JP5190716B2 - Wave power generation method - Google Patents

Wave power generation method Download PDF

Info

Publication number
JP5190716B2
JP5190716B2 JP2009277105A JP2009277105A JP5190716B2 JP 5190716 B2 JP5190716 B2 JP 5190716B2 JP 2009277105 A JP2009277105 A JP 2009277105A JP 2009277105 A JP2009277105 A JP 2009277105A JP 5190716 B2 JP5190716 B2 JP 5190716B2
Authority
JP
Japan
Prior art keywords
power generation
wave
receiving
rotating disk
wave power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009277105A
Other languages
Japanese (ja)
Other versions
JP2011117397A (en
JP2011117397A5 (en
Inventor
紀明 藤村
Original Assignee
紀明 藤村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 紀明 藤村 filed Critical 紀明 藤村
Priority to JP2009277105A priority Critical patent/JP5190716B2/en
Publication of JP2011117397A publication Critical patent/JP2011117397A/en
Publication of JP2011117397A5 publication Critical patent/JP2011117397A5/ja
Application granted granted Critical
Publication of JP5190716B2 publication Critical patent/JP5190716B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、海洋波浪エネルギーを利用する波浪発電方式に関するものである。 The present invention relates to a wave power generation method using ocean wave energy.

自然エネルギーを利用した発電は化石燃料によらない発電方式として、地球温暖化防止、資源の偏在対策、経済浮揚効果など、その期待効果は大きい。
しかしながらその主流である風力発電、太陽光発電は、地域においては必ずしも設置環境に恵まれていない。例えば日本においては、風力発電は台風の影響でピークの風力が強すぎ、また風向も一定でなく、必ずしも利用する自然エネルギーとして適切ではない。
太陽光発電に関しても、日本等の地理的条件は広大な砂漠等がなく、日照量も少なく、大型の太陽光発電システムを実現するのは困難である。
Power generation using natural energy is a power generation method that does not rely on fossil fuels, and it has great expectations such as prevention of global warming, measures against uneven distribution of resources, and effects of economic levitation.
However, wind power generation and solar power generation, which are the mainstream, are not always blessed with an installation environment in the region. For example, in Japan, wind power generation is too strong due to the influence of typhoons, and the wind direction at the peak is not constant.
Regarding solar power generation, geographical conditions such as Japan do not have a vast desert, etc., the amount of sunlight is small, and it is difficult to realize a large-scale solar power generation system.

一方日本等の地域は、海洋に囲まれており海洋エネルギー利用の設置環境に恵まれている。海洋エネルギーはエネルギー量も大きく、大きく利用価値がある。
海洋エネルギーを利用した発電としては、海流発電、潮汐流発電、温度差発電等があるが、波浪エネルギーはエネルギー量も大きく、広い範囲の海域に存在し、この商用化が大いに望まれる。
しかしながら従来の波浪発電方式は、風力発電や太陽光発電に匹敵する大規模な商業レベルでの実用化を行うには十分ではなかった。
On the other hand, regions such as Japan are surrounded by the ocean and are blessed with an installation environment for using ocean energy. Ocean energy has a large amount of energy and has great utility value.
As for power generation using ocean energy, there are ocean current power generation, tidal current power generation, temperature difference power generation, etc., but wave energy has a large amount of energy and exists in a wide range of sea areas, and this commercialization is highly desired.
However, the conventional wave power generation method has not been sufficient for practical use on a large-scale commercial level comparable to wind power generation and solar power generation.

実用化を進めるためには、技術面からは大型化、高効率化をすすめること、コスト面からは建設コスト、発電コストを低減することが必須である。 In order to promote practical application, it is essential to increase the size and increase the efficiency from the technical aspect and to reduce the construction cost and power generation cost from the cost aspect.

実験、提案を含め現在までの波浪発電の方式には以下の例がある。 There are the following examples of wave power generation methods to date including experiments and proposals.

ひとつは振動水柱型として分類されるものであり、波の上下運動を空気室の圧力に伝え、この空気圧によりタービンを駆動する。この方式の問題点は、大型化が難しいこと、設備費が高いことである。 One is classified as an oscillating water column type, which transmits the vertical motion of waves to the pressure in the air chamber and drives the turbine by this air pressure. The problem with this method is that it is difficult to increase the size and the equipment cost is high.

他のひとつは可動物体型として分類されるものであり、波の運動により物体を動かし、この運動で高圧ポンプを駆動しこれで得た高圧流体でタービン駆動する。この方式の問題点はやはり大型化が難しいこと、設備費が高いことである。 The other is classified as a movable object type, in which an object is moved by the motion of a wave, a high-pressure pump is driven by this motion, and a turbine is driven by the high-pressure fluid obtained thereby. The problems with this method are that it is difficult to increase the size and the equipment cost is high.

他のひとつは越波型として分類されるものであり、波の運動により海水を水面より高い位置にある貯水池に導き、海面との高低差を利用してタービンを回し発電する。この方式の問題点はやはり大型化が難しいこと、設備費が高いことである。 The other is classified as an overtopping type, in which seawater is guided to a reservoir located higher than the surface of the water by wave motion, and a turbine is turned to generate electricity using the difference in elevation from the sea level. The problems with this method are that it is difficult to increase the size and the equipment cost is high.

その他の方式として、人工筋肉を利用した波力発電、リニア発電機を用いた直接駆動波力発電、ジャイロ式波力発電、浮遊渚による波力発電、つるべ式波力発電等があるが、これらの方式の問題点としては、まだ実用化技術が未成熟であることである。 Other methods include wave power generation using artificial muscles, direct drive wave power generation using linear generators, gyro wave power generation, wave power generation using floating kites, and tsube type wave power generation. The problem with this method is that the practical application technology is still immature.

上記の方式は、いずれも商用レベルでの大型大出力化、高効率化、建設コスト低減、発電コスト低減を実現するには十分ではなかった。
None of the above methods is sufficient to achieve large-scale large output, high efficiency, construction cost reduction, and power generation cost reduction on a commercial level.

永田修一「波力発電の動向について」海洋エネルギー資源国際フォーラム講演資料(平成21年6月25日)Shuichi Nagata “Trends in Wave Power Generation” Lecture on the International Forum on Ocean Energy Resources (June 25, 2009)

海洋工事技術委員会編「21世紀の海洋エネルギー開発技術」山海堂 2006年Ocean Engineering Technical Committee, “21st Century Ocean Energy Development Technology”, Sankaido 2006

NEDO海外レポートNO.1044, 「欧米における潮力・波力発電プロジェクトの最新動向」平成21年5月NEDO Overseas Report No.1044, “Latest Trends in Tidal and Wave Power Projects in Europe and America” May 2009

港湾技術研究資料 No. 654, 1989、高橋重雄「日本周辺における波パワーの特性と波力発電」Port Technology Research Material No. 654, 1989, Shigeo Takahashi “Characteristics of Wave Power and Wave Power Generation Around Japan”

発明が解決しようとする課題は、効率のよい大型大出力の経済的な波力発電システムを提供することである。 The problem to be solved by the invention is to provide an efficient wave power generation system with large capacity and high efficiency.

具体的には、波浪に対する受流断面積または受流線長を大きくとること、運動方向、波長、形状の絶えず変化する波流にきめこまかく対応できる方式を実現すること、エネルギー吸収の高効率化を実現することである。 Specifically, it is possible to increase the receiving cross-sectional area or receiving line length for waves, to realize a method that can cope with wave flows that constantly change in the direction of movement, wavelength, and shape, and to improve the efficiency of energy absorption. Is to realize.

また装置自身を含む建設費、保守費、発電コストの安い方式を提供することであり、そのためには、構造が簡潔で、製造、運搬、設置が容易な方式を実現すること、特に波力が大きく設置面積が大きくとれる沖合での設置の簡潔化を実現することである。 Also, it is to provide a system with low construction costs including equipment itself, maintenance costs, and power generation costs. For this purpose, it is necessary to realize a method that is simple in structure, easy to manufacture, transport, and install. The aim is to simplify the installation offshore where the installation area is large.

本発明は、多数の受動可変ピッチの受流翼を装備した回転盤を水面付近の水平の方向に設置し、エネルギー源である波浪運動から推進力を得て回転させ、この回転からエネルギーを吸収することを最も主要な特徴とする。 In the present invention, a rotating disk equipped with a large number of passively variable pitch receiving vanes is installed in the horizontal direction near the water surface, and it is rotated by obtaining a propulsive force from wave motion as an energy source, and absorbing energy from this rotation. Doing is the main feature.

本発明により以下のような効果が生ずる。 The following effects are produced by the present invention.

多数の受動可変ピッチの受流翼を区分化した位置に装備することにより、波の運動方向、波長、周期、形状および他の翼の影響により絶えず変化する波流に対して、各区分毎に独立かつ最適な形体で対応でき、装置全体として広範囲の波の複雑な運動にきめ細かく最適に対応できる。 Equipped with multiple passive variable pitch receiving vanes in segmented positions, for each wave segment that constantly changes due to wave motion direction, wavelength, period, shape and other vane effects It is possible to cope with an independent and optimum form, and the entire apparatus can finely and optimally cope with a complicated movement of a wide range of waves.

また、各受流翼は受動型の可変ピッチ型にすることにより、波浪の方向が、時間、位置により変化しても波浪による円盤の回転推進方向は同一であり、同一方向の回転運動が行われ、安定した動作が実現できる。 In addition, by adopting a passive variable pitch type for each receiving vane, even if the direction of the waves changes with time and position, the rotation propulsion direction of the disk by the waves is the same, and the rotational movement in the same direction is performed. Stable operation can be realized.

また、受動可変ピッチ翼の波力エネルギー吸収の形態が波流を乱す抵抗型ではないので、波のエネルギーを無駄に損なうことがなく、エネルギー吸収の効率が高い。 In addition, since the wave energy absorption mode of the passive variable pitch blade is not a resistance type that disturbs the wave flow, the energy of the wave is not wasted and the energy absorption efficiency is high.

また、システム全体の波を受ける部分の構造が水平方向であり厚さも小さいので、垂直方向の面積が小さく、海面を水平方向に吹く台風、暴風や、水平方向に流れる潮流、海流の影響を受けることが少ない。 In addition, since the structure of the part that receives waves of the entire system is horizontal and thin, the vertical area is small, and it is affected by typhoons and storms that blow the sea surface horizontally, tides that flow horizontally, and ocean currents. There are few things.

また、広い回転盤は構造が簡単であり適切な浮力を与えることができ、重力に対抗するための強固な構造にする必要がなく、大型化が容易である。 In addition, a wide rotating disk has a simple structure, can give an appropriate buoyancy, and does not need to be a strong structure to resist gravity, and can be easily increased in size.

また、装置全体を着底型ではなく浮体型にできるので、設置場所選択の自由度が大きく、運搬、設置工事も簡単である。特に波力が大きく、広い設置面積がとれる沖合での設置が可能であるので、システムの大規模化、設置場所取得の低コスト化、住民問題回避、漁業問題回避が図れる。 In addition, since the entire apparatus can be a floating type rather than a bottomed type, the degree of freedom in selecting the installation location is great, and transportation and installation work are easy. In particular, it can be installed offshore where the wave power is large and a large installation area can be taken. Therefore, the system can be scaled up, the cost of obtaining the installation location can be reduced, the problem of inhabitants can be avoided, and the problem of fishing can be avoided.

また、回転盤はほぼ水面下にあるので、風力発電のような騒音問題、鳥の衝突死問題、景観問題を引き起こすことはない。回転盤の回転速度は風力発電の翼程の高速ではないので、海洋の動物の衝突死問題を引き起こす可能性は少ない。
Moreover, since the rotating disk is almost under water, it does not cause noise problems such as wind power generation, bird collision death problems, and landscape problems. Since the rotating speed of the rotating disk is not as high as that of wind power wings, it is unlikely to cause a collision death problem for marine animals.

図1は第一の実施形体を示す全体図である。FIG. 1 is an overall view showing a first embodiment. 図2は第一の実施形体を示す側面図である。FIG. 2 is a side view showing the first embodiment. 図3は第一の実施形体を示す上面図である。FIG. 3 is a top view showing the first embodiment. 図4は第一の実施形体の回転盤の一部の拡大図である。FIG. 4 is an enlarged view of a part of the rotating disk of the first embodiment. 図5は第一の実施形体の受流翼の外観図である。FIG. 5 is an external view of a receiving blade of the first embodiment. 図6は受流翼のピッチ変化を示す説明図である。FIG. 6 is an explanatory view showing the pitch change of the receiving blade. 図7は受流翼にかかる力のベクトルを示す説明図である。FIG. 7 is an explanatory view showing a force vector applied to the receiving blade. 図8は数値検討を示すための説明図である。FIG. 8 is an explanatory diagram for showing numerical examination. 図9は第二の実施形体の受流翼の外観図である。FIG. 9 is an external view of a receiving blade of the second embodiment. 図10は第三の実施形体の回転盤の外観図である。FIG. 10 is an external view of a turntable of the third embodiment. 図11は第四の実施形体を示す全体図である。FIG. 11 is an overall view showing a fourth embodiment. 図12は第四の実施形体を示す側面図である。FIG. 12 is a side view showing the fourth embodiment. 図13は第四の実施形体の回転盤の一部の拡大図である。FIG. 13 is an enlarged view of a part of the rotating disk of the fourth embodiment. 図14は第五の実施形体を示す全体図である。FIG. 14 is an overall view showing a fifth embodiment. 図15は第六の実施形体を示す全体図である。FIG. 15 is an overall view showing a sixth embodiment. 図16は第六の実施形体の動作を示す説明図である。FIG. 16 is an explanatory view showing the operation of the sixth embodiment. 図17は第六の実施形体の動作を示す説明図である。FIG. 17 is an explanatory view showing the operation of the sixth embodiment. 図18は第六の実施形体の動作を示す説明図である。FIG. 18 is an explanatory view showing the operation of the sixth embodiment.

前記課題を解決するための手段で説明した多数の受動可変ピッチの受流翼を装備した回転盤を水面付近の水平の方向に設置し、エネルギー源である波浪運動から推進力を得て回転させ、この回転からエネルギーを吸収する方式の実施例は以下の通りである。 A rotating disk equipped with a large number of passively variable pitch receiving vanes described in the means for solving the above problems is installed in the horizontal direction near the water surface, and it is rotated by obtaining propulsive force from wave motion as an energy source. Examples of a method for absorbing energy from this rotation are as follows.

図1は実施例1の実施形体を示す全体図である。図1において全体構造は波の運動により反対方向に回転する2つの回転盤11,12を有し、各回転盤には角度方向、半径方向それぞれに分割され同心円状に配置された多数の受流翼3が取りつけられており、各翼3は波の水流により推進力を得て回転盤を回転させる。回転盤の軸構造5は支持構造2に支えられている。軸構造5には回転部またはローター51と固定部またはステーター52があり、ローターは回転盤に駆動され回転する。ステーターは支持構造2により固定され回転をせず、安定した発電作用を支える。支持構造2はアンカー1により海底に繋留される。
FIG. 1 is an overall view showing an embodiment of the first embodiment. In FIG. 1, the entire structure has two rotating disks 11 and 12 that rotate in opposite directions by the movement of waves, and each rotating disk is divided into an angular direction and a radial direction, and a number of receiving currents arranged concentrically. The blades 3 are attached, and each blade 3 obtains a propulsive force by the water current of the waves and rotates the rotating disk. The shaft structure 5 of the rotating disk is supported by the support structure 2. The shaft structure 5 has a rotating part or rotor 51 and a fixed part or stator 52, and the rotor is driven by a rotating disk to rotate. The stator is fixed by the support structure 2, does not rotate, and supports a stable power generation operation. The support structure 2 is anchored to the sea floor by an anchor 1.

軸構造5には増速機、発電機が内蔵されており、回転盤の回転により駆動されて、発電が行われる。 The shaft structure 5 includes a speed increaser and a generator, and is driven by the rotation of the rotating disk to generate power.

また支持構造は浮力を持ち、この浮力は支持構造内部の空気を出し入れすることにより、適正な量に調整できる。これにより回転盤は波浪エネルギー吸収に最適な上下位置に調整される。 The support structure has buoyancy, and this buoyancy can be adjusted to an appropriate amount by taking in and out air inside the support structure. As a result, the turntable is adjusted to the optimum vertical position for absorbing wave energy.

また暴風時に過度の規模の波浪があるときには波浪の影響の少ない深度まで下げられる。
さらに建設時、保守時には作業をしやすい高さに上げられる。
Also, when there is an excessively large wave during a storm, it can be lowered to a depth that is less affected by the wave.
Furthermore, it can be raised to a height that is easy to work during construction and maintenance.

また建設時等で別の場所から牽引される場合等には、牽引されやすい高さに調整される。
エネルギー採取方法として、発電機のかわりに高圧流体発生ポンプを駆動して、ここで発生した高圧流体をエネルギー源として利用することも可能である。
Further, when the vehicle is towed from another place at the time of construction or the like, the height is adjusted to be easily pulled.
As an energy collecting method, it is possible to drive a high-pressure fluid generating pump instead of the generator and use the high-pressure fluid generated here as an energy source.

図2は本実施形体を示す側面図である。図に示されるように、回転盤11,12および各受流翼は水面6直下に位置し、波の運動を受ける。全体構造は浮体型であり、アンカー1により海底7に繋留される。 FIG. 2 is a side view showing the embodiment. As shown in the figure, the turntables 11 and 12 and each receiving blade are located directly below the water surface 6 and receive wave motion. The whole structure is a floating body and is anchored to the seabed 7 by the anchor 1.

また設置場所が水深の深い沖合でアンカーを陸上に延長することが困難な場合には、後述の定位置制御方法でシステムを定位置に保つ方法もある。 In addition, when it is difficult to extend the anchor to the land when the installation site is deep offshore, there is a method of keeping the system in a fixed position by the fixed position control method described later.

図3は全体構造の上面図である。各回転盤が波の力を受けて反対方向に回転することにより各々の反作用である反対方向の力のモーメントが生ずるが、各力のモーメントは軸構造5を通じて支持構造2に伝わり、各回転盤が受ける回転モーメントは相殺され、支持構造自身が回転することはなく、安定した発電作用を支える。 FIG. 3 is a top view of the entire structure. When each rotating disk receives wave force and rotates in the opposite direction, a moment of force in the opposite direction, which is a reaction of each, is generated. The moment of each force is transmitted to the support structure 2 through the shaft structure 5, and each rotating disk is The rotational moment received by the motor is offset, and the support structure itself does not rotate and supports a stable power generation operation.

またアンカー1も支持構造の不要な回転運動を抑える機能を持つ。 The anchor 1 also has a function of suppressing unnecessary rotational movement of the support structure.

またこの構造により、支持構造は海底7に固定される必要がなく、浮体型でよく、構造の簡単化、沖合での設置が可能となる。 Also, with this structure, the support structure does not need to be fixed to the seabed 7 and may be a floating body, which simplifies the structure and enables installation offshore.

水深が浅く工事が簡単であり、回転盤が単独の簡単な構造が望ましい場合には、回転盤の固定軸を海底に固定する方式(着底式)でもよい。この場合には回転盤が回転する場合の反作用としての力のモーメントは海底に固定された固定軸で支持されるので、図1にしめす支持構造2は不要になる。また回転盤は単独でよく、全体の構造は簡単になる。 When the water depth is shallow and the construction is simple and a simple structure with a single rotating disk is desirable, a method of fixing the fixed axis of the rotating disk to the seabed (bottomed) may be used. In this case, since the moment of force as a reaction when the rotating disk rotates is supported by a fixed shaft fixed to the seabed, the support structure 2 shown in FIG. 1 is unnecessary. Moreover, the rotating disk may be independent and the whole structure becomes simple.

発電された電力または高圧流体は、海底に沿ってまたは海中に設置された送電線またはパイプにより陸上に送られ利用される。この送電線またはパイプは上記のアンカーと束ねられて強度を保つ方法も可能である。水深が深くアンカーの設置が困難な場合は送電線またはパイプとともに陸上または水深の浅い場所まで延長し固定される。 The generated power or high-pressure fluid is sent to land for use by transmission lines or pipes installed along the seabed or in the sea. A method of keeping the strength by bundling the power transmission line or pipe with the anchor is also possible. If the depth of water is deep and it is difficult to install the anchor, it will be fixed with the transmission line or pipe to the land or to a shallow depth.

さらに設置場所が沖合にあり送電線またはパイプを陸上に延長することが困難な場合には、発電された電力で大型蓄電器を充電しこれを船舶等で利用地に運搬する方法もある。または発電された電力で水素等のエネルギーを蓄積できる物質を発生させてこれを船舶等で利用地に運搬する方法もある。 Furthermore, when the installation site is offshore and it is difficult to extend the transmission line or pipe to the land, there is also a method of charging a large-sized battery with the generated power and transporting it to a use site by a ship or the like. Alternatively, there is a method in which a substance that can store energy such as hydrogen is generated by the generated electric power and transported to a place of use by a ship or the like.

図4は回転盤の一部を拡大したものであり、回転盤を構成するフレーム8には受流翼3が装備されている。   FIG. 4 is an enlarged view of a part of the rotating disk. The frame 8 constituting the rotating disk is equipped with the receiving vanes 3.

図5は1枚の受流翼3の外観をしめしたものである。該受流翼は固定部分31と弾性部分32により構成され、固定部分31は図4のフレーム8に固定される。弾性部分32は固定部分31と一体になっているが、弾性部分32は波運動を受けて変形する。すなわち受流翼のピッチが受動的に変化する。 FIG. 5 shows the appearance of one receiving blade 3. The receiving vane is composed of a fixed portion 31 and an elastic portion 32, and the fixed portion 31 is fixed to the frame 8 in FIG. The elastic portion 32 is integrated with the fixed portion 31, but the elastic portion 32 is deformed by receiving wave motion. That is, the pitch of the receiving vanes changes passively.

図6は波の運動による受流翼の変形をしめす説明図である。波の水流が図に下から上に向かう場合は、受流翼は上に向かう方向に力を受け、弾性部分は上方向に変形し、水流により図の左方向に力を受ける。波の水流方向が上から下に向かう場合は、弾性部分は下方向に変形し、水流により図の左方向に力を受ける。すなわち波の水流の方向に係らず、各受流翼は図の左方向に推進力を受け、左方向に走行する。実際の受流翼は回転盤に同心円状に配置されているので、受流翼が受ける推進力は回転盤を同一方向に回転させる方向に働く。 FIG. 6 is an explanatory diagram showing the deformation of the receiving blade due to the wave motion. When the water current of the wave goes from the bottom to the top in the figure, the receiving blade receives a force in the upward direction, the elastic part is deformed in the upward direction, and receives a force in the left direction of the figure by the water flow. When the water current direction of the wave is from the top to the bottom, the elastic portion is deformed downward and receives a force in the left direction of the figure by the water flow. That is, regardless of the direction of wave water flow, each receiving blade receives a driving force in the left direction of the figure and travels in the left direction. Since the actual receiving vanes are arranged concentrically on the rotating disk, the propulsive force received by the receiving vanes acts in the direction of rotating the rotating disk in the same direction.

図7は波の水流により受流翼が受ける力をベクトルとして示したものである。受流翼は水流により、翼面と垂直の方向に力Foを受ける。Foは回転盤と垂直の方向Fbと水平の方向Faに分解される。Faは水流の方向に係らず図の左方向に向き、回転盤を同一方向に推進する力となる。 FIG. 7 shows, as a vector, the force applied to the receiving blade by the wave water flow. The receiving wing receives a force Fo in a direction perpendicular to the wing surface due to water flow. Fo is decomposed into a direction Fb perpendicular to the rotating disk and a direction Fa horizontal. Fa is directed to the left in the figure regardless of the direction of water flow, and is the force that propels the rotating disk in the same direction.

以下に数値的検討を示す。 The numerical examination is shown below.

図8は概略的な定量的説明を行うためのベクトル図である。図において水平線は回転盤を表し、斜線は受流翼を表す。   FIG. 8 is a vector diagram for a rough quantitative explanation. In the figure, the horizontal line represents the rotating disk, and the diagonal line represents the receiving blade.

図において各パラメータおよび変数を以下のように定める。
Fo : 波浪により受流翼にかかる力
Fa: 受流翼にかかる水平力(走行推進力)
Fb: 受流翼にかかる垂直力(非走行力)
Vc: 波浪運動の垂直成分速度
Va: 受流翼走行速度
Vd: 受流翼走行による波浪速度等価減速分
So: 受流翼面積
θ: 受流翼のピッチ角度
ρ: 水の重量密度
P: 受流翼走行による利用可能な時間当たりのエネルギー(発電量)
In the figure, each parameter and variable are defined as follows.
Fo: Force applied to the receiving wing by waves
Fa: Horizontal force on the receiving wing (traveling propulsion force)
Fb: Normal force applied to the receiving blade (non-running force)
Vc: Vertical component velocity of wave motion
Va: Receiving blade travel speed
Vd: Wave speed equivalent deceleration by receiving blade travel
So: receiving blade area θ: pitch angle of receiving blade ρ: weight density of water
P: Energy available per hour (power generation)

まず波浪により受流翼にかかる力Foは、
Fo = ρSo (Vc − Vd) 2 = ρSo (Vc − Va sinθ)2 ---------- (1)
となる。
ここで受流翼走行による波浪速度等価減速分 Vdは、
Vd = Va sinθ
--------- (2)
で表される。
First, the force Fo applied to the receiving wing by waves is
Fo = ρSo (Vc − Vd) 2 = ρSo (Vc − Va sinθ) 2 ---------- (1)
It becomes.
Here, the wave velocity equivalent deceleration Vd due to running of the receiving blade is
Vd = Va sinθ
--------- (2)
It is represented by

受流翼がうける走行推進力Faは、
Fa = Fo sinθ =ρSo (Vc − Va sinθ)2 sinθ ----------- (3)
受流翼に発生する利用可能な時間あたりのエネルギーPは、
P =Va Fa = ρSo Va (Vc −Va sinθ)2 sinθ
----------- (4)
となる。
The driving force Fa received by the receiving blade is
Fa = Fo sinθ = ρSo (Vc − Va sinθ) 2 sinθ ----------- (3)
The available energy per hour P generated in the receiving blade is
P = Va Fa = ρSo Va (Vc −Va sinθ) 2 sinθ
----------- (Four)
It becomes.

ここで k を波浪速度等価減速係数として
k = Vd
/ Vc = Va sinθ /Vc -------------------------- (5)
とすると、
P = ρSo Vc3(1− k)2 k ---------- (6)
となる。
Where k is the wave velocity equivalent deceleration coefficient
k = Vd
/ Vc = Va sinθ / Vc -------------------------- (5)
Then,
P = ρSo Vc 3 (1− k) 2 k ---------- (6)
It becomes.

Pをkで微分してPの最大値を求めると、Pは k = 1/3の時最大となる。
Pすなわち発電量の最大値をPmax、このときの(1−k)2kの値を効率係数μaとすると、μa = 0.148
-------------- (7)
となり
Pmax = ρSo Vc3 (1−k)2k =ρμa So Vc3 = 0.148ρSo Vc3 ------------------(
8)
となる。
Differentiating P by k to find the maximum value of P, P is maximum when k = 1/3.
P, that is, the maximum value of power generation is Pmax, and the value of (1−k) 2 k is μa = 0.148
-------------- (7)
Next
Pmax = ρSo Vc 3 (1−k) 2 k = ρμa So Vc 3 = 0.148ρSo Vc 3 ------------------ (
8)
It becomes.

具体的な数値例は以下の通りである。
波浪高をH、波浪周期をTとすると、波浪上下動速度Vcは、
Vc = = 2πH cos(2πt/T+C)/T ------------- (9)
である。具体的な値として、
波浪高Hを2.5m、波浪周期Tを10secとすると、Vcの最大値 Vc maxは
Vc max = 2πH/T = 1.57 m/s
--------- (10)
となる。
Specific numerical examples are as follows.
If the wave height is H and the wave period is T, the wave vertical velocity Vc is
Vc = = 2πH cos (2πt / T + C) / T ------------- (9)
It is. As a specific value,
If the wave height H is 2.5 m and the wave period T is 10 sec, the maximum value of Vc Vc max is
Vc max = 2πH / T = 1.57 m / s
--------- (Ten)
It becomes.

回転盤の外径Raを100m、内径Rbを60mとすると、受流翼総面積Saは
Sa = π(Ra/2)2−π(Rb/2)2 = 5,024 m2 ---------
(11)
波が一方向から来るとして、波の受ける受流翼の実効面積SoはSaの半分とすると、
So = Sa / 2 = 2,512 m2 --------- (12)
となる。
If the outer diameter Ra of the rotating disk is 100 m and the inner diameter Rb is 60 m, the total receiving blade area Sa is
Sa = π (Ra / 2) 2 −π (Rb / 2) 2 = 5,024 m 2 ---------
(11)
Assuming that the wave comes from one direction, the effective area So of the receiving wing that the wave receives is half of Sa,
So = Sa / 2 = 2,512 m 2 --------- (12)
It becomes.

式(7)で示すように、受流翼で波浪のエネルギーを吸収する最大効率μaは0.148である。
その他の損失を考えた発電効率μgを
μg =
0.3
----------(13)
とすると、最大発電量Pmaxは、
Pmax =μg μa ρSo (Vc max)3 =4,573 KW ---------
(14)
となる。
As shown in Equation (7), the maximum efficiency μa for absorbing wave energy by the receiving blade is 0.148.
Power generation efficiency μg considering other losses
μg =
0.3
----------(13)
Then, the maximum power generation Pmax is
Pmax = μg μa ρSo (Vc max) 3 = 4,573 KW ---------
(14)
It becomes.

Vcは式(9)で表せる正弦波であるが、その3乗の絶対値の平均値の3乗根Vavは、
Vav = 0.424 Vc max
--------- (15)
従って、ひとつの回転盤から得られる平均発電量 Pavは、
Pav = 1,842KW --------- (16)
となる。
Vc is a sine wave that can be expressed by equation (9). The average root Vav of the absolute value of the cube is V
Vav = 0.424 Vc max
--------- (15)
Therefore, the average power generation Pav obtained from one rotating disk is
Pav = 1,842KW --------- (16)
It becomes.

回転翼が2つの場合には、発電量はその2倍、回転翼がN個の場合はN倍となる。 When there are two rotor blades, the amount of power generation is twice that, and when there are N rotor blades, it is N times.

実際の発電量は、翼の形状、複雑な波の形や周期、季節変化、異なる波の重なり合い、具体的な発電効率等、多くの複雑な要因があり、正確に推定するのは容易ではないが、上記の値は概略の推定例となる。   Actual power generation has many complicated factors such as wing shape, complex wave shape and period, seasonal changes, overlapping of different waves, and specific power generation efficiency, and it is not easy to estimate accurately. However, the above value is a rough estimation example.

別の発電量推定方法として、波のエネルギーの実測統計データを利用する方法がある。
前記非特許文献1の資料によると、日本周辺の沖合の波力発電の適地における波パワーは、20 ~ 70 KW/m である。
As another power generation amount estimation method, there is a method of using actually measured statistical data of wave energy.
According to the material of Non-Patent Document 1, the wave power in the appropriate land for offshore wave power generation around Japan is 20 to 70 KW / m 2.

受流翼の直径 100mを波を受ける長さとし、発電効率を0.3としてこのエネルギーを吸収すると、発電量は 600 KW ~ 2,100 KWであり、上記の推定発電量と大差はない。   If the receiving blade has a diameter of 100m and is long enough to receive waves, and the power generation efficiency is 0.3 and this energy is absorbed, the power generation is 600 KW to 2,100 KW, which is not much different from the estimated power generation above.

図9は受流翼形状の他の実施例をしめしたものである。図において受流翼は帆布や弾性膜等で形成され、前縁91は固形材料で図4にしめすフレーム8に固定され、後縁92は波の運動を受けて変形し、図6に示したと同様な同一方向の推進力を受け、回転盤を回転させる。この実施例の受流翼の特徴は、材料コストが安いこと、厚さが薄いので水中を走行するときの抵抗が少ないことである。 FIG. 9 shows another embodiment of the receiving blade shape. In the figure, the receiving wing is formed of a canvas or an elastic membrane, the leading edge 91 is fixed to the frame 8 shown in FIG. 4 with a solid material, and the trailing edge 92 is deformed by wave motion, as shown in FIG. The same rotating force in the same direction is received and the turntable is rotated. The features of the receiving vane of this embodiment are that the material cost is low and the resistance when traveling underwater is small because the thickness is thin.

受流翼の形状、材料の選択は、海面の環境状況、システムの規模、予算等を考慮して決定される。 The shape of the receiving blade and the material selection are determined in consideration of the environmental condition of the sea surface, the scale of the system, the budget, and the like.

この受流翼を透明材料で作れば、太陽光は回転盤の下にも届き、光を遮ることによる海洋動植物への影響、環境、生態系への影響を抑えることもできる。 If this receiving wing is made of a transparent material, sunlight will reach the bottom of the rotating disk, and it is possible to suppress the effects on the marine animals and plants, the environment, and the ecosystem by blocking the light.

さらに受流翼の可変ピッチ構造としては、弾性材料を使わず波の運動を受けて前縁に位置する軸または蝶番を介して変形し、変形する際に軸に内蔵されたばねにより変形角度を弾性的に変化させる方法もある。   In addition, the variable pitch structure of the receiving blade is deformed via a shaft or hinge located at the leading edge by receiving wave motion without using an elastic material, and the deformation angle is elasticized by a spring built into the shaft when deforming. There is also a way to change it.

また弾性材料を使わずに、変形範囲に上限をもたせ、受流時のピッチ角を決める方法もある。   There is also a method of determining the pitch angle at the time of receiving without giving an upper limit to the deformation range without using an elastic material.

また垂直軸風力発電方式のように、走行する際に揚力を発生させる固定ピッチ型の受流翼を使用する方法、および可変ピッチ受流翼と固定ピッチ受流翼を組み合わせて使用する方法もある。固定ピッチ受流翼は回転起動時の推進力が弱いので、可変ピッチ受流翼と組み合わせることにより、回転盤の起動が円滑にすることができる。
In addition, there are a method using a fixed pitch type receiving blade that generates lift when traveling, and a method using a combination of a variable pitch receiving blade and a fixed pitch receiving blade, such as a vertical axis wind power generation method. . Since the fixed-pitch receiving blade has a weak propulsive force at the time of starting rotation, it can be smoothly started by combining it with the variable-pitch receiving blade.

図10は他の実施例を示したものである。図1にしめす実施例では各受流翼は同心円状の列で配置されているが、図10の実施例においては受流翼は放射状列で配置されている。この実施例の特徴は、各受流翼が列ごとに取り外しがやりやすく、運搬、建設、保守がやりやすいことである。 FIG. 10 shows another embodiment. In the embodiment shown in FIG. 1, the receiving blades are arranged in concentric rows, but in the embodiment of FIG. 10, the receiving blades are arranged in a radial row. The feature of this embodiment is that each receiving blade is easy to remove for each row, and easy to carry, construct and maintain.

図11は他の実施例の外観を示したものであり、各受流翼は水平方向ではなく、たがいに垂直である2つの受流翼グループ33,34として配置されている。図12はシステムの側面断面図を示したものであり、2つの受流翼グループ33,34がたがいに垂直であることを示している。 FIG. 11 shows the external appearance of another embodiment, and each receiving blade is arranged as two receiving blade groups 33 and 34 that are not horizontal but rather vertical. FIG. 12 shows a side cross-sectional view of the system, showing that the two receiving blade groups 33, 34 are perpendicular to each other.

図13は本実施例の回転盤の部分の拡大図をしめしたものである。
この受流翼の組み合わせにより、波の運動の垂直方向、水平方向の両方をとらえることができ、エネルギー吸収効率が上がる。ただし波や潮流の水平方向の運動を受けやすいので、全体の位置を固定する強度は大きくなければならない。
FIG. 13 shows an enlarged view of the rotating disk portion of this embodiment.
This combination of receiving vanes can capture both the vertical and horizontal directions of wave motion, increasing energy absorption efficiency. However, since it is easy to receive horizontal movement of waves and tidal currents, the strength to fix the whole position must be large.

波のエネルギーを効率よく吸収するためには、受流翼が波の動きの方向に押し流されないことが望ましい。図1の実施例においては回転盤が上下に動かないことが望ましい。回転盤が波とともに上下に動くと、波と回転盤の相対速度が減少し、発電効率は落ちる。 In order to efficiently absorb the wave energy, it is desirable that the receiving blade is not swept away in the direction of wave motion. In the embodiment of FIG. 1, it is desirable that the turntable does not move up and down. When the rotating disk moves up and down with the wave, the relative speed between the wave and the rotating disk decreases, and the power generation efficiency decreases.

図14は回転盤の上下の動きを抑えるための実施例である。波の動きは楕円形であるが、水面下のある深さでは波の動きは少なくなる。抵抗板21は波の動きが少なくなった深度に水面に平行に設置され、上下方向の動きに対しては抵抗をしめす。抵抗板21は回転盤の軸構造5のステーター52に固定されている。したがって回転盤11,12は波による上下の動きに対して抵抗を示し、上下の動きが抑えられる。これにより回転効率すなわち発電効率の低下が抑えられる。 FIG. 14 shows an embodiment for suppressing the vertical movement of the rotating disk. The wave motion is elliptical, but the wave motion is less at some depth below the surface of the water. The resistance plate 21 is installed in parallel to the water surface at a depth where the wave motion is reduced, and resists the vertical motion. The resistance plate 21 is fixed to the stator 52 of the shaft structure 5 of the rotating disk. Therefore, the turntables 11 and 12 exhibit resistance to up and down movement caused by waves, and the up and down movement is suppressed. This suppresses a decrease in rotational efficiency, that is, power generation efficiency.

図1の実施例のシステムは浮遊型であり、システムはアンカーにより海底に固定される。システムがアンカーが届かない程の深海上に設置される場合には、そのままでは風、潮流等により流される恐れがある。 The system of the embodiment of FIG. 1 is a floating type, and the system is fixed to the seabed by an anchor. If the system is installed on the deep sea where the anchor cannot reach, it may be swept away by wind, tidal current, etc.

図15はシステムが定位置にあるように制御される構造の外観を示す。図において直線推進盤13,14は図1と同様の受流翼を有し波浪により推進力を受ける。ただし受流翼は同じ方向に配置され直線推進盤は回転力ではなく直線方向の推進力を受ける。 FIG. 15 shows the appearance of a structure that is controlled so that the system is in place. In the figure, the linear propulsion boards 13 and 14 have the same receiving blade as in FIG. 1 and receive propulsive force by waves. However, the receiving vanes are arranged in the same direction, and the linear propulsion board receives the propulsive force in the linear direction, not the rotational force.

また直線推進盤13,14の方向はしかるべき制御システムにより任意の方向に回転させることができる。図16,17,18は推進盤の方向によりシステム全体が推進される様子を示している。 The directions of the linear propulsion boards 13 and 14 can be rotated in an arbitrary direction by an appropriate control system. FIGS. 16, 17 and 18 show how the entire system is propelled by the direction of the propulsion panel.

図16では2つの直線推進盤13,14の推進ベクトルは同じ方向であり、システム全体としては直線方向に推進力を受け移動する。 In FIG. 16, the propulsion vectors of the two linear propulsion boards 13 and 14 are in the same direction, and the entire system receives the propulsive force and moves in the linear direction.

図17では2つの直線推進盤の推進ベクトルを合成したものは回転方向であり、システムは回転モーメントを受けて回転する。 In FIG. 17, the composition of the propulsion vectors of the two linear propulsion boards is the rotational direction, and the system rotates in response to the rotational moment.

図18では2つの直線推進盤の推進ベクトルは互いにうち消されて推進力はない。
直線推進盤の方向はGPS等によりシステムの位置情報を検出して制御され、システムの位置はあるべき位置、角度に移動される。これによりアンカーを使わなくても定位置に固定される。
In FIG. 18, the propulsion vectors of the two linear propulsion boards are erased from each other and there is no propulsive force.
The direction of the linear propulsion board is controlled by detecting system position information by GPS or the like, and the system position is moved to a desired position and angle. As a result, it is fixed in place without using an anchor.

またシステムの設置時または保守、修理時等にシステムを製造、修理、点検施設のある場所からシステムの設置場所に移動させることもでき、設置、保守のコストを低減できる。
波浪が弱く十分に位置制御ができない場合は外部の電力または内部の電池によりスクリュー等を動かし位置制御を行う方法も可能である。上記の位置制御および移動を目的とする直線推進盤またはスクリュー等による推進機構を総称して推進モジュールと称する。
In addition, the system can be moved from the place where the system is manufactured, repaired and inspected at the time of system installation, maintenance or repair to the system installation location, thereby reducing the cost of installation and maintenance.
If the wave is weak and sufficient position control is not possible, a method of performing position control by moving a screw or the like by external electric power or an internal battery is also possible. A propulsion mechanism using a linear propulsion board or a screw for the purpose of position control and movement is generally referred to as a propulsion module.

本発明の波浪発電方式は、大型で効率が良くコストも安い波浪発電を実現でき、今後の自然エネルギーの利用およびそれに伴うCO2の削減、エネルギー資源偏在是正、新たな経済活動の創出等に大きな効果を発揮することができる。 The wave power generation method of the present invention can realize a large-scale, efficient and low-cost wave power generation, and has a great effect on the future use of natural energy, the accompanying reduction of CO2, correction of uneven distribution of energy resources, creation of new economic activities, etc. Can be demonstrated.

1 アンカー
2 支持構造
3 受流翼
5 軸構造
6 水面
7 海底
8 フレーム
11 回転盤
12 回転盤
13 直線推進盤
14 直線推進盤
21 抵抗板
31 固定部分
32 弾性部分
33 受流翼グループ
34 受流翼グループ
51 ローター
52 ステーター
91 前縁
92 後縁


DESCRIPTION OF SYMBOLS 1 Anchor 2 Support structure 3 Receiving blade 5 Shaft structure 6 Water surface 7 Seabed 8 Frame 11 Rotating disk 12 Rotating disk 13 Linear propulsion board 14 Linear propulsion board 21 Resistance plate 31 Fixed part 32 Elastic part 33 Receiving blade group 34 Receiving blade Group 51 Rotor 52 Stator 91 Front edge 92 Rear edge


Claims (6)

波浪の運動を受けて推進する半径方向および周方向に分割され同心円状に配置された複数の受流翼を装備し、該受流翼は対向する接続部分及び非接続部分を有し、全ての前記受流翼の前記接続部分及び前記非接続部分は、周方向の並びが揃うように回転盤に固定され、前記受流翼の推進力を受けて海面に沿って水平面で回転する前記回転盤を有し、該回転盤の運動により発電機またはポンプを駆動し発電することを特徴とする波浪発電方式。
Equipped with a plurality of receiving blades arranged concentrically in a radial direction and a circumferential direction, which are propelled by the movement of waves, the receiving blades having opposing connecting parts and non-connecting parts, The connecting part and the non-connecting part of the receiving blade are fixed to a rotating disk so that they are aligned in the circumferential direction, and receive the driving force of the receiving blade and rotate on a horizontal plane along the sea surface. A wave power generation system characterized in that the generator or pump is driven by the movement of the rotating disk to generate power.
互いに反対方向に回転する複数の回転盤の回転軸を支持構造により組み合わせて、各回転盤が反作用としてうける力のモーメントを相殺させることを特徴とする請求項1記載の波浪発電方式。 The wave power generation method according to claim 1, wherein the rotating shafts of a plurality of rotating disks rotating in opposite directions are combined by a support structure to cancel the moment of force that each rotating disk receives as a reaction. 互いに垂直方向に配置された複数の受流翼を装備することを特徴とする請求項1記載の波浪発電方式。 The wave power generation method according to claim 1, further comprising a plurality of receiving vanes arranged vertically to each other. 受流翼は固定部分と弾性部分により構成され、固定部分はフレームに固定され、弾性部分は固定部分と一体になっているが波浪運動を受けて変形し受流翼全体のピッチが受動的に変化することを特徴とする請求項1記載の波浪発電方式。 The receiving vane is composed of a fixed part and an elastic part. The fixed part is fixed to the frame, and the elastic part is integrated with the fixed part. The wave power generation method according to claim 1, wherein the wave power generation method is changed. 波の運動によりピッチが変化する受流翼またはピッチが固定された受流翼または両者の組み合わせを装備した回転盤を使用することを特徴とする請求項1記載の波浪発電方式。 2. The wave power generation system according to claim 1, wherein a rotating disk equipped with a receiving blade whose pitch is changed by wave motion, a receiving blade with a fixed pitch, or a combination of both is used. 直線方向または回転方向に推進力を持つ推進モジュールを有し、これの直線推進力および回転推進力を制御することにより位置制御、角度制御を行い、システムの位置を定位置に保つこと、あるいはシステムを製造場所または保守、修理基地から設置場所まで移動させることを特徴とする請求項1記載の波浪発電方式。 Having a propulsion module with propulsive force in the linear direction or rotational direction, and controlling the linear propulsive force and rotational propulsive force to perform position control and angle control to keep the system position at a fixed position, or system The wave power generation method according to claim 1, wherein the apparatus is moved from a manufacturing site or a maintenance / repair base to an installation location.
JP2009277105A 2009-12-05 2009-12-05 Wave power generation method Expired - Fee Related JP5190716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277105A JP5190716B2 (en) 2009-12-05 2009-12-05 Wave power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277105A JP5190716B2 (en) 2009-12-05 2009-12-05 Wave power generation method

Publications (3)

Publication Number Publication Date
JP2011117397A JP2011117397A (en) 2011-06-16
JP2011117397A5 JP2011117397A5 (en) 2012-06-28
JP5190716B2 true JP5190716B2 (en) 2013-04-24

Family

ID=44282998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277105A Expired - Fee Related JP5190716B2 (en) 2009-12-05 2009-12-05 Wave power generation method

Country Status (1)

Country Link
JP (1) JP5190716B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102011197B1 (en) * 2017-06-20 2019-08-14 최준서 Sonar for detecting submarines
JP2019190396A (en) * 2018-04-26 2019-10-31 株式会社Ihi Water current power generation system and method for changing depth of power generation pod
CN110118149B (en) * 2019-05-24 2020-09-08 自然资源部第二海洋研究所 Floating hydroenergy collector in ocean

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138168A (en) * 1984-07-30 1986-02-24 ハル ア−ル リンダ−フエルト Wave-energy introducing device
JPS6429674A (en) * 1987-07-23 1989-01-31 Shinwa Car Kk Wave power generating device
JP2678833B2 (en) * 1991-05-13 1997-11-19 順 井▲たに▼ Private power generator for floating objects on the water
JP2000320443A (en) * 1999-01-12 2000-11-21 Sozoan:Kk Motion conversion device

Also Published As

Publication number Publication date
JP2011117397A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
Qian et al. Review on configuration and control methods of tidal current turbines
Charlier et al. Ocean energies: environmental, economic and technological aspects of alternative power sources
US8362631B2 (en) Marine energy hybrid
US9670908B2 (en) Installation and method for exploiting wind energy
US9334849B2 (en) Floating tower frame for ocean current turbine system
CN101975133A (en) Turbine generating device capable of adjusting blade angle
US9777709B2 (en) Translating foil system for harvesting kinetic energy from wind and flowing water
JP2011138997A (en) Photovoltaic power generation device
CN102261302B (en) Wave energy power generation unit and system based on sea-surface wave layer and deep sea stable region
CA2618022A1 (en) Conversion of ocean wave energy into electrical power
CN104481780B (en) Shallow submergence floatation type band kuppe trunnion axis ocean current power-generating system
JP5190716B2 (en) Wave power generation method
CN102748201A (en) Pod type tidal generator set
WO2012164604A1 (en) Wave power generation method
JP2021533320A (en) Wind turbines, heat pumps, energy conservation, and heat transfer systems and methods
ES2802239T3 (en) Channeled wind turbine
Samad et al. Marine power technology—wave energy
KR101728307B1 (en) Multi rotor system of the variable angle control structure
TW201945640A (en) Floating vertical-axis wind turbine with twin turbines
CN210637184U (en) Single point mooring type horizontal shaft floating tidal current energy power generation device
CN113353203A (en) Self-propelled wave energy and tidal current energy comprehensive utilization platform and method
Shintake et al. Technical R&D on a surf zone WEC
CN201810468U (en) Multipurpose generator of wind power, water power, ocean waves and tides power
JP2013036365A (en) Ocean energy power generation system
JP6274694B2 (en) Water-lift rotary power generator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120530

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees