JP5192986B2 - Aluminum alloy material with excellent surface stability - Google Patents

Aluminum alloy material with excellent surface stability Download PDF

Info

Publication number
JP5192986B2
JP5192986B2 JP2008285622A JP2008285622A JP5192986B2 JP 5192986 B2 JP5192986 B2 JP 5192986B2 JP 2008285622 A JP2008285622 A JP 2008285622A JP 2008285622 A JP2008285622 A JP 2008285622A JP 5192986 B2 JP5192986 B2 JP 5192986B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy material
aqueous solution
dihydrogen phosphate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008285622A
Other languages
Japanese (ja)
Other versions
JP2010031350A (en
Inventor
武史 大脇
真 俵
良則 加藤
明彦 巽
宣裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008285622A priority Critical patent/JP5192986B2/en
Publication of JP2010031350A publication Critical patent/JP2010031350A/en
Application granted granted Critical
Publication of JP5192986B2 publication Critical patent/JP5192986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Description

本発明は自動車用、特に自動車パネルに使用されて好適で、化成処理の脱脂時までエステル成分を含有するプレス油の効果とともに、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材に関する。本発明でいうアルミニウム合金材とは、圧延板、圧延箔、押出形材、鍛造材、鋳造材などの種々の製造方法にて製造されたアルミニウム合金を言う。 The present invention is suitable for use in automobiles, particularly automobile panels, and has excellent surface stability that can maintain good water wettability during chemical conversion treatment, together with the effect of press oil containing an ester component until the degreasing treatment. It was about the aluminum alloy material. The aluminum alloy material as used in the field of this invention means the aluminum alloy manufactured by various manufacturing methods, such as a rolled plate, rolled foil, an extrusion shape material, a forging material, and a casting material.

周知の通り、従来から、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品用として、各種アルミニウム合金材(以下、アルミニウムをAlとも言う)が、合金毎の各特性に応じて汎用されている。   As is well known, conventionally, various aluminum alloy materials (hereinafter referred to as Al for aluminum) have been used for transportation equipment such as automobiles, ships, airplanes or vehicles, machines, electrical products, architecture, structures, optical equipment, and members and parts of equipment. Is also widely used depending on the characteristics of each alloy.

近年、排気ガス等による地球環境問題に対して、自動車車体の軽量化による燃費の向上が追求されている。このため、従来使用されていた鉄鋼材料に代わって、比重が鉄の約1/3であり、優れたエネルギー吸収性を有するアルミニウム材料の自動車車体への使用が増加している。   In recent years, in response to global environmental problems caused by exhaust gas and the like, improvement in fuel consumption has been pursued by reducing the weight of automobile bodies. For this reason, instead of the steel material used conventionally, specific gravity is about 1/3 of iron, and the use to the automobile body of the aluminum material which has the outstanding energy absorption is increasing.

アルミニウム合金を自動車パネルとして用いる場合には、成形性、溶接性、接着性、化成処理性、塗装後の耐食性、美観等が要求される。アルミニウム合金を用いて自動車パネルを製造する方法は、1)成形(所定寸法への切り出し、所定形状へのプレス成形)、2)接合(溶接および/または接着)、3)化成処理(洗浄剤による脱脂→コロイダルチタン酸塩処理等よる表面調整→リン酸亜鉛処理)、4)塗装(電着塗装による下塗り→中塗り→上塗り)、であり、従来の鋼板を用いる場合と基本的に同じである。   When an aluminum alloy is used as an automobile panel, formability, weldability, adhesion, chemical conversion treatment, corrosion resistance after painting, aesthetics, and the like are required. The method of manufacturing an automobile panel using an aluminum alloy is as follows: 1) molding (cutting out to a predetermined size, press molding to a predetermined shape), 2) joining (welding and / or bonding), 3) chemical conversion treatment (with a cleaning agent) Degreasing → Surface adjustment by colloidal titanate treatment → Zinc phosphate treatment), 4) Coating (undercoating by electrodeposition coating → intermediate coating → topcoating), which is basically the same as when using conventional steel plates .

一方で、自動車部品のモジュール化が進行しつつあり、アルミニウム合金板自体が製造されてから、上述の自動車パネルから車体製造工程に入るまでの期間がこれまでより長くなる傾向がある。   On the other hand, modularization of automobile parts is progressing, and there is a tendency that a period from when the aluminum alloy plate itself is manufactured until the vehicle body manufacturing process starts from the above-described automobile panel becomes longer than before.

自動車部品のモジュール化とは、自動車メーカにおいて車体に直接取り付けていた個々の部品を、部品会社において事前にサブアセンブリーしてから車体に取り付ける方法である。自動車メーカにおける難作業を簡素化して生産効率を上げることが主な目的である。生産工程の短縮、仕掛品を削減する効果もある。部品会社の負担は増加するが、自動車会社と部品会社の全体としてのコスト低減に効果があり、結果的に自動車のコスト削減に寄与している。   The modularization of automobile parts is a method in which individual parts that are directly attached to a vehicle body at an automobile manufacturer are sub-assembled in advance at a parts company and then attached to the car body. The main purpose is to improve production efficiency by simplifying difficult tasks in automobile manufacturers. It also has the effect of shortening the production process and reducing work in progress. Although the burden on the parts company increases, it is effective in reducing the cost of the automobile company and the parts company as a whole, and consequently contributes to the cost reduction of the automobile.

自動車用アルミニウム合金板の搬送経路は、これまで軽圧メーカから自動車メーカへの直納方式が主流であった。しかし、モジュール化が進めば部品会社経由とならざるを得ず、アルミニウム合金板自体が製造されてから上述の製造工程に入るまでの期間が、どうしてもこれまでより長くなる。したがって、アルミニウム合金板の表面保護の観点から油で覆う処理が行われる。   Until now, the direct route from the light pressure manufacturer to the automobile manufacturer has been the main transport route for aluminum alloy sheets for automobiles. However, if modularization progresses, it will be forced to go through a parts company, and the period from the time when the aluminum alloy plate itself is manufactured until the above-described manufacturing process is entered becomes inevitably longer than before. Therefore, the process which covers with an oil is performed from a viewpoint of the surface protection of an aluminum alloy plate.

しかし、このような場合に、どうしてもアルミニウム合金板の表面特性が経時変化し、接着性、化成処理性、塗装性へ悪影響を及ぼすことが問題となっている。なかでも、経時変化に伴い化成処理時の脱脂性が悪化し、化成処理皮膜が付着し難くなり、結果的に耐食性に影響を及ぼすことが知られている。   However, in such a case, the surface characteristics of the aluminum alloy plate inevitably change over time, which adversely affects adhesiveness, chemical conversion properties, and paintability. Especially, it is known that the degreasing property at the time of chemical conversion treatment deteriorates with a change with time, the chemical conversion treatment film becomes difficult to adhere, and consequently the corrosion resistance is affected.

このため、従来からマグネシウムを含有するアルミニウム合金表面のマグネシウム(以下、マグネシウムをMgとも言う)を除去することにより、化成処理性等を向上させることに注力している(特許文献1〜5参照)。ただし、Mgを除去するだけでは、表面特性の経時変化が少ない表面安定性に優れたものが得られるものではない。   For this reason, conventionally, it has concentrated on improving chemical conversion processability etc. by removing the magnesium on the surface of the aluminum alloy containing magnesium (hereinafter, magnesium is also referred to as Mg) (see Patent Documents 1 to 5). . However, by simply removing Mg, it is not possible to obtain an excellent surface stability with little change in surface characteristics over time.

また、特に脱脂後の水濡れ性と接着性に優れたアルミニウム合金板を得るために、アルミニウム合金板の表面皮膜のMg量とOH量を調整し、表面調整後14日以内に防錆油を塗布した自動車ボディーシート用アルミニウム合金板も提案されている(特許文献6参照)。しかし、表面調整後14日以内に単に防錆油を塗布して表面を保護するだけでは、表面特性の経時変化が少ない表面安定性に優れたものが得られるものではない。   Moreover, in order to obtain an aluminum alloy plate excellent in water wettability and adhesion particularly after degreasing, the Mg amount and OH amount of the surface film of the aluminum alloy plate are adjusted, and the antirust oil is applied within 14 days after the surface adjustment. A coated aluminum alloy sheet for an automobile body sheet has also been proposed (see Patent Document 6). However, by simply applying a rust preventive oil within 14 days after the surface adjustment to protect the surface, it is not possible to obtain an excellent surface stability with little change in surface characteristics over time.

また、表面特性の経時変化の少ないアルミニウム合金板とするために、Mgを2〜10重量%含有するアルミニウム合金板の金属アルミニウム基体と、この基体上に形成されたアルミニウムのリン酸塩皮膜と、このリン酸塩皮膜上に形成された酸化アルミニウム膜と、さらにこの上に防錆油を塗布した自動車ボディー用アルミニウム合金板も提案されている(特許文献7参照)。また、アルミニウム合金の搬送中の疵防止、および、絞り加工性を向上させる目的で、アルミニウム合金の表面をエステル成分を含有した成形油(プレス油)で覆ったものも提案されている(非特許文献1参照)。
特開平06−256980号公報 (全文) 特開平06−256881号公報 (全文) 特開平06−220564号公報 (全文) 特開平04−214835号公報 (全文) 特開平02−115385号公報 (全文) 特開2006−200007号公報 (全文) 特許第2744697号公報 (全文) 田中、小林、倉田著「アルミニウム表面モデル酸化物の脱脂性の検討」、軽金属学会第111回秋期大会講演概要集、167、2006年、p.p.331〜332
Further, in order to obtain an aluminum alloy plate with little change in surface characteristics over time, a metal aluminum substrate of an aluminum alloy plate containing 2 to 10% by weight of Mg, an aluminum phosphate film formed on the substrate, There has also been proposed an aluminum alloy plate for an automobile body in which an aluminum oxide film formed on the phosphate film and a rust preventive oil are further coated thereon (see Patent Document 7). In addition, for the purpose of preventing wrinkles during the conveyance of aluminum alloy and improving the drawing workability, it is also proposed that the surface of the aluminum alloy is covered with a molding oil (press oil) containing an ester component (non-patent) Reference 1).
JP 06-256980 A (full text) Japanese Patent Application Laid-Open No. 06-256881 (full text) Japanese Patent Laid-Open No. 06-220564 (full text) Japanese Unexamined Patent Publication No. 04-214835 (full text) JP 02-115385 A (full text) JP 2006-200007 (full text) Japanese Patent No. 2744697 (full text) Tanaka, Kobayashi, and Kurata, “Examination of degreasing properties of aluminum surface model oxides”, Proceedings of the 111th Autumn Meeting of the Light Metal Society, 167, 2006, pp.331-332

上記特許文献7では、その実施例において、サンプル作製後一週間放置した材料を基準として比較評価を行っている。しかし、前述したアルミニウム合金の表面特性の経時変化は、サンプル作製直後から一週間程度までの変化量が最も大きく、その後の変化は比較的少ない。したがって、上記特許文献7に示された評価結果をもって、目的とする表面特性の安定性が保証されたことにはならない。また、上記非特許文献1において開示されているように、プレス油中のエステル成分は、油性剤として作用し合金の絞り加工性を向上させるが、化成処理時の脱脂性が低下する(すなわち、表面安定性が低下する)といった問題点を有している。   In the above-mentioned patent document 7, in the example, a comparative evaluation is performed with reference to a material left for one week after the preparation of the sample. However, the above-described time-dependent change in the surface characteristics of the aluminum alloy has the largest amount of change from immediately after sample preparation to about one week, and the change thereafter is relatively small. Therefore, the stability of the target surface characteristics is not guaranteed with the evaluation result shown in Patent Document 7. In addition, as disclosed in Non-Patent Document 1, the ester component in the press oil acts as an oil agent and improves the drawing processability of the alloy, but the degreasing property during the chemical conversion treatment is reduced (that is, Surface stability is reduced).

特に、自動車用などの用途では、アルミニウム合金材の化成処理時の水濡れ安定性、塗装性、接着耐久性、溶接安定性などが求められる。取り分け、アルミニウム合金材が製造メーカの工場から出荷され、プレス成形等が行われ、さらに化成処理時の脱脂が行われるまでの間、プレス油の効果とともに、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材が求められている。   In particular, in applications such as automobiles, water wettability, paintability, adhesion durability, welding stability, and the like during chemical conversion treatment of aluminum alloy materials are required. In particular, the aluminum alloy material is shipped from the manufacturer's factory, pressed, etc., and then degreased during chemical conversion treatment. In addition to the effect of press oil, it has good water wettability during chemical conversion treatment. There is a demand for an aluminum alloy material having excellent surface stability that can be maintained.

本発明は、上記課題を解決するものであり、化成処理の脱脂時までエステル成分を含有するプレス油の効果とともに、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたMg含有アルミニウム合金材を提供することを目的とする。 The present invention solves the above-mentioned problem, together with the effect of press oil containing an ester component until the degreasing of the chemical conversion treatment, as well as Mg containing excellent surface stability that can maintain good water wettability during the chemical conversion treatment An object is to provide an aluminum alloy material .

上記目的を達成するために、本発明の請求項1に記載の発明は、表面に、リン濃度が2.0原子%以上である水和したリン酸塩もしくはリン酸水素塩を有するMg含有アルミニウム合金材の表面に、エステル成分を含有するプレス油が塗布された構成であるため、化成処理の脱脂時までエステル成分を含有するプレス油の効果とともに、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材が得られる。   In order to achieve the above object, the invention according to claim 1 of the present invention is the Mg-containing aluminum having a hydrated phosphate or hydrogen phosphate having a phosphorus concentration of 2.0 atomic% or more on the surface. Since the press oil containing the ester component is applied to the surface of the alloy material, the water wettability during the chemical conversion treatment is maintained along with the effect of the press oil containing the ester component until the degreasing treatment. An aluminum alloy material having excellent surface stability can be obtained.

以上のように、本発明の請求項1に記載の発明は、表面に、リン濃度が2.0原子%以上である水和したリン酸塩もしくはリン酸水素塩を有するMg含有アルミニウム合金材の表面に、エステル成分を含有するプレス油が塗布された構成であるため、化成処理の脱脂時までエステル成分を含有するプレス油の効果とともに、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材が得られる。   As described above, the invention according to claim 1 of the present invention is an Mg-containing aluminum alloy material having a hydrated phosphate or hydrogen phosphate having a phosphorus concentration of 2.0 atomic% or more on the surface. Since the surface is coated with press oil containing an ester component, the surface stability that can maintain good water wettability during chemical conversion treatment as well as the effect of press oil containing an ester component until the degreasing treatment. An aluminum alloy material excellent in properties can be obtained.

以下、本発明について、実施形態を例示しつつ、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail while illustrating embodiments.

(本発明に係る表面安定性に優れたアルミニウム合金材の構成)
本発明に係る表面安定性に優れたアルミニウム合金材は、表面に、リン濃度が2.0原子%以上である水和したリン酸塩もしくはリン酸水素塩を有するMg含有アルミニウム合金材の表面に、エステル成分を含有するプレス油が塗布されていることを特徴とする。これにより、化成処理の脱脂時までエステル成分を含有するプレス油の効果とともに、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材が得られる。
(Configuration of aluminum alloy material with excellent surface stability according to the present invention)
The aluminum alloy material excellent in surface stability according to the present invention is formed on the surface of an Mg-containing aluminum alloy material having a hydrated phosphate or hydrogen phosphate having a phosphorus concentration of 2.0 atomic% or more on the surface. A press oil containing an ester component is applied. Thereby, the aluminum alloy material excellent in the surface stability which can maintain the favorable water wettability at the time of chemical conversion treatment with the effect of the press oil containing an ester component until the degreasing of chemical conversion treatment is obtained.

以下に、上記構成に至った理由について詳述する。   Hereinafter, the reason for the above configuration will be described in detail.

本発明者らは、近年アルミニウム合金材が製造メーカの工場から出荷され、プレス成形等が行われ、さらに化成処理時の脱脂が行われるまでの全期間が長くなってきていることに着目した。すなわち、アルミニウム合金材の表面保護等の観点からどうしても油で覆われている時間が長くなってしまう点に着目した。また、アルミニウム合金材は、化成処理の前にプレス成形等も行われるため、油は成形性が向上するものであることも求められる。このような表面保護性と成形性の両者を満足する油が塗布されたものであっても化成処理時の脱脂も十分に行え、かつ、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材ができないものか鋭意検討した。その結果、アルミニウム合金材の表面処理の材料、条件を工夫し、表面に、リン濃度が2.0原子%以上である水和したリン酸塩もしくはリン酸水素塩を有するMg含有アルミニウム合金材の表面に、エステル成分を含有するプレス油が塗布したものであれば、上記目的を達成できることをはじめて見出した。   The present inventors paid attention to the fact that in recent years, the entire period of time from when an aluminum alloy material is shipped from a manufacturer's factory to press forming and degreasing at the time of chemical conversion treatment has become longer. That is, attention was paid to the fact that the time covered with oil inevitably increases from the viewpoint of surface protection of the aluminum alloy material. Further, since the aluminum alloy material is also subjected to press molding before chemical conversion treatment, the oil is also required to have improved moldability. Surface stability that can sufficiently degrease during chemical conversion treatment and maintain good water wettability during chemical conversion treatment even when oil that satisfies both surface protection and moldability is applied. We have eagerly investigated whether aluminum alloy materials with excellent properties can be produced. As a result, the material and conditions of the surface treatment of the aluminum alloy material were devised, and the Mg-containing aluminum alloy material having a hydrated phosphate or hydrogen phosphate having a phosphorus concentration of 2.0 atomic% or more on the surface. It has been found for the first time that the above object can be achieved if a press oil containing an ester component is applied to the surface.

このような構成により、上記目的を達成できたのは、図1に示すようなアルミニウム合金材表面の性状が大きな役割を果たしているのではないかと推定している。即ち、図1において、Mgを含有するアルミニウム合金材(ここでは、アルミニウム合金を単にアルミ合金と称し、その表面に例えばMg−Oxがすでに存在しているものまで含めてアルミニウム合金材という)の表面をpHが4未満に調整されたリン酸二水素塩水溶液(例えば、リン酸二水素アルミニウム水溶液)で表面処理すると、このアルミニウム合金材の表面に水和したリン酸塩の層が形成され、この水和したリン酸塩もしくはリン酸水素塩の層がアルミニウム合金材との間で、酸素(−O−)を介して強固な化学結合を有し、一方でアルミニウム合金材と反対側には、OH基が残存し、保湿成分となり、プレス油中のエステル成分の吸着を阻害すると考えられる。   With such a configuration, it is presumed that the above object was achieved because the properties of the aluminum alloy material surface as shown in FIG. That is, in FIG. 1, the surface of an aluminum alloy material containing Mg (herein, the aluminum alloy is simply referred to as an aluminum alloy, and the surface includes, for example, Mg-Ox that already exists). Surface treatment with an aqueous solution of dihydrogen phosphate adjusted to a pH of less than 4 (for example, an aqueous solution of aluminum dihydrogen phosphate), a hydrated phosphate layer is formed on the surface of the aluminum alloy material. The layer of hydrated phosphate or hydrogen phosphate has a strong chemical bond with the aluminum alloy material via oxygen (-O-), while on the opposite side of the aluminum alloy material, It is considered that the OH group remains, becomes a moisturizing component, and inhibits the adsorption of the ester component in the press oil.

これにより、化成処理の脱脂時まで、アルミニウム合金材の表面に水和したリン酸塩と、エステル成分を含有するプレス油が結合することなく、かつ、所定量のプレス油を安定して保持するため、プレス油の効果が維持できる。また、エステル成分を含有するプレス油は、水和したリン酸塩と結合していないため、脱脂時には十分に除去でき、化成処理時の良好な水濡れ性が維持できる。以上により、表面安定性に優れたアルミニウム合金材が実現できたものと考えている。   Thereby, until the time of degreasing the chemical conversion treatment, the hydrated phosphate and the press oil containing the ester component are not bonded to the surface of the aluminum alloy material, and a predetermined amount of press oil is stably held. Therefore, the effect of press oil can be maintained. Moreover, since the press oil containing an ester component is not bonded to a hydrated phosphate, it can be sufficiently removed during degreasing and can maintain good water wettability during chemical conversion treatment. From the above, it is considered that an aluminum alloy material excellent in surface stability has been realized.

以下に本発明を詳述する。   The present invention is described in detail below.

(Al合金)
本発明で用いるAl合金は、Al合金材の用途に応じて、圧延板、圧延箔、押出形材、鍛造材、鋳造材などの種々の製造方法にて製造された、AA、JISに規定される、または、JISに近似する種々のAl合金が使用できるが、Mgを含有することを必須要件とする。この場合、Mgの含有量は0.25重量%以上含有することが望ましい。これよりMgの含有量が少ないAl合金の場合は本願発明が解決しようとする課題は発現しない。
(Al alloy)
The Al alloy used in the present invention is defined by AA and JIS, which are manufactured by various manufacturing methods such as a rolled plate, a rolled foil, an extruded profile, a forged material, and a cast material, depending on the use of the Al alloy material. Alternatively, various Al alloys similar to JIS can be used, but it is essential to contain Mg. In this case, the Mg content is desirably 0.25% by weight or more. In the case of an Al alloy having a lower Mg content than this, the problem to be solved by the present invention does not appear.

Mgの含有量の上限については特に制限を設けるものではないが、構造用部材として用いられる場合の種々の特性のバランスを勘案すれば、5.5質量%までが好適である。   The upper limit of the Mg content is not particularly limited, but it is preferably up to 5.5% by mass considering the balance of various characteristics when used as a structural member.

具体例を挙げると、自動車用に用いる場合では、0.2%耐力が100MPa以上の高強度のアルミニウム合金材が好ましい。このような特性を満足するアルミニウム合金としては、通常、この種構造部材用途に汎用される、5000系、6000系、7000系等の耐力が比較的高い汎用合金であって、必要により調質されたアルミニウム合金が好適に用いられる。優れた時効硬化能や合金元素量が比較的少なくスクラップのリサイクル性や成形性にも優れている点では、6000系アルミニウム合金を用いることが好ましい。   As a specific example, when used for automobiles, a high-strength aluminum alloy material having a 0.2% proof stress of 100 MPa or more is preferable. As an aluminum alloy satisfying such characteristics, it is a general-purpose alloy having a relatively high proof stress such as 5000 series, 6000 series, and 7000 series, which is generally used for this kind of structural member, and is tempered as necessary. Aluminum alloys are preferably used. It is preferable to use a 6000 series aluminum alloy in terms of excellent age-hardening ability and a relatively small amount of alloying elements and excellent scrap recyclability and formability.

(水和したリン酸塩)
本発明のリン酸二水素塩とは、塩中にリン酸二水素(H2 PO4 を含有する塩の総称である。このリン酸二水素塩は、好ましくは、Al、K、Ca、Mn、Liから選ばれる少なくとも一つの金属の塩である。より好ましくは、Alが選択される。
(Hydrated phosphate)
The dihydrogen phosphate of the present invention is dihydrogen phosphate (H 2 PO 4 ) in the salt. Is a general term for salts containing This dihydrogen phosphate is preferably a salt of at least one metal selected from Al, K, Ca, Mn, and Li. More preferably, Al is selected.

なお、アルミニウム合金材表面には、必然的にアルミニウムの酸化皮膜が形成されており、本発明の水和したリン酸塩は、このアルミニウムの酸化皮膜上や酸化皮膜中に存在乃至散在する。したがって、本発明でいう、アルミニウム合金材表面に水和したリン酸塩を有するとは、具体的には、このような表面状態を言う。   Incidentally, an aluminum oxide film is inevitably formed on the surface of the aluminum alloy material, and the hydrated phosphate of the present invention is present or scattered on the aluminum oxide film or in the oxide film. Therefore, in the present invention, having a hydrated phosphate on the surface of the aluminum alloy material specifically means such a surface state.

(水和したリン酸塩のアルミニウム合金材表面への付着方法)
これら水和したリン酸塩のアルミニウム合金材表面への付着は、アルミニウム合金材の製造工程中、あるいは製造工程外における、リン酸二水素塩を含有する水溶液処理(以下、総称してリン酸水素塩処理ともいう)によって行うことができる。アルミニウム合金材の製造工程中では、例えば溶体化処理や焼鈍などの熱処理後の冷却水、焼き入れ処理時の冷却水、あるいは洗浄工程における洗浄水を、これらリン酸二水素塩を含有する(溶解させた)水溶液(以下、総称してリン酸二水素塩水溶液という)とすることで処理が可能である。
(Method of adhering hydrated phosphate to aluminum alloy material surface)
The adhesion of these hydrated phosphates to the surface of the aluminum alloy material is caused by treatment with an aqueous solution containing dihydrogen phosphate during or outside the production process of the aluminum alloy material (hereinafter collectively referred to as hydrogen phosphate). (Also called salt treatment). In the production process of aluminum alloy material, for example, cooling water after heat treatment such as solution treatment and annealing, cooling water during quenching treatment, or washing water in the washing process contains these dihydrogen phosphates (dissolution) It is possible to perform the treatment by using an aqueous solution (hereinafter collectively referred to as a dihydrogen phosphate aqueous solution).

また、下記本発明のアルミニウム合金材の製造工程(本発明の製造工程と称す)のように、溶体化処理および焼き入れ処理を施す溶体化工程で冷却水として上記リン酸二水素塩水溶液を使用する場合は、アルミニウム合金材が高温に保持されているため、アルミニウム合金材の表面とリン酸二水素塩水溶液中の薬剤との反応性が向上し、アルミニウム合金材の表面のリン濃度が高まる。したがって、下記従来のアルミニウム合金材の製造工程(従来の製造工程と称す)では、冷却後に改めて酸洗浄が必要であったが、この酸洗浄が不要となるばかりか、リン酸二水素塩水溶液中の薬剤の濃度を低減できる。よって、アルミニウム合金材製造のコストダウンを図ることができる。また、このような本発明のアルミニウム合金材の製造方法を採用することで、冷間圧延後にアルミニウム合金材の表面のマグネシウムを除去することなく、脱脂安定性を確保できる。
本発明の製造工程:
鋳塊→均熱→熱延→冷延→溶体化→焼き入れ(リン酸二水素塩水溶液)→予備時効
従来の製造工程:
鋳塊→均熱→熱延→冷延→溶体化→焼き入れ(工業用水)→予備時効→酸洗浄
In addition, the above dihydrogen phosphate aqueous solution is used as cooling water in the solution treatment step in which solution treatment and quenching treatment are performed, as in the following aluminum alloy material production step of the present invention (referred to as the production step of the present invention). In this case, since the aluminum alloy material is maintained at a high temperature, the reactivity between the surface of the aluminum alloy material and the chemical in the dihydrogen phosphate aqueous solution is improved, and the phosphorus concentration on the surface of the aluminum alloy material is increased. Therefore, in the following conventional aluminum alloy material manufacturing process (referred to as a conventional manufacturing process), acid cleaning was required after cooling, but not only is this acid cleaning unnecessary, but also in a dihydrogen phosphate aqueous solution. The concentration of the drug can be reduced. Therefore, the cost of manufacturing the aluminum alloy material can be reduced. Moreover, by adopting such a method for producing an aluminum alloy material of the present invention, it is possible to ensure degreasing stability without removing magnesium on the surface of the aluminum alloy material after cold rolling.
Production process of the present invention:
Ingot → Soaking → Hot rolling → Cold rolling → Solution treatment → Quenching (dihydrogen phosphate aqueous solution) → Pre-aging Conventional manufacturing process:
Ingot → Soaking → Hot rolling → Cold rolling → Solution treatment → Quenching (industrial water) → Pre-aging → Acid cleaning

リン酸二水素塩水溶液の温度は室温で可能であるが、加温するなどしても良い。また、処理時間は、特に限定されるものではなく、水溶液の濃度や温度などの他の処理条件、あるいはアルミニウム合金材表面への所望の付着量によって適宜選択すればよい。例えば、薬剤としてリン酸二水素アルミニウム{Al(H2 PO4}を用い、その水溶液濃度が1〜10g/L(ここに、「L」はリットルを意味する)の場合は、アルミニウム合金材をこれらの水溶液中に1〜10秒間浸漬またはスプレーすればよい。また、水溶液濃度が1g/Lの場合は、pHが3.4、10g/Lの場合は、pHが2.4であり、本発明にあっては、リン酸二水素塩水溶液のpHが4未満になるように調整されていればよい。 The temperature of the dihydrogen phosphate aqueous solution can be room temperature, but it may be heated. The treatment time is not particularly limited, and may be appropriately selected depending on other treatment conditions such as the concentration and temperature of the aqueous solution, or a desired amount of adhesion to the aluminum alloy material surface. For example, when aluminum dihydrogen phosphate {Al (H 2 PO 4 ) 3 } is used as a drug and the aqueous solution concentration is 1 to 10 g / L (where “L” means liter), an aluminum alloy The material may be immersed or sprayed in these aqueous solutions for 1 to 10 seconds. In addition, when the aqueous solution concentration is 1 g / L, the pH is 3.4 when the pH is 3.4 or 10 g / L. In the present invention, the pH of the aqueous dihydrogen phosphate solution is 4 It only needs to be adjusted so that it is less.

また、上述したように、アルミニウム合金材が高温に保持された状態で、冷却水としてリン酸二水素塩水溶液を使用する場合は、アルミニウム合金材の表面とリン酸二水素塩水溶液中の薬剤との反応性が向上するため、水溶液濃度が0.05g/Lと低濃度で、pHが6.6に調整されたものを使用してもアルミニウム合金材の表面のリン濃度が所定値(2.0原子%以上)を達成する。   In addition, as described above, when the dihydrogen phosphate aqueous solution is used as the cooling water while the aluminum alloy material is kept at a high temperature, the surface of the aluminum alloy material and the chemical in the dihydrogen phosphate aqueous solution Therefore, even when a solution whose aqueous solution concentration is as low as 0.05 g / L and whose pH is adjusted to 6.6 is used, the phosphorus concentration on the surface of the aluminum alloy material is a predetermined value (2. 0 atomic% or more).

また、リン酸二水素塩水溶液にリン酸を添加し、pHを2.5以上4未満に調整した液を用いて、アルミニウム合金材を処理することで、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材を製造することができるばかりか、アルミニウム合金材をリン酸水素塩処理する際に上記リン酸二水素塩水溶液中に非溶解成分に起因した濁りが生ぜず(=透明)、配管詰まりの発生が抑制され、メンテナンスの頻度を下げることができる。   Also, by adding phosphoric acid to a dihydrogen phosphate aqueous solution and treating the aluminum alloy material using a liquid whose pH is adjusted to 2.5 or more and less than 4, good water wettability during chemical conversion treatment can be obtained. In addition to producing an aluminum alloy material with excellent surface stability that can be maintained, turbidity caused by undissolved components occurs in the dihydrogen phosphate aqueous solution when the aluminum alloy material is treated with hydrogen phosphate. (= Transparent), occurrence of pipe clogging is suppressed, and the frequency of maintenance can be reduced.

また、上述したように、アルミニウム合金材が高温に保持された状態で、冷却水としてリン酸二水素塩水溶液を使用する場合は、水溶液濃度が0.05g/Lと低濃度で、pHが6.6に調整されたものを使用してもアルミニウム合金材の表面のリン濃度が所定値(2.0原子%以上)を達成でき、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材を製造することができるばかりか、アルミニウム合金材をリン酸水素塩処理する際に上記リン酸二水素塩水溶液中に非溶解成分に起因した濁りが生ぜず(=透明)、配管詰まりの発生が抑制され、メンテナンスの頻度を下げることができる。   As described above, when an aqueous dihydrogen phosphate solution is used as the cooling water while the aluminum alloy material is kept at a high temperature, the aqueous solution concentration is as low as 0.05 g / L and the pH is 6 Surface stability that can achieve the predetermined phosphorus concentration (2.0 atomic% or more) and maintain good water wettability during chemical conversion treatment even if the one adjusted to .6 is used In addition to being able to produce excellent aluminum alloy materials, turbidity due to non-dissolved components does not occur in the above-mentioned dihydrogen phosphate aqueous solution when the aluminum alloy material is treated with hydrogen phosphate (= transparent) The occurrence of clogging of piping is suppressed, and the frequency of maintenance can be lowered.

なお、水和したリン酸塩のアルミニウム合金材表面への付着に際して、エッチングを伴う洗浄などの前処理によって、アルミニウム合金材表面に既に形成されているアルミニウムの酸化皮膜やマグネシウムを除去する必要性は一切ない。ただ、上記したアルミニウム合金材の製造工程中で、例えば工程の別の目的によって、前処理により、アルミニウム合金材表面のアルミニウムの酸化皮膜やマグネシウムを除去した後で、水和したリン酸塩をアルミニウム合金材表面へ付着させることは当然許容される。この場合でも、すぐにアルミニウムの酸化皮膜がアルミニウム合金材表面に形成されるため、本発明の水和したリン酸塩は、このアルミニウムの酸化皮膜上や酸化皮膜中に存在乃至散在する。   When attaching hydrated phosphate to the surface of the aluminum alloy material, it is necessary to remove the aluminum oxide film or magnesium already formed on the surface of the aluminum alloy material by pretreatment such as cleaning with etching. Nothing at all. However, in the above-described manufacturing process of the aluminum alloy material, for example, according to another purpose of the process, after removing the aluminum oxide film and magnesium on the surface of the aluminum alloy material by pretreatment, the hydrated phosphate is converted into aluminum. It is naturally allowed to adhere to the surface of the alloy material. Even in this case, since an aluminum oxide film is immediately formed on the surface of the aluminum alloy material, the hydrated phosphate of the present invention is present or scattered on the aluminum oxide film or in the oxide film.

(リン酸二水素塩水溶液で処理されたアルミニウム合金材にエステル成分を含有するプレス油を塗布する方法)
次に、上記リン酸二水素塩水溶液で処理されたアルミニウム合金材にエステル成分を含有するプレス油を塗布する方法について説明する。例えば、エステル成分としてオレイン酸エチルを含有するプレス油に上記アルミニウム合金材を浸漬させるだけでよい。エステル成分を含有するプレス油を塗布する方法や条件は、特に限定されるものではなく、通常のプレス油を塗布する方法や条件が広く適用できる。また、エステル成分もオレイン酸エチルに限定されるものではなく、ステアリン酸ブチルやソルビタンモノステアレート等様々なものを利用することが可能である。
(Method of applying press oil containing ester component to aluminum alloy material treated with dihydrogen phosphate aqueous solution)
Next, a method of applying press oil containing an ester component to the aluminum alloy material treated with the dihydrogen phosphate aqueous solution will be described. For example, the aluminum alloy material may be simply immersed in press oil containing ethyl oleate as an ester component. The method and conditions for applying the press oil containing the ester component are not particularly limited, and general methods and conditions for applying the press oil can be widely applied. Further, the ester component is not limited to ethyl oleate, and various substances such as butyl stearate and sorbitan monostearate can be used.

(表面安定性について)
次に、上記エステル成分を含有するプレス油が塗布されたものの表面安定性について説明する。上記エステル成分を含有するプレス油が塗布されたままのものを15〜35℃で50〜90%RHの環境室内に6ヶ月放置した後に、通常のアルカリ脱脂剤で脱脂し、水濡れ面積率を評価すると100%となる。これは、アルミニウム合金材の表面保護およびプレス成形性を満足するようなエステル成分を含有するプレス油がアルミニウム合金材の製造メーカの工場から出荷され化成処理の脱脂時まで長期間塗布されたままであったとしても、化成処理時の良好な水濡れ性が維持できる経時変化の少ない表面安定性に優れたアルミニウム合金材を提供できることを示している。
(About surface stability)
Next, the surface stability of the coating with press oil containing the ester component will be described. After leaving the press oil containing the ester component as it is applied at 15 to 35 ° C. in an environmental chamber of 50 to 90% RH for 6 months, degrease with a normal alkaline degreasing agent to determine the water wetted area ratio. The evaluation is 100%. This is because press oil containing an ester component that satisfies the surface protection and press formability of the aluminum alloy material is shipped from the factory of the manufacturer of the aluminum alloy material and remains applied for a long time until the degreasing treatment. Even so, it is shown that it is possible to provide an aluminum alloy material excellent in surface stability with little change with time and capable of maintaining good water wettability during chemical conversion treatment.

以下に本発明の実施例を説明する。6000系の6022規格のアルミニウム合金冷延板(板厚1mm)で、長さ70mm×幅150mmの試験片を用いた。この6022規格のアルミニウム合金板は、Mg:0.55質量%、Si:0.95質量%を含み、0.2%耐力が230MPaである。   Examples of the present invention will be described below. A 6000 series 6022 standard aluminum alloy cold-rolled sheet (plate thickness: 1 mm), a test piece having a length of 70 mm and a width of 150 mm was used. This 6022 standard aluminum alloy plate contains Mg: 0.55 mass%, Si: 0.95 mass%, and has a 0.2% proof stress of 230 MPa.

リン酸水素塩処理に先立つ前処理を実施する場合には、60〜90℃の市販弱アルカリ性脱脂液に1〜10秒間浸漬またはスプレー後に,50〜90℃の1〜20質量%硝酸または硫酸に1〜10秒間浸漬またはスプレーし、その後水洗する洗浄を行った。   When carrying out the pretreatment prior to the hydrogen phosphate treatment, after immersion or spraying in a commercial weak alkaline degreasing solution at 60 to 90 ° C. for 1 to 10 seconds, to 1 to 20 mass% nitric acid or sulfuric acid at 50 to 90 ° C. It was immersed or sprayed for 1 to 10 seconds, and then washed with water.

上記前処理条件では、試験片表面に既に形成されているアルミニウムの酸化皮膜やマグネシウムが除去される。しかし、すぐにアルミニウムの酸化皮膜が試験片表面に形成されるため、リン酸水素塩処理により試験片表面に付着された水和したリン酸塩は、このアルミニウムの酸化皮膜上や酸化皮膜中に存在乃至散在することとなる。   Under the pretreatment conditions, the aluminum oxide film and magnesium already formed on the surface of the test piece are removed. However, since an aluminum oxide film is immediately formed on the surface of the test piece, the hydrated phosphate adhering to the surface of the test piece by the hydrogen phosphate treatment is deposited on or in the aluminum oxide film. It will be present or scattered.

このような前処理を施した、または前処理をしないアルミニウム合金の試験片に対して、薬剤としてリン酸二水素アルミニウム{Al(H2 PO4}を用い、試験片を浸漬する水溶液濃度が1g/L、10g/Lとなるようにしたものをそれぞれ作製した。これらを実施例1〜4とする(下記表1参照)。この時の水溶液のpHは、それぞれ3.4、2.4、3.4及び2.4であった。また、上記薬剤を用い、濃度が0.1g/Lから0.4g/Lである水溶液に、それぞれ水溶液1Lあたり表1に記載の量のリン酸(和光純薬製85%純度試薬)を添加し、pHを2.5乃至3.8に調整したリン酸二水素塩水溶液を作製した。これらを実施例5〜8とする。 Concentration of an aqueous solution in which aluminum dihydrogen phosphate {Al (H 2 PO 4 ) 3 } is used as a chemical and the test piece is immersed in an aluminum alloy test piece that has been or has not been pretreated. Were prepared so as to be 1 g / L and 10 g / L, respectively. These are referred to as Examples 1 to 4 (see Table 1 below). The pH of the aqueous solution at this time was 3.4, 2.4, 3.4, and 2.4, respectively. In addition, using the above-mentioned chemicals, phosphoric acid (85% purity reagent manufactured by Wako Pure Chemical Industries) in the amount shown in Table 1 is added to each aqueous solution having a concentration of 0.1 g / L to 0.4 g / L. Then, an aqueous dihydrogen phosphate solution having a pH adjusted to 2.5 to 3.8 was prepared. Let these be Examples 5-8.

また、上記薬剤を用い、濃度が1g/L、0.05g/Lでリン酸が添加されていない、pHがそれぞれ3.4、6.6のリン酸二水素塩水溶液に、前処理をしない500℃で20分間加熱したアルミニウム合金の試験片(各3個)を10秒間浸漬したものを実施例9、10とする(下記表1参照)。

Figure 0005192986
In addition, using the above chemicals, do not pretreat the dihydrogen phosphate aqueous solution with concentrations of 1 g / L, 0.05 g / L and no added phosphoric acid, and pH of 3.4 and 6.6, respectively. Examples obtained by soaking aluminum alloy test pieces (each 3 pieces) heated at 500 ° C. for 20 minutes for 10 seconds are referred to as Examples 9 and 10 (see Table 1 below).
Figure 0005192986

また、比較のために上記薬剤を用いた水溶液に試験片を浸漬しないもの、水溶液濃度が0.1g/Lのものをそれぞれ作製した。これらを比較例1〜4とする(下記表2参照)。比較例2、4の水溶液のpHは、いずれも6.4であった。上記薬剤を用い、濃度が0.1g/Lの水溶液と0.4g/Lの水溶液に対し、それぞれ水溶液1Lあたり表2に記載の量のリン酸(和光純薬製85%純度試薬)を添加し、pHを共に2.0に調整したリン酸二水素塩水溶液を作製した。これらを比較例5及び6とする。実施例1〜8、比較例2及び比較例4〜6においては、いずれも試験片の浸漬時間を10秒とした。

Figure 0005192986
In addition, for comparison, a sample in which the test piece was not immersed in an aqueous solution using the above-described agent and an aqueous solution concentration of 0.1 g / L were prepared. These are referred to as Comparative Examples 1 to 4 (see Table 2 below). The pH values of the aqueous solutions of Comparative Examples 2 and 4 were all 6.4. Using the above chemicals, add phosphoric acid (85% purity reagent manufactured by Wako Pure Chemical Industries, Ltd.) in the amount shown in Table 2 per liter of aqueous solution to each of 0.1 g / L aqueous solution and 0.4 g / L aqueous solution. Then, an aqueous dihydrogen phosphate solution having a pH adjusted to 2.0 was prepared. These are referred to as Comparative Examples 5 and 6. In each of Examples 1 to 8, Comparative Example 2, and Comparative Examples 4 to 6, the test piece was immersed for 10 seconds.
Figure 0005192986

また、上記所定のリン酸水素塩処理が完了した実施例1〜10と比較例1〜6の試験片の表面を、X線光電子分光分析法で分析した。測定方法および条件は、以下の通りである。ここで、表面のリン濃度は、最表面を除き、表面から深さ200nmまでの深さ方向の組成を分析してリン濃度(原子%)分析値の最高値を基板表層のリン濃度(原子%)と定義した。最表面の状態は汚れにより正確な数値が得られないためである。
(測定方法および条件)
装置 : Physical Electronics社製 QuanteraSXM
全自動走査型X線光電子分光装置
X線源 : 単色化AlKa
X線出力: 43.7W
X線ビーム径 : 200μm
光電子取り出し角 : 45°
Arスパッタ速度 : SiO換算で約4.6nm/分
In addition, the surfaces of the test pieces of Examples 1 to 10 and Comparative Examples 1 to 6 where the predetermined hydrogen phosphate treatment was completed were analyzed by X-ray photoelectron spectroscopy. The measurement method and conditions are as follows. Here, the surface phosphorus concentration is determined by analyzing the composition in the depth direction from the surface to a depth of 200 nm, excluding the outermost surface, and the maximum phosphorus concentration (atomic%) is the phosphorus concentration (atomic%) on the substrate surface layer. ). This is because the state of the outermost surface cannot obtain an accurate numerical value due to dirt.
(Measurement method and conditions)
Apparatus: Quantera SXM manufactured by Physical Electronics
Fully automatic scanning X-ray photoelectron spectrometer X-ray source: Monochromatic AlKa
X-ray output: 43.7W
X-ray beam diameter: 200 μm
Photoelectron extraction angle: 45 °
Ar + sputtering speed: about 4.6 nm / min in terms of SiO 2

なお、表面リン濃度の測定方法はX線光電子分光分析法(XPS)に限定するものではなく、XPS以外に例えば蛍光X線や高周波グロー放電発光表面分析(GDS)等の分析手法を用いることができる。   Note that the method for measuring the surface phosphorus concentration is not limited to X-ray photoelectron spectroscopy (XPS), and an analysis method such as fluorescent X-ray or high-frequency glow discharge emission surface analysis (GDS) may be used in addition to XPS. it can.

その結果、実施例の表面リン濃度は上記表1に示すように、実施例1、2、3、4、5、6、7、8、9及び10に関して、それぞれ2.1〜3.3、2.4〜4.4、2.2〜3.6、2.4〜4.5、3.2〜3.8、2.8〜3.3、3.2〜4.0、2.0〜2.6、3.8〜4.7及び2.3〜3.2であった。また、比較例の表面リン濃度は上記表2に示すように、比較例1、2、3、4、5及び6に関しては、それぞれ0.8〜1.2、1.1〜1.6、0.6〜1.2、1.3〜1.6、0.9〜1.6及び1.1〜1.9であった。   As a result, as shown in Table 1 above, the surface phosphorus concentrations of the examples were 2.1 to 3.3 for Examples 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, respectively. 2.4-4.4, 2.2-3.6, 2.4-4.5, 3.2-3.8, 2.8-3.3, 3.2-4.0, 2. They were 0-2.6, 3.8-4.7, and 2.3-3.2. Further, as shown in Table 2 above, the surface phosphorus concentrations of the comparative examples are 0.8 to 1.2, 1.1 to 1.6, respectively, for the comparative examples 1, 2, 3, 4, 5 and 6. They were 0.6 to 1.2, 1.3 to 1.6, 0.9 to 1.6, and 1.1 to 1.9.

また、上記所定のリン酸水素塩処理が完了した後の処理液の濁り状態を目視にて観察することにより、非溶解成分の有無を判断した。その結果、上記薬剤濃度が1〜10g/Lでリン酸が添加されていないリン酸二水素塩水溶液を用いてリン酸水素塩処理を行なった実施例1〜4、9及び比較例2、4の処理液中には、非溶解成分に起因した濁りが認められた。この非溶解成分は、結晶性及び非結晶性のリン酸アルミニウム(AlPO)が混在するものであった。一方、上記薬剤濃度が0.1〜0.4g/Lでリン酸が添加されたリン酸二水素塩水溶液を用いてリン酸水素塩処理を行なった実施例5〜8、上記薬剤濃度が0.05g/Lでリン酸が添加されていないリン酸二水素塩水溶液を用いてリン酸水素塩処理を行なった実施例10及び比較例5と6の処理液中には、非溶解成分に起因した濁りは認められなかった(透明であった)。比較例5と6においては、非溶解成分に起因した濁りは認められなかったものの、後述するように肝心な水濡れ面積率が基準の90%を大きく下回った。 Moreover, the presence or absence of undissolved components was determined by visually observing the turbid state of the treatment liquid after the predetermined hydrogen phosphate treatment was completed. As a result, Examples 1 to 4 and 9 and Comparative Examples 2 and 4 in which hydrogen phosphate treatment was performed using a dihydrogen phosphate aqueous solution having a drug concentration of 1 to 10 g / L and no phosphoric acid added thereto. In the treatment liquid, turbidity due to non-dissolved components was observed. This non-dissolved component was a mixture of crystalline and non-crystalline aluminum phosphate (AlPO 4 ). On the other hand, Examples 5 to 8 in which hydrogen phosphate treatment was performed using an aqueous solution of dihydrogen phosphate to which phosphoric acid was added at a drug concentration of 0.1 to 0.4 g / L, and the drug concentration was 0. In the treatment liquids of Example 10 and Comparative Examples 5 and 6 in which hydrogen phosphate treatment was performed using an aqueous solution of dihydrogen phosphate without addition of phosphoric acid at 0.05 g / L, it was attributed to insoluble components. No turbidity was observed (transparent). In Comparative Examples 5 and 6, although no turbidity due to non-dissolved components was observed, the critical water-wetting area rate was significantly lower than the standard 90% as described later.

次に、上記リン酸二水素塩水溶液で処理された試験片(実施例1〜10、比較例2及び4〜6)と上記リン酸二水素塩水溶液で処理されない試験片(比較例1及び3)をエステル成分としてオレイン酸エチルを含有するプレス油に浸漬させた。   Next, the test pieces (Examples 1 to 10, Comparative Examples 2 and 4 to 6) treated with the dihydrogen phosphate aqueous solution and the test pieces (Comparative Examples 1 and 3) not treated with the dihydrogen phosphate aqueous solution. ) Was immersed in press oil containing ethyl oleate as an ester component.

次に、上記エステル成分を含有するプレス油が塗布された試験片の表面の経時安定性について調べるために、以下のような試験を行った。上記エステル成分を含有するプレス油が塗布されたままのものを15〜35℃で50〜90%RHの環境室内に6ヶ月放置した。そして、6ヶ月後に、自動車用の市販弱アルカリ脱脂液(温度40℃)に2分間浸漬した際の、試験片の面積に対する水濡れ面積率(片側のみ)を測定した(良好な程、高い数値となる)。これにより、化成処理時の水濡れ性(安定した化成処理性)を評価できる。その結果、実施例1〜10の水濡れ面積率(なお、実施例9、10に関しては、各3個の平均値)は、いずれも基準の90%をクリアした(上記表1参照)。これは、前述の自動車部品のモジュール化などにより、湿潤環境に放置、あるいは放置期間が長期化しても、アルミニウム合金材の表面特性が経時変化せずに安定であることを示している。しかし、比較例1、2、3、4、5及び6の水濡れ面積率は、それぞれ40%、55%、0%、33%、38%及び52%(上記表2参照)と基準の90%を大きく下回った。これは、アルミニウム合金材の表面特性が経時変化することを示している。   Next, in order to investigate the temporal stability of the surface of the test piece coated with the press oil containing the ester component, the following test was performed. The press oil containing the ester component as it was applied was left at 15-35 ° C. in an environmental chamber of 50-90% RH for 6 months. And 6 months later, the water wetted area ratio (only one side) with respect to the area of the test piece when immersed in a commercially available weak alkaline degreasing liquid (temperature: 40 ° C.) for automobiles for 2 minutes was measured. Becomes). Thereby, the water wettability (stable chemical conversion property) at the time of chemical conversion treatment can be evaluated. As a result, the water wetted area ratios of Examples 1 to 10 (in addition, for Examples 9 and 10 each average value of 3) cleared 90% of the standard (see Table 1 above). This shows that the surface characteristics of the aluminum alloy material are stable without changing over time even when left in a humid environment or the period of time left is prolonged due to the modularization of the automobile parts described above. However, the water wetted area ratios of Comparative Examples 1, 2, 3, 4, 5 and 6 are 40%, 55%, 0%, 33%, 38% and 52% (see Table 2 above), which is 90% of the standard. % Significantly below. This indicates that the surface characteristics of the aluminum alloy material change with time.

上述した実施例5〜8のようにリン酸二水素アルミニウムの水溶液の濃度が0.1g/L〜0.4g/Lと低濃度であり、これに上記所定量のリン酸を添加し、pHを2.5以上4未満に調整したリン酸二水素塩水溶液は、その水溶液の溶液平衡がくずれた。また、この溶液平衡のくずれが、アルミニウム合金材表面に水和したリン酸塩もしくはリン酸水素塩を形成させる反応において重要な遊離した状態(解離していないが溶解した状態)のリン酸二水素塩(ここでは、リン酸二水素アルミニウム)の濃度の増加につながった。この遊離した状態のリン酸二水素アルミニウムの濃度の増加が、リン酸を添加する前のリン酸二水素アルミニウムの水溶液の濃度が低いにもかかわらず、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材を作り出す好結果をもたらしたものと考えている。また、実施例5〜8のようなリン酸二水素塩水溶液でアルミニウム合金材を処理することで、上記リン酸二水素塩水溶液中に非溶解成分に起因した濁りが発生しない詳細メカニズムは、現時点では不明であるものの、リン酸を添加する前の低い濃度のリン酸二水素アルミニウムの水溶液にリン酸が添加されたことで何らかの相互作用が生じたものと推定している。   As in Examples 5 to 8 described above, the concentration of the aqueous solution of aluminum dihydrogen phosphate is as low as 0.1 g / L to 0.4 g / L, and the predetermined amount of phosphoric acid is added thereto, and the pH is adjusted. In the aqueous solution of dihydrogen phosphate adjusted to 2.5 or more and less than 4, the solution equilibrium of the aqueous solution was broken. In addition, the breakdown of the solution equilibrium is important in the reaction of forming a hydrated phosphate or hydrogen phosphate on the surface of the aluminum alloy material. Dihydrogen phosphate in a free state (not dissociated but dissolved) This led to an increase in the concentration of salt (here, aluminum dihydrogen phosphate). This increase in the concentration of aluminum dihydrogen phosphate in the free state maintains good water wettability during the chemical conversion treatment despite the low concentration of the aqueous solution of aluminum dihydrogen phosphate before the addition of phosphoric acid. It is thought that it brought about a good result of producing an aluminum alloy material with excellent surface stability. Moreover, the detailed mechanism by which the turbidity resulting from an insoluble component does not generate | occur | produce in the said dihydrogen phosphate aqueous solution by processing an aluminum alloy material with the dihydrogen phosphate aqueous solution like Examples 5-8 is the present. Although it is unknown, it is presumed that some kind of interaction was caused by the addition of phosphoric acid to an aqueous solution of aluminum dihydrogen phosphate having a low concentration before adding phosphoric acid.

以上のように、表面に、リン濃度が2.0原子%以上である水和したリン酸塩もしくはリン酸水素塩を有するMg含有アルミニウム合金材の表面に、エステル成分を含有するプレス油が塗布された構成とすることで、化成処理の脱脂時までエステル成分を含有するプレス油の効果とともに、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材が得られる。   As described above, press oil containing an ester component is applied to the surface of an Mg-containing aluminum alloy material having a hydrated phosphate or hydrogen phosphate having a phosphorus concentration of 2.0 atomic% or more on the surface. By setting it as the comprised structure, the aluminum alloy material excellent in the surface stability which can maintain the favorable water wettability at the time of chemical conversion treatment with the effect of the press oil containing an ester component until the time of degreasing of chemical conversion treatment is obtained.

本実施例においては、上述した実施例1〜4のようにリン酸二水素塩水溶液として、リン酸二水素アルミニウムを薬剤に用いた例について説明したが、必ずしもこれに限定されるものではなく、塩中にリン酸二水素を含有する塩であれば構わない。この塩中にリン酸二水素を含有する塩の水溶液のpHを4未満に調整し、この水溶液でアルミニウム合金材を処理することで、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材を製造することができる。また、上述した実施例9のように、アルミニウム合金材を500℃という高温に保持した状態からリン酸二水素塩水溶液に浸漬する場合は、アルミニウム合金材の表面とリン酸二水素塩水溶液中の薬剤との反応性が向上するため、水溶液濃度が1g/L(実施例1、3と同じ)でもアルミニウム合金材の表面のリン濃度はさらに増加する。したがって、化成処理時のより良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材を製造することができる。   In this example, as described in Examples 1 to 4 described above, as an aqueous solution of dihydrogen phosphate, an example in which aluminum dihydrogen phosphate was used as a drug was described. However, the present invention is not necessarily limited thereto. Any salt containing dihydrogen phosphate in the salt may be used. Surface stability that maintains good water wettability during chemical conversion treatment by adjusting the pH of an aqueous solution of a salt containing dihydrogen phosphate in this salt to less than 4 and treating the aluminum alloy material with this aqueous solution It is possible to produce an aluminum alloy material excellent in the above. In addition, when the aluminum alloy material is immersed in the dihydrogen phosphate aqueous solution from the state where the aluminum alloy material is maintained at a high temperature of 500 ° C. as in Example 9 described above, the surface of the aluminum alloy material and the dihydrogen phosphate aqueous solution Since the reactivity with a chemical | medical agent improves, even if aqueous solution density | concentration is 1 g / L (same as Example 1, 3), the phosphorus density | concentration on the surface of an aluminum alloy material further increases. Therefore, it is possible to produce an aluminum alloy material excellent in surface stability that can maintain better water wettability during chemical conversion treatment.

また、上述した実施例5〜8のように、所定量の濃度のリン酸二水素塩水溶液に所定量の濃度のリン酸を添加し、pHを2.5以上4未満に調整した水溶液で、アルミニウム合金材を処理することで、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材を製造することができるばかりか、アルミニウム合金材をリン酸水素塩処理する際に上記リン酸二水素塩水溶液中に非溶解成分に起因した濁りが生ぜず(=透明)、配管詰まりの発生が抑制され、メンテナンスの頻度を下げることができる。また、上述した実施例10のように、アルミニウム合金材を500℃という高温に保持した状態からリン酸二水素塩水溶液に浸漬する場合は、アルミニウム合金材の表面とリン酸二水素塩水溶液中の薬剤との反応性が向上するため、水溶液濃度が0.05g/L(実施例5〜8よりもさらに低濃度)と低濃度で、かつ、リン酸が添加されていなくても、アルミニウム合金材の表面のリン濃度が所定値(2.0原子%以上)を達成でき、化成処理時の良好な水濡れ性が維持できる表面安定性に優れたアルミニウム合金材を製造することができる。さらに、実施例10の場合は、アルミニウム合金材をリン酸水素塩処理する際にリン酸二水素塩水溶液中に非溶解成分に起因した濁りが生ぜず(=透明)、配管詰まりの発生が抑制され、メンテナンスの頻度を下げることができる。   In addition, as in Examples 5 to 8 described above, an aqueous solution in which a predetermined amount of phosphoric acid is added to a predetermined amount of dihydrogen phosphate aqueous solution and the pH is adjusted to 2.5 or more and less than 4, By treating the aluminum alloy material, it is possible not only to produce an aluminum alloy material with excellent surface stability that can maintain good water wettability during chemical conversion treatment, but also when the aluminum alloy material is treated with hydrogen phosphate. In addition, turbidity caused by non-dissolved components does not occur in the dihydrogen phosphate aqueous solution (= transparent), the occurrence of clogging of piping is suppressed, and the frequency of maintenance can be reduced. Moreover, when the aluminum alloy material is immersed in a dihydrogen phosphate aqueous solution from a state where the aluminum alloy material is maintained at a high temperature of 500 ° C. as in Example 10 described above, the surface of the aluminum alloy material and the dihydrogen phosphate aqueous solution Since the reactivity with the drug is improved, the aluminum alloy material has an aqueous solution concentration as low as 0.05 g / L (lower concentration than Examples 5 to 8) and no phosphoric acid is added. The surface phosphorus concentration can achieve a predetermined value (2.0 atomic% or more), and an aluminum alloy material excellent in surface stability that can maintain good water wettability during chemical conversion treatment can be produced. Further, in the case of Example 10, when the aluminum alloy material is treated with hydrogen phosphate, turbidity due to non-dissolved components does not occur in the aqueous solution of dihydrogen phosphate (= transparent), and the occurrence of clogging of the pipe is suppressed. The maintenance frequency can be reduced.

本発明のリン酸水素塩処理およびプレス油塗布後のアルミニウム合金材の表面性状を考察するための模式図である。It is a schematic diagram for considering the surface properties of the aluminum alloy material after hydrogen phosphate treatment and press oil application of the present invention.

Claims (1)

表面に、リン濃度が2.0原子%以上である水和したリン酸塩もしくはリン酸水素塩を有するMg含有アルミニウム合金材の表面に、エステル成分を含有するプレス油が塗布されていることを特徴とする表面安定性に優れたアルミニウム合金材。   The press oil containing the ester component is applied on the surface of the Mg-containing aluminum alloy material having a hydrated phosphate or hydrogen phosphate having a phosphorus concentration of 2.0 atomic% or more on the surface. Aluminum alloy material with excellent surface stability.
JP2008285622A 2007-11-28 2008-11-06 Aluminum alloy material with excellent surface stability Expired - Fee Related JP5192986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285622A JP5192986B2 (en) 2007-11-28 2008-11-06 Aluminum alloy material with excellent surface stability

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007307740 2007-11-28
JP2007307740 2007-11-28
JP2008168979 2008-06-27
JP2008168979 2008-06-27
JP2008285622A JP5192986B2 (en) 2007-11-28 2008-11-06 Aluminum alloy material with excellent surface stability

Publications (2)

Publication Number Publication Date
JP2010031350A JP2010031350A (en) 2010-02-12
JP5192986B2 true JP5192986B2 (en) 2013-05-08

Family

ID=40987125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285622A Expired - Fee Related JP5192986B2 (en) 2007-11-28 2008-11-06 Aluminum alloy material with excellent surface stability

Country Status (3)

Country Link
JP (1) JP5192986B2 (en)
KR (1) KR101016915B1 (en)
CN (1) CN101445929B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969086B2 (en) * 2015-05-07 2016-08-10 株式会社神戸製鋼所 Surface-treated aluminum alloy plate and manufacturing method thereof
WO2019083973A1 (en) 2017-10-23 2019-05-02 Novelis Inc. Reactive quenching solutions and methods of use
KR102348576B1 (en) * 2019-12-17 2022-01-06 주식회사 포스코 Steel sheet having excellent yellowing resistance and phosphating property and method for preparing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2095525A1 (en) * 1991-09-04 1993-03-05 Motohiro Nabae Aluminum alloy sheets for auto body panels and method of manufacturing the same
JPH05123648A (en) * 1991-10-31 1993-05-21 Furukawa Alum Co Ltd Coated aluminum plate excellent in forming workability and its production
JPH05148664A (en) * 1991-11-22 1993-06-15 Sky Alum Co Ltd Aluminum alloy sheet for forming excellent in galling property
DE4433946A1 (en) * 1994-09-23 1996-03-28 Henkel Kgaa Phosphating process without rinsing
JPH11269595A (en) 1998-01-22 1999-10-05 Nippon Steel Corp Automotive magnesium-containing aluminum alloy treated sheet excellent in zinc phosphate treatability and its production
JP2003013253A (en) * 2001-07-04 2003-01-15 Kobe Steel Ltd Aluminum-alloy structural material superior in adhesiveness to coating and method for evaluating adhesiveness to coating of aluminum-alloy structural material
JP2006200007A (en) 2005-01-21 2006-08-03 Furukawa Sky Kk Aluminum alloy sheet for automobile body sheet having excellent water wettability after degreasing and adhesive property

Also Published As

Publication number Publication date
JP2010031350A (en) 2010-02-12
CN101445929B (en) 2011-09-28
KR101016915B1 (en) 2011-02-22
CN101445929A (en) 2009-06-03
KR20090055463A (en) 2009-06-02

Similar Documents

Publication Publication Date Title
JP5968637B2 (en) Surface-treated aluminum alloy plate and manufacturing method thereof
JP6143431B2 (en) Aluminum alloy plate, joined body and automobile member using the same
RU2464356C2 (en) Zirconium- and titanium-bearing phosphating solution for passivation of metal composite surfaces
JP2020056099A (en) Steel sheet coated with aluminum-based metal coating
JP5745788B2 (en) Surface-treated aluminum alloy plate and manufacturing method thereof
EP2980261B1 (en) Molten-al-zn-plated steel sheet and method for manufacturing same
Bloeck Aluminium sheet for automotive applications
JP5745791B2 (en) Surface-treated aluminum alloy plate
JP5192986B2 (en) Aluminum alloy material with excellent surface stability
JP5276263B2 (en) Aluminum alloy material for automobiles with excellent surface stability
KR101469324B1 (en) Aluminium alloy plate for a vehicle, bonded body using the same and vehicular member
JP2010222659A (en) Aluminum alloy material and method of manufacturing the same
JP5969087B2 (en) Surface-treated aluminum alloy plate
JP5968956B2 (en) Aluminum alloy plate, joined body and automobile member using the same
JP2014173123A (en) Surface-treated aluminum alloy sheet and method of manufacturing the same
JP2017155289A (en) Method for manufacturing surface treated aluminum alloy plate
JP6290042B2 (en) Aluminum alloy material and bonded body with excellent adhesion durability, or automobile parts
JP2010270372A (en) Method for manufacturing aluminum alloy material superior in surface stability
JP6278882B2 (en) Surface-treated aluminum alloy plate and manufacturing method thereof
JP5969086B2 (en) Surface-treated aluminum alloy plate and manufacturing method thereof
JP2013091843A (en) Aluminum alloy sheet, and joined body and automobile member using the same
JP2003013253A (en) Aluminum-alloy structural material superior in adhesiveness to coating and method for evaluating adhesiveness to coating of aluminum-alloy structural material
JP4829412B2 (en) Aluminum alloy material with excellent yarn rust resistance
WO2020153415A1 (en) Titanium composite material
JP2011202264A (en) Surface treated aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R150 Certificate of patent or registration of utility model

Ref document number: 5192986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees