JP5125771B2 - Method for producing alicyclic amines - Google Patents

Method for producing alicyclic amines Download PDF

Info

Publication number
JP5125771B2
JP5125771B2 JP2008142584A JP2008142584A JP5125771B2 JP 5125771 B2 JP5125771 B2 JP 5125771B2 JP 2008142584 A JP2008142584 A JP 2008142584A JP 2008142584 A JP2008142584 A JP 2008142584A JP 5125771 B2 JP5125771 B2 JP 5125771B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
hydrogen
group
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008142584A
Other languages
Japanese (ja)
Other versions
JP2009286747A (en
Inventor
貴弘 井上
裕 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008142584A priority Critical patent/JP5125771B2/en
Publication of JP2009286747A publication Critical patent/JP2009286747A/en
Application granted granted Critical
Publication of JP5125771B2 publication Critical patent/JP5125771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、N,N−ジメチルシクロヘキシルアミン類の製造法に関する。   The present invention relates to a method for producing N, N-dimethylcyclohexylamines.

N,N−ジメチルシクロヘキシルアミン類は、ポリウレタンフォーム製造用触媒、エポキシ硬化剤、レジスト剥離剤、鋼用腐食防止剤等として有用な化合物である。   N, N-dimethylcyclohexylamines are useful compounds as catalysts for polyurethane foam production, epoxy curing agents, resist stripping agents, corrosion inhibitors for steel, and the like.

アニリンを原料とするN,N−ジメチルシクロヘキシルアミンの製造法として、ワンポットで連続して核水添と還元メチル化を行った例はこれまで知られていない。   As an example of a method for producing N, N-dimethylcyclohexylamine using aniline as a raw material, there has been no known example in which nuclear hydrogenation and reductive methylation were continuously carried out in one pot.

従来の製造法としては、例えば、N,N−ジメチルアニリンの核水添反応が知られている(例えば、特許文献1参照)。しかしながら、この製造法は、高価なN,N−ジメチルアニリンを原料とするため、経済的に不利な製造法である。   As a conventional production method, for example, a nuclear hydrogenation reaction of N, N-dimethylaniline is known (see, for example, Patent Document 1). However, this production method is economically disadvantageous because it uses expensive N, N-dimethylaniline as a raw material.

一方、アニリンをルテニウム触媒存在下で核水添してシクロヘキシルアミンとする工程(例えば、特許文献2、3参照)、及び得られたシクロヘキシルアミンを、パラジウム(又は白金)触媒の存在下で水素及びホルムアルデヒドと還元メチル化反応させ、N,N−ジメチルシクロヘキシルアミンとする工程(例えば、特許文献4、5参照)からなる製造法が知られている。   On the other hand, the step of hydrating aniline into a cyclohexylamine by nuclear hydrogenation in the presence of a ruthenium catalyst (see, for example, Patent Documents 2 and 3), and the obtained cyclohexylamine in the presence of a palladium (or platinum) catalyst, A production method is known which comprises a step of reducing methylation with formaldehyde to form N, N-dimethylcyclohexylamine (see, for example, Patent Documents 4 and 5).

すなわちこの方法は、アニリンの核水添工程とシクロヘキシルアミンの還元メチル化工程とで、それぞれ異なる高価な貴金属触媒を使用する方法である。したがって、核水添反応後に冷却、脱圧操作を行い、初めの触媒を濾過回収し、精製処理してから、触媒をパラジウム触媒に変え、次の還元メチル化反応を実施するのが一般的である。そのため、二度の触媒回収と、中間体のシクロヘキシルアミンの精製工程を必要とし、操作が煩雑である上、製造工程が長くなり、経済的に不利な製法であった。   In other words, this method uses different expensive noble metal catalysts for the aniline nuclear hydrogenation step and the cyclohexylamine reductive methylation step. Therefore, cooling and depressurization operations are performed after the nuclear hydrogenation reaction, the first catalyst is collected by filtration, purified, and then the catalyst is changed to a palladium catalyst, followed by the next reductive methylation reaction. is there. Therefore, it requires a catalyst recovery twice and a purification step for the intermediate cyclohexylamine, which is complicated and requires a long production process, which is an economically disadvantageous production method.

一方、アニリン以外の化合物を原料とする場合でも、核水添反応と還元アルキル化反応を同一の触媒を用いて連続して行った反応の例は少ない。例えば、アニリンとアセトンからN−イソプロピルシクロヘキシルアミンを合成した例が知られている程度である(例えば、非特許文献1参照)。しかしながら、N,N−ジメチルシクロヘキシルアミンへの反応例は知られていない。   On the other hand, even when compounds other than aniline are used as raw materials, there are few examples of reactions in which the nuclear hydrogenation reaction and the reductive alkylation reaction are continuously performed using the same catalyst. For example, an example in which N-isopropylcyclohexylamine is synthesized from aniline and acetone is known (see, for example, Non-Patent Document 1). However, no reaction example to N, N-dimethylcyclohexylamine is known.

このように、核水添反応と還元アルキル化反応との連続反応が難しい理由としては、以下のような理由が考えられる。   Thus, the following reasons can be considered as the reason why the continuous reaction between the nuclear hydrogenation reaction and the reductive alkylation reaction is difficult.

芳香族化合物の核水添反応には一般にルテニウム触媒が用いられる。核水添反応と還元アルキル化反応とを連続して行おうとすると、還元メチル化反応は、この核水添反応液に、ホルムアルデヒド誘導体を添加して行われることになる。   A ruthenium catalyst is generally used for the nuclear hydrogenation reaction of an aromatic compound. If the nuclear hydrogenation reaction and the reductive alkylation reaction are continuously performed, the reductive methylation reaction is performed by adding a formaldehyde derivative to the nuclear hydrogenation reaction solution.

ところで、シクロヘキサノン類の還元アミノ化反応を、ルテニウム触媒を用いて実施すると、還元アミノ化よりもカルボニルの水素化が優先することが知られている(例えば、非特許文献2参照)。シクロヘキシルアミンの還元アルキル化はシクロヘキサノンの還元アミノ化と同様の反応機構であると考えられるため(例えば、非特許文献2参照)、シクロヘキシルアミンの還元メチル化においても、還元メチル化よりホルムアルデヒドの水素化が優先し、目的とする反応の進行が困難となることが予想される。   By the way, when the reductive amination reaction of cyclohexanones is carried out using a ruthenium catalyst, it is known that hydrogenation of carbonyl has priority over reductive amination (for example, see Non-Patent Document 2). Since reductive alkylation of cyclohexylamine is considered to have the same reaction mechanism as reductive amination of cyclohexanone (see, for example, Non-Patent Document 2), in reductive methylation of cyclohexylamine, hydrogenation of formaldehyde rather than reductive methylation. It is expected that the target reaction will be difficult to proceed.

特開昭52−148043号公報JP 52-148043 A 特開平10−72377号公報、例5Japanese Patent Laid-Open No. 10-72377, Example 5 特開平10−101584号公報、実施例5Japanese Patent Laid-Open No. 10-101484, Example 5 特許昭60−130551号公報、実施例6Japanese Patent No. 60-130551, Example 6 特開昭62−10047号公報、実施例3−3JP-A-62-10047, Example 3-3 Chemical Industries (Dekker),53,(Catalysis of Organic Reactions),p.265−277(1994)Chemical Industries (Dekker), 53, (Catalysis of Organic Reactions), p. 265-277 (1994) 西村重夫、高木弦 共著「接触水素化反応」、東京化学同人、1987年、p.186−188Nishimura Shigeo and Takagi Gen, “Catalytic Hydrogenation”, Tokyo Chemical Doujin, 1987, p. 186-188

本発明は、上記の背景技術に鑑みてなされたものであり、その目的は、効率的かつ経済的なN,N−ジメチルシクロヘキシルアミン類の製造法を提供することである。   The present invention has been made in view of the above-described background art, and an object of the present invention is to provide an efficient and economical method for producing N, N-dimethylcyclohexylamines.

本発明者らは上記の課題を解決するために鋭意検討した結果、驚くべきことに、芳香族化合物を、特定の貴金属触媒及び水素の存在下で核水添反応させた後、引き続いて、得られたシクロヘキシルアミン化合物を、同じ貴金属触媒、ホルムアルデヒド誘導体、及び水素の存在下で還元メチル化反応させることにより、粗製シクロヘキシルアミン化合物を含む核水添反応液に特別な処理を施すことなく、効率的にN,N−ジメチルシクロヘキシルアミン類を製造できることを見出し、本反応を完成するに至った。   As a result of diligent investigations to solve the above problems, the present inventors have surprisingly obtained an aromatic compound after a nuclear hydrogenation reaction in the presence of a specific noble metal catalyst and hydrogen. By subjecting the obtained cyclohexylamine compound to a reductive methylation reaction in the presence of the same noble metal catalyst, formaldehyde derivative, and hydrogen, the nuclear hydrogenation reaction solution containing the crude cyclohexylamine compound can be efficiently treated without any special treatment. The inventors have found that N, N-dimethylcyclohexylamines can be produced, and have completed this reaction.

すなわち、本発明は、以下に示すとおりのN,N−ジメチルシクロヘキシルアミン類の製造法である。   That is, the present invention is a process for producing N, N-dimethylcyclohexylamines as shown below.

[1]下記一般式(1)   [1] The following general formula (1)

Figure 0005125771
(上記式中、Rはアミノ基又はニトロ基を示し、RはRと同一又は相異なってアミノ基、ニトロ基又は水素原子を示し、Rはメチル基又は水素原子を示す。)
で表される芳香族化合物を、ルテニウム触媒及びロジウム触媒からなる群より選ばれる少なくとも1種の貴金属触媒並びに水素の存在下で核水添反応させ、引き続いて、得られたシクロヘキシル化合物を、前記貴金属触媒、ホルムアルデヒド誘導体及び水素の存在下で還元メチル化反応させる下記一般式(2)
Figure 0005125771
(In the above formula, R 1 represents an amino group or a nitro group, R 2 is the same as or different from R 1 and represents an amino group, a nitro group, or a hydrogen atom, and R 3 represents a methyl group or a hydrogen atom.)
Is subjected to a nuclear hydrogenation reaction in the presence of at least one noble metal catalyst selected from the group consisting of a ruthenium catalyst and a rhodium catalyst and hydrogen, and then the obtained cyclohexyl compound is converted into the noble metal. A reductive methylation reaction in the presence of a catalyst, a formaldehyde derivative and hydrogen, the following general formula (2)

Figure 0005125771
(式中、Rはジメチルアミノ基を示し、RはRと同一又は相異なって、ジメチルアミノ基又は水素原子を示し、Rはメチル基、又は、水素原子を示す。)
で表されるN,N−ジメチルシクロへキシルアミン類の製造法であって、貴金属触媒として、ルテニウム触媒及び/又はロジウム触媒を用いることを特徴とするN,N−ジメチルシクロヘキシルアミン類の製造法。
Figure 0005125771
(In the formula, R 1 represents a dimethylamino group, R 2 is the same as or different from R 1 and represents a dimethylamino group or a hydrogen atom, and R 3 represents a methyl group or a hydrogen atom.)
A method for producing N, N-dimethylcyclohexylamines, wherein a ruthenium catalyst and / or a rhodium catalyst is used as a noble metal catalyst.

[2]核水添反応した反応液に、ホルムアルデヒド誘導体を供給して還元メチル化反応させることを特徴とする上記[1]に記載のN,N−ジメチルシクロへキシルアミン類の製造法。   [2] The method for producing N, N-dimethylcyclohexylamines as described in [1] above, wherein a reductive methylation reaction is performed by supplying a formaldehyde derivative to a reaction solution subjected to nuclear hydrogenation reaction.

[3]貴金属触媒として、ルテニウムを用いることを特徴とする上記[1]又は[2]に記載のN,N−ジメチルシクロヘキシルアミン類の製造法。   [3] The method for producing N, N-dimethylcyclohexylamines according to the above [1] or [2], wherein ruthenium is used as the noble metal catalyst.

なお、本発明において用いる「還元メチル化(反応)」という用語は、カルボニル化合物とアンモニア又はアミンを縮合させ、生成するイミン又はイミニウムイオンを還元剤で還元してアミン類を得る方法を意味する(例えば、「第4版実験化学講座20 有機合成II」p.302〜303(日本化学会編、丸善、1992年)参照)。具体的には、ホルムアルデヒド、パラホルムアルデヒド等のホルムアルデヒド誘導体とシクロヘキシルアミンを、還元触媒及び水素存在下で反応させ、還元的にシクロヘキシルアミンのアミノ基をメチル化してN,N−ジメチルシクロヘキシルアミンとする反応を指す。   The term “reductive methylation (reaction)” used in the present invention means a method of condensing a carbonyl compound with ammonia or an amine and reducing the resulting imine or iminium ion with a reducing agent to obtain amines. (For example, refer to "4th edition experimental chemistry course 20 organic synthesis II" p.302-303 (The Chemical Society of Japan, Maruzen, 1992)). Specifically, formaldehyde derivatives such as formaldehyde and paraformaldehyde are reacted with cyclohexylamine in the presence of a reduction catalyst and hydrogen, and the amino group of cyclohexylamine is reductively methylated to N, N-dimethylcyclohexylamine. Point to.

本発明の製造法は、触媒を交換する必要がなく、効率的な操作で実施でき、経済的にも有利となるため、工業上極めて有用である。   The production method of the present invention is extremely useful industrially because it does not require replacement of the catalyst, can be carried out by an efficient operation, and is economically advantageous.

本発明においては、まず、上記一般式(1)で表される芳香族化合物を、ルテニウム触媒及びロジウム触媒からなる群より選ばれる少なくとも1種の貴金属触媒並びに水素の存在下で核水添反応させる。   In the present invention, first, the aromatic compound represented by the general formula (1) is subjected to a nuclear hydrogenation reaction in the presence of at least one noble metal catalyst selected from the group consisting of a ruthenium catalyst and a rhodium catalyst and hydrogen. .

本発明において上記一般式(1)で表される芳香族化合物は、少なくとも一つのアミノ基、又はニトロ基をもつ芳香族化合物である。   In the present invention, the aromatic compound represented by the general formula (1) is an aromatic compound having at least one amino group or nitro group.

本発明において、上記一般式(1)に該当する芳香族化合物としては、特に限定するものではないが、例えば、アニリン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジミアミン、o−ニトロアニリン、m−ニトロアニリン、p−ニトロアニリン、o−ジニトロベンゼン、m−ジニトロベンゼン、p−ジニトロベンゼン、o−トルイジン、m−トルイジン、p−トルイジン、2,4−ジアミノトルエン、2,4−ジニトロトルエン、4−メチル−3−ニトロアニリン、2−メチル−5−ニトロアニリン等が挙げられる。   In the present invention, the aromatic compound corresponding to the above general formula (1) is not particularly limited, and examples thereof include aniline, o-phenylenediamine, m-phenylenediamine, p-phenylenedimamine, and o-nitro. Aniline, m-nitroaniline, p-nitroaniline, o-dinitrobenzene, m-dinitrobenzene, p-dinitrobenzene, o-toluidine, m-toluidine, p-toluidine, 2,4-diaminotoluene, 2,4- Examples thereof include dinitrotoluene, 4-methyl-3-nitroaniline, 2-methyl-5-nitroaniline and the like.

本発明においては、上記核水添反応に引き続いて、得られたシクロヘキシルアミン化合物を、上記核水添反応の際に用いた貴金属触媒、ホルムアルデヒド誘導体、及び水素の存在下で還元メチル化反応させる。したがって、本発明においては、上記一般式(1)で表される芳香族化合物の核水添反応液に特別な処理を施す必要はない。   In the present invention, following the nuclear hydrogenation reaction, the obtained cyclohexylamine compound is subjected to a reductive methylation reaction in the presence of the noble metal catalyst, formaldehyde derivative, and hydrogen used in the nuclear hydrogenation reaction. Therefore, in the present invention, it is not necessary to perform a special treatment on the nuclear hydrogenation reaction liquid of the aromatic compound represented by the general formula (1).

本発明において、ホルムアルデヒド誘導体としては、例えば、ホルムアルデヒド、パラホルムアルデヒド等が挙げられる。   In the present invention, examples of the formaldehyde derivative include formaldehyde and paraformaldehyde.

本発明において、シクロヘキシルアミン化合物の還元メチル化反応は、上記一般式(1)で表される芳香族化合物の核水添反応液に、ホルムアルデヒド誘導体を添加して行われるため、反応溶媒としては、核水添反応の溶媒をそのまま用いることができる。このような溶媒としては、具体的には、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、2−ブタノール、tert−ブタノール等の脂肪族アルコール類、テトラヒドロフラン、ジオキサン等のエーテル類が好適に使用できる。また、これらの溶媒は単独で又は混合して使用しても良い。これらのうち、脂肪族アルコール類が経済性及び操作性から反応溶媒として特に好ましい。   In the present invention, the reductive methylation reaction of the cyclohexylamine compound is performed by adding a formaldehyde derivative to the nuclear hydrogenation reaction liquid of the aromatic compound represented by the general formula (1). The solvent for the nuclear hydrogenation reaction can be used as it is. Specific examples of such solvents include aliphatic alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol, and tert-butanol, and ethers such as tetrahydrofuran and dioxane. It can be used suitably. These solvents may be used alone or in combination. Of these, aliphatic alcohols are particularly preferable as a reaction solvent from the viewpoint of economy and operability.

本発明において、芳香族化合物の核水添反応、及び得られたシクロヘキシルアミン化合物の還元メチル化反応に用いられるルテニウム触媒及びロジウム触媒からなる群より選ばれる少なくとも1種の貴金属触媒としては、活性金属種としてのルテニウム及び/又はロジウムを含むものであればよく、特に限定されない。これらのうち、取り扱いが容易である点で、ルテニウム触媒及びロジウム触媒からなる群より選ばれる少なくとも1種の貴金属触媒を不活性担体に担持した担持触媒が好ましい。不活性担体としては、例えば、カーボン、シリカ、アルミナ、シリアカルミナ、マグネシア等が好ましく、アルミナが特に好ましい。担体へのルテニウムの担持量は特に限定されるものではないが、通常0.5%〜10重量%程度が好ましい。また、本発明では市販の担持触媒をそのまま使用することもできる。なお、本発明においては、収率の面から、ルテニウム触媒がより好ましい。   In the present invention, at least one noble metal catalyst selected from the group consisting of a ruthenium catalyst and a rhodium catalyst used in the nuclear hydrogenation reaction of an aromatic compound and the reductive methylation reaction of the obtained cyclohexylamine compound is an active metal. There is no particular limitation as long as it contains ruthenium and / or rhodium as seeds. Of these, a supported catalyst in which at least one noble metal catalyst selected from the group consisting of a ruthenium catalyst and a rhodium catalyst is supported on an inert carrier is preferable in terms of easy handling. As the inert carrier, for example, carbon, silica, alumina, Syria carmina, magnesia and the like are preferable, and alumina is particularly preferable. The amount of ruthenium supported on the carrier is not particularly limited, but is usually preferably about 0.5% to 10% by weight. In the present invention, a commercially available supported catalyst can be used as it is. In the present invention, a ruthenium catalyst is more preferable from the viewpoint of yield.

本発明において、反応温度としては、特に限定するものではないが、通常60〜180℃、好ましくは120〜160℃の範囲である。また、反応圧力(水素圧)としては、特に限定するものではないが、通常0.8MPa以上であり、好ましくは2.9MPa以上である。   In the present invention, the reaction temperature is not particularly limited, but is usually 60 to 180 ° C, preferably 120 to 160 ° C. The reaction pressure (hydrogen pressure) is not particularly limited, but is usually 0.8 MPa or more, and preferably 2.9 MPa or more.

以下に、本発明の詳細について実施例を用いて説明するが、それらは本発明を限定するものではない。なお、本実施例における生成物とその収率は、以下のガスクロマトグラフィー分析装置、条件にて測定し、確認した。   The details of the present invention will be described below with reference to examples, but they do not limit the present invention. In addition, the product in the present Example and its yield were measured and confirmed with the following gas chromatography analyzer and conditions.

ガスクロマトグラフィー分析装置:島津製作所製 GC−17A、
カラム:キャピラリーカラム(J&WScience社製 DB−5)、
キャリアガス:ヘリウム、
カラム温度:40℃で6min保持、40℃から80℃まで昇温(4℃/min)、80℃から250℃まで昇温(10℃/min)、
インジェクション:250℃、
温度条件:昇温、
検出器:FID。
Gas chromatography analyzer: GC-17A manufactured by Shimadzu Corporation
Column: capillary column (DB-5 manufactured by J & WScience),
Carrier gas: helium,
Column temperature: held at 40 ° C. for 6 min, heated from 40 ° C. to 80 ° C. (4 ° C./min), raised from 80 ° C. to 250 ° C. (10 ° C./min),
Injection: 250 ° C,
Temperature condition: temperature rise,
Detector: FID.

実施例1(アルミナ担持ルテニウム触媒).
200mLの攪拌器付きオートクレーブに、アニリン10.0g(0.107mol)、メタノール90.0g、アルミナにルテニウムが5重量%担持されたルテニウム触媒(和光純薬社製)0.50gを仕込んだ。オートクレーブを密閉、水素置換後、攪拌下に125℃まで昇温した。続けてオートクレーブ内に圧力2.9MPaで水素を導入し、9時間熟成反応を行った。反応液をガスクロマトグラフィー分析したところ、原料のアニリンは消失し、全てシクロヘキシルアミンになったことが確認された。
Example 1 (Alumina-supported ruthenium catalyst).
A 200 mL autoclave with a stirrer was charged with 10.0 g (0.107 mol) of aniline, 90.0 g of methanol, and 0.50 g of a ruthenium catalyst (made by Wako Pure Chemical Industries, Ltd.) in which 5% by weight of ruthenium was supported on alumina. The autoclave was sealed and replaced with hydrogen, and then heated to 125 ° C. with stirring. Subsequently, hydrogen was introduced into the autoclave at a pressure of 2.9 MPa, and an aging reaction was performed for 9 hours. When the reaction solution was analyzed by gas chromatography, it was confirmed that the starting aniline disappeared and all became cyclohexylamine.

次いで、37%ホルマリン水溶液17.4g(0.214mol)を4時間かけてポンプで供給し、更に2時間加熱攪拌したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してルテニウム触媒を除去した。得られた反応液についてキャピラリーカラムを備えたガスクロマトグラフィー分析(内部標準法)を行った結果、N,N−ジメチルシクロヘキシルアミンを収率64%で得たことを確認した。   Next, 17.4 g (0.214 mol) of a 37% formalin aqueous solution was supplied by a pump over 4 hours, and further heated and stirred for 2 hours. As a result, the reaction was terminated because hydrogen absorption was lost, and after cooling and depressurization, The liquid was filtered to remove the ruthenium catalyst. As a result of performing gas chromatography analysis (internal standard method) equipped with a capillary column on the obtained reaction solution, it was confirmed that N, N-dimethylcyclohexylamine was obtained in a yield of 64%.

実施例2(アルミナ担持ルテニウム触媒).
200mLの攪拌器付きオートクレーブに、m−フェニレンジアミン10.0g(0.0924mol)、THF90.0g、アルミナにルテニウムが5重量%担持されたルテニウム触媒(和光純薬社製)0.50gを仕込んだ。オートクレーブを密閉、水素置換後、攪拌下に180℃まで昇温した。続けてオートクレーブ内に圧力5.7MPaで水素を導入し、8時間熟成反応を行った。反応液をガスクロマトグラフィー分析したところ、原料のm−フェニレンジアミンの転化率は98%であることを確認した。
Example 2 (Alumina-supported ruthenium catalyst).
A 200 mL autoclave with a stirrer was charged with 10.0 g (0.0924 mol) of m-phenylenediamine, 90.0 g of THF, and 0.50 g of a ruthenium catalyst (made by Wako Pure Chemical Industries, Ltd.) in which 5% by weight of ruthenium was supported on alumina. . The autoclave was sealed and replaced with hydrogen, and then heated to 180 ° C. with stirring. Subsequently, hydrogen was introduced into the autoclave at a pressure of 5.7 MPa, and an aging reaction was performed for 8 hours. When the reaction solution was analyzed by gas chromatography, it was confirmed that the conversion rate of the raw material m-phenylenediamine was 98%.

次いで、37%ホルマリン水溶液30.0g(0.370mol)を4時間かけてポンプで供給し、更に2時間加熱攪拌したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してルテニウム触媒を除去した。得られた反応液についてキャピラリーカラムを備えたガスクロマトグラフィー分析(内部標準法)を行った結果、1,3−ビス(N,N−ジメチルアミノ)シクロヘキサンを収率49%で得たことを確認した。   Subsequently, 30.0 g (0.370 mol) of 37% formalin aqueous solution was supplied with a pump over 4 hours, and further heated and stirred for 2 hours. The hydrogen absorption was lost and the reaction was terminated. After cooling and depressurization, the reaction The liquid was filtered to remove the ruthenium catalyst. As a result of performing gas chromatography analysis (internal standard method) equipped with a capillary column on the obtained reaction solution, it was confirmed that 1,3-bis (N, N-dimethylamino) cyclohexane was obtained in a yield of 49%. .

実施例3(アルミナ担持ロジウム触媒).
200mLの攪拌器付きオートクレーブに、アニリン10.0g(0.107mol)、メタノール90.0g、アルミナにロジウムが5重量%担持されたロジウム触媒(和光純薬社製)0.50gを仕込んだ。オートクレーブを密閉、水素置換後、攪拌下に125℃まで昇温した。続けてオートクレーブ内に圧力2.9MPaで水素を導入し、9時間熟成反応を行った。反応液をガスクロマトグラフィー分析したところ、アニリンの転化率は50%であった。
Example 3 (Alumina-supported rhodium catalyst).
A 200 mL autoclave equipped with a stirrer was charged with 10.0 g (0.107 mol) of aniline, 90.0 g of methanol, and 0.50 g of a rhodium catalyst (made by Wako Pure Chemical Industries, Ltd.) in which 5% by weight of rhodium was supported on alumina. The autoclave was sealed and replaced with hydrogen, and then heated to 125 ° C. with stirring. Subsequently, hydrogen was introduced into the autoclave at a pressure of 2.9 MPa, and an aging reaction was performed for 9 hours. When the reaction solution was analyzed by gas chromatography, the conversion of aniline was 50%.

次いで、37%ホルマリン水溶液17.4g(0.214mol)を4時間かけてポンプで供給し、更に2時間加熱攪拌したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してロジウム触媒を除去した。得られた反応液についてキャピラリーカラムを備えたガスクロマトグラフィー分析(内部標準法)を行った結果、N,N−ジメチルシクロヘキシルアミンを収率47%で得たことを確認した。   Next, 17.4 g (0.214 mol) of a 37% formalin aqueous solution was supplied by a pump over 4 hours, and further heated and stirred for 2 hours. As a result, the reaction was terminated because hydrogen absorption was lost, and after cooling and depressurization, The solution was filtered to remove the rhodium catalyst. As a result of performing gas chromatography analysis (internal standard method) equipped with a capillary column, it was confirmed that N, N-dimethylcyclohexylamine was obtained in a yield of 47%.

比較例1(アルミナ担持パラジウム触媒).
200mLの攪拌器付きオートクレーブに、アニリン10.0g(0.107mol)、メタノール90.0g、アルミナにパラジウムが5重量%担持されたパラジウム触媒(和光純薬社製)0.50gを仕込んだ。オートクレーブを密閉、水素置換後、攪拌下に125℃まで昇温した。続けてオートクレーブ内に圧力2.9MPaで水素を導入し、9時間熟成反応を行った。反応液をガスクロマトグラフィー分析したところ、アニリンの転化率は58%であった。
Comparative Example 1 (alumina-supported palladium catalyst).
A 200 mL autoclave equipped with a stirrer was charged with 10.0 g (0.107 mol) of aniline, 90.0 g of methanol, and 0.50 g of a palladium catalyst (made by Wako Pure Chemical Industries, Ltd.) with 5% by weight of palladium supported on alumina. The autoclave was sealed and replaced with hydrogen, and then heated to 125 ° C. with stirring. Subsequently, hydrogen was introduced into the autoclave at a pressure of 2.9 MPa, and an aging reaction was performed for 9 hours. When the reaction solution was analyzed by gas chromatography, the conversion of aniline was 58%.

次いで、37%ホルマリン水溶液17.4g(0.214mol)を4時間かけてポンプで供給し、更に2時間加熱攪拌したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してパラジウム触媒を除去した。得られた反応液についてキャピラリーカラムを備えたガスクロマトグラフィー分析(内部標準法)を行った結果、N,N−ジメチルシクロヘキシルアミンを収率27%、N,N−ジメチルアニリンを収率19%で得たことを確認した。   Next, 17.4 g (0.214 mol) of a 37% formalin aqueous solution was supplied by a pump over 4 hours, and further heated and stirred for 2 hours. As a result, the reaction was terminated because hydrogen absorption was lost, and after cooling and depressurization, The solution was filtered to remove the palladium catalyst. As a result of performing gas chromatography analysis (internal standard method) with a capillary column on the obtained reaction liquid, N, N-dimethylcyclohexylamine was obtained in a yield of 27% and N, N-dimethylaniline was obtained in a yield of 19%. I confirmed that.

比較例2(アルミナ担持白金触媒)
200mLの攪拌器付きオートクレーブに、アニリン10.0g(0.107mol)、メタノール90.0g、アルミナに白金が5重量%担持された白金触媒(和光純薬社製)0.50gを仕込んだ。オートクレーブを密閉、水素置換後、攪拌下に125℃まで昇温した。続けてオートクレーブ内に圧力2.9MPaで水素を導入し、9時間熟成反応を行った。反応液をガスクロマトグラフィー分析したところ、アニリンの転化率は39%であった。
Comparative Example 2 (Alumina-supported platinum catalyst)
A 200 mL autoclave equipped with a stirrer was charged with 10.0 g (0.107 mol) of aniline, 90.0 g of methanol, and 0.50 g of a platinum catalyst (manufactured by Wako Pure Chemical Industries, Ltd.) with 5% by weight of platinum supported on alumina. The autoclave was sealed and replaced with hydrogen, and then heated to 125 ° C. with stirring. Subsequently, hydrogen was introduced into the autoclave at a pressure of 2.9 MPa, and an aging reaction was performed for 9 hours. When the reaction solution was analyzed by gas chromatography, the conversion of aniline was 39%.

次いで、37%ホルマリン水溶液17.4g(0.214mol)を4時間かけてポンプで供給し、更に2時間加熱攪拌したところ、水素吸収がなくなったので反応を終了し、冷却、脱圧後、反応液を濾過してパラジウム触媒を除去した。得られた反応液についてキャピラリーカラムを備えたガスクロマトグラフィー分析(内部標準法)を行った結果、N,N−ジメチルシクロヘキシルアミンを収率30%、N,N−ジメチルアニリンを収率8%で得たことを確認した。   Next, 17.4 g (0.214 mol) of a 37% formalin aqueous solution was supplied by a pump over 4 hours, and further heated and stirred for 2 hours. As a result, the reaction was terminated because hydrogen absorption was lost, and after cooling and depressurization, The solution was filtered to remove the palladium catalyst. As a result of performing gas chromatography analysis (internal standard method) with a capillary column on the obtained reaction liquid, N, N-dimethylcyclohexylamine was obtained in a yield of 30% and N, N-dimethylaniline was obtained in a yield of 8%. I confirmed that.

Claims (3)

下記一般式(1)
Figure 0005125771
(上記式中、Rはアミノ基又はニトロ基を示し、RはRと同一又は相異なってアミノ基、ニトロ基又は水素原子を示し、Rはメチル基又は水素原子を示す。)
で表される芳香族化合物を、ルテニウム触媒及びロジウム触媒からなる群より選ばれる少なくとも1種の貴金属触媒並びに水素の存在下で核水添反応させ、引き続いて、得られたシクロヘキシル化合物を、前記貴金属触媒、ホルムアルデヒド誘導体及び水素の存在下で還元メチル化反応させる下記一般式(2)
Figure 0005125771
(式中、Rはジメチルアミノ基を示し、RはRと同一又は相異なって、ジメチルアミノ基又は水素原子を示し、Rはメチル基、又は、水素原子を示す。)
で表されるN,N−ジメチルシクロへキシルアミン類の製造法。
The following general formula (1)
Figure 0005125771
(In the above formula, R 1 represents an amino group or a nitro group, R 2 is the same as or different from R 1 and represents an amino group, a nitro group, or a hydrogen atom, and R 3 represents a methyl group or a hydrogen atom.)
Is subjected to a nuclear hydrogenation reaction in the presence of at least one noble metal catalyst selected from the group consisting of a ruthenium catalyst and a rhodium catalyst and hydrogen, and then the obtained cyclohexyl compound is converted into the noble metal. A reductive methylation reaction in the presence of a catalyst, a formaldehyde derivative and hydrogen, the following general formula (2)
Figure 0005125771
(In the formula, R 1 represents a dimethylamino group, R 2 is the same as or different from R 1 and represents a dimethylamino group or a hydrogen atom, and R 3 represents a methyl group or a hydrogen atom.)
The manufacturing method of N, N- dimethyl cyclohexylamine represented by these.
核水添反応した反応液に、ホルムアルデヒド誘導体を供給して還元メチル化反応させることを特徴とする請求項1に記載のN,N−ジメチルシクロへキシルアミン類の製造法。 The method for producing N, N-dimethylcyclohexylamines according to claim 1, wherein a reductive methylation reaction is carried out by supplying a formaldehyde derivative to the reaction solution subjected to the nuclear hydrogenation reaction. 貴金属触媒が、ルテニウム触媒であることを特徴とする請求項1に記載のN,N−ジメチルシクロヘキシルアミン類の製造法。 The method for producing N, N-dimethylcyclohexylamines according to claim 1, wherein the noble metal catalyst is a ruthenium catalyst.
JP2008142584A 2008-05-30 2008-05-30 Method for producing alicyclic amines Active JP5125771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142584A JP5125771B2 (en) 2008-05-30 2008-05-30 Method for producing alicyclic amines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142584A JP5125771B2 (en) 2008-05-30 2008-05-30 Method for producing alicyclic amines

Publications (2)

Publication Number Publication Date
JP2009286747A JP2009286747A (en) 2009-12-10
JP5125771B2 true JP5125771B2 (en) 2013-01-23

Family

ID=41456322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142584A Active JP5125771B2 (en) 2008-05-30 2008-05-30 Method for producing alicyclic amines

Country Status (1)

Country Link
JP (1) JP5125771B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816072B (en) * 2011-06-09 2014-05-21 万华化学集团股份有限公司 Preparation method and application of N, N-dimethyl-3, 3, 5-trimethyl cyclohexylamine
KR101356114B1 (en) * 2011-12-23 2014-01-29 한국생산기술연구원 Process for preparing alicyclic amine derivatives by hydrogenation of nitrobenzene derivatives
CN111333520B (en) * 2020-03-09 2022-11-08 万华化学集团股份有限公司 Method for preparing N, N-dimethyl cyclohexylamine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031140B1 (en) * 1970-06-29 1975-10-07
JPS52148043A (en) * 1976-06-01 1977-12-08 New Japan Chem Co Ltd Preparation of n,n-dimethylcyclohexylamine
JPS60130551A (en) * 1983-12-16 1985-07-12 Kao Corp Preparation of tertiary amine
JPS6210047A (en) * 1985-07-05 1987-01-19 Kao Corp Production of tertiary amine
DE3741726A1 (en) * 1987-12-09 1989-06-22 Ruhrchemie Ag METHOD FOR PRODUCING TERTIAL N, N-DIMETHYLAMINES
DE4116117A1 (en) * 1991-05-17 1992-11-19 Bayer Ag METHOD FOR PRODUCING DICYCLOHEXYLAMINES
US5902916A (en) * 1996-04-26 1999-05-11 Basf Aktiengesellschaft Process for reacting an organic compound in the presence of a ruthenium catalyst formed in situ
US6248924B1 (en) * 1996-06-19 2001-06-19 Basf Aktiengesellschaft Process for reacting an organic compound in the presence of a supported ruthenium catalyst
US5936126A (en) * 1996-06-19 1999-08-10 Basf Aktiengesellschaft Process for reacting an organic compound in the presence of a supported ruthenium catalyst
DE19824906A1 (en) * 1998-06-04 1999-12-09 Bayer Ag Conversion of aromatic amines to mono- and dicycloaliphatic amines
US6429338B1 (en) * 2002-01-17 2002-08-06 Air Products And Chemicals, Inc. Hydrogenation of single ring aromatic diamines
JP2008074754A (en) * 2006-09-20 2008-04-03 Iwatani Industrial Gases Corp METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE

Also Published As

Publication number Publication date
JP2009286747A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5256024B2 (en) Method for producing 4-aminodiphenylamine
Takenaka et al. Selective synthesis of N-aryl hydroxylamines by the hydrogenation of nitroaromatics using supported platinum catalysts
US7041857B1 (en) Hydrogenation of acetone
JP2002515474A (en) Method for preparing 4-aminodiphenylamine
JPH0347156A (en) Reductive amination of carbonitrile and analogous compound
JP6624490B2 (en) Method for producing aromatic compound or furan derivative having methylamino group
EP1601640A2 (en) Process for preparation of phenethylamine derivatives
JP5125771B2 (en) Method for producing alicyclic amines
JP2007099771A (en) Method for reductively aminating ketone and aldehyde with aqueous amine and suitable catalyst
KR20110086058A (en) 1,2-diaminocyclohexane and chemical process
US6696609B2 (en) Process for producing diamines
EP1490325A1 (en) Manufacture of phenyl ethylamine compounds, in particular venlafaxine
JP2011526611A (en) High purity N-ethylmethylamine and method for preparing the same
CN111804324A (en) Modified metal supported catalyst, diaminodicyclohexylmethane product, and preparation method and application thereof
JPH0446264B2 (en)
US9663443B2 (en) Process for making tertiary aminoalcohol compounds
Greenfield Side reactions in reductive alkylation of aromatic amines with aldehydes and with ketones
JP2011225502A5 (en)
US6429335B1 (en) Reductive amination of aldehydes
JP5135944B2 (en) Process for producing N, N-dimethylcyclohexylamine
JP2010241691A (en) Method for hydrogen-reducing nitro compound in the presence of metal nano particle-carrying mcm-41 catalyst
KR20120081993A (en) Method for producing 2,2-difluoroethylamine by hydrogenating 1,1-difluoro-2-nitroethane
JP5194692B2 (en) Process for producing N, N-dimethylcyclohexylamine
KR100722981B1 (en) Preparation of trans-4-methylcyclohexyl amine by catalytic hydrogenation
JP3174425B2 (en) Process for producing N, N-disubstituted aminophenols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5125771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3