JP5194692B2 - Process for producing N, N-dimethylcyclohexylamine - Google Patents

Process for producing N, N-dimethylcyclohexylamine Download PDF

Info

Publication number
JP5194692B2
JP5194692B2 JP2007261924A JP2007261924A JP5194692B2 JP 5194692 B2 JP5194692 B2 JP 5194692B2 JP 2007261924 A JP2007261924 A JP 2007261924A JP 2007261924 A JP2007261924 A JP 2007261924A JP 5194692 B2 JP5194692 B2 JP 5194692B2
Authority
JP
Japan
Prior art keywords
reaction
dimethylaniline
dimethylcyclohexylamine
formaldehyde
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007261924A
Other languages
Japanese (ja)
Other versions
JP2009091278A (en
Inventor
裕 粟野
貴弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007261924A priority Critical patent/JP5194692B2/en
Publication of JP2009091278A publication Critical patent/JP2009091278A/en
Application granted granted Critical
Publication of JP5194692B2 publication Critical patent/JP5194692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、N,N−ジメチルシクロヘキシルアミンの製造法に関する。   The present invention relates to a method for producing N, N-dimethylcyclohexylamine.

N,N−ジメチルシクロヘキシルアミンは、ポリウレタンフォーム製造用触媒、エポキシ硬化剤、レジスト剥離剤、鋼用腐食防止剤等として有用な化合物である。   N, N-dimethylcyclohexylamine is a useful compound as a catalyst for polyurethane foam production, an epoxy curing agent, a resist remover, a corrosion inhibitor for steel, and the like.

従来、アニリンを原料とするN,N−ジメチルシクロヘキシルアミンの製造法としては、まず、アニリンを核水添しシクロヘキシルアミンとし(例えば、特許文献1、2参照)、次いで、得られたシクロヘキシルアミンを還元メチル化することによる製造法が一般的に知られている(例えば、特許文献3、4参照)。   Conventionally, as a method for producing N, N-dimethylcyclohexylamine using aniline as a raw material, aniline is first hydrogenated to form cyclohexylamine (see, for example, Patent Documents 1 and 2), and then the obtained cyclohexylamine is used. A production method by reductive methylation is generally known (see, for example, Patent Documents 3 and 4).

しかしながら、中間体であるシクロヘキシルアミンを得るためには、高温高圧条件下でのアニリンの核水添が必要であり、高度な技術及び装置が必要となるため、より簡便な工業的製造法が求められている。   However, in order to obtain cyclohexylamine as an intermediate, nuclear hydrogenation of aniline under high-temperature and high-pressure conditions is required, and advanced techniques and equipment are required. Therefore, a simpler industrial production method is required. It has been.

一方、パラジウム触媒により芳香族アミン化合物を穏和な条件で還元メチル化できることは知られている(例えば、非特許文献1参照)。また、N,N−ジメチルアニリンが穏和な条件でN,N−ジメチルシクロヘキシルアミンに核水添できることも知られている(例えば、特許文献5参照)。   On the other hand, it is known that an aromatic amine compound can be reductively methylated under mild conditions with a palladium catalyst (see, for example, Non-Patent Document 1). It is also known that N, N-dimethylaniline can be nuclear hydrogenated to N, N-dimethylcyclohexylamine under mild conditions (see, for example, Patent Document 5).

この場合、N,N−ジメチルアニリンは、ホルムアルデヒド又はパラホルムアルデヒド等のホルムアルデヒド誘導体と還元触媒及び水素でアニリンを還元メチル化することにより調製されるが、得られる粗製N,N−ジメチルアニリンを単離精製することなく、すなわち、アニリンの還元メチル化反応液のまま連続して核水添反応を行った例は知られていない。例えば、特許文献5に記載の方法においても、実際の核水添反応には、単離精製されたN,N−ジメチルアニリンが用いられている。   In this case, N, N-dimethylaniline is prepared by reductive methylation of aniline with formaldehyde derivatives such as formaldehyde or paraformaldehyde, a reduction catalyst and hydrogen, but the resulting crude N, N-dimethylaniline is isolated. There is no known example of performing a nuclear hydrogenation reaction without purification, that is, with a reductive methylation reaction solution of aniline. For example, also in the method described in Patent Document 5, isolated and purified N, N-dimethylaniline is used in the actual nuclear hydrogenation reaction.

粗製N,N−ジメチルアニリンから連続して核水添反応を行うことを困難にしている要因としては、粗製N,N−ジメチルアニリンには未反応のホルムアルデヒドが残存していることが考えられる。一般に、還元メチル化反応の際でも過剰のホルムアルデヒドは触媒の活性を低下させることが知られている(例えば、特許文献6、非特許文献1参照)。   As a factor that makes it difficult to carry out the nuclear hydrogenation reaction continuously from the crude N, N-dimethylaniline, it is considered that unreacted formaldehyde remains in the crude N, N-dimethylaniline. In general, it is known that excessive formaldehyde reduces the activity of the catalyst even during the reductive methylation reaction (see, for example, Patent Document 6 and Non-Patent Document 1).

特開平10−72377号公報Japanese Patent Laid-Open No. 10-72377 特開平10−101584号公報JP-A-10-101484 特許昭60−130551号公報Japanese Patent No. 60-130551 特開昭62−10047号公報JP-A-62-10047 ドイツ国特許第297399号明細書German Patent No. 297399 特開昭52−71424号公報JP 52-71424 A A.P.Bonds,H.Greenfield,W.E.Pascoe(Ed)「Catalysis of Organic Reactions」Dekker,New York,1992,p.65A. P. Bonds, H.M. Greenfield, W.M. E. Pascoe (Ed) "Catalysis of Organic Reactions" Dekker, New York, 1992, p. 65

本発明は、上記の背景技術に鑑みてなされたものであり、その目的は、ホルムアルデヒドを含有する粗製N,N−ジメチルアニリンを単離精製することなく、連続して核水添反応することができる、経済的に有利な穏和な条件下でのN,N−ジメチルシクロヘキシルアミンの製造法を提供することである。   The present invention has been made in view of the above-mentioned background art, and the object thereof is to continuously carry out a nuclear hydrogenation reaction without isolating and purifying crude N, N-dimethylaniline containing formaldehyde. It is to provide a process for the production of N, N-dimethylcyclohexylamine under mild conditions which is economically advantageous.

本発明者らは上記の課題を解決するために鋭意検討した結果、ホルムアルデヒドを含有する粗製N,N−ジメチルアニリンを核水添反応するに際し、得られた反応液を180℃以上の温度で加熱処理することにより、粗製N,N−ジメチルアニリンを単離精製することなく連続して、核水添反応を行うことができること見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have heated the resulting reaction liquid at a temperature of 180 ° C. or higher when carrying out a nuclear hydrogenation reaction of crude N, N-dimethylaniline containing formaldehyde. By the treatment, it was found that the crude hydrogenation reaction can be carried out continuously without isolating and purifying crude N, N-dimethylaniline, and the present invention has been completed.

すなわち、本発明は、以下に示すとおりのN,N−ジメチルシクロヘキシルアミンの製造法である。   That is, the present invention is a method for producing N, N-dimethylcyclohexylamine as shown below.

[1]不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリンを、180℃以上の温度で加熱処理した後、還元触媒、及び水素の存在下で核水添反応するN,N−ジメチルシクロヘキシルアミンの製造法。   [1] Crude N, N-dimethylaniline containing formaldehyde and N, N-dimethylcyclohexylamine as impurities is heated at a temperature of 180 ° C. or higher, and then subjected to a nuclear hydrogenation reaction in the presence of a reduction catalyst and hydrogen. To produce N, N-dimethylcyclohexylamine.

[2]不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリンが、ホルムアルデヒド誘導体とアニリンを還元触媒及び水素存在下で反応させて得られる反応液である上記[1]に記載のN,N−ジメチルシクロヘキシルアミンの製造法。   [2] The above-mentioned [1], wherein crude N, N-dimethylaniline containing formaldehyde and N, N-dimethylcyclohexylamine as impurities is a reaction liquid obtained by reacting a formaldehyde derivative and aniline in the presence of a reduction catalyst and hydrogen. ] The manufacturing method of N, N- dimethylcyclohexylamine as described in any one of.

なお、本発明において用いる「還元メチル化(反応)」という用語は、カルボニル化合物とアンモニア又はアミンを縮合させ、生成するイミン又はイミニウムイオンを還元剤で還元してアミン類を得る方法を意味し(「第4版実験化学講座20 有機合成II」p.302〜303(日本化学会編、丸善、1992年)参照)、具体的には、ホルムアルデヒド、パラホルムアルデヒド等のホルムアルデヒド誘導体とアニリンを、還元触媒及び水素存在下で反応させ、還元的にアニリンのアミノ基をメチル化してN,N−ジメチルアニリンとする反応を指す。   The term “reductive methylation (reaction)” used in the present invention means a method of condensing a carbonyl compound with ammonia or an amine and reducing the resulting imine or iminium ion with a reducing agent to obtain amines. (Refer to “4th edition Experimental Chemistry Lecture 20 Organic Synthesis II” p. 302-303 (edited by the Chemical Society of Japan, Maruzen, 1992)), specifically, reducing formaldehyde and aniline such as formaldehyde and paraformaldehyde. The reaction is carried out in the presence of a catalyst and hydrogen and the amino group of aniline is reductively methylated to give N, N-dimethylaniline.

本発明によれば、アニリンの還元メチル化反応で得られる、不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリンを核水添反応するに際し、180℃以上の温度で加熱処理することにより、粗製N,N−ジメチルアニリンを単離精製することなく連続して、核水添反応を行うことができる。   According to the present invention, when a crude N, N-dimethylaniline containing formaldehyde and N, N-dimethylcyclohexylamine as impurities obtained by reductive methylation reaction of aniline is subjected to a nuclear hydrogenation reaction, a temperature of 180 ° C. or higher. By carrying out the heat treatment with, a nuclear hydrogenation reaction can be carried out continuously without isolating and purifying crude N, N-dimethylaniline.

本発明の方法は、触媒活性の低下の問題もなく、経済的に有利な温和な条件下で実施できるため、工業上極めて有用である。   The method of the present invention is extremely useful industrially because it can be carried out under mild conditions which are economically advantageous without a problem of a decrease in catalyst activity.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明は、不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリンを、180℃以上の温度で加熱処理した後、還元触媒、及び水素の存在下で核水添反応することをその特徴とする。   In the present invention, crude N, N-dimethylaniline containing formaldehyde and N, N-dimethylcyclohexylamine as impurities is heated at a temperature of 180 ° C. or higher, and then subjected to nuclear hydrogenation in the presence of a reduction catalyst and hydrogen. It is characterized by reacting.

本発明において、不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリンとしては、ホルムアルデヒド誘導体とアニリンを還元触媒及び水素存在下で反応させて得られる、アニリンの還元メチル化反応液を使用することができる。   In the present invention, as crude N, N-dimethylaniline containing formaldehyde and N, N-dimethylcyclohexylamine as impurities, reduced methyl aniline obtained by reacting a formaldehyde derivative and aniline in the presence of a reduction catalyst and hydrogen. The reaction solution can be used.

本発明において、アニリンの還元メチル化反応に用いられるホルムアルデヒドの量は一般に理論量が適当であるが(例えば、特許文献6参照)、ほぼ当量のホルムアルデヒドを用いた場合でも還元メチル化反応後、反応液中にホルムアルデヒドが少量残存する可能性がある。本発明において、アニリンの還元メチル化反応液中のホルムアルデヒドの含有量は、特に限定するものではないが、あまり多いと加熱処理によりホルマリン由来の重合不純物を副生し、目的物の単離処理に多大の負担を要することが考えられため、1000ppm以下であることが好ましく、350ppm以下にすることがさらに好ましい。   In the present invention, the amount of formaldehyde used in the reductive methylation reaction of aniline is generally a theoretical amount (see, for example, Patent Document 6). However, even when an approximately equivalent amount of formaldehyde is used, the reaction is performed after the reductive methylation reaction. A small amount of formaldehyde may remain in the liquid. In the present invention, the content of formaldehyde in the reductive methylation reaction solution of aniline is not particularly limited. However, if it is too much, a formalin-derived polymerization impurity is produced as a by-product by heat treatment, and the target product is isolated. Since it is considered that a great burden is required, it is preferably 1000 ppm or less, and more preferably 350 ppm or less.

本発明において、不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリンは、180℃以上の温度で加熱処理される。加熱処理温度の上限としては、特に限定するものではないが、工業的に蒸気加熱が可能な250℃以下の範囲で実施すれば十分に本発明の効果が達成される。また、加熱処理時間としては、特に限定するものではないが、30分以上実施すれば十分に本発明の効果が達成され、長時間の加熱処理は必要ではない。   In the present invention, crude N, N-dimethylaniline containing formaldehyde and N, N-dimethylcyclohexylamine as impurities is heat-treated at a temperature of 180 ° C. or higher. The upper limit of the heat treatment temperature is not particularly limited, but the effect of the present invention can be sufficiently achieved if it is carried out in a range of 250 ° C. or lower where steam heating is industrially possible. Further, the heat treatment time is not particularly limited, but if it is carried out for 30 minutes or longer, the effect of the present invention is sufficiently achieved, and a long-time heat treatment is not necessary.

本発明において、N,N−ジメチルアニリンの核水添反応は、アニリンの還元メチル化反応液を180℃以上の温度で加熱処理した後、その反応液をそのまま用いて行うことができるため、反応に使用される溶媒としては、通常、還元メチル化反応の溶媒をそのまま用いることができる。このような溶媒としては、具体的には、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、2−ブタノール、tert−ブタノール等の脂肪族アルコール類、テトラヒドロフラン、ジオキサン等のエーテル類、N、N−ジメチルホルムアルデヒド、N、N−ジメチルアセトアルデヒド、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン等の非プロトン性極性溶媒等が使用できる。また、これらの溶媒は単独で又は混合して使用しても良い。これらのうち、脂肪族アルコール類が経済性及び操作性から反応溶媒として特に好ましい。   In the present invention, the nuclear hydrogenation reaction of N, N-dimethylaniline can be carried out using the reaction solution as it is after the reductive methylation reaction solution of aniline is heated at a temperature of 180 ° C. or higher. As the solvent used for the above, the solvent for the reductive methylation reaction can be used as it is. Specific examples of such a solvent include aliphatic alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol and tert-butanol, ethers such as tetrahydrofuran and dioxane, Aprotic polar solvents such as N, N-dimethylformaldehyde, N, N-dimethylacetaldehyde, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone and the like can be used. These solvents may be used alone or in combination. Of these, aliphatic alcohols are particularly preferable as a reaction solvent from the viewpoint of economy and operability.

本発明において、核水添反応に用いられる還元触媒としては、例えば、ロジウム、ルテニウム、白金、パラジウム、ニッケル等の芳香族化合物の核水添用触媒が好適なものとして挙げられるが、還元メチル化反応にも使用でき経済的である活性炭担持のパラジウム触媒が特に好ましい。   In the present invention, examples of the reduction catalyst used in the nuclear hydrogenation reaction include a catalyst for nuclear hydrogenation of aromatic compounds such as rhodium, ruthenium, platinum, palladium, nickel, and the like. A palladium catalyst supported on activated carbon, which can be used for the reaction and is economical, is particularly preferred.

還元触媒の使用量は、基質であるN,N−ジメチルアニリンの仕込量に対して0.5重量%以上が好ましく、更に好ましくは5重量%以上である。但し、触媒が10重量%を超えても特別の効果は認められず、経済的にも不利となる。   The amount of the reduction catalyst used is preferably 0.5% by weight or more, more preferably 5% by weight or more, based on the amount of N, N-dimethylaniline which is a substrate. However, even if the catalyst exceeds 10% by weight, no special effect is observed, which is disadvantageous economically.

水素化反応温度は、60℃から180℃、好ましくは120℃から160℃の範囲である。また、反応圧力は、0.4MPa以上であり、好ましくは0.8MPa以上である。   The hydrogenation reaction temperature is in the range of 60 ° C to 180 ° C, preferably 120 ° C to 160 ° C. The reaction pressure is 0.4 MPa or more, preferably 0.8 MPa or more.

本発明においては、不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリン反応液を、180℃以上の温度で加熱処理した後、更に新たな還元触媒を追加することで特別な処理をすることなく続けて水素加圧条件で核水添反応を行うことができる。又は、180℃以上の温度で加熱処理した粗製N,N−ジメチルアニリン反応液を新たな還元触媒を入れた容器へ移液することで特別の処理をすることなく続けて水素加圧条件で核水添反応を行うことができる。   In the present invention, a crude N, N-dimethylaniline reaction liquid containing formaldehyde and N, N-dimethylcyclohexylamine as impurities is heat-treated at a temperature of 180 ° C. or higher, and then a new reduction catalyst is added. Then, the nuclear hydrogenation reaction can be carried out under hydrogen pressure conditions without any special treatment. Alternatively, the crude N, N-dimethylaniline reaction solution heat-treated at a temperature of 180 ° C. or higher is transferred to a container containing a new reduction catalyst, so that it can continue to be nucleated under hydrogen pressure conditions without any special treatment. Hydrogenation reaction can be performed.

以下に、本発明の詳細について実施例を用いて説明するが、それらは本発明を限定するものではない。なお、本実施例における生成物とその収率は、ガスクロマトグラフィーにて確認した。また、アニリンの還元メチル化反応液中に含まれるホルムアルデヒドの濃度は、ガスクロマトグラフ質量分析計−選択イオンモニター法(GCMS−SIM)での定量分析により測定した。   The details of the present invention will be described below with reference to examples, but they do not limit the present invention. The product and the yield in this example were confirmed by gas chromatography. The concentration of formaldehyde contained in the reductive methylation reaction solution of aniline was measured by quantitative analysis using a gas chromatograph mass spectrometer-selected ion monitor method (GCMS-SIM).

ガスクロマトグラフィー:(島津製作所製 GC−17A、測定条件 キャピラリーカラム(J&WScience社製 DB−5)、昇温、検出器FID)。   Gas chromatography: (GC-17A manufactured by Shimadzu Corporation, measurement condition capillary column (DB-5 manufactured by J & WS Science), temperature rise, detector FID).

GCMS−SIM:(日本電子(株)製 GC−MSJMS−K9 測定条件 キャピラリーカラム(J&WScience社製 DB−5)、昇温)。   GCMS-SIM: (GC-MSJMS-K9, manufactured by JEOL Ltd., measurement conditions, capillary column (DB-5, manufactured by J & WS Science), temperature increase).

まず、反応原料であるN,N−ジメチルアニリンのアニリンからの還元メチル化反応の例を示す。   First, an example of a reductive methylation reaction from aniline of N, N-dimethylaniline as a reaction raw material will be shown.

調製例1:
1000mLの攪拌機付きオートクレーブにアニリン130.0g(1.40mol)、メタノール226.2g、及び活性炭にパラジウムが5wt%担持されたパラジウム触媒13.0g(デグサ社製、57%含水品)を仕込んだ。オートクレーブを密閉し、窒素置換及び水素置換後、水素圧を0.5MPaまで昇圧して、撹拌条件下で150℃まで昇温した。0.9MPa程度の水素加圧条件下、オートクレーブ内に37wt%ホルムアルデヒド水溶液226.2g(2.79mol、工業薬品JIS K 1502規格品、メタノール6.0wt%含有品でメタノール付加物を含むと思われる)を10時間かけてポンプで供給し、更に3時間加熱撹拌したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してパラジウム触媒を除去した。
Preparation Example 1:
A 1000 mL autoclave equipped with a stirrer was charged with 130.0 g (1.40 mol) of aniline, 226.2 g of methanol, and 13.0 g of a palladium catalyst in which 5 wt% of palladium was supported on activated carbon (manufactured by Degussa, 57% water-containing product). The autoclave was sealed, and after nitrogen substitution and hydrogen substitution, the hydrogen pressure was increased to 0.5 MPa, and the temperature was increased to 150 ° C. under stirring conditions. Under the condition of hydrogen pressure of about 0.9 MPa, 226.2 g of 37 wt% formaldehyde aqueous solution (2.79 mol, industrial chemical JIS K 1502 standard product, product containing 6.0 wt% of methanol is considered to contain methanol adduct in the autoclave. ) Was fed with a pump over 10 hours, and further heated and stirred for 3 hours. As a result, hydrogen absorption disappeared, and the reaction was terminated. After cooling and depressurization, the reaction solution was filtered to remove the palladium catalyst.

得られた反応液についてガスクロマトグラフィー分析を行った結果、N,N−ジメチルアニリンを収率85%、N,N−ジメチルシクロヘキシルアミンを収率5%でそれぞれ得たことを確認した。また、反応液中のホルムアルデヒド濃度は、GCMS−SIM分析の結果、350ppmであった。   As a result of performing gas chromatography analysis on the obtained reaction solution, it was confirmed that N, N-dimethylaniline was obtained in a yield of 85% and N, N-dimethylcyclohexylamine was obtained in a yield of 5%. The formaldehyde concentration in the reaction solution was 350 ppm as a result of GCMS-SIM analysis.

次に、得られた粗製N,N−ジメチルアニリンを用いた核水添反応の例を示す。   Next, an example of a nuclear hydrogenation reaction using the obtained crude N, N-dimethylaniline is shown.

実施例1:
200mLの攪拌器付きオートクレーブに、調製例1に記載の方法に準じて得られた反応液80.0g(N,N−ジメチルアニリン11.0g、N,N−ジメチルシクロヘキシルアミン0.6g、及びホルムアルデヒド28mgをそれぞれ含有する。)を180℃で1時間加熱処理を行った後、室温まで冷却した。
Example 1:
In a 200 mL autoclave equipped with a stirrer, 80.0 g of a reaction solution obtained according to the method described in Preparation Example 1 (11.0 g of N, N-dimethylaniline, 0.6 g of N, N-dimethylcyclohexylamine, and formaldehyde) 28 mg each) was heat treated at 180 ° C. for 1 hour and then cooled to room temperature.

次いで、得られた反応液に活性炭にパラジウムが5wt%担持されたパラジウム触媒3.0g(デグサ社製、57%含水品)を仕込んだ。オートクレーブを密閉し、窒素置換及び水素置換後、水素圧を0.4MPaまで昇圧して、撹拌条件下で150℃まで昇温した。密閉状態で水素加圧条件下、5時間加熱撹拌して反応を終了したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してパラジウム触媒を除去した。   Next, 3.0 g of palladium catalyst (57% water-containing product, manufactured by Degussa) in which 5 wt% of palladium was supported on activated carbon was charged into the obtained reaction solution. The autoclave was sealed, and after nitrogen substitution and hydrogen substitution, the hydrogen pressure was increased to 0.4 MPa, and the temperature was increased to 150 ° C. under stirring conditions. When the reaction was terminated by heating and stirring for 5 hours in a sealed state under hydrogen pressure, the reaction was terminated because hydrogen absorption disappeared. After cooling and depressurization, the reaction solution was filtered to remove the palladium catalyst.

得られた反応液についてガスクロマトグラフィー分析を行った結果、N,N−ジメチルアニリンは3%の回収率であり、N,N−ジメチルシクロヘキシルアミンを収率80%で得たことを確認した。   As a result of performing gas chromatography analysis on the obtained reaction solution, it was confirmed that N, N-dimethylaniline was 3% recovered and that N, N-dimethylcyclohexylamine was obtained in a yield of 80%.

実施例2:
200mLの攪拌器付きオートクレーブに、調製例1に記載の方法に準じて得られた反応液80.0g(N,N−ジメチルアニリン11.0g、N,N−ジメチルシクロヘキシルアミン0.6g、及びホルムアルデヒド28mgをそれぞれ含有する。)を200℃で0.5時間加熱処理を行った後、室温まで冷却した。
Example 2:
In a 200 mL autoclave equipped with a stirrer, 80.0 g of a reaction solution obtained according to the method described in Preparation Example 1 (11.0 g of N, N-dimethylaniline, 0.6 g of N, N-dimethylcyclohexylamine, and formaldehyde) 28 mg each) was heat treated at 200 ° C. for 0.5 hour, and then cooled to room temperature.

次いで、得られた反応液に活性炭にパラジウムが5wt%担持されたパラジウム触媒3.0g(デグサ社製、57%含水品)を仕込んだ。オートクレーブを密閉し、窒素置換及び水素置換後、水素圧を0.4MPaまで昇圧して、撹拌条件下で150℃まで昇温した。密閉状態で水素加圧条件下、5時間加熱撹拌して反応を終了したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してパラジウム触媒を除去した。   Next, 3.0 g of palladium catalyst (57% water-containing product, manufactured by Degussa) in which 5 wt% of palladium was supported on activated carbon was charged into the obtained reaction solution. The autoclave was sealed, and after nitrogen substitution and hydrogen substitution, the hydrogen pressure was increased to 0.4 MPa, and the temperature was increased to 150 ° C. under stirring conditions. When the reaction was terminated by heating and stirring for 5 hours in a sealed state under hydrogen pressure, the reaction was terminated because hydrogen absorption disappeared. After cooling and depressurization, the reaction solution was filtered to remove the palladium catalyst.

得られた反応液についてガスクロマトグラフィー分析を行った結果、N,N−ジメチルアニリンは認められず、N,N−ジメチルシクロヘキシルアミンを収率81%で得たことを確認した。   As a result of conducting gas chromatography analysis on the obtained reaction liquid, it was confirmed that N, N-dimethylaniline was not observed and N, N-dimethylcyclohexylamine was obtained in a yield of 81%.

比較例1:
200mLの攪拌器付きオートクレーブに、実施例1と同様に、調製例1に記載の方法に準じて得られた反応液80.0g(N,N−ジメチルアニリン11.0g、N,N−ジメチルシクロヘキシルアミン0.6g、及びホルムアルデヒド28mgをそれぞれ含有する。)を160℃で2時間加熱処理を行った後、室温まで冷却した。
Comparative Example 1:
In a 200 mL autoclave equipped with a stirrer, in the same manner as in Example 1, 80.0 g of the reaction solution obtained according to the method described in Preparation Example 1 (11.0 g of N, N-dimethylaniline, N, N-dimethylcyclohexyl) Each of them was heated at 160 ° C. for 2 hours and then cooled to room temperature.

次いで、得られた反応液に活性炭にパラジウムが5wt%担持されたパラジウム触媒3.0g(デグサ社製、57%含水品)を仕込んだ。オートクレーブを密閉し、窒素置換及び水素置換後、水素圧を0.4MPaまで昇圧して、撹拌条件下で150℃まで昇温した。密閉状態で水素加圧条件下3時間加熱撹拌して反応したが、水素吸収は全く見られなかったため反応を終了し、冷却、脱圧後、反応液を濾過してパラジウム触媒を除去した。   Next, 3.0 g of palladium catalyst (57% water-containing product, manufactured by Degussa) in which 5 wt% of palladium was supported on activated carbon was charged into the obtained reaction solution. The autoclave was sealed, and after nitrogen substitution and hydrogen substitution, the hydrogen pressure was increased to 0.4 MPa, and the temperature was increased to 150 ° C. under stirring conditions. The reaction was carried out by heating and stirring for 3 hours under hydrogen pressure in a sealed state, but no hydrogen absorption was observed, so the reaction was terminated. After cooling and depressurization, the reaction solution was filtered to remove the palladium catalyst.

得られた反応液についてガスクロマトグラフィー分析を行った結果、N,N−ジメチルアニリンは100%回収され、N,N−ジメチルシクロヘキシルアミン量の増加は認められなかった。   As a result of performing gas chromatography analysis on the obtained reaction solution, 100% of N, N-dimethylaniline was recovered, and no increase in the amount of N, N-dimethylcyclohexylamine was observed.

Claims (2)

ホルムアルデヒド誘導体とアニリンを還元触媒及び水素存在下で反応させる工程(1)、工程(1)で得られた反応液から還元触媒を除去し、不純物としてホルムアルデヒド及びN,N−ジメチルシクロヘキシルアミンを含有する粗製N,N−ジメチルアニリンを得る工程(2)、並びに工程(2)で得られた粗製N,N−ジメチルアニリンを、180℃以上の温度で加熱処理した後、還元触媒、及び水素の存在下で核水添反応する工程(3)を含むN,N−ジメチルシクロヘキシルアミンの製造法。 The reaction of the formaldehyde derivative and aniline in the presence of a reduction catalyst and hydrogen is removed from the reaction solution obtained in step (1) and step (1), and formaldehyde and N, N-dimethylcyclohexylamine are contained as impurities. Step (2) for obtaining crude N, N-dimethylaniline, and the heat treatment of crude N, N-dimethylaniline obtained in step (2) at a temperature of 180 ° C. or higher, followed by the presence of a reduction catalyst and hydrogen A process for producing N, N-dimethylcyclohexylamine, which comprises a step (3) of nuclear hydrogenation reaction below. 還元触媒が、活性炭担持のパラジウム触媒であることを特徴とする請求項1に記載のN,N−ジメチルシクロヘキシルアミンの製造法。 The method for producing N, N-dimethylcyclohexylamine according to claim 1, wherein the reduction catalyst is a palladium catalyst supported on activated carbon.
JP2007261924A 2007-10-05 2007-10-05 Process for producing N, N-dimethylcyclohexylamine Active JP5194692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261924A JP5194692B2 (en) 2007-10-05 2007-10-05 Process for producing N, N-dimethylcyclohexylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261924A JP5194692B2 (en) 2007-10-05 2007-10-05 Process for producing N, N-dimethylcyclohexylamine

Publications (2)

Publication Number Publication Date
JP2009091278A JP2009091278A (en) 2009-04-30
JP5194692B2 true JP5194692B2 (en) 2013-05-08

Family

ID=40663614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261924A Active JP5194692B2 (en) 2007-10-05 2007-10-05 Process for producing N, N-dimethylcyclohexylamine

Country Status (1)

Country Link
JP (1) JP5194692B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE851189C (en) * 1944-04-30 1952-10-02 Basf Ag Process for the preparation of hexahydroanilines alkylated on the nitrogen
JPS6470446A (en) * 1987-06-24 1989-03-15 New Japan Chem Co Ltd Production of cyclohexylamine
DE3721539A1 (en) * 1987-06-30 1989-01-12 Ruhrchemie Ag METHOD FOR PRODUCING METHYLAMINE
CA1330665C (en) * 1988-03-30 1994-07-12 Gamini Ananda Vedage Catalytic hydrogenation of crude methylene bridged polyphenylamines to produce polycyclohexylamines

Also Published As

Publication number Publication date
JP2009091278A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5291630B2 (en) Method for reductive amination of aldehydes and ketones
TWI630197B (en) Process for removing formaldehyde from a composition comprising low molecular weight carbonyl compounds
JP5237800B2 (en) Method for the reductive amination of aldehydes and ketones through the formation of macrocyclic polyimines intermediates
EP3166921B1 (en) Process for producing aromatic primary diamines
EP1206441A1 (en) The method for preparing 4-nitrodiphenylamine and 4-nitrosodiphenylamine from carbanilide
JP5640093B2 (en) Process for producing bis (aminomethyl) cyclohexanes
WO2016095136A1 (en) Method for purifying 1,5-pentanediamine and 1,5-pentanediamine
WO2007125909A1 (en) Method for production of 3-methyl-1,5-pentanediol
JP5194692B2 (en) Process for producing N, N-dimethylcyclohexylamine
EP3290401B1 (en) N-substituted acyclic ethylene diamines
JP5125771B2 (en) Method for producing alicyclic amines
KR101358519B1 (en) Method for preparation of 4,4'-dintrodiphenylamine and 4,4'-bis(alkylamino)diphenylamine with the base catalyst complex
JP5135944B2 (en) Process for producing N, N-dimethylcyclohexylamine
JPS60115556A (en) Production of 4-alkoxyaniline
JP6356219B2 (en) Post-treatment method of wastewater from nitrobenzene production
JP5675826B2 (en) Process for the preparation of 2,2-difluoroethylamine by hydrogenating 1,1-difluoro-2-nitroethane
Tian et al. Oxidative carbonylation of aromatic amines with CO catalyzed by 1, 3-dialkylimidazole-2-selenone in ionic liquids
JP2008063335A (en) Method for producing 1,2-diol from carbonyl compound
WO2009125581A1 (en) Catechol manufacturing method
AU2009356855A1 (en) Process for the preparation of Ropinirole and salts thereof
JP5289783B2 (en) Method for producing 2- (isopropylamino) ethanol
JPH0359887B2 (en)
WO2007066492A1 (en) Process for production of lactam
JP7140347B2 (en) Method for producing 4-(piperidin-4-yl)morpholine
KR20070012123A (en) Preparation of trans-4-methylcyclohexyl amine by catalytic hydrogenation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5194692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3