JP5192703B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5192703B2
JP5192703B2 JP2007026617A JP2007026617A JP5192703B2 JP 5192703 B2 JP5192703 B2 JP 5192703B2 JP 2007026617 A JP2007026617 A JP 2007026617A JP 2007026617 A JP2007026617 A JP 2007026617A JP 5192703 B2 JP5192703 B2 JP 5192703B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
carbon
secondary battery
material particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007026617A
Other languages
Japanese (ja)
Other versions
JP2008192488A (en
Inventor
幸典 高橋
功二 宇津木
裕 坂内
達治 沼田
竜一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2007026617A priority Critical patent/JP5192703B2/en
Publication of JP2008192488A publication Critical patent/JP2008192488A/en
Application granted granted Critical
Publication of JP5192703B2 publication Critical patent/JP5192703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解質二次電池に関し、特に高容量で充放電サイクル寿命を改善した非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having a high capacity and an improved charge / discharge cycle life.

携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められることから、現在はリチウムイオン二次電池が最も多く使用されている。   With the widespread use of mobile devices such as mobile phones and laptop computers, the role of secondary batteries as power sources is gaining importance. Since these secondary batteries are small, light and have a high capacity and are required to have a performance that does not easily deteriorate even after repeated charge and discharge, lithium ion secondary batteries are most frequently used.

リチウムイオン二次電池の負極には、主として黒鉛やハードカーボン等の炭素を用いている。炭素は、充放電サイクルを良好に繰り返すことができるものの、理論容量付近まで容量向上を実現していることから、今後大幅な容量の増加は期待出来ない。その一方で、リチウムイオン二次電池の容量向上の要求は強いことから、炭素よりも高容量すなわち高エネルギー密度を有する負極材料の検討が行われている。   Carbon such as graphite and hard carbon is mainly used for the negative electrode of the lithium ion secondary battery. Although carbon can repeat charge / discharge cycles satisfactorily, the capacity has been improved to near the theoretical capacity, so a significant increase in capacity cannot be expected in the future. On the other hand, since there is a strong demand for improving the capacity of lithium ion secondary batteries, negative electrode materials having a higher capacity, that is, a higher energy density than carbon, have been studied.

リチウムイオン二次電池の負極には、高エネルギー密度でかつ軽量という観点から金属リチウムの検討もされているが、充放電サイクルの進行にともない、充電時に金属リチウム表面にデンドライト(樹枝状晶)が析出し、この結晶がセパレータを貫通し、内部短絡を起こし、寿命が短いという問題点があった。   In the negative electrode of lithium ion secondary batteries, metal lithium has been studied from the viewpoint of high energy density and light weight, but as the charge / discharge cycle progresses, dendrites (dendrites) are formed on the surface of the metal lithium during charging. There is a problem that the crystals are deposited and the crystal penetrates the separator, causing an internal short circuit and a short life.

エネルギー密度を高める材料として、組成式がLixA(Aはアルミニウムなどの元素からなる)で表されるリチウムと合金を形成するLi吸蔵物質を負極活物質として用いることが検討されている。この負極は単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量である。最近では、特にケイ素を負極活物質として用いることが非特許文献1に記載されている。このような負極材料を用いることによって、高容量の負極が得られるとされている。 As a material for increasing the energy density, it has been studied to use, as a negative electrode active material, a Li storage material that forms an alloy with lithium represented by the composition formula Li x A (A is made of an element such as aluminum). This negative electrode has a large amount of occlusion and release of lithium ions per unit volume, and has a high capacity. Recently, the use of silicon as a negative electrode active material has been described in Non-Patent Document 1. It is said that a high capacity negative electrode can be obtained by using such a negative electrode material.

この種のケイ素を用いた負極は、単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量であるものの、リチウムイオンが吸蔵放出される際に電極活物質自体が膨脹収縮するために微粉化が進行し、初回充放電における不可逆容量が大きく、また充放電サイクル寿命が短いという問題点があった。   Although this type of silicon-based negative electrode has a large amount of lithium ion storage and release per unit volume and high capacity, the electrode active material itself expands and contracts when lithium ion is stored and released. Progressed, the irreversible capacity in the first charge / discharge was large, and the charge / discharge cycle life was short.

ケイ素を用いた不可逆容量の低減及び充放電サイクル寿命の改善対策として、ケイ素酸化物を活物質として用いる方法が特許文献1で提案されている。特許文献1においては、ケイ素酸化物を活物質として用いることにより活物質単位重量あたりの体積膨張収縮を減らすことができるためサイクル特性の向上が確認されている。一方、酸化物の導電性が低いため、集電性が低下し、不可逆容量が大きいという問題点を有していた。また、ケイ素酸化物を活物質として用いた際の集電性を向上させるために、ケイ素酸化物に鉄やチタンを添加することが特許文献2で提案されている。しかし、これらの金属は電解液に対する耐食性や、耐酸化性が弱いために、金属を添加しただけではサイクルを繰り返すと導電性が低下してしまうという問題点を有していた。さらに不可逆容量の低減及び充放電サイクル寿命の改善対策として、ケイ素、ケイ素酸化物に炭素材料を複合化させた粒子を活物質として用いる方法が特許文献3で提案されている。これによりサイクル特性の向上が確認されたものの、まだ不十分であった。   Patent Document 1 proposes a method of using silicon oxide as an active material as a measure for reducing irreversible capacity using silicon and improving charge / discharge cycle life. In Patent Document 1, since the volume expansion / shrinkage per unit weight of the active material can be reduced by using silicon oxide as the active material, improvement in cycle characteristics has been confirmed. On the other hand, since the conductivity of the oxide is low, there is a problem that the current collecting property is lowered and the irreversible capacity is large. In addition, Patent Document 2 proposes that iron or titanium is added to silicon oxide in order to improve current collecting performance when silicon oxide is used as an active material. However, since these metals are weak in corrosion resistance and oxidation resistance to the electrolytic solution, there is a problem that the conductivity decreases when the cycle is repeated only by adding the metal. Further, Patent Document 3 proposes a method of using, as an active material, particles obtained by combining a carbon material with silicon or silicon oxide as a measure for reducing irreversible capacity and improving the charge / discharge cycle life. Although this improved the cycle characteristics, it was still insufficient.

その一方で、従来から、サイクル特性改善を目的として、バインダ(結着材)として熱硬化性を有する樹脂材料を用いることが報告されている。具体的には、酸化スズと酸化ケイ素と炭素をポリイミドバインダと混合して焼結させる方法が特許文献4で提案され、ケイ素及び/またはケイ素合金を含む活物質粒子と導電性金属粉末の混合物をポリイミドバインダと混合させたものを前記集電体の表面上で非酸化性雰囲気下に焼結させる方法が特許文献5で提案されている。しかしこれらは、実使用上での判断となる炭素負極並のサイクル特性を実現するには至らなかった。   On the other hand, it has been conventionally reported that a resin material having thermosetting properties is used as a binder (binder) for the purpose of improving cycle characteristics. Specifically, a method of mixing and sintering tin oxide, silicon oxide, and carbon with a polyimide binder is proposed in Patent Document 4, and a mixture of active material particles containing silicon and / or silicon alloy and conductive metal powder is prepared. Patent Document 5 proposes a method of sintering a mixture with a polyimide binder in a non-oxidizing atmosphere on the surface of the current collector. However, these have not led to the realization of cycle characteristics comparable to those of a carbon negative electrode, which is a judgment in actual use.

特許第2997741号公報Japanese Patent No. 2999741 特許第3010226号公報Japanese Patent No. 3010226 特開2004−139886号公報JP 2004-139886 A 特開2002−117835号公報JP 2002-117835 A 特開2002−260637号公報Japanese Patent Laid-Open No. 2002-260637 Hong Li, Xuejie Huang, Liquan Chen, Zhengang Wu, and Yong Liang, Electrochem. Solid-State Lett., Volume 2, Issue 11, p.547-549 (November 1999)Hong Li, Xuejie Huang, Liquan Chen, Zhengang Wu, and Yong Liang, Electrochem.Solid-State Lett., Volume 2, Issue 11, p.547-549 (November 1999)

本発明は、ケイ素もしくはケイ素酸化物系負極は高容量であるものの、充放電サイクル寿命が不十分であり、初回充放電での充放電効率が低いという問題を解決するものである。本発明の課題は、集電性を向上させ、初回充放電での充放電効率が高く、かつ、エネルギー密度の高い、高温においても良好なサイクル特性を持つ非水電解質二次電池を提供することにある。   The present invention solves the problem that although the silicon or silicon oxide negative electrode has a high capacity, the charge / discharge cycle life is insufficient and the charge / discharge efficiency in the first charge / discharge is low. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that improves current collecting performance, has high charge / discharge efficiency at the first charge / discharge, has high energy density, and has good cycle characteristics even at high temperatures. It is in.

上記課題を解決するため本発明による非水電解質二次電池は、負極と正極とリチウムイオン導電性の非水電解質とを有する非水電解質二次電池において、前記負極は、単体ケイ素とケイ素酸化物の混合物の周辺をアモルファス系炭素及び黒鉛系炭素の混合組成からなる炭素で被覆した活物質粒子と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、前記熱硬化性樹脂により前記活物質粒子間、及び前記活物質粒子と集電体とが結着され、前記非水電解質が非水溶媒とスルホン酸エステルとを含むことを特徴とする。また、前記非水溶媒が少なくとも鎖状カーボネート又は環状カーボネートを含有することが好ましく、前記スルホン酸エステルが環状スルホン酸エステル、環状ジスルホン酸エステル又は鎖状ジスルホン酸エステルの少なくとも一種で構成されることが好ましく、前記環状スルホン酸エステルが、1,3−プロパンスルトン又は1,4−ブタンスルトンの少なくとも一種で構成されることが好ましく、さらに、前記環状ジスルホン酸エステルが、メチレンメタンジスルホネート、エチレンメタンジスルホネート及びプロピレンメタンジスルホネートから選ばれる少なくとも一種で構成されることが好ましい。   In order to solve the above problems, a non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery having a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte. A mixture of active material particles coated with carbon having a mixed composition of amorphous carbon and graphite carbon, and a thermosetting resin that causes a dehydration condensation reaction by heating, and the active resin is heated by the thermosetting resin. The active material particles and the current collector are bound between the material particles, and the non-aqueous electrolyte includes a non-aqueous solvent and a sulfonate ester. The non-aqueous solvent preferably contains at least a chain carbonate or a cyclic carbonate, and the sulfonate ester is composed of at least one of a cyclic sulfonate ester, a cyclic disulfonate ester, or a chain disulfonate ester. Preferably, the cyclic sulfonic acid ester is preferably composed of at least one of 1,3-propane sultone or 1,4-butane sultone, and the cyclic disulfonic acid ester is methylene methane disulfonate, ethylene methane disulfonate. And at least one selected from propylene methane disulfonate.

非水電解質にスルホン酸エステルを含有させることにより、初期充電時のガス発生を抑制し、初回充放電での充放電効率が高くかつ、良好なサイクル特性を持つ非水電解質二次電池を提供することができる。初期の充電により有機硫黄化合物が反応し、負極表面に一般的にSEI(Solid Electrolyte Interface)膜と呼ばれる皮膜が形成される。皮膜が形成されることにより、負極活物質と電子との受け渡しがスムーズになる。   Providing a non-aqueous electrolyte secondary battery that suppresses gas generation during initial charge, has high charge / discharge efficiency in the first charge / discharge, and has good cycle characteristics by containing a sulfonate ester in the non-aqueous electrolyte. be able to. The organic sulfur compound reacts by the initial charge, and a film generally called a SEI (Solid Electrolyte Interface) film is formed on the negative electrode surface. By forming the film, the transfer between the negative electrode active material and the electrons becomes smooth.

本発明によれば、高容量を示す半面、充電による体積膨張の大きい単体ケイ素にケイ素酸化物を混合し、さらにその周辺にアモルファス系炭素を被覆することにより、電極活物質自体の膨脹収縮を緩和するため、充放電サイクル寿命が改善される。一方、単体ケイ素とケイ素酸化物の混合物に黒鉛系炭素を被覆し、導電性を向上させて、初回充放電容量の向上につながるだけでなく、活物質であるケイ素の電解液に対する耐食性や耐酸化性を保つことが出来る。さらに電解質成分としてスルホン酸エステルを含むことにより、初回充放電容量且つサイクル寿命を向上させることができる。特に環状ジエステルスルホン酸を用いた場合、高温でのサイクル寿命が改善できる。またバインダとして機能する熱硬化性樹脂は、加熱により脱水縮合反応を生じるため、活物質粒子間、及び活物質粒子−集電体間を強固に結着させる作用を示すため、接触抵抗の低減ひいては集電性の向上により初回充放電容量を向上させることが出来る。   According to the present invention, the expansion and contraction of the electrode active material itself is alleviated by mixing silicon oxide with simple silicon that exhibits high capacity and large volume expansion due to charging, and further coating the surrounding area with amorphous carbon. Therefore, the charge / discharge cycle life is improved. On the other hand, a mixture of simple silicon and silicon oxide is coated with graphite-based carbon to improve conductivity and lead to an improvement in initial charge / discharge capacity, as well as corrosion resistance and oxidation resistance to silicon electrolyte as an active material. You can keep the sex. Furthermore, by including a sulfonic acid ester as an electrolyte component, the initial charge / discharge capacity and the cycle life can be improved. In particular, when a cyclic diester sulfonic acid is used, cycle life at a high temperature can be improved. In addition, since the thermosetting resin that functions as a binder causes a dehydration condensation reaction by heating, it exhibits an action of firmly binding between the active material particles and between the active material particles and the current collector. The initial charge / discharge capacity can be improved by improving the current collecting property.

本発明の実施の形態について図面を参照して説明する。図1に本発明の非水電解質二次電池の負極の活物質粒子の模式断面図を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic cross-sectional view of the active material particles of the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.

図1に示すように、負極の活物質粒子5は、単体ケイ素1、ケイ素酸化物2を核とし、その周辺にアモルファス系炭素3、黒鉛系炭素4の混合物である炭素で被覆した粒径D95が50μm以下、望ましくは20μm以下の粒子である。なおD95はある粒径以下の体積割合の合計が95%となるときの粒径を示す。 As shown in FIG. 1, the active material particle 5 of the negative electrode has a particle size D in which the elemental silicon 1 and the silicon oxide 2 are used as nuclei and the periphery thereof is coated with carbon which is a mixture of amorphous carbon 3 and graphite carbon 4. 95 is a particle of 50 μm or less, desirably 20 μm or less. D 95 indicates the particle size when the sum of the volume ratios below a certain particle size is 95%.

単体ケイ素1は、充放電の際Liを吸蔵あるいは放出する。ケイ素酸化物2は活物質自体の膨脹収縮を緩和する役目がある。外側にある炭素被覆層は、アモルファス系炭素3と黒鉛系炭素4の混合物である。上記負極活物質中に被覆される炭素が重量比で5%以上、望ましくは10%以上50%未満であることが好ましい。   The simple silicon 1 occludes or releases Li during charge / discharge. The silicon oxide 2 has a role of relaxing expansion and contraction of the active material itself. The carbon coating layer on the outside is a mixture of amorphous carbon 3 and graphite carbon 4. It is preferable that the carbon covered in the negative electrode active material is 5% or more by weight, desirably 10% or more and less than 50%.

負極活物質粒子の作製方法としては、最初に核となるケイ素とケイ素酸化物を混合し、高温減圧下にて焼結させる。次に高温非酸素雰囲気下で有機化合物の気体雰囲気中にケイ素とケイ素酸化物の混合焼結物を導入する、もしくは高温非酸素雰囲気下でケイ素とケイ素酸化物の混合焼結物と炭素の前駆体樹脂を混合させることで、ケイ素とケイ素酸化物の核の周辺に炭素被覆層が形成される。ここで炭素被覆層中の黒鉛系炭素の割合は被覆層形成時の温度によるため、望ましくは600℃以上1200℃未満であれば被覆層内にアモルファス系炭素と黒鉛系炭素の両方を担持させることが出来る。   As a method for producing the negative electrode active material particles, first, silicon and silicon oxide as nuclei are mixed and sintered under high temperature and reduced pressure. Next, a mixed sintered product of silicon and silicon oxide is introduced into a gaseous atmosphere of an organic compound in a high temperature non-oxygen atmosphere, or a mixed sintered product of silicon and silicon oxide and a precursor of carbon in a high temperature non-oxygen atmosphere. By mixing the body resin, a carbon coating layer is formed around the core of silicon and silicon oxide. Here, since the ratio of the graphite-based carbon in the carbon coating layer depends on the temperature at which the coating layer is formed, it is desirable that both amorphous carbon and graphite-based carbon be supported in the coating layer if it is 600 ° C. or higher and lower than 1200 ° C. I can do it.

図2に本発明の非水電解質二次電池の断面図を示す。図2に示すように、負極8は、活物質層6と集電体7からなる。また正極11は、活物質層9と集電体10からなる。負極の集電体7は通常は銅箔が、正極の集電体10は通常はアルミ箔が、それぞれ用いられる。負極8と正極11の間にセパレータ12を配置している。セパレータ12としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムを用いることができる。外装フィルム13はラミネートフィルムを使用することができ、フィルム同士を融着させる融着層と絶縁層からなる。また負極8と正極11から、それぞれ電気取り出しのための負極リードタブ14、正極リードタブ15が外装フィルムの融着部分により固定されている。   FIG. 2 shows a cross-sectional view of the nonaqueous electrolyte secondary battery of the present invention. As shown in FIG. 2, the negative electrode 8 includes an active material layer 6 and a current collector 7. The positive electrode 11 includes an active material layer 9 and a current collector 10. The negative electrode current collector 7 is usually made of copper foil, and the positive electrode current collector 10 is usually made of aluminum foil. A separator 12 is disposed between the negative electrode 8 and the positive electrode 11. As the separator 12, a polyolefin film such as polypropylene or polyethylene, or a porous film such as a fluororesin can be used. A laminate film can be used as the exterior film 13 and includes a fusion layer and an insulating layer for fusing the films together. Further, a negative electrode lead tab 14 and a positive electrode lead tab 15 for taking out electricity are fixed from the negative electrode 8 and the positive electrode 11, respectively, by a fusion part of the exterior film.

負極活物質層6は上記の方法で生成した負極活物質粒子と、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂に代表される熱硬化性を有する結着剤とをN−メチル−2−ピロリドン(NMP)等の溶剤に分散させ混練し、集電体7の上に塗布し、高温雰囲気で乾燥することにより形成される。負極の活物質層6中には、必要に応じて導電性を付与するため、カーボンブラックやアセチレンブラック等を混合してもよい。集電体7の厚みは、強度を保てるような厚みとすることが好ましいことから、4〜100μmであることが好ましく、エネルギー密度を高めるためには、5〜30μmであることがさらに好ましい。   The negative electrode active material layer 6 includes negative electrode active material particles generated by the above method and a thermosetting binder represented by polyimide, polyamide, polyamideimide, polyacrylic acid resin, and polymethacrylic acid resin. It is formed by dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP), coating on the current collector 7, and drying in a high temperature atmosphere. In the active material layer 6 of the negative electrode, carbon black, acetylene black, or the like may be mixed in order to impart conductivity as necessary. The thickness of the current collector 7 is preferably 4 to 100 μm because it is preferable to maintain the strength, and more preferably 5 to 30 μm in order to increase the energy density.

電解質に含まれる非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルなどの非プロトン性有機溶媒を一種又は二種以上を混合して使用できるが、これらに限定されるものではない。   Nonaqueous solvents contained in the electrolyte include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, and γ-lactones such as γ-butyrolactone, , 2-Ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3 dioxolane, formamide, acetamide , Dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl- Mix one or more aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester Although it can be used, it is not limited to these.

電解質に含まれるスルホン酸エステルとしては、環状モノスルホン酸エステル、環状ジスルホン酸エステル、鎖状スルホン酸エステルなどが適宜使用できる。環状モノスルホン酸エステルとしては1,3−プロパンスルトン(1,3−PS)、α−トリフルオロメチル−γ−スルトン、β−トリフルオロメチル−γ−スルトン、γ−トリフルオロメチル−γ−スルトン、α−メチル−γ−スルトン、α,β−ジ(トリフルオロメチル)−γ−スルトン、α,α−ジ(トリフルオロメチル)−γ−スルトン、α−ウンデカフルオロペンチル−γ−スルトン、α−ヘプタフルオロプロピル−γ−スルトン、1,4−ブタンスルトン(1,4−BS)などがあげられる。環状ジスルホン酸エステルとしてはメチレンメタンジスルホネート(MMDS)、エチレンメタンジスルホネート(EMDS)、プロピレンメタンジスルホネート(PMDS)等があげられる。鎖状スルホン酸エステルとしては、メタンスルホン酸メチルエステル、メタンスルホン酸エチルエステル、ブスルファン、ジメチル−メタンジスルホネートなどが挙げられる。   As the sulfonic acid ester contained in the electrolyte, a cyclic monosulfonic acid ester, a cyclic disulfonic acid ester, a chain sulfonic acid ester, and the like can be appropriately used. Examples of cyclic monosulfonic acid esters include 1,3-propane sultone (1,3-PS), α-trifluoromethyl-γ-sultone, β-trifluoromethyl-γ-sultone, and γ-trifluoromethyl-γ-sultone. , Α-methyl-γ-sultone, α, β-di (trifluoromethyl) -γ-sultone, α, α-di (trifluoromethyl) -γ-sultone, α-undecafluoropentyl-γ-sultone, Examples include α-heptafluoropropyl-γ-sultone and 1,4-butane sultone (1,4-BS). Examples of the cyclic disulfonate include methylene methane disulfonate (MMDS), ethylene methane disulfonate (EMDS), and propylene methane disulfonate (PMDS). Examples of chain sulfonic acid esters include methanesulfonic acid methyl ester, methanesulfonic acid ethyl ester, busulfan, and dimethyl-methane disulfonate.

これらスルホン酸エステルの中でも1,3−PSやMMDSを使用することが特に好ましい。1,3−PSやMMDSはリチウムイオン二次電池の電極上での分解皮膜を形成すると考えられている。例えば1,3−PSの最低空軌道エネルギー(LUMO)は0.07eVであり、1,3−PSが溶媒分子であるEC(LUMO:1.18eV)やDEC(LUMO:1.26eV)よりも先に分解し皮膜を形成することが考えられる。その結果溶媒分子の分解が抑制され、ガス発生による電池の膨れの抑制やレート特性改善が期待できる。また、例えば正極にマンガン酸リチウムを含む場合にはMMDSの添加によって高温で溶出したMnが負極表面に吸着することを防止し、結果として抵抗上昇抑制によるサイクル特性向上に有効であると考えられる。   Among these sulfonic acid esters, it is particularly preferable to use 1,3-PS or MMDS. 1,3-PS and MMDS are considered to form a decomposition film on the electrode of the lithium ion secondary battery. For example, the lowest unoccupied orbital energy (LUMO) of 1,3-PS is 0.07 eV, which is higher than EC (LUMO: 1.18 eV) or DEC (LUMO: 1.26 eV) where 1,3-PS is a solvent molecule. It is conceivable that the film is first decomposed to form a film. As a result, decomposition of solvent molecules is suppressed, and suppression of battery swelling due to gas generation and improvement of rate characteristics can be expected. Further, for example, when lithium manganate is included in the positive electrode, it is considered that Mn eluted at a high temperature by addition of MMDS is prevented from adsorbing on the negative electrode surface, and as a result, it is effective for improving cycle characteristics by suppressing resistance increase.

これらの電解質中に含まれるスルホン酸エステルの濃度は、特に限定されるものではないが、正極活物質層としてマンガン酸リチウムを含む正極を使用した二次電池の場合には、0.1質量%以上5.0質量%以下が好ましく、更に好ましくは0.5質量%以上3.0質量%以下が特に好ましい。0.1質量%未満では電極表面に十分な皮膜が形成されず、サイクル特性改善効果が小さい。5.0質量%を越えると、抵抗が高くなってサイクル特性が悪くなる。   The concentration of the sulfonate ester contained in these electrolytes is not particularly limited, but in the case of a secondary battery using a positive electrode containing lithium manganate as the positive electrode active material layer, 0.1% by mass The content is preferably 5.0% by mass or less, more preferably 0.5% by mass or more and 3.0% by mass or less. If it is less than 0.1% by mass, a sufficient film is not formed on the electrode surface, and the effect of improving the cycle characteristics is small. If it exceeds 5.0% by mass, the resistance increases and the cycle characteristics deteriorate.

電解質に含まれる支持塩としては、特に限定されないがLiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO2)2など一般的に非水電解質二次電池に用いられる電解質が使用できる。 The supporting salt contained in the electrolyte is not particularly limited, but electrolytes generally used for nonaqueous electrolyte secondary batteries such as LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 are used. Can be used.

また、正極活物質として、例えば、LiCoO2、LiNi1-xCox2、LiNixMn2−x4 (0<x<1) 、LiFePO4、LiMn24複合酸化物正極材料が使用できるが、これらに限定されるものではない。 Examples of the positive electrode active material include LiCoO 2 , LiNi 1-x Co x O 2 , LiNi x Mn 2 -x O 4 (0 <x <1), LiFePO 4 , LiMn 2 O 4 composite oxide positive electrode material. Although it can be used, it is not limited to these.

セパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムがなどが使用できるが、これに限定されるものではない。   Examples of the separator include polyolefin such as polypropylene and polyethylene, and porous films such as fluororesin, but are not limited thereto.

本発明の実施例について以下に説明する。   Examples of the present invention will be described below.

(実施例1)
単体ケイ素とケイ素酸化物をモル比1:1にて混合し、1400℃、13.3Paにて溶融、急冷させてケイ素‐ケイ素酸化物混合粉末を形成した。混合物の粒径D95は20μm以下であった。エタノール溶液中ボールミルにて最大粒径50μm以下に粉砕した。上記粉末とフェノール樹脂を混合し、窒素雰囲気下、900℃にて焼成した後、最大粒径D95が30μm以下となるよう粉砕処理を行った。これにより活物質中の炭素比率が20%となる複合活物質粒子を作製した。
Example 1
Single silicon and silicon oxide were mixed at a molar ratio of 1: 1, melted at 1400 ° C. and 13.3 Pa, and rapidly cooled to form a silicon-silicon oxide mixed powder. The particle size D 95 of the mixture was 20 μm or less. The maximum particle size was pulverized to 50 μm or less with a ball mill in an ethanol solution. The powder and the phenol resin were mixed and baked at 900 ° C. in a nitrogen atmosphere, and then pulverized so that the maximum particle size D 95 was 30 μm or less. Thus, composite active material particles having a carbon ratio in the active material of 20% were produced.

このようにして生成した複合活物質粒子を用いて、以下のようにして活物質層を作製した。負極活物質層は上記活物質粒子、ポリイミド、及びNMPを混合した電極材を10μmの銅箔の上に塗布し、125℃、5分間乾燥した後、ロールプレスにて圧縮成型を行い、再度乾燥炉にて300℃、10分間乾燥処理を行った。この活物質層/銅箔シートを30×28mmに打ち抜き、電荷取り出しのためのニッケルタブを超音波により融着し正極活物質については、マンガン酸リチウムからなる活物質粒子、バインダとしてポリフッ化ビニリデン、溶剤としてNMPを混合した電極材を20μmのアルミ箔の上に塗布し、125℃、5分間乾燥処理を行い、活物質層/アルミ箔シートを30×28mmに打ち抜き、電荷取り出しのためのアルミタブを超音波により融着した。負極活物質層/銅箔シート、セパレータ、正極活物質層/アルミ箔シートの順に、活物質層がセパレータと対面するように積層した後、ラミネートフィルムではさみ、電解液を注液し、真空下にて封止することによりラミネート型電池を作製した。なお電解液は、エチレンカーボネート(EC)30質量%とジエチルカーボネート(DEC)58質量%に、リチウム塩としてLiPF612質量%からなる電解液に対して、1,3−PSを1質量%を加えたものを使用した。 Using the composite active material particles thus produced, an active material layer was produced as follows. For the negative electrode active material layer, the electrode material mixed with the above active material particles, polyimide, and NMP was applied onto a 10 μm copper foil, dried at 125 ° C. for 5 minutes, then subjected to compression molding with a roll press and dried again. Drying was performed in an oven at 300 ° C. for 10 minutes. This active material layer / copper foil sheet is punched out to 30 × 28 mm, a nickel tab for taking out electric charges is fused by ultrasonic waves, and for the positive electrode active material, active material particles made of lithium manganate, polyvinylidene fluoride as a binder, An electrode material mixed with NMP as a solvent is applied onto an aluminum foil of 20 μm, dried at 125 ° C. for 5 minutes, the active material layer / aluminum foil sheet is punched out to 30 × 28 mm, and an aluminum tab for taking out electric charges is used. Fusion was performed by ultrasonic waves. After laminating the negative electrode active material layer / copper foil sheet, the separator, and the positive electrode active material layer / aluminum foil sheet in this order so that the active material layer faces the separator, the laminate film is sandwiched, and the electrolyte solution is injected under vacuum. The laminate type battery was produced by sealing with. The electrolytic solution is 30% by mass of ethylene carbonate (EC) and 58% by mass of diethyl carbonate (DEC), and 1% by mass of 1,3-PS with respect to the electrolytic solution consisting of 12% by mass of LiPF 6 as a lithium salt. What was added was used.

(実施例2)
1,3−PSの濃度が0.5質量%になるように電解液を調整する以外、実施例1と同様に電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that the electrolyte was adjusted so that the concentration of 1,3-PS was 0.5% by mass.

(実施例3)
1,3−PSの濃度が0.1質量%になるように電解質を調整する以外、実施例1と同様に電池を作製した。
(Example 3)
A battery was produced in the same manner as in Example 1 except that the electrolyte was adjusted so that the concentration of 1,3-PS was 0.1% by mass.

(実施例4)
1,3−PSの濃度が3.0質量%になるように電解質を調整する以外、実施例1と同様に電池を作製した。
Example 4
A battery was produced in the same manner as in Example 1 except that the electrolyte was adjusted so that the concentration of 1,3-PS was 3.0% by mass.

(実施例5)
1,3−PSの濃度が5.0質量%になるように電解質を調整する以外、実施例1と同様に電池を作製した。
(Example 5)
A battery was fabricated in the same manner as in Example 1 except that the electrolyte was adjusted so that the concentration of 1,3-PS was 5.0% by mass.

(比較例1)
1,3−PS含有量が0質量%である以外は実施例1と同様にして非水電解質電池を作製した。
(Comparative Example 1)
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the 1,3-PS content was 0% by mass.

実施例1〜5、比較例1により得られた非水電解質二次電池を、電池電圧4.2Vまで充電し(充電条件:電流:0.2C、時間:6.5時間、温度20℃)、0.2Cで電池電圧2.5Vまで放電しそのときの充電に対する放電容量を充放電効率とした。得られた非水電解質二次電池の容量維持率は、1サイクル目の放電容量(1.0C)に対する300サイクル目の放電容量(1.0C)の割合で示した。なお、サイクルの条件は、充電:上限電圧4.2 V、電流1.0C、時間2.5時間、放電:下限電圧2.5V、電流1.0Cとし、いずれも20℃、60℃で実施した。表1に充放電効率と容量維持率を示した。   The nonaqueous electrolyte secondary batteries obtained in Examples 1 to 5 and Comparative Example 1 were charged to a battery voltage of 4.2 V (charging conditions: current: 0.2 C, time: 6.5 hours, temperature 20 ° C.). The battery was discharged at 0.2 C to a battery voltage of 2.5 V, and the discharge capacity for charging at that time was defined as the charge / discharge efficiency. The capacity retention rate of the obtained nonaqueous electrolyte secondary battery was shown as the ratio of the discharge capacity (1.0 C) at the 300th cycle to the discharge capacity (1.0 C) at the first cycle. The cycle conditions were as follows: charge: upper limit voltage 4.2 V, current 1.0 C, time 2.5 hours, discharge: lower limit voltage 2.5 V, current 1.0 C, both at 20 ° C. and 60 ° C. did. Table 1 shows the charge / discharge efficiency and capacity retention rate.

Figure 0005192703
Figure 0005192703

本発明の非水電解質二次電池において、表1の実施例1〜5に示すように、スルホン酸エステルの濃度が0.1以上5.0質量%以下の場合、サイクル特性等においてスルホン酸エステルを添加しなかった比較例1よりも明らかに特性が良好であることがわかった。   In the nonaqueous electrolyte secondary battery of the present invention, as shown in Examples 1 to 5 of Table 1, when the concentration of the sulfonic acid ester is 0.1 or more and 5.0% by mass or less, the sulfonic acid ester in the cycle characteristics and the like It was found that the characteristics were clearly better than Comparative Example 1 in which no was added.

(実施例6)
1,3−PSの代わりにMMDSを用いる以外、実施例1と同様に電池を作製し、評価を行った。
(Example 6)
A battery was prepared and evaluated in the same manner as in Example 1 except that MMDS was used instead of 1,3-PS.

(実施例7)
1,3−PSの代わりにMMDSを用いる以外、実施例2と同様に電池を作製し、評価を行った。
(Example 7)
A battery was prepared and evaluated in the same manner as in Example 2 except that MMDS was used instead of 1,3-PS.

(実施例8)
1,3−PSの代わりにMMDSを用いる以外、実施例3と同様に電池を作製し、評価を行った。
(Example 8)
A battery was prepared and evaluated in the same manner as in Example 3 except that MMDS was used instead of 1,3-PS.

(実施例9)
1,3−PSの代わりにMMDSを用いる以外、実施例4と同様に電池を作製し、評価を行った。
Example 9
A battery was prepared and evaluated in the same manner as in Example 4 except that MMDS was used instead of 1,3-PS.

(実施例10)
1,3−PSの代わりにMMDSを用いる以外、実施例5と同様に電池を作製し、評価を行った。
(Example 10)
A battery was prepared and evaluated in the same manner as in Example 5 except that MMDS was used instead of 1,3-PS.

(比較例2)
1,3−PSの代わりにMMDSを用いる以外、比較例1と同様に電池を作製し、評価を行った。
(Comparative Example 2)
A battery was prepared and evaluated in the same manner as in Comparative Example 1 except that MMDS was used instead of 1,3-PS.

実施例6〜10および比較例2についての初回充放電効率、容量維持率について表2に示した。   Table 2 shows the initial charge / discharge efficiency and capacity retention rate for Examples 6 to 10 and Comparative Example 2.

Figure 0005192703
Figure 0005192703

本発明の非水電解質二次電池において、表2の実施例6〜10に示すように、スルホン酸エステルの濃度が0.1以上5.0質量%以下の場合、サイクル特性等においてスルホン酸エステルを添加しなかった比較例2よりも明らかに特性が良好であることがわかった。また、60度の高温サイクルにおいてもスルホン酸エステルの濃度が0.1以上5.0質量%以下の場合、サイクル特性が良好である。   In the nonaqueous electrolyte secondary battery of the present invention, as shown in Examples 6 to 10 in Table 2, when the concentration of the sulfonic acid ester is 0.1 or more and 5.0% by mass or less, the sulfonic acid ester in cycle characteristics and the like It was found that the characteristics were clearly better than those of Comparative Example 2 in which no was added. Even in a high-temperature cycle of 60 degrees, the cycle characteristics are good when the concentration of the sulfonic acid ester is 0.1 to 5.0% by mass.

本発明の非水電解質二次電池の負極の活物質粒子の模式断面図。The schematic cross section of the active material particle of the negative electrode of the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解質二次電池の断面図。Sectional drawing of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 単体ケイ素
2 ケイ素酸化物
3 アモルファス系炭素
4 黒鉛系炭素
5 (負極の)活物質粒子
6 (負極の)活物質層
7 (負極の)集電体
8 負極
9 (正極の)活物質層
10 (正極の)集電体
11 正極
12 セパレータ
13 外装フィルム
14 負極リードタブ
15 正極リードタブ
1 elemental silicon 2 silicon oxide 3 amorphous carbon 4 graphite carbon 5 (negative electrode) active material particles
6 Active material layer 7 (for negative electrode) Current collector 8 (for negative electrode) Negative electrode 9 Active material layer 10 (for positive electrode) Current collector 11 (for positive electrode) Positive electrode 12 Separator
13 Exterior film
14 Negative lead tab
15 Positive lead tab

Claims (3)

負極と正極とリチウムイオン導電性の非水電解質とを有する非水電解質二次電池において、
前記負極は、単体ケイ素とケイ素酸化物の混合焼結物の周辺をアモルファス系炭素及び黒鉛系炭素の混合組成からなる炭素で被覆した活物質粒子と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、
前記熱硬化性樹脂により前記活物質粒子間、及び前記活物質粒子と集電体とが結着され、
前記非水電解質が非水溶媒と、メチレンメタンジスルホネート、エチレンメタンジスルホネート及びプロピレンメタンジスルホネートから選ばれる少なくとも一種と、を含むことを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery having a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte,
The negative electrode is a thermosetting resin that generates a dehydration-condensation reaction by heating with active material particles in which the periphery of a mixed sintered product of simple silicon and silicon oxide is coated with carbon having a mixed composition of amorphous carbon and graphite carbon A mixture of
Between the active material particles and the active material particles and the current collector are bound by the thermosetting resin,
The non-aqueous electrolyte includes a non-aqueous solvent and at least one selected from methylene methane disulfonate, ethylene methane disulfonate, and propylene methane disulfonate .
前記非水溶媒が少なくとも鎖状カーボネート又は環状カーボネートを含有することを特徴とする請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous solvent contains at least a chain carbonate or a cyclic carbonate. 負極と正極とリチウムイオン導電性の非水電解質とを有する非水電解質二次電池において、
前記負極は、単体ケイ素とケイ素酸化物の混合物の周辺をアモルファス系炭素及び黒鉛系炭素の混合組成からなる炭素で被覆した活物質粒子と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、
前記熱硬化性樹脂により前記活物質粒子間、及び前記活物質粒子と集電体とが結着され、
前記非水電解質が非水溶媒と、さらに、メチレンメタンジスルホネート、エチレンメタンジスルホネート及びプロピレンメタンジスルホネートから選ばれる少なくとも一種とを含むことを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery having a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte,
The negative electrode comprises a mixture of active material particles in which the periphery of a mixture of simple silicon and silicon oxide is coated with carbon having a mixed composition of amorphous carbon and graphite carbon, and a thermosetting resin that causes a dehydration condensation reaction by heating. Including
Between the active material particles and the active material particles and the current collector are bound by the thermosetting resin,
A nonaqueous electrolyte secondary battery, wherein the nonaqueous electrolyte includes a nonaqueous solvent and at least one selected from methylenemethane disulfonate, ethylenemethane disulfonate, and propylene methane disulfonate.
JP2007026617A 2007-02-06 2007-02-06 Nonaqueous electrolyte secondary battery Active JP5192703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026617A JP5192703B2 (en) 2007-02-06 2007-02-06 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026617A JP5192703B2 (en) 2007-02-06 2007-02-06 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012269354A Division JP5502977B2 (en) 2012-12-10 2012-12-10 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008192488A JP2008192488A (en) 2008-08-21
JP5192703B2 true JP5192703B2 (en) 2013-05-08

Family

ID=39752384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026617A Active JP5192703B2 (en) 2007-02-06 2007-02-06 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5192703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10637061B2 (en) 2015-05-29 2020-04-28 Nec Corporation Lithium ion secondary battery

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158410B2 (en) * 2007-10-12 2013-03-06 トヨタ自動車株式会社 Secondary battery electrode material powder and method for producing the same
KR20110023263A (en) * 2009-08-31 2011-03-08 서울대학교산학협력단 Method of fabricating a metal oxide-carbon nanocomposite
JP5704633B2 (en) 2009-09-29 2015-04-22 Necエナジーデバイス株式会社 Secondary battery
EP2538485B1 (en) * 2010-02-18 2016-08-31 NEC Energy Devices, Ltd. Polymer secondary battery and method for manufacturing the same
CN102812589B (en) * 2010-03-26 2016-01-13 Nec能源元器件株式会社 Nonaqueous electrolytic solution secondary battery
JP5411781B2 (en) * 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
JP5411780B2 (en) * 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
CN102064344A (en) * 2010-12-21 2011-05-18 东莞市杉杉电池材料有限公司 Novel electrolyte for power battery
JP6194794B2 (en) * 2011-06-23 2017-09-13 日本電気株式会社 Lithium secondary battery
JP5769279B2 (en) * 2011-07-14 2015-08-26 Necエナジーデバイス株式会社 Lithium ion battery
JP6030070B2 (en) * 2011-12-22 2016-11-24 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR101552763B1 (en) * 2012-05-31 2015-09-11 주식회사 엘지화학 Anode comprising silicon based material and carbon material, and lithium secondary battery comprising the same
KR101397417B1 (en) * 2012-08-09 2014-05-20 한양대학교 산학협력단 Manufacturing method of metal nano particle-carbon complex, metal nano particle-carbon complex made by the same, and electrochemical device including the same
JPWO2015037323A1 (en) * 2013-09-13 2017-03-02 日本電気株式会社 Electrolyte and secondary battery
JP6573250B2 (en) * 2013-12-24 2019-09-11 株式会社エンビジョンAescジャパン Method for producing non-aqueous electrolyte secondary battery
JP5888798B2 (en) * 2014-08-01 2016-03-22 Necエナジーデバイス株式会社 Secondary battery and manufacturing method thereof
JP6484995B2 (en) * 2014-10-24 2019-03-20 Tdk株式会社 Lithium ion secondary battery
JP6455284B2 (en) * 2015-03-31 2019-01-23 株式会社豊田自動織機 Method for producing carbon-coated silicon-based negative electrode active material particles
CN110140237B (en) * 2017-01-19 2022-09-27 通用汽车环球科技运作有限责任公司 Hybrid active materials for batteries and capacitors
CN112421002B (en) * 2020-11-10 2022-03-29 成都爱敏特新能源技术有限公司 High-capacity silicon-carbon material and preparation method thereof
CN115020684B (en) * 2022-07-26 2023-10-20 蜂巢能源科技股份有限公司 Graphite, silicon oxide and silicon composite negative electrode material and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985143B2 (en) * 2002-03-11 2007-10-03 株式会社ジーエス・ユアサコーポレーション Electrode material and lithium battery using the same
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2004119176A (en) * 2002-09-26 2004-04-15 Toshiba Corp Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery
JP2005149957A (en) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
US8227116B2 (en) * 2003-12-15 2012-07-24 Nec Corporation Secondary battery
JP5011629B2 (en) * 2004-02-19 2012-08-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5030369B2 (en) * 2004-03-30 2012-09-19 三洋電機株式会社 Lithium secondary battery
JP4519592B2 (en) * 2004-09-24 2010-08-04 株式会社東芝 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2007305424A (en) * 2006-05-11 2007-11-22 Sony Corp Negative electrode active material, and battery using it
JP2008112722A (en) * 2006-10-02 2008-05-15 Nec Tokin Corp Lithium polymer battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10637061B2 (en) 2015-05-29 2020-04-28 Nec Corporation Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2008192488A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5192703B2 (en) Nonaqueous electrolyte secondary battery
JP5468723B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6070540B2 (en) Secondary battery and electrolyte
JP5288448B2 (en) Nonaqueous electrolyte secondary battery
WO2012132060A1 (en) Secondary battery and electrolyte
JP5800354B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
TWI504037B (en) Lithium secondary battery pack, and the use of this electronic machine, charging system and charging method
JP5263954B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5158578B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2014133165A1 (en) Lithium-ion secondary cell
WO2013038939A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JP2013178913A (en) Nonaqueous electrolyte secondary battery
JP2011086448A (en) Lithium ion secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5502977B2 (en) Nonaqueous electrolyte secondary battery
JP7250401B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
WO2006103829A1 (en) Nonaqueous electrolyte secondary battery
JP5625848B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2014007183A1 (en) Lithium ion secondary battery
WO2018096889A1 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
JP2013118068A (en) Lithium secondary battery
CN117546334A (en) Electrochemical device and electronic device
WO2016125726A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5192703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250