knob 12 is attached. FIG. 4 (a) is a view when viewed from the front of FIG. 1 (e). FIG. 4B is a perspective view of the case 1 as viewed from the oblique right direction of FIG. 4A. 5 (a) is an enlarged view of the knob portion of FIG. 1 (a), and FIG. 5 (b) is a diagram showing the positional relationship between the knob protrusion and the case protrusion at the central scale position.

図5(b)において、中央目盛位置(すなわち図5に示す状態)からツマミ12を図5の時計方向へ回すと、図3(f)に示すツマミ12に設けられた突起12aもツマミ12に連動して時計方向に回動する。そして、その回動量が図5に示すθ2’になったとき、図3(f)に示す突起12aの側面12arと、図4(b)に示す突起1bの側面1brとが当接することにより、ツマミ12がθ2’を超える位置に回動することが不可能となる。すなわち、その位置が調整機構部の最大目盛方向側可動限界となる。   In FIG. 5B, when the knob 12 is turned clockwise from the center scale position (that is, the state shown in FIG. 5), the protrusion 12a provided on the knob 12 shown in FIG. Rotate clockwise in conjunction. When the amount of rotation becomes θ2 ′ shown in FIG. 5, the side surface 12ar of the projection 12a shown in FIG. 3 (f) and the side surface 1br of the projection 1b shown in FIG. It becomes impossible for the knob 12 to rotate to a position exceeding θ2 ′. That is, the position becomes the maximum scale direction side movable limit of the adjustment mechanism.

また、図5(b)において、中央目盛位置(すなわち図5(b)に示す状態)からツマミ12を図5の反時計方向へ回すと、図3(f)に示すツマミ12に設けられた突起12aもツマミ12に連動して反時計方向に回動する。そして、その回動量が図5に示すθ1’になったとき、図3(f)に示す突起12aの側面12alと、図4(b)に示す突起1bの側面1blとが当接することにより、ツマミ12がθ1’を超える位置に回動することが不可能となる。すなわち、その位置が調整機構部の最小目盛方向側可動限界となる。   Further, in FIG. 5B, when the knob 12 is turned counterclockwise in FIG. 5 from the center graduation position (that is, the state shown in FIG. 5B), the knob 12 shown in FIG. 3F is provided. The protrusion 12a also rotates counterclockwise in conjunction with the knob 12. When the rotation amount becomes θ1 ′ shown in FIG. 5, the side surface 12al of the projection 12a shown in FIG. 3 (f) and the side surface 1bl of the projection 1b shown in FIG. It becomes impossible for the knob 12 to rotate to a position exceeding θ1 ′. That is, the position becomes the minimum scale direction side movable limit of the adjustment mechanism.

ここで、本実施の形態においては、最大目盛方向側可動限界θ2’が、最小目盛方向側可動限界θ1’よりも大きくなるように、上述のツマミ12に設けられた突起12aとケース1に設けられた突起1bとを配置する。すなわち、θ2’>θ1’として中央目盛位置から最大目盛方向の可動限界までの角度を広くしておく。そのことにより、通電電流が大きいためにバイメタル3の変形量が大きく、中央目盛位置と最大目盛位置間の角度θ2が大きくなり、最大目盛位置を設定する際に、最大目盛位置までツマミを回しきる前に調整機構部が可動限界となる、いわゆる調整不能が発生しやすい最大方向目盛側で調整不能状態になることを防ぐ。   Here, in the present embodiment, the protrusion 12a provided on the knob 12 and the case 1 are provided so that the maximum graduation direction side movable limit θ2 ′ is larger than the minimum graduation direction side movable limit θ1 ′. The projected protrusion 1b is disposed. That is, the angle from the center graduation position to the movable limit in the maximum graduation direction is widened as θ2 ′> θ1 ′. As a result, since the energization current is large, the amount of deformation of the bimetal 3 is large, the angle θ2 between the center graduation position and the maximum graduation position is large, and when setting the maximum graduation position, the knob is fully turned to the maximum graduation position. This prevents the adjustment mechanism from becoming in an unadjustable state on the maximum direction scale side where the adjustment mechanism part becomes the movable limit before, so-called unadjustable tendency to occur.

また、本実施の形態においては、中央目盛位置と最大目盛位置間の角度θ2は、電調により決定された中央目盛位置を基準として、機種定格毎にあらかじめ定められる一定角度であるため、ケース1とツマミ12を設計する段階であらかじめθ2’>θ2となるように、ツマミ12に設けられた突起12aとケース1に設けられた突起1bとを配置することにより、最大目盛位置まで確実にツマミ12の位置を調整することができる。   In the present embodiment, the angle θ2 between the center graduation position and the maximum graduation position is a constant angle determined in advance for each model rating with reference to the center graduation position determined by electrical adjustment. By arranging the protrusion 12a provided on the knob 12 and the protrusion 1b provided on the case 1 so that θ2 ′> θ2 is established in advance at the stage of designing the knob 12 and the knob 12, the knob 12 is surely reached to the maximum scale position. Can be adjusted.

ここで、上述の通りθ2は一定角度であるため、従来の技術のように、中央目盛位置と最大目盛位置間の角度のばらつきが大きいことに対応するために、θ2’を過剰に大きく設定しておく必要はなく、θ2’はθ2にケース1やツマミ12の寸法誤差や、ケース1とツマミ12の組合せ精度誤差、目盛印字位置の誤差それぞれの値を加えた角度に設定しておけば十分である。なお、ここで挙げた誤差は、従来技術においても同じように考慮する必要があった。   Here, since θ2 is a constant angle as described above, θ2 ′ is set to be excessively large in order to cope with a large variation in angle between the center graduation position and the maximum graduation position as in the prior art. It is not necessary to set θ2 ′ to an angle obtained by adding the values of θ2 to dimensional error of case 1 and knob 12, combination accuracy error of case 1 and knob 12, and error of scale printing position. It is. It should be noted that the errors listed here need to be considered in the same way in the prior art.

さらに、上述の通りθ2’を過剰に大きく設定する必要がないため、最大目盛側可動限界が小さくなるようにツマミ12の突起12aとケース1の突起1bの位置関係を定めることができる。そのことにより、バイメタルの変形量が小さい位置で動作するためにばらつきが大きくなる、最小目盛方向側の可動限界を大きく確保することができるため、最小目盛位置で調整不能状態となることを防ぐことができる。以上より、従来技術に比べて、本発明による過電流継電器は、最小目盛から最大目盛に至るまでの整定電流調整範囲において、調整不能状態になることを防ぎ、特に最大目盛位置までは確実に調整可能である。なお、ケース1の突起1bおよびツマミ12の突起12aの位置は、図4(a)や図5(b)に示す位置に限られず、上述のθ2’>θ1’が成り立つ位置関係で、かつ可動限界において両突起が互いに当接する位置関係であれば、それぞれケース1、ツマミ12のどこに配置してもよい。さらに、可動限界を定めるための突起は,本発明のようなツマミ、ケースに限らず,どこに設けても良い。   Furthermore, since it is not necessary to set θ2 ′ excessively large as described above, the positional relationship between the protrusion 12a of the knob 12 and the protrusion 1b of the case 1 can be determined so that the maximum scale side movable limit becomes small. As a result, it is possible to secure a large movable limit on the minimum graduation direction side, in which the variation becomes large because the bimetal operates at a position where the deformation amount of the bimetal is small, so that it is prevented from being in an unadjustable state at the minimum graduation position. Can do. From the above, compared to the prior art, the overcurrent relay according to the present invention prevents the adjustment from being impossible in the settling current adjustment range from the minimum scale to the maximum scale, and especially adjusts to the maximum scale position. Is possible. The positions of the protrusion 1b of the case 1 and the protrusion 12a of the knob 12 are not limited to the positions shown in FIGS. 4A and 5B, and are movable in a positional relationship that satisfies the above-described θ2 ′> θ1 ′. As long as the two protrusions are in contact with each other at the limit, they may be disposed anywhere on the case 1 and the knob 12. Further, the protrusion for determining the movable limit is not limited to the knob and the case as in the present invention, and may be provided anywhere.

ここで、ツマミ12には、図3(c)に示すように互いに平行な2つの面12brおよび12blを形成し、その長さL2は図3(c)に示すようにツマミ12の半径L1とほぼ等しいか、または半径L1以上の長さとなるように構成する。これは、熱動式過電流継電器の生産工程においてツマミ12をパーツフィーダに通す際、面12brおよび面12blの長さが短いと、これらの面がパーツフィーダの溝とうまくかみ合わないために、ツマミ12がパーツフィーダの中で一定方向を保つことができないということを防ぐために、上述の通り面12brおよび面12blの長さをツマミ12の半径L1とほぼ等しいか、または半径L1以上の長さとしている。そのことにより、これらの面がパーツフィーダの溝と確実にかみ合い、ツマミ12をパーツフィーダの中で一定方向に保ちながら供給することができるようにしている。   Here, the knob 12 is formed with two surfaces 12br and 12bl parallel to each other as shown in FIG. 3 (c), and its length L2 is equal to the radius L1 of the knob 12 as shown in FIG. 3 (c). It is configured to be approximately equal or have a length equal to or greater than the radius L1. This is because when the knob 12 is passed through the parts feeder in the production process of the thermal overcurrent relay, if the length of the face 12br and the face 12bl is short, these faces do not mesh well with the groove of the parts feeder. In order to prevent that 12 cannot maintain a fixed direction in the parts feeder, the lengths of the surface 12br and the surface 12bl are substantially equal to the radius L1 of the knob 12 or longer than the radius L1 as described above. Yes. This ensures that these surfaces engage with the grooves of the parts feeder so that the knob 12 can be supplied while being kept in a certain direction in the parts feeder.

上記ツマミ12の中心から面12br(または面12bl)の頂点部までの半径r1は、図4(a)におけるケース1に設けられた突起1bの外周部から調整ねじ11の中心までの半径r2よりも短くなるように構成されている。さらに、熱動式過電流継電器の生産工程において、パーツフィーダ内の溝と当接する上記ツマミ12の2つの面の高さを低くした。以上のことより、ツマミ12を回動させるときに、最小目盛位置もしくは最大目盛位置までツマミを回しきるよりも前に、調整機構部の可動限界を定めるケース1に設けられた突起1bと、ツマミ12とは干渉することはないため、ツマミを回動する際、最小目盛側可動限界と最大目盛側可動限界との間に位置する限りは、上述のツマミに設けられた面がケース等と当接することにより調整機構部が可動限界となる、調整不能状態になることを防ぐ。   The radius r1 from the center of the knob 12 to the apex of the surface 12br (or surface 12bl) is larger than the radius r2 from the outer periphery of the protrusion 1b provided on the case 1 to the center of the adjustment screw 11 in FIG. Is also configured to be shorter. Further, in the production process of the thermal overcurrent relay, the heights of the two surfaces of the knob 12 that are in contact with the groove in the parts feeder are lowered. As described above, when the knob 12 is rotated, the protrusion 1b provided on the case 1 that defines the movable limit of the adjustment mechanism portion before the knob is fully rotated to the minimum scale position or the maximum scale position, and the knob. Therefore, when the knob is rotated, the surface provided on the knob is in contact with the case or the like as long as it is positioned between the minimum scale side movable limit and the maximum scale side movable limit. This prevents the adjustment mechanism from becoming inoperable due to the adjustment mechanism being in a movable limit.

熱動式過電流継電器の構成を示す図である。It is a figure which shows the structure of a thermal type overcurrent relay. 熱動式過電流継電器の内部構造を示す拡大図である。It is an enlarged view which shows the internal structure of a thermal type overcurrent relay. ツマミの構造を示す構造図である。It is structural drawing which shows the structure of a knob. ケースのうちツマミが取り付けられる部分を拡大した構造図である。It is the structure figure which expanded the part to which a knob is attached among cases. ツマミ部分の拡大図である。It is an enlarged view of a knob part.

符号の説明Explanation of symbols

1 ケース、1a ケース側突起、2 カバー、5 連動板、6 温度補償バイメタル、12 ツマミ、12b ツマミ側突起、13 回転レバー、14 常開可動接触子、20 反転機構部、21 調整機構部。   DESCRIPTION OF SYMBOLS 1 Case, 1a Case side protrusion, 2 Cover, 5 Interlocking plate, 6 Temperature compensation bimetal, 12 Knob, 12b Knob side protrusion, 13 Rotating lever, 14 Normally open movable contact, 20 Reverse mechanism part, 21 Adjustment mechanism part

Claims (5)

主回路電流に応動して湾曲するバイメタルと、このバイメタルの変位を伝達する連動板と、連動板との当接によりトリップ動作し接点の開閉状態を反転させる反転機構部と、反転機構部を移動させ接点の開閉状態が反転する位置を調整することができる調整機構部と、熱動式過電流継電器本体に表示され整定電流の最小値、中央値、最大値をそれぞれ示す、最小目盛、中央目盛、最大目盛を備えた目盛表示部とを備えた熱動式過電流継電器における、規格で定められた動作特性の範囲内で動作するように、熱動式過電流継電器個々の動作特性を調整する熱動式過電流継電器の電調方法において、
前記最小目盛位置と中央目盛位置の電調作業が完了した所定数の熱動式過電流継電器を用いて、前記整定電流の最大値の105%から120%の範囲となる電流を供給しつつ前記調整機構部の角度を調整し、前記熱動式過電流継電器がトリップ動作する前記調整機構部の中央目盛位置から最大目盛位置までの角度をサンプル角度として実験的に求め、これら所定数の熱動式過電流継電器の中央目盛位置から最大目盛位置までのサンプル角度の平均値を、同一定格における中央目盛位置から最大目盛位置までの角度としてあらかじめ設定しておく第一の工程と、
前記最小目盛位置、中央目盛位置を熱動式過電流継電器の動作特性により定める第二の工程と、
前記第二の工程により定められた中央目盛位置から、前記第一の工程によりあらかじめ設定さられた同一定格における最大目盛位置までの角度を与えることにより、最大目盛位置を定める第三の工程と、
を有する熱動式過電流継電器の電調方法。
Bimetal that bends in response to main circuit current, interlocking plate that transmits the displacement of this bimetal, reversing mechanism that trips when contacted with the interlocking plate and reverses the open / closed state of the contact, and moves the reversing mechanism The adjustment mechanism that can adjust the position where the open / close state of the contact is reversed, and the minimum scale, the central scale, which are displayed on the thermal overcurrent relay body and indicate the minimum, median, and maximum values of the settling current, respectively. In the thermal overcurrent relay with a scale display unit with the maximum scale, adjust the operating characteristics of each thermal overcurrent relay so that it operates within the range of operating characteristics specified by the standard In the electric tuning method of the thermal overcurrent relay,
Using a predetermined number of thermal overcurrent relays in which the electric adjustment work at the minimum graduation position and the central graduation position has been completed, while supplying a current in the range of 105% to 120% of the maximum value of the settling current, The angle of the adjustment mechanism is adjusted, and the angle from the center graduation position to the maximum graduation position of the adjustment mechanism where the thermal overcurrent relay trips is experimentally obtained as a sample angle. The first step of presetting the average value of the sample angle from the central scale position to the maximum scale position of the type overcurrent relay as the angle from the central scale position to the maximum scale position in the same rating,
A second step of determining the minimum graduation position and the central graduation position by operating characteristics of the thermal overcurrent relay;
A third step of determining the maximum scale position by giving an angle from the center scale position determined by the second step to the maximum scale position at the same rating preset by the first step;
A method for controlling a thermal overcurrent relay comprising:
前記実験的に求める所定数の熱動式過電流継電器の最大目盛位置は、中央目盛位置から最大目盛方向の角度を漸増させた位置で測定した最小動作電流値が、最大目盛値の105%から120%の範囲内であらかじめ定めた電流値となる目盛位置である、ことを特徴とする請求項1に記載の熱動式過電流継電器の電調方法。   The maximum scale position of the predetermined number of thermal overcurrent relays experimentally determined is that the minimum operating current value measured at a position where the angle in the maximum scale direction is gradually increased from the center scale position is 105% of the maximum scale value. It is a scale position used as the electric current value predetermined within the range of 120%, The electric tuning method of the thermal overcurrent relay of Claim 1 characterized by the above-mentioned. 請求項1に記載の実験的に求める所定数の熱動式過電流継電器の最大目盛位置は、中央目盛位置から最大目盛方向へ調整機構部を少なくとも最大目盛値の120%でトリップ動作することのない位置まで移動させた状態で、最大目盛値の105%から120%の範囲内であらかじめ定めた電流をバイメタルの変形量が飽和するまでの時間通電した後、再度調整機構部を上記移動後の位置から中央目盛位置側へ移動させて、手動で強制トリップさせて定まる目盛位置である、ことを特徴とする請求項1に記載の熱動式過電流継電器の電調方法。   The maximum scale position of the predetermined number of thermal overcurrent relays experimentally determined according to claim 1 is that the adjustment mechanism is tripped at least 120% of the maximum scale value from the center scale position to the maximum scale direction. In a state where the position is moved to a position where no change is made, after the energization is performed for a period of time until the amount of deformation of the bimetal is saturated within a range of 105% to 120% of the maximum scale value, the adjustment mechanism unit is moved again after the movement. It is a graduation position determined by moving from a position to the center graduation position side, and carrying out a forced trip manually, The electric adjustment method of the thermal overcurrent relay of Claim 1 characterized by the above-mentioned. 主回路電流に応動して湾曲するバイメタルと、このバイメタルの変位を伝達する連動板と、連動板との当接によりトリップ動作し接点の開閉状態を反転させる反転機構部と、反転機構部を移動させ接点の開閉状態が反転する位置を調整することができ、最小目盛方向調整側と最大目盛方向調整側それぞれに可動限界を備えた調整機構部と、製品本体に表示され整定電流の最小値、中央値、最大値をそれぞれ示す、最小目盛、中央目盛、最大目盛を備えた目盛表示部と、
を備えた熱動式過電流継電器において、
前記調整機構部のツマミのケースに相対する面と、熱動式過電流継電器本体のケースの前記ツマミに相対する面にそれぞれ突起を備え、両突起が互いに当接することにより調整機構部の可動限界が、前記中央目盛の位置から最小目盛方向調整側の調整機構部可動限界までの回動量よりも、中央目盛位置から最大目盛方向調整側の調整機構部可動限界までの回動量の方が広くなるように定められ、且つ、前記最大目盛方向側可動限界は、最小目盛位置と中央目盛位置の電調作業が完了した所定数の熱動式過電流継電器を用いてあらかじめ機種定格毎に決定された中央目盛位置から最大目盛位置までの角度に、誤差を考慮して設定される
ことを特徴とする熱動式過電流継電器。
Bimetal that bends in response to main circuit current, interlocking plate that transmits the displacement of this bimetal, reversing mechanism that trips when contacted with the interlocking plate and reverses the open / closed state of the contact, and moves the reversing mechanism The position where the open / close state of the contact is reversed can be adjusted, the adjustment mechanism part with the movable limit on each of the minimum scale direction adjustment side and the maximum scale direction adjustment side, the minimum value of the settling current displayed on the product body, A scale display unit with a minimum scale, a center scale, and a maximum scale, each indicating a median value and a maximum value;
In the thermal overcurrent relay with
The adjustment mechanism unit has a protrusion on the surface facing the knob case and the surface of the thermal overcurrent relay main body case facing the knob. However , the amount of rotation from the center scale position to the adjustment limit of the maximum scale direction adjustment side is wider than the amount of rotation from the position of the center scale to the adjustment limit of the adjustment mechanism section on the minimum scale direction adjustment side. The maximum graduation direction side movable limit is determined for each model rating in advance using a predetermined number of thermal overcurrent relays that have completed electric adjustment work at the minimum graduation position and the central graduation position. The angle from the center graduation position to the maximum graduation position is set considering the error .
Thermal overcurrent relay characterized by that.
前記ツマミには、熱動式過電流継電器の生産工程にて該ツマミを滞りなく装着するために設けた、互いに平行な二面が形成され、それらの面の長さは該ツマミの半径以上の長さであり、かつ、該ツマミを最小目盛側可動限界と最大目盛側可動限界との間で回動する際、該ツマミに設けた二面の先端位置が、前記調整機構部の可動限界を定めるケースに設けられた突起と所定間隙離間している、ことを特徴とする請求項4に記載の熱動式過電流継電器。The knob is formed with two parallel surfaces, which are provided in order to install the knob without any delay in the production process of the thermal overcurrent relay, and the length of the surfaces is greater than the radius of the knob. And when the knob is rotated between the minimum scale side movable limit and the maximum scale side movable limit, the tip positions of the two surfaces provided on the knob set the movable limit of the adjustment mechanism section. The thermal overcurrent relay according to claim 4, wherein the thermal overcurrent relay according to claim 4 is spaced apart from a protrusion provided on a case to be defined by a predetermined gap.
JP2008285489A 2008-11-06 2008-11-06 Electric overcurrent relay control method and thermal overcurrent relay Expired - Fee Related JP5195313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285489A JP5195313B2 (en) 2008-11-06 2008-11-06 Electric overcurrent relay control method and thermal overcurrent relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285489A JP5195313B2 (en) 2008-11-06 2008-11-06 Electric overcurrent relay control method and thermal overcurrent relay

Publications (2)

Publication Number Publication Date
JP2010113947A JP2010113947A (en) 2010-05-20
JP5195313B2 true JP5195313B2 (en) 2013-05-08

Family

ID=42302359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285489A Expired - Fee Related JP5195313B2 (en) 2008-11-06 2008-11-06 Electric overcurrent relay control method and thermal overcurrent relay

Country Status (1)

Country Link
JP (1) JP5195313B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109864U (en) * 1975-03-03 1976-09-04
JP4085728B2 (en) * 2002-07-23 2008-05-14 三菱電機株式会社 Control method of thermal overcurrent relay
JP4704926B2 (en) * 2006-02-09 2011-06-22 三菱電機株式会社 Control method of thermal overcurrent relay

Also Published As

Publication number Publication date
JP2010113947A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
EP2023367B1 (en) Method for adjusting trip sensitivity of thermal overload protection apparatus
WO2015115129A1 (en) Drive device
JP4690472B2 (en) Thermal trip device and circuit breaker
US2908786A (en) Overload relay switch with ambient temperature compensation
JP5195313B2 (en) Electric overcurrent relay control method and thermal overcurrent relay
JP4704926B2 (en) Control method of thermal overcurrent relay
US3038051A (en) Thermal device
US8729988B1 (en) Trip device support frame and top frame calibration method
JP4776591B2 (en) Thermal overcurrent relay and its adjustment method
KR200491965Y1 (en) Adjustable thermal trip mechanism for circuit breaker
JP4085728B2 (en) Control method of thermal overcurrent relay
JP5649506B2 (en) Control method of thermal overcurrent relay
JPWO2003083887A1 (en) Thermal overcurrent relay
US8174350B2 (en) Thermal overload relay
JP5208243B2 (en) Thermal overcurrent relay and its adjustment method
JP4863373B2 (en) Circuit breaker for wiring
EP2770521A1 (en) Thermo magnetic trip unit for a circuit breaker and circuit breaker
KR100359843B1 (en) heat assenbly of thernal-actuation type Relay
JP4722088B2 (en) Thermal overcurrent relay
JP2013045668A (en) Circuit breaker manufacturing method
WO2023277191A1 (en) Thermomotive overload relay
JP5656899B2 (en) Method of manufacturing thermal trip device and circuit breaker using thermal trip device manufactured by the manufacturing method
WO2024042746A1 (en) Thermal overload relay
US20050007716A1 (en) Direct force armature for a trip assembly
JP2009123416A (en) Method of manufacturing thermal tripping device, and thermal tripping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees