JP5191187B2 - Pd-Ag-Au-Cu alloy for porcelain baking - Google Patents

Pd-Ag-Au-Cu alloy for porcelain baking Download PDF

Info

Publication number
JP5191187B2
JP5191187B2 JP2007210985A JP2007210985A JP5191187B2 JP 5191187 B2 JP5191187 B2 JP 5191187B2 JP 2007210985 A JP2007210985 A JP 2007210985A JP 2007210985 A JP2007210985 A JP 2007210985A JP 5191187 B2 JP5191187 B2 JP 5191187B2
Authority
JP
Japan
Prior art keywords
mass
alloy
porcelain
thermal expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007210985A
Other languages
Japanese (ja)
Other versions
JP2009046699A (en
Inventor
英夫 小倉
真一 後藤
紀行 根來
龍一 吉本
泰弘 鳥田
弘二 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shofu Inc
Original Assignee
Shofu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shofu Inc filed Critical Shofu Inc
Priority to JP2007210985A priority Critical patent/JP5191187B2/en
Publication of JP2009046699A publication Critical patent/JP2009046699A/en
Application granted granted Critical
Publication of JP5191187B2 publication Critical patent/JP5191187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dental Prosthetics (AREA)

Description

本発明は、歯冠修復用陶材の強さ補強を目的に、陶材焼付用鋳造フレームとして使用されている歯科鋳造用陶材焼付貴金属合金に関するものである。特に、本発明は、低融点であり鋳造時に石こう系埋没材を使用することができ、かつ14.9×10−6−1未満の熱膨張係数を有している歯科鋳造用陶材焼付貴金属合金に関する。 The present invention relates to a precious metal-baked noble metal alloy for dental casting used as a casting frame for porcelain baking for the purpose of reinforcing the strength of the porcelain for dental restoration. In particular, the present invention has a low melting point, can use a gypsum-based investing material during casting, and has a thermal expansion coefficient of less than 14.9 × 10 −6 K −1 and is baked into porcelain for dental casting. It relates to precious metal alloys.

歯冠修復用陶材の強さ補強を目的に、陶材焼付用鋳造フレームとして使用されている歯科鋳造用陶材焼付貴金属合金は1970年頃に実用化され始めたものである。   For the purpose of reinforcing the strength of porcelain for restoration of crowns, noble metal alloys for dental casting porcelain used as a casting frame for porcelain baking started to be put into practical use around 1970.

旧来、歯冠の修復に当たっては、貴金属合金からなる鋳造冠が使用されていたものの、陶材の使用方法が開発されるにつれて、生体への適合性、化学的な安定性、高度な耐磨耗性等に加え、特に審美性の面から、自然歯の色調に近い陶材を用いた歯冠の修復が患者から好まれるようになり、陶材を使用した修復処置が多く行われるようになった。   Traditionally, cast crowns made of precious metal alloys were used for restoration of crowns, but as porcelain usage was developed, it was compatible with living organisms, chemically stable and highly resistant to wear. In addition to sexuality, especially from the viewpoint of aesthetics, restoration of crowns using porcelain close to the color of natural teeth has been favored by patients, and many restoration procedures using porcelain have been performed. It was.

しかしながら、歯冠修復用陶材の基本的組成は長石系を主とするものであり、一般的には、SiOが50〜70質量%、Alが5〜20質量%、CaOが0〜3質量%、NaOが1〜20質量%、KOが8〜20質量%からなる組成であるため、上記の優位性を備える反面、引張強さ、曲げ強さ、耐衝撃性の面においては弱点を持ち合わせている。 However, the basic composition of the dental restoration material is mainly feldspar-based, and generally, SiO 2 is 50 to 70 mass%, Al 2 O 3 is 5 to 20 mass%, and CaO is Since it is a composition comprising 0 to 3% by mass, Na 2 O 1 to 20% by mass, and K 2 O 8 to 20% by mass, it has the above-mentioned advantages, but has tensile strength, bending strength, and impact resistance. In terms of sex, it has weaknesses.

これらの弱点を補い、患者の要求を満足させる手段として、予め鋳造にて金属フレームを作製し、その表面に陶材を焼付け、陶材焼付クラウンブリッジにて歯冠を修復する技術が開発され、実用化されている。この場合に使用される金属フレーム製作用の合金として、すでに、各種の組成を持つ金属材料が報告されている。   As a means to make up for these weaknesses and satisfy the patient's requirements, a technology was developed in which a metal frame was previously made by casting, porcelain was baked on its surface, and the crown was restored with a porcelain baked crown bridge. It has been put into practical use. Metal alloys having various compositions have already been reported as the metal frame producing alloy used in this case.

陶材焼付用合金に必要とされる材料特性として、
1.陶材の焼成時に金属フレームの形状が保たれるように、金属材料の固相点が陶材の焼成温度以上であること;
2.修復した歯冠が長期に亘り使用可能なように、陶材との焼付性が良好なこと;
3.陶材を焼成する場合に、金属フレームが変形することがないように、高温強度が高いこと;
4.陶材を焼成する場合に、陶材を着色してしまうような成分が少ないこと;
5.金属フレームが肉薄で使用した場合でも、変形してしまうおそれがないように、金属材料の弾性係数、弾性限度が大きいこと;および
6.修復歯冠を長期に亘って使用した場合の陶材との焼付性を高めるために、金属材料の熱膨張係数が陶材の熱膨張係数よりも0.5〜3.0×10−6-1高いこと等が挙げられる。
As material characteristics required for porcelain baking alloys,
1. The solid phase point of the metal material is equal to or higher than the firing temperature of the porcelain so that the shape of the metal frame is maintained when the porcelain is fired;
2. Good seizure with porcelain so that the restored crown can be used for a long time;
3. High strength at high temperature so that the metal frame will not be deformed when firing porcelain;
4). When baking porcelain, there are few ingredients that will color the porcelain;
5. 5. The elastic modulus and elastic limit of the metal material are large so that there is no risk of deformation even when the metal frame is thin. In order to improve the seizure property with the porcelain when the restoration crown is used for a long time, the thermal expansion coefficient of the metal material is 0.5 to 3.0 × 10 −6 K than the thermal expansion coefficient of the porcelain. -1 It is expensive.

現在、陶材焼付用の貴金属材料として、例えば、Auが39.0質量%、Ptが1.0質量%、Pdが35.0質量%、Agが19.4質量%、Snが5.0質量%の合金や、Auが88.0質量%、Ptが4.5質量%、Pdが6.0質量%、Agが0.5質量%の合金が使用されている。   Currently, as precious metal materials for baking porcelain, for example, Au is 39.0% by mass, Pt is 1.0% by mass, Pd is 35.0% by mass, Ag is 19.4% by mass, and Sn is 5.0%. A mass% alloy, an alloy of 88.0 mass% Au, 4.5 mass% Pt, 6.0 mass% Pd, and 0.5 mass% Ag are used.

しかしながら、これらの合金は、液相点が、それぞれ、1250℃、1170℃と高く、陶材を築盛するための金属フレームを鋳造する場合の埋没材として、安価な石膏系では鋳造体の表面が埋没材と反応し易くなり、鋳造体表面の鋳肌荒れを生じ易くなり、高価なリン酸塩系の埋没材しか使用できない。しかし、リン酸塩系の埋没材は硬いため、鋳造体を掘り出す作業も困難である。   However, these alloys have a high liquidus point of 1250 ° C. and 1170 ° C., respectively. As an investment material when casting a metal frame for building up porcelain, the surface of the cast body is low in an inexpensive gypsum system. It becomes easy to react with the investment material, and it becomes easy to cause the casting surface roughness on the surface of the cast body, and only an expensive phosphate-based investment material can be used. However, since the phosphate-based investment material is hard, it is difficult to dig up the cast body.

また、液相点の高い合金を用いて、鋳造にて金属フレームを成形するには、合金の鋳造温度を液相点より50〜150℃高い温度で行う必要があることから、合金の溶解作業には、酸素・都市ガス混合炎溶解、若しくは、高周波誘導加熱溶解等が欠かせず、その操業に際しては、高温操作に加えて、取扱いガスや高圧電源の管理にも配慮を必要としている。   Moreover, in order to form a metal frame by casting using an alloy having a high liquidus point, it is necessary to perform the casting temperature of the alloy at a temperature 50 to 150 ° C. higher than the liquidus point. Therefore, oxygen / city gas mixed flame melting or high-frequency induction heating melting is indispensable, and in addition to high-temperature operation, it is necessary to consider handling gas and high-voltage power supply.

一方、石膏系埋没材の使用が可能であれば、金属フレームの鋳造作業に要する焼却時間の短縮と掘り出し作業時間の短縮が図れ、かつ仕事環境に悪影響をおよぼす事がない。さらに、鋳造体の表面粗さが極めて小さく、細部の再現性にも優れる金属フレームが容易に得られることになる。
したがって、金属フレームの完成度および鋳造の経済性の観点から、石膏系埋没材の使用を可能とする、低温で鋳造可能な合金が好まれる。
On the other hand, if gypsum-based investing material can be used, the incineration time required for the metal frame casting work and the excavation work time can be shortened, and the work environment is not adversely affected. Furthermore, a metal frame having an extremely small surface roughness of the cast body and excellent reproducibility of details can be easily obtained.
Therefore, from the viewpoint of the completeness of the metal frame and the economics of casting, an alloy that can be cast at a low temperature that enables the use of a gypsum-based investment material is preferred.

また、歯冠修復用陶材自体としても、従来の陶材に比べて、焼成温度が低いタイプの陶材が販売されるようになってきている。それにともない、陶材焼付用の金属フレームを形成するために使用される合金も低融点であることが求められる。
かくして、熱源としてエアー・都市ガス混合炎を使用し得て、しかも、石膏系埋没材を用いた鋳造作業を可能とする低融点合金の開発が急務となっている。
In addition, as a dental restoration ceramic itself, a type of porcelain whose firing temperature is lower than that of conventional ceramics has been sold. Accordingly, alloys used to form metal frames for porcelain baking are also required to have a low melting point.
Thus, there is an urgent need to develop a low-melting-point alloy that can use an air / city gas mixed flame as a heat source and that enables casting using a gypsum-based investment material.

陶材焼成温度が低いタイプの低融陶材の熱膨張係数は13.5〜16.0×10−6−1と12.0〜13.5×10−6−1の2種類に分かれている。14.0〜15.0×10−6−1の低融陶材は14.9×10−6−1以上の熱膨張係数を持つ合金に適合するように設計されており、また、熱膨張係数が12.0〜13.5×10−6−1の低融陶材は、14.9×10−6−1未満の熱膨張係数の合金に使用でき、例えば修正用陶材として使用されている。そこで、その低融陶材に適合する低融点でかつ熱膨張係数が14.9×10−6−1未満の合金は類を見なく、その合金の開発が望まれている。 The coefficient of thermal expansion of the low melting porcelain of the type having a low porcelain firing temperature is 13.5 to 16.0 × 10 −6 K −1 and 12.0 to 13.5 × 10 −6 K −1. I know. 14.0-15.0 × 10 −6 K −1 low melting porcelain is designed to fit alloys with a coefficient of thermal expansion of 14.9 × 10 −6 K −1 or higher, and A low-melting porcelain having a thermal expansion coefficient of 12.0 to 13.5 × 10 −6 K −1 can be used for an alloy having a thermal expansion coefficient of less than 14.9 × 10 −6 K −1. Used as a material. Therefore, an alloy having a low melting point suitable for the low-melting porcelain and having a thermal expansion coefficient of less than 14.9 × 10 −6 K −1 is unparalleled, and development of the alloy is desired.

低温で鋳造可能な合金として、例えば、Auが12.0質量%、Pdが20.0質量%、Agが40〜49質量%、Cuが20%、Inが17〜20質量%、Znが0〜4質量%の合金が挙げられる。この合金は、固相点が912℃と低いため、所望のように、石こう系の埋没材を使用しての金属フレーム鋳造を可能とするものの、熱膨張係数が16.4×10−6−1付近であり膨張が高く、より好ましい組成の合金開発が望まれている。 As an alloy that can be cast at a low temperature, for example, Au is 12.0% by mass, Pd is 20.0% by mass, Ag is 40 to 49% by mass, Cu is 20%, In is 17 to 20% by mass, and Zn is 0%. An alloy of ˜4 mass% is mentioned. Since this alloy has a low solidus point of 912 ° C., the metal frame can be cast using a gypsum-based investment material as desired, but the thermal expansion coefficient is 16.4 × 10 −6 K. Development of an alloy having a more favorable composition is desired, which is near −1 and has a high expansion.

特許第3916098号明細書(特許文献1)には、SnおよびGa、またはSn、GaおよびInを合わせて貴金属合金に添加することによって、歯科鋳造用陶材焼付貴金属合金の耐力、高度を損なうことなく、むしろ向上させながら、合金の融点を低減し、歯科用金属フレームの鋳造体作製に当たり、石こう系埋没材の使用を可能とする技術が開示されている。   In Japanese Patent No. 3916098 (Patent Document 1), by adding Sn and Ga or Sn, Ga and In to a noble metal alloy, the proof strength and altitude of the porcelain baked noble metal alloy for dental casting are impaired. Rather, there is disclosed a technique that, while improving, reduces the melting point of the alloy and makes it possible to use a gypsum-based investing material in producing a cast metal dental frame.

この合金は低融点であるものの、熱膨張係数が15.5〜16.3×10−6−1であり低融で12.0〜13.5×10−6−1の熱膨張係数の陶材を焼付けた場合コンプレッション型のクラックが発生し、使用することができなかった。 Although this alloy has a low melting point, it has a thermal expansion coefficient of 15.5 to 16.3 × 10 −6 K −1 and a low melting coefficient of 12.0 to 13.5 × 10 −6 K −1. When this porcelain was baked, a compression-type crack occurred and could not be used.

特許第3916098号明細書Japanese Patent No. 3916098

本発明は、上記の難点を解消して、低融点を有し、石こう系埋没材を使用しての金属フレーム鋳造を可能とすることにより、鋳造体の細部再現性や表面粗さに優れ、鋳造体を鋳型より取り出す際の作業が容易であると共に、低融で12.0〜13.5×10−6−1の熱膨張係数である陶材を焼付けた際、膨張差によるクラックが生じることのない熱膨張係数を有し、陶材との焼付性に優れる歯科鋳造用陶材焼付貴金属合金を提供することを目的とする。 The present invention eliminates the above-mentioned difficulties, has a low melting point, and enables a metal frame casting using a gypsum-based investing material, and is excellent in detail reproducibility and surface roughness of the cast body, When the cast body is easily taken out from the mold and the porcelain having a low expansion and a thermal expansion coefficient of 12.0 to 13.5 × 10 −6 K −1 is baked, cracks due to a difference in expansion are generated. An object of the present invention is to provide a dental precious metal-baked noble metal alloy for dental casting that has a coefficient of thermal expansion that does not occur and is excellent in seizure with the ceramic material.

上記の課題を解決するために、本発明者等はPd−Ag−Au−Cu系合金にGa+InもしくはSn+Inの複合添加を行うことにより合金の融点を下げ、かつ熱膨張係数が14.9×10−6−1未満になることができた。これにより、歯科鋳造用陶材焼付貴金属合金として、石こう系埋没材が使用でき、かつ12.0〜13.5×10−6−1の熱膨張係数である低溶陶材に適合する熱膨張を持った合金を提供することに成功した。 In order to solve the above-mentioned problems, the present inventors lowered the melting point of the alloy by adding Ga + In or Sn + In to the Pd—Ag—Au—Cu alloy, and the thermal expansion coefficient was 14.9 × 10. It could be less than −6 K −1 . This makes it possible to use a gypsum-based investment material as a precious metal-baked precious metal alloy for dental casting, and a heat suitable for low melting porcelain having a thermal expansion coefficient of 12.0 to 13.5 × 10 −6 K −1. We succeeded in providing an alloy with expansion.

すなわち、本発明は、Pd29.5〜49.5質量%と、Ag0.5〜30質量%と、Au0.5〜50質量%と、Cu5.0〜20.0質量%と、Ir0.01〜0.1質量%と、Gaと、Inと、不可避的不純物よりなり、Au+Cuが5.5〜68.0質量%であり、Ga+Inが2.0〜15.0質量%であることを特徴とする歯科鋳造用陶材焼付貴金属合金を提供する。   That is, the present invention includes Pd 29.5 to 49.5% by mass, Ag 0.5 to 30% by mass, Au 0.5 to 50% by mass, Cu 5.0 to 20.0% by mass, and Ir 0.01 to It consists of 0.1 mass%, Ga, In, and inevitable impurities, Au + Cu is 5.5-68.0 mass%, and Ga + In is 2.0-15.0 mass%, To provide precious metal baked porcelain for dental casting.

また、本発明は、Pd29.5〜49.5質量%と、Ag0.5〜30質量%と、Au0.5〜50質量%と、Cu5.0〜20.0質量%と、Ir0.01〜0.1質量%と、Snと、Inと、不可避的不純物よりなり、Au+Cuが5.5〜68.0質量%であって、Sn+Inが2.0〜15.0質量%であることを特徴とする歯科鋳造用陶材焼付貴金属合金も提供する。   The present invention also includes Pd 29.5 to 49.5 mass%, Ag 0.5 to 30 mass%, Au 0.5 to 50 mass%, Cu 5.0 to 20.0 mass%, and Ir0.01 to It consists of 0.1% by mass, Sn, In, and inevitable impurities, Au + Cu is 5.5-68.0% by mass, and Sn + In is 2.0-15.0% by mass. We also provide porcelain-baked precious metal alloys for dental casting.

本発明の合金は、上記の組成を有するため石こう系埋没材が使用することが可能であり低温鋳込みによる金属フレーム表面の潤滑性も持ち合わせ、かつ12.0〜13.5×10−6−1の熱膨張係数である低溶陶材を焼付けた際、膨張差によるクラックが生じることのない熱膨張係数を有し、陶材との焼付性に優れる歯科鋳造用陶材焼付貴金属合金を提供し得る。 Since the alloy of the present invention has the above-mentioned composition, a gypsum-based investment material can be used, and also has a lubricity of the metal frame surface by low temperature casting, and 12.0 to 13.5 × 10 −6 K −. Providing a precious metal baked porcelain for dental casting that has a thermal expansion coefficient that does not cause cracks due to differential expansion when baking low melting porcelain with a thermal expansion coefficient of 1. Can do.

この合金を利用することにより、生体への適合性、化学的な安定性、高度な耐磨耗性等に加え、特に審美性の面にも優れ、かつ、陶材を用いて自然歯の色調に近い歯冠修復が、迅速、かつ、精密に、しかも容易に処理し得る。   By using this alloy, in addition to the compatibility with the living body, chemical stability, high wear resistance, etc., it is particularly excellent in terms of aesthetics, and the color tone of natural teeth using porcelain. A near-crown restoration can be processed quickly, precisely and easily.

本発明合金は、歯科鋳造用陶材焼付貴金属合金として、低融点で石こう系埋没材の使用が可能で、12.0〜13.5×10−6−1の熱膨張係数である低溶陶材に適合する熱膨張係数を持ち合わせた、優れた機能を合わせ備えた合金を提供し得る。 The alloy of the present invention can be used as a dental precious metal baked precious metal alloy with a low melting point and a gypsum-based investment, and has a low expansion coefficient of 12.0 to 13.5 × 10 −6 K −1. It is possible to provide an alloy having an excellent function with a thermal expansion coefficient suitable for porcelain.

本発明の実施様態は、Pd−Ag−Au−Cu−Ir系合金にGa+InまたはSn+Inを複合添加した合金である。   An embodiment of the present invention is an alloy obtained by adding Ga + In or Sn + In to a Pd—Ag—Au—Cu—Ir alloy.

この場合、Pdは合金の熱膨張係数を低くし、強度を増大するために用いるのであり、Agはコスト低減のために用いるのであり、Auは生体への適合性に富み、耐蝕性に優れる合金を得るために用いるのであり、Cuは合金の強度を高めるために用いるのであり、Irは結晶粒を微細化して、合金の強度と伸びを同時に大きくするために用いるのであり、Ga+InまたはSn+Inは熱膨張係数を大きく変化させず、合金の融点を低下させ、かつ陶材と合金の焼付性を高めるために用いる。   In this case, Pd is used to lower the thermal expansion coefficient of the alloy and increase its strength, Ag is used to reduce costs, and Au is highly compatible with living organisms and has excellent corrosion resistance. Cu is used to increase the strength of the alloy, Ir is used to refine crystal grains and simultaneously increase the strength and elongation of the alloy, and Ga + In or Sn + In is heat It is used for reducing the melting point of the alloy without increasing the expansion coefficient and increasing the seizure of the porcelain and the alloy.

しかしながら、Pdは多量に添加すると、溶融温度を上昇させて石こう系埋没材の使用を不可能にするが、少量の添加であれば、当該合金の熱膨張係数が高くなることから、29.5質量%をその下限とし、49.5質量%をその上限とする。
Agは多量に添加すると合金のコストが安くなるが、多量に添加すると熱膨張係数が高くなることから、0.5質量%をその下限とし、30.0質量%をその上限とする。
Auは多量に添加すると価格面で高額になり、また強度の面からも比較的低い強度しか得られないため、50質量%を上限とする。
Cuは多量に添加すると耐蝕性に問題を生じ易いことから20質量%をその上限とし、少量の添加では溶融温度が高くなることから5.0質量%を下限とする。
Irは、多量に添加しても、その効果が直ぐに飽和してくることから、0.1質量%を上限とする。
また、Ga+InおよびSn+Inは少量の添加では融点が低減されず、石こう系埋没材の利用が不可能となるため2.0質量%を下限とし、また、多量に添加すると熱膨張係数が高くなり、合金の強度を低くし脆くすることから、15.0質量%を上限とする。
However, if Pd is added in a large amount, the melting temperature is raised to make it impossible to use a gypsum-based investment material. However, if a small amount is added, the thermal expansion coefficient of the alloy is increased, so that 29.5 Mass% is the lower limit, and 49.5 mass% is the upper limit.
If Ag is added in a large amount, the cost of the alloy is reduced, but if it is added in a large amount, the coefficient of thermal expansion increases, so 0.5 mass% is the lower limit and 30.0 mass% is the upper limit.
If Au is added in a large amount, it becomes expensive in terms of price, and since only a relatively low strength can be obtained in terms of strength, the upper limit is 50% by mass.
If Cu is added in a large amount, it tends to cause a problem in corrosion resistance, so 20 mass% is the upper limit, and if it is added in a small amount, the melting temperature becomes high, so 5.0 mass% is the lower limit.
Even if Ir is added in a large amount, its effect is saturated immediately, so the upper limit is 0.1% by mass.
In addition, Ga + In and Sn + In, when added in a small amount, the melting point is not reduced, making it impossible to use a gypsum-based investment material, so the lower limit is 2.0% by mass. Since the strength of the alloy is lowered and made brittle, the upper limit is made 15.0% by mass.

すなわち、本発明の歯科鋳造用陶材焼付貴金属合金は、Pd29.5〜49.5質量%と、Ag0.5〜30質量%と、Au0.5〜50質量%と、Cu5.0〜20.0質量%と、Ir0.01〜0.1質量%よりなり、かつAu+Cuが5.5〜68.0質量%であり、かつGa+Inが2.0〜15.0質量%と不可避的不純物よりなることを特徴とする。   That is, the precious metal-baked noble metal alloy for dental casting of the present invention has a Pd of 29.5 to 49.5 mass%, an Ag of 0.5 to 30 mass%, an Au of 0.5 to 50 mass%, and Cu of 5.0 to 20 mass%. 0% by mass, Ir 0.01 to 0.1% by mass, Au + Cu is 5.5 to 68.0% by mass, and Ga + In is 2.0 to 15.0% by mass, unavoidable impurities. It is characterized by that.

また、Pd29.5〜49.5質量%と、Ag0.5〜30質量%と、Au0.5〜50質量%と、Cu5.0〜20.0質量%と、Ir0.01〜0.1質量%よりなり、かつAu+Cuが5.5〜68.0質量%であり、かつSn+Inが2.0〜15.0質量%と不可避的不純物よりなることを特徴とする。   Moreover, Pd29.5-59.5 mass%, Ag0.5-30 mass%, Au0.5-50 mass%, Cu5.0-20.0 mass%, Ir0.01-0.1 mass %, Au + Cu is 5.5 to 68.0% by mass, and Sn + In is 2.0 to 15.0% by mass and unavoidable impurities.

この組成により、石こう系埋没材が使用することが可能であり低温鋳込みによる金属フレーム表面の潤滑性も持ち合わせ、かつ12.0〜13.5×10−6−1の熱膨張係数である低溶陶材を焼付けた際、膨張差によるクラックが生じることのない熱膨張係数を有し、陶材との焼付性に優れる歯科鋳造用陶材焼付貴金属合金の提供が可能となった。 With this composition, a gypsum-based investing material can be used, has a lubricity of the metal frame surface by low temperature casting, and has a low thermal expansion coefficient of 12.0 to 13.5 × 10 −6 K −1. It has become possible to provide a precious metal baked porcelain for dental casting that has a coefficient of thermal expansion that does not cause cracks due to expansion differences when the molten porcelain is baked and is excellent in seizure with the porcelain.

1.特性評価
表1に示す組成に基づき、実施例1〜8および比較例1〜3の合金を製造した。さらに、従来例1および2として、従来組成の合金も製造した。
各種合金の原料成分を混合し、高周波誘導加熱炉を用いて、アルゴン雰囲気下の石英管内で溶解し、そのまま冷却凝固させて、各々、総量371gの鋳塊を得た。
1. Characteristic Evaluation Based on the composition shown in Table 1, the alloys of Examples 1 to 8 and Comparative Examples 1 to 3 were produced. Further, as conventional examples 1 and 2, alloys having a conventional composition were also produced.
The raw material components of various alloys were mixed, melted in a quartz tube under an argon atmosphere using a high-frequency induction heating furnace, and cooled and solidified as they were to obtain ingots each having a total amount of 371 g.

上記の鋳塊より所定量切りだし、エアー・都市ガス混合炎を用いて溶解し、石膏系埋没材を用いて用意した鋳型に遠心鋳造することにより、各種合金の固相点、液相点および熱膨張係数を測定するための各種の試験片を作製し、各試験を行った。評価結果を表2に示す。   A predetermined amount is cut out from the above ingot, melted using an air / city gas mixed flame, and centrifugally cast into a mold prepared using a gypsum-based investing material. Various test pieces for measuring the thermal expansion coefficient were prepared and each test was performed. The evaluation results are shown in Table 2.

[固相点および液相点]
合金の融点として、より正確には、合金の固相点および液相点を示差熱分析法により得られた加熱曲線を用いて測定した。
液相点が1150℃以下であれば、石膏系埋没材にて鋳造可能な合金であると評価する。
[Solid phase and liquid phase points]
More precisely, the melting point of the alloy was measured using a heating curve obtained by a differential thermal analysis method.
If the liquidus point is 1150 ° C. or lower, it is evaluated as an alloy that can be cast with a gypsum-based investing material.

[熱膨張係数]
さらに、直径5mm、長さ20mmの試験片を用い、熱機械分析装置にて熱膨張係数の測定を行った。50℃から500℃の間の熱膨張係数を求めた。
陶材と合金との熱膨張係数の差が大きい場合は、陶材が破折してしまい、有効な焼付ができないが、合金の熱膨張係数が陶材の熱膨張係数よりも高い値であれば常に陶材側に圧縮応力が加わった状態であり、陶材のクラック抑制となる。今回用いた低溶陶材の熱膨張係数が12.5×10-6-1であることを考慮して、合金の熱膨張係数が14.9×10-6-1未満であれば、陶材と金属の焼付性を優れた状態に保つ合金であると評価する。
[Thermal expansion coefficient]
Furthermore, using a test piece having a diameter of 5 mm and a length of 20 mm, the thermal expansion coefficient was measured with a thermomechanical analyzer. The thermal expansion coefficient between 50 ° C. and 500 ° C. was determined.
If the difference in the coefficient of thermal expansion between the porcelain and the alloy is large, the porcelain will break and effective baking will not be possible, but if the thermal expansion coefficient of the alloy is higher than that of the porcelain. In this case, a compressive stress is always applied to the porcelain side, and cracking of the porcelain is suppressed. Considering that the thermal expansion coefficient of the low melting porcelain used this time is 12.5 × 10 −6 K −1 , the thermal expansion coefficient of the alloy is less than 14.9 × 10 −6 K −1. It is evaluated as an alloy that keeps the seizure properties of porcelain and metal excellent.

Figure 0005191187
Figure 0005191187

Figure 0005191187
Figure 0005191187

比較例1の合金はPdが50.0質量%、Agが30.5質量%、Ga+Inが15.0%の組成であり、比較例2の合金はPdが19.1質量%、Agが47.48質量%、Ga+Inが4.8%の組成であり、比較例2の合金はPdが19.6質量%、Agが39.18質量%、Ga+Inが2.0%の組成であるが、液相点が1150℃より低く、石こう系埋没材の使用も可能であったが、熱膨張係数が14.9×10−6−1より高くなったため、12.0〜13.5×10−6−1の熱膨張係数である低溶陶材を焼付けた際、膨張差によるクラックが生じる可能性があった。 The alloy of Comparative Example 1 has a composition of Pd of 50.0% by mass, Ag of 30.5% by mass, and Ga + In of 15.0%. The alloy of Comparative Example 2 has a Pd of 19.1% by mass and Ag. Is 47.48% by mass and Ga + In is 4.8%. In the alloy of Comparative Example 2, Pd is 19.6% by mass, Ag is 39.18% by mass, and Ga + In is 2.0%. Although the liquid phase point was lower than 1150 ° C. and gypsum-based investment material could be used, the thermal expansion coefficient was higher than 14.9 × 10 −6 K −1 , so When a low melting porcelain having a thermal expansion coefficient of ˜13.5 × 10 −6 K −1 was baked, there was a possibility that a crack due to an expansion difference occurred.

実施例1〜5の合金はPdが29.5〜49.5質量%、Agが0.5〜30質量%の上限及び下限に設定し、Au0.5〜50質量%と、Cu5.0〜20.0質量%となるよう設定し、かつGa+Inが2.0〜15.0質量%に組成を変化させたものである。また、実施例6の合金は、Pdが29.5〜49.5質量%、Agが0.5〜30質量%の上限及び下限に設定し、Au0.5〜50質量%と、Cu5.0〜20.0質量%となるよう設定し、かつSn+Inが2.0〜15.0質量%に組成を変化させたものである。
実施例1〜6の合金は、液相点が1150℃以下であり石こう系埋没材の使用も可能であった。また、熱膨張係数も14.9×10−6−1未満であり、目標値を満足するものであった。
In the alloys of Examples 1 to 5, Pd is set to 29.5 to 49.5 mass%, Ag is set to an upper limit and a lower limit of 0.5 to 30 mass%, Au is 0.5 to 50 mass%, and Cu is 5.0 to The composition is set to 20.0% by mass and Ga + In is changed in composition to 2.0 to 15.0% by mass. In the alloy of Example 6, the upper limit and the lower limit are set such that Pd is 29.5 to 49.5 mass%, Ag is 0.5 to 30 mass%, Au is 0.5 to 50 mass%, and Cu5.0. It is set to be ˜20.0 mass%, and Sn + In changes the composition to 2.0 to 15.0 mass%.
The alloys of Examples 1 to 6 had a liquidus point of 1150 ° C. or lower, and a gypsum-based investment material could be used. The thermal expansion coefficient was also less than 14.9 × 10 −6 K −1 and satisfied the target value.

これらの結果から、Pd29.5〜49.5質量%、Ag0.5〜30質量%、Au0.5〜50質量%、Cu5.0〜20.0質量%、Ir0.01〜0.1質量%よりなり、かつAu+Cuが5.5〜68.0質量%であり、かつGa+Inが2.0〜15.0質量%を満足する組成と、Pd29.5〜49.5質量%、Ag0.5〜30質量%、Au0.5〜50質量%、Cu5.0〜20.0質量%、Ir0.01〜0.1質量%よりなり、かつAu+Cuが5.5〜68.0質量%であり、かつSn+Inが2.0〜15.0質量%を満足する組成は、液相点と熱膨張係数が目標値を満足する合金が得られることが分かった。   From these results, Pd 29.5-49.5 mass%, Ag 0.5-30 mass%, Au 0.5-50 mass%, Cu 5.0-20.0 mass%, Ir 0.01-0.1 mass% A composition in which Au + Cu is 5.5 to 68.0% by mass and Ga + In is 2.0 to 15.0% by mass, Pd 29.5 to 49.5% by mass, Ag 0.5 to 30% by mass, 0.5% to 50% by mass of Au, 5.0% to 20.0% by mass of Cu, 0.01% to 0.1% by mass of Ir, and 5.5% to 68.0% by mass of Au + Cu, and It was found that a composition satisfying 2.0 to 15.0% by mass of Sn + In can obtain an alloy having a liquidus point and a thermal expansion coefficient satisfying target values.

特に、Pd29.5〜49.5質量%及びAg0.5〜30質量%の組成にGa+InまたはSn+Inが2.0〜15.0質量%添加されることによって、熱膨張係数が大きく変化せずに液相点が低減し、12.0〜13.5×10−6−1の熱膨張係数である低溶陶材を焼付けた際、膨張差によるクラックが生じることのなく、石こう系埋没材を使用することが可能な合金が得られた。 In particular, by adding 2.0 to 15.0% by mass of Ga + In or Sn + In to the composition of Pd 29.5 to 49.5% by mass and Ag 0.5 to 30% by mass, the thermal expansion coefficient does not change greatly. When the low melting porcelain having a low liquidus point and a thermal expansion coefficient of 12.0 to 13.5 × 10 −6 K −1 is baked, cracks due to differential expansion do not occur, and the gypsum-based investment material An alloy that can be used was obtained.

Claims (2)

Pd29.5〜49.5質量%と、Ag0.5〜30質量%と、Au0.5〜50質量%と、Cu5.0〜20.0質量%と、Ir0.01〜0.1質量%と、Gaと、Inと、不可避的不純物よりなり、Au+Cuが5.5〜68.0質量%であり、Ga+Inが2.0〜15.0質量%であり、液相点が1150℃以下、かつ、熱膨張係数が14.9×10 −6 −1 未満の熱膨張係数を有していることを特徴とする歯科鋳造用陶材焼付貴金属合金。 Pd 29.5-49.5 mass%, Ag 0.5-30 mass%, Au 0.5-50 mass%, Cu 5.0-20.0 mass%, Ir 0.01-0.1 mass% , Ga, In, and inevitable impurities, Au + Cu is 5.5 to 68.0% by mass, Ga + In is 2.0 to 15.0% by mass , liquidus point is 1150 ° C. or less, and And a thermal expansion coefficient of less than 14.9 × 10 −6 K −1 . Pd29.5〜49.5質量%と、Ag0.5〜30質量%と、Au0.5〜50質量%と、Cu5.0〜20.0質量%と、Ir0.01〜0.1質量%と、Snと、Inと、不可避的不純物よりなり、Au+Cuが5.5〜68.0質量%であって、Sn+Inが2.0〜15.0質量%であり、液相点が1150℃以下、かつ、熱膨張係数が14.9×10 −6 −1 未満の熱膨張係数を有していることを特徴とする歯科鋳造用陶材焼付貴金属合金。 Pd 29.5-49.5 mass%, Ag 0.5-30 mass%, Au 0.5-50 mass%, Cu 5.0-20.0 mass%, Ir 0.01-0.1 mass% Sn + In and inevitable impurities, Au + Cu is 5.5 to 68.0% by mass, Sn + In is 2.0 to 15.0% by mass , and the liquidus point is 1150 ° C. or less. And the thermal expansion coefficient has a thermal expansion coefficient of less than 14.9 * 10 < -6> K < -1 >, The porcelain stoving precious metal alloy for dental casting characterized by the above-mentioned.
JP2007210985A 2007-08-13 2007-08-13 Pd-Ag-Au-Cu alloy for porcelain baking Expired - Fee Related JP5191187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210985A JP5191187B2 (en) 2007-08-13 2007-08-13 Pd-Ag-Au-Cu alloy for porcelain baking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210985A JP5191187B2 (en) 2007-08-13 2007-08-13 Pd-Ag-Au-Cu alloy for porcelain baking

Publications (2)

Publication Number Publication Date
JP2009046699A JP2009046699A (en) 2009-03-05
JP5191187B2 true JP5191187B2 (en) 2013-04-24

Family

ID=40499187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210985A Expired - Fee Related JP5191187B2 (en) 2007-08-13 2007-08-13 Pd-Ag-Au-Cu alloy for porcelain baking

Country Status (1)

Country Link
JP (1) JP5191187B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406711C1 (en) * 1984-02-24 1985-04-25 Degussa Ag, 6000 Frankfurt Low gold dental alloys

Also Published As

Publication number Publication date
JP2009046699A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
US3981723A (en) White gold alloy
KR20080078591A (en) Veneerable, low-melting nickel and chromium alloy for the production of ceramic-veneered dental restorations
US4591483A (en) Noble metal alloys for dental uses
JPS60194028A (en) Gold-poor dental alloy
JP5191187B2 (en) Pd-Ag-Au-Cu alloy for porcelain baking
JP4368343B2 (en) Silver palladium alloy for dental porcelain baking
JP3916098B2 (en) Porcelain-precious metal alloy for dental casting
JP2007215844A (en) Noble metal alloy for dental casting, having property of bonding to ceramic material by baking
JP2008024988A (en) Casting gold alloy
JP2010275218A (en) Dental alloy material and production method thereof
KR20170002067A (en) NiCKEL-CHROMIUM-COBALT BASE ALLOYS SHOWING AN EXCELLENT COMBINATION OF BONDING CHARACTER
KR101133677B1 (en) Dental gold alloy containing small titanium amount
JP2006045630A (en) Gold alloy
US4077560A (en) Dental solder
JPH039741B2 (en)
JPS58107438A (en) Low-carat baking alloy for dental use
JP2004169175A (en) Gold alloy for dental porcelain bonding
JPS58110633A (en) Dental alloy
JPH0156134B2 (en)
JP2002249834A (en) Gold alloy for dental use
RU2035523C1 (en) Nickel-based casting alloy for stomatology
JPS6328970B2 (en)
JP5753683B2 (en) Dental alloy
KR20220118148A (en) Cobalt-based dental alloy capable of manufacturing ceramic parts and dentures and manufacturing method thereof
JP2021188108A (en) Dental alloy for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5191187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees