JP5190277B2 - Method for producing fine fibers of cellulose and chitin - Google Patents

Method for producing fine fibers of cellulose and chitin Download PDF

Info

Publication number
JP5190277B2
JP5190277B2 JP2008021108A JP2008021108A JP5190277B2 JP 5190277 B2 JP5190277 B2 JP 5190277B2 JP 2008021108 A JP2008021108 A JP 2008021108A JP 2008021108 A JP2008021108 A JP 2008021108A JP 5190277 B2 JP5190277 B2 JP 5190277B2
Authority
JP
Japan
Prior art keywords
cellulose
chitin
fine fibers
ionic liquid
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008021108A
Other languages
Japanese (ja)
Other versions
JP2009179913A (en
Inventor
日出樹 山口
蓮貞 林
厚志 水沢
留美 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2008021108A priority Critical patent/JP5190277B2/en
Publication of JP2009179913A publication Critical patent/JP2009179913A/en
Application granted granted Critical
Publication of JP5190277B2 publication Critical patent/JP5190277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paper (AREA)

Description

本発明は、特別な前処理を必要とせず簡単且つ効率的に高品質なセルロースまたはキチンの微細繊維を製造する方法に関するものである。本発明により得られるセルロースまたはキチン微細繊維は衣料、医用材料、複合材料などの分野に利用され得る。   The present invention relates to a method for producing high-quality cellulose or chitin fine fibers easily and efficiently without requiring any special pretreatment. The cellulose or chitin fine fibers obtained by the present invention can be used in the fields of clothing, medical materials, composite materials and the like.

化石資源の枯渇や地球温暖化問題などの資源・環境問題は21世紀における最も重大な問題である。これらの問題を解決するためには、環境にやさしくかつ豊富で永続可能な代替資源の確立が必要である。セルロースやキチンは地球上最も大量に存在し、しかも再生可能な有機資源である。   Resources and environmental problems such as fossil resource depletion and global warming are the most serious problems in the 21st century. In order to solve these problems, it is necessary to establish alternative resources that are environmentally friendly, abundant and durable. Cellulose and chitin are the most abundant and renewable organic resources on earth.

地球上にセルロースは、年間約4000億トンが合成され、最も豊富なバイオマスであることは周知されている。セルロースの大部分が樹木などの高等植物によって生産されるが、植物以外に微生物でもセルロースファイバーを生産するものがいる。植物セルロースは、生合成の過程でセルロース分子鎖が配向、集束し、 まずミクロフィブリルと呼ばれる非常に細い高結晶の繊維を形成する。このミクロフィブリルがさらに束になり、フィブリル、ラメラ、繊維細胞と段階的に高次構造を形成している。ミクロフィブリルは、その生成方法にもよるが、直径は通常数ナノメートルから数十ナノメートルである。長さは数百ナノメートルから数十ミクロンである。このミクロフィブリルを構成するセルロース分子鎖は、伸びきり鎖結晶となっていることにより、弾性率、強度、熱膨張係数などの特性はマグネシウム合金に匹敵すると共に、低い比重、高アスペクト、大きい表面積などの特徴を持つため樹脂の補強材として近年注目されている。また環境に優しい特性と再生資源の利用などの利点を生かしたこれまで以上の応用展開が大きく期待されている。   It is well known that about 400 billion tons of cellulose is synthesized on the earth every year and is the most abundant biomass. Most of the cellulose is produced by higher plants such as trees, but in addition to plants, there are also microorganisms that produce cellulose fibers. In plant cellulose, cellulose molecular chains are oriented and converged in the process of biosynthesis. First, very thin highly crystalline fibers called microfibrils are formed. These microfibrils are further bundled to form a higher-order structure in stages with fibrils, lamellae, and fiber cells. Microfibrils usually have a diameter of several nanometers to several tens of nanometers, depending on the production method. The length is several hundred nanometers to several tens of microns. Cellulose molecular chains that make up this microfibril are extended chain crystals, so properties such as elastic modulus, strength, and thermal expansion coefficient are comparable to magnesium alloys, while low specific gravity, high aspect, large surface area, etc. In recent years, it has attracted attention as a resin reinforcing material. In addition, there are great expectations for further application development that takes advantage of environmentally friendly characteristics and the use of recycled resources.

しかし、植物繊維の最も小さなミクロフィブリルから、フィブリル、ラメラへなどの植物の繊維細胞を階的に構成する微細繊維の間に、リグニン、ヘミセルロース、無定形セルロースがバインダとして微細繊維を強く結合しているので、微細繊維を分離、抽出することは非常に困難である。   However, lignin, hemicellulose, and amorphous cellulose strongly bind fine fibers as binders between the fine fibers that make up the plant fiber cells, such as fibrils and lamellae, from the smallest microfibrils of plant fibers. Therefore, it is very difficult to separate and extract fine fibers.

キチンは昆虫やエビ、カニなどの外殻に含まれる多糖類である。セルロースに次ぐ地球上年間約1000億トンが合成されている。更にキチンは生体内で分解され、良好な生体親和性を持ち、創傷治癒効果があるために医療分野で注目され、例えば止血剤、人工皮膚、人口骨、生体吸収性縫合糸などへ応用が期待されている。 抗菌性、消臭効果があるため繊維分野にも利用されている。   Chitin is a polysaccharide contained in the outer shells of insects, shrimps and crabs. About 100 billion tons are synthesized annually on earth after cellulose. Furthermore, chitin is decomposed in vivo, has good biocompatibility, and has wound healing effect, so it attracts attention in the medical field, and is expected to be applied to hemostatic agents, artificial skin, artificial bones, bioabsorbable sutures, etc. Has been. Because it has antibacterial and deodorizing effects, it is also used in the textile field.

一方、キチンはセルロースと同様に膨大な水素結合構造を持つので不溶不融な特性を示しており、応用展開は難しく、僅の量しか利用されていない。   On the other hand, chitin has an enormous hydrogen bond structure like cellulose, so it exhibits insoluble and infusible properties, and its application development is difficult, and only a small amount is used.

キチン微細繊維はセルロース微細繊維と同等な機械性能を有しながら、さらに前記の付加機能をもつため、その応用はセルロース以上に期待できる。   Since chitin fine fibers have the above-mentioned additional functions while having mechanical performance equivalent to that of cellulose fine fibers, the application can be expected more than cellulose.

セルロース微細繊維の製造について多くの提案がなされ実用化された例もある。従来法としでは、セルロース繊維原料を叩解処理やホモジナイズ処理などにより、繊維をフィブリル化させる方法がある(特許文献1、特許文献2)。しかし、繊維径の小さい微細繊維を得るためには、叩解処理を十分に行う必要があり、その結果繊維に大きなダメージを与え、得られた微細繊維の強度及びアスペクト比が低下してしまう。叩解処理を低減して繊維のダメージを抑えると、得られた繊維の繊維径が大きく、アスペクト比も小さいので良好な補強特性を有する微細繊維が得られない。   Many proposals have been made and put into practical use for the production of cellulose fine fibers. As a conventional method, there is a method of fibrillation of cellulose fiber raw material by beating treatment or homogenizing treatment (Patent Document 1, Patent Document 2). However, in order to obtain a fine fiber having a small fiber diameter, it is necessary to sufficiently perform the beating process. As a result, the fiber is greatly damaged, and the strength and aspect ratio of the obtained fine fiber are lowered. When the beating treatment is reduced to suppress fiber damage, the obtained fiber has a large fiber diameter and a small aspect ratio, and thus fine fibers having good reinforcing properties cannot be obtained.

また、従来法は生産効率が悪いという問題点もある。例えば、特許文献1の予備叩解方法はダブルディスクリファイナーで7 〜 1 5 回の処理を行うことを必要とした。さらに、特許文献2に提案されたように、予備叩解したパルプを砥石板のすり合わせにより微細繊維フィブリル化し、さらに高圧ホモジナイザー処理を行うと、超微細繊維フィブリル化セルロースが得られるが、相当な処理回数が必要となり、生産効率が低いという問題点がある。   In addition, the conventional method has a problem that the production efficiency is poor. For example, the preliminary beating method of Patent Document 1 requires 7 to 15 treatments with a double disc refiner. Further, as proposed in Patent Document 2, when the pre-beaten pulp is made into fine fiber fibrils by grinding with a grindstone plate and further subjected to high-pressure homogenizer treatment, ultrafine fiber fibrillated cellulose is obtained. There is a problem that production efficiency is low.

さらに、メディア撹拌式粉砕機で微細繊維状セルロースを得る方法も提案されている( 特許文献3) が、繊維状セルロースを懸濁液としたものを直接に粉砕機に投入して粉砕を行うため、上記叩解処理と同様に微細繊維にダメージを与える問題があると共に、微細繊維化に要する時間が非常に長く、生産性が低いという問題点がある。   Furthermore, a method for obtaining fine fibrous cellulose with a media agitation pulverizer has also been proposed (Patent Document 3). However, in order to perform pulverization by directly putting a fibrous cellulose suspension into a pulverizer. As with the above-described beating process, there are problems of damaging the fine fibers, and the time required for making the fine fibers is very long and the productivity is low.

また、塩酸溶液中、1 2 0 〜 1 3 0 ℃ で加水分解処理した後、中和、洗浄し、ディスクリファイナーで磨砕する工程を備えた方法も提案されている( 特許文献4) 。この方法は、酸処理により微細繊維を分離しやすくするので、より微細な繊維を得ることが出来る。しかし酸処理は微細繊維にダメージを与え、微細繊維の物性が低下する問題点がある。   Also proposed is a method comprising a step of hydrolyzing in a hydrochloric acid solution at 120 to 130 ° C., followed by neutralization, washing, and grinding with a disc refiner (Patent Document 4). Since this method makes it easy to separate fine fibers by acid treatment, finer fibers can be obtained. However, the acid treatment has a problem that the fine fibers are damaged and the physical properties of the fine fibers are lowered.

一方、天然キチン微細繊維(ミクロフィブリルキチン)の製造方法に関する技術提案はまだ少ない。
参考文献1ではキチンナノ繊維は市販キチンの非結晶相を繰り返し加水分解することによって除去することによって棒状のキチンナノ繊維が残ると報告している。この方法によると、90℃で数回の加水分解反応を繰り返すことが必要である。また、加水分解の際、酸を用いているので、キチンの分子構造が破壊される可能性もある。
特開2 0 0 0 − 1 7 5 9 2 号公報 特開平8 − 2 8 4 0 9 0 号公報 特開平6 − 2 1 2 5 8 7 号公報 特公昭6 2 − 3 0 2 2 0 号公報 Biomacromolecules 2007、8、252−257
On the other hand, there are still few technical proposals regarding a method for producing natural chitin fine fibers (microfibril chitin).
Reference 1 reports that chitin nanofibers remain as rod-like chitin nanofibers by removing the amorphous phase of commercially available chitin by repeated hydrolysis. According to this method, it is necessary to repeat the hydrolysis reaction several times at 90 ° C. In addition, since an acid is used in the hydrolysis, the molecular structure of chitin may be destroyed.
Japanese Patent Laid-Open No. 2 00 0-1 7 5 9 2 Japanese Laid-Open Patent Publication No. 8-284090 Japanese Patent Laid-Open No. 6-2 1 2 5 8 7 Japanese Examined Patent Publication No. 6 2-30 0 2 Biomacromolecules 2007, 8, 252-257

本発明は、前記従来の問題を解決するものであり、セルロースおよびキチンの微細繊維を簡単且つ効率よく、さらには少ないダメージで製造することができるようにするため、イオン液体を含有する溶媒を用いて木質パルプなどのセルロース系物質、キチン物質を膨潤または/及び部分溶解、解繊することを特徴とするセルロースまたはキチン微細繊維の製造方法を提供することを目的としている。   The present invention solves the above-mentioned conventional problems, and uses a solvent containing an ionic liquid in order to enable easy and efficient production of cellulose and chitin fine fibers with less damage. It is an object of the present invention to provide a method for producing cellulose or chitin fine fibers, which is characterized by swelling or / and partially dissolving and defibrating cellulose-based materials such as wood pulp and chitin materials.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、本発明の目的を達成し得る製造方法、すなわち特定のイオン液体を含む溶媒を用いてセルロースまたはキチンを膨潤及び/または部分溶解、解繊させることによってセルロース、キチン微細繊維の製造方法を見出すことができて本発明を完成させるに至った。     As a result of earnest research to solve the above problems, the present inventors have swelled cellulose and / or chitin using a production method that can achieve the object of the present invention, that is, a solvent containing a specific ionic liquid. By partially dissolving and defibrating, a method for producing cellulose and chitin fine fibers could be found and the present invention was completed.

この方法は、セルロースまたはキチン微細繊維を少ないダメージで効率よく製造する方法であって、化1の化学構造式で表させるイオン液体を含む溶媒を用いてセルロースまたはキチン繊維原料を膨潤または部分溶解、解繊させることによりセルロースまたはキチンの微細繊維を得るものである。   This method is a method for efficiently producing cellulose or chitin fine fibers with little damage, and the cellulose or chitin fiber raw material is swollen or partially dissolved using a solvent containing an ionic liquid represented by the chemical structural formula of Chemical Formula 1, A fine fiber of cellulose or chitin is obtained by defibration.

Figure 0005190277
式中、Rは炭素数1〜4のアルキル基であり、Rは炭素1〜4のアルキル基またはアリル基である。Xはハロゲン又は擬ハロゲンである。
Figure 0005190277
In the formula, R 1 is an alkyl group having 1 to 4 carbon atoms, and R 2 is an alkyl group having 1 to 4 carbon atoms or an allyl group. X is halogen or pseudohalogen.

ここで、セルロースまたはキチンを膨潤させることとは、セルロースまたはキチンを構成する微細繊維が若干弛緩し、外力により開裂し易い状態にあることを意味する。部分溶解とは、高い結晶性の微細繊維の間に結合剤として存在する物質を溶解することを意味する。これらの物質は、セルロース材料の場合はリグニン、ヘミセルロース及び非結晶のセルロース、キチンの場合は蛋白質、無機物、及び非結晶のキチンなどである。さらに解繊とはセルロースまたはキチンを構成する微細繊維の本来の配向状態から無秩序な状態に変化することを指す。   Here, swelling cellulose or chitin means that the fine fibers constituting cellulose or chitin are slightly relaxed and are easily cleaved by an external force. Partial dissolution means dissolving a substance present as a binder between highly crystalline fine fibers. These substances include lignin, hemicellulose and amorphous cellulose in the case of cellulosic materials, proteins, minerals, and amorphous chitin in the case of chitin. Further, defibration refers to a change from the original orientation state of the fine fibers constituting cellulose or chitin to a disordered state.

また、前記イオン液体を含有する溶媒は、イオン液体の重量含有率が20〜100%であることが好ましい。イオン液体の含有量をこの範囲で調整すると、溶媒のセルロースまたはキチンの微細繊維間への速やかな浸透、膨潤が起り、抽出効率と微細繊維へのダメージの低減を両立することが出来る。   Further, the solvent containing the ionic liquid preferably has a weight content of the ionic liquid of 20 to 100%. When the content of the ionic liquid is adjusted within this range, rapid penetration and swelling of the solvent cellulose or chitin between the fine fibers occurs, and both extraction efficiency and reduction of damage to the fine fibers can be achieved.

前記イオン液体を含有する溶媒に、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ジメチルスルフォキサイド、アセトニトリル、メタノール、エタノールの中から選ばれる少なくとも一つ以上の溶媒を含有することが好ましい。これらの成分の含有により、溶媒の浸透速度が向上すると共に、微細繊維のダメージは一層低減することが出来る。   The solvent containing the ionic liquid is at least one selected from N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, dimethyl sulfoxide, acetonitrile, methanol, and ethanol. It is preferable to contain the above solvent. By containing these components, the penetration rate of the solvent can be improved, and damage to the fine fibers can be further reduced.

また、イオン液体を含有する溶媒でセルロースまたはキチン原料を膨潤させてから、機械処理または超音波処理により更に解繊することが好ましい。イオン液体を含有する溶媒により膨潤処理を行なったセルロースまたはキチン原料は、微細繊維間の結合が弱くなっているため、外力の作用により微細繊維は容易に解繊される。   Further, it is preferable that the cellulose or chitin raw material is swollen with a solvent containing an ionic liquid and then further defibrated by mechanical treatment or ultrasonic treatment. Since the cellulose or chitin raw material that has been subjected to the swelling treatment with the solvent containing the ionic liquid has weak bonds between the fine fibers, the fine fibers are easily defibrated by the action of external force.

前記セルロース系繊維原料として木質パルプ、セルロース系繊維、または古紙再生パルプなどを用いることができる。   Wood pulp, cellulosic fiber, recycled paper recycled pulp, or the like can be used as the cellulose fiber raw material.

前記キチン原料は特に特に限定されることはなく、カニ、えび、昆虫などの殻やキノコなどの植物から得られるキチンが使用できる。   The chitin raw material is not particularly limited, and chitin obtained from plants such as crab, shrimp and insect shells and mushrooms can be used.

前記セルロース又はキチン微細繊維は不織布、フィルム、衣料、樹脂の補強材とすることが好ましい。     The cellulose or chitin fine fiber is preferably used as a non-woven fabric, film, clothing, or resin reinforcing material.

本発明では、特別な前処理を必要とせず木質セルロースおよびキチンなどの微細繊維を含む物質から効率よく高品質なセルロースまたはキチン微細繊維を製造することが出来る。本発明の製造方法により得られたセルロース、キチン微細繊維は優れた性能をもつ、不織布、フィルム、衣料、樹脂の補強材として利用できる。   In the present invention, high-quality cellulose or chitin fine fibers can be efficiently produced from a substance containing fine fibers such as woody cellulose and chitin without requiring any special pretreatment. The cellulose and chitin fine fibers obtained by the production method of the present invention can be used as a reinforcing material for nonwoven fabrics, films, clothing, and resins having excellent performance.

以下に本発明をさらに詳細に説明する。本発明では、化1の化学構造式で表させるイオン液体を含有する溶媒を用いて、微細繊維を含むセルロースまたはキチン原料を膨潤または部分溶解、解繊させることによりセルロースまたはキチンの微細繊維を製造する。   The present invention is described in further detail below. In the present invention, a cellulose or chitin fine fiber is produced by swelling or partially dissolving a cellulose or chitin raw material containing fine fibers using a solvent containing an ionic liquid represented by the chemical structural formula of Chemical Formula 1 To do.

Figure 0005190277
式中、Rは炭素数1〜4のアルキル基であり、Rは炭素1〜4のアルキル基またはアリル基である。Xはハロゲン又は擬ハロゲンである。
Figure 0005190277
In the formula, R 1 is an alkyl group having 1 to 4 carbon atoms, and R 2 is an alkyl group having 1 to 4 carbon atoms or an allyl group. X is halogen or pseudohalogen.

これらのイオン液体としては、例えば、塩化1−ブチル−3−メチルイミダゾリウム、臭化1−ブチル−3−メチルイミダゾリウム、塩化1−アリル−3−メチルイミダゾリウム、臭化1−アリル−3−メチルイミダゾリウム、臭化1−プロピル−3−メチルイミダゾリウムが挙げられる。イオン液体のみで繊維原料を処理することも出来るが、溶解力が高すぎで微細繊維まで溶解してしまう恐れがある場合、有機溶媒を添加して使用することが好ましい。添加する有機溶媒種はイオン液体との相溶性、セルロースまたはキチン材料との親和性、混合溶媒の溶解性、粘度などを考慮し適宜選択すればよいが、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ジメチルスルフォキサイド、アセトニトリル、メタノール、エタノールの内のいずれかの一つ以上を使用することが好ましい。これらの有機溶媒の共存によりイオン液体はセルロースまたはキチンの微細繊維間への浸透が促進され、またイオン液体による微細繊維の結晶構造の破壊を防ぐことが出来る。   Examples of these ionic liquids include 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-allyl-3-methylimidazolium chloride, and 1-allyl-3 bromide. -Methylimidazolium, 1-propyl-3-methylimidazolium bromide. Although the fiber raw material can be treated only with the ionic liquid, when the dissolving power is too high and there is a possibility that even fine fibers may be dissolved, it is preferable to add and use an organic solvent. The organic solvent species to be added may be appropriately selected in consideration of the compatibility with the ionic liquid, the affinity with the cellulose or chitin material, the solubility of the mixed solvent, the viscosity, etc., but N, N-dimethylacetamide, N, N It is preferable to use at least one of dimethylformamide, 1-methyl-2-pyrrolidone, dimethyl sulfoxide, acetonitrile, methanol, and ethanol. By the coexistence of these organic solvents, penetration of cellulose or chitin between fine fibers of the ionic liquid is promoted, and destruction of the crystal structure of the fine fibers by the ionic liquid can be prevented.

有機溶媒の添加量は求められる溶解力、溶解速度及び溶液粘度などに応じて適宜調整すればよい。しかし溶液中のイオン液体の含有量は重量比で20%未満の場合、膨潤・溶解能力は不十分となり十分な解繊が出来ない。イオン液体含有量は30%以上であることがより好ましい。   What is necessary is just to adjust the addition amount of an organic solvent suitably according to the dissolving power, melt | dissolution rate, solution viscosity, etc. which are calculated | required. However, when the content of the ionic liquid in the solution is less than 20% by weight, the ability to swell and dissolve becomes insufficient, and sufficient defibration cannot be performed. The ionic liquid content is more preferably 30% or more.

本発明に使用するセルロース繊維原料の種類は特に限定されることはない。使できる原料として木材/木粉、綿、麻、わらなど天然セルロース系原料、クラフトパルプ、サルファイトパルプなどの木材化学処理パルプ、セミケミカルパルプ、古紙またはその再生パルプなどが挙げられる。これらのうち、コスト面、品質面、地球環境面より、木材パルプが好ましい。   The kind of cellulose fiber raw material used for this invention is not specifically limited. Examples of usable raw materials include natural cellulosic raw materials such as wood / wood flour, cotton, hemp, and straw, chemically treated pulp such as kraft pulp and sulfite pulp, semi-chemical pulp, waste paper, and recycled pulp thereof. Among these, wood pulp is preferable from the viewpoint of cost, quality, and global environment.

前記キチン繊維原料は天然キチンや再生キチンとも使用できる、出処源は特に限定されることがない。例えば、カニ、えび、昆虫などの殻やキノコなどの植物から得られるキチンを挙げられることができる。   The chitin fiber raw material can be used with natural chitin or regenerated chitin, and the source is not particularly limited. For example, there can be mentioned chitin obtained from plants such as crab, shrimp and insect shells and mushrooms.

使用するセルロースまたはキチン原料の形状は特に限定するものではないが、処理の容易さ及び溶媒の浸透促進の目的から、適宜粉砕してから使用してもちいるのがよい。   The shape of the cellulose or chitin raw material to be used is not particularly limited, but it may be used after being appropriately pulverized for the purpose of ease of treatment and promotion of solvent penetration.

上記のイオン液体を含有する溶媒を用いて本発明の微細繊維状セルロースまたはキチンを製造する方法としては、特に限定することではなく、公知な処理方法及び装置を使用することが出来る。例えば、セルロースまたはキチン原料をイオン液体含有の溶液に分散させ、静置または攪拌下で原料を膨潤または部分溶解させた後、ホモジナイズ処理、超音波処理などによりさらに解繊を行なう。   The method for producing the fine fibrous cellulose or chitin of the present invention using the solvent containing the ionic liquid is not particularly limited, and a known processing method and apparatus can be used. For example, a cellulose or chitin raw material is dispersed in a solution containing an ionic liquid, and the raw material is swollen or partially dissolved under standing or stirring, and then further defibrated by homogenization treatment, ultrasonic treatment, or the like.

処理液に対する繊維材料の添加量は、0.5〜30重量%の範囲にあることが好ましい。0.5重量%より低くなると経済的な効率が低く好ましくない。30重量%より高くなると繊維の解繊度の均一性が劣るため好ましくない。より好ましくは繊維濃度が1.0〜20重量%である。   The amount of the fiber material added to the treatment liquid is preferably in the range of 0.5 to 30% by weight. If it is lower than 0.5% by weight, the economical efficiency is low, which is not preferable. If it is higher than 30% by weight, the uniformity of fiber defibration is inferior, which is not preferable. More preferably, the fiber concentration is 1.0 to 20% by weight.

処理温度は特に限定するものではなく、繊維材料を膨潤し微細繊維間の結合物を軟化・溶解できるための適切な温度を選択すればよいが、通常は20〜120℃がよい。20℃以下であると処理速度が低いと共に処理液の粘度が高いため、解繊効果が低くなる。120℃以上であると微細繊維まで溶解してしまい、微細繊維にダメージを与えると共に微細繊維の収率は低くなる傾向がある。   The treatment temperature is not particularly limited, and an appropriate temperature for swelling the fiber material and softening / dissolving the bonded material between the fine fibers may be selected, but it is usually 20 to 120 ° C. When the temperature is 20 ° C. or lower, the treatment speed is low and the viscosity of the treatment liquid is high, so that the defibrating effect is low. If it is 120 ° C. or higher, the fine fibers are dissolved, and the fine fibers are damaged and the yield of the fine fibers tends to be low.

上記イオン液体を含有する溶液の処理後、解繊をさらに促進するための機械または超音波処理を行なうことが好ましい。方法としては機械せん断、粉砕や研磨、ホモジナイズ、または超音波処理などが挙げられる。   After the treatment of the solution containing the ionic liquid, it is preferable to perform a machine or ultrasonic treatment for further promoting defibration. Examples of the method include mechanical shearing, pulverization and polishing, homogenization, and ultrasonic treatment.

前記解繊されたセルロースやキチン分散液を遠心分離機や濾過により微細繊維とイオン液体を含む溶媒と分離してから、微細繊維を洗浄する。微細繊維を洗浄するための溶剤はイオン液体を含む溶媒を抽出し得る溶剤であれば特に限定されることがないが、低コストや安全の面から考えると、水やアルコールが好ましい。   The fibrillated cellulose or chitin dispersion is separated from the solvent containing fine fibers and ionic liquid by a centrifugal separator or filtration, and then the fine fibers are washed. The solvent for washing the fine fibers is not particularly limited as long as it is a solvent that can extract a solvent containing an ionic liquid, but water and alcohol are preferable from the viewpoint of low cost and safety.

以下は実施例にもとづいて本発明を詳細に説明するが、本発明はこれらのみに限定されるものではない。本発明ではセルロースまたはキチンの解繊を促進するためにドイツ製のUltra-Turrax T25 Basicホモジナイザーを用いた。回転速度は13000rpmである。
実施例1
ADVANTECのFilterPaper NO.5Bをハサミで3mm角に切断したもの2gを200mlのビーカに入れ、それにN,N−ジメチルホルムアミド75mlとイオン液体塩化1−ブチル−3−メチルイミダゾリウム50gを加え、60℃で磁性攪拌により一定な時間で膨潤、解繊させた後、Ultra-Turraxホモジナイザーをもちいて13000rpmで5分間攪拌を行なった。得られた繊維分散液を光学顕微鏡で観察をした。処理前の繊維の形態を見られなくなった時点を解繊時間とする。得られた写真観察結果や解繊時間は図1、表1にそれぞれ示す。
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto. In the present invention, an Ultra-Turrax T25 Basic homogenizer made in Germany was used in order to promote fibrillation of cellulose or chitin. The rotation speed is 13000 rpm.
Example 1
ADVANTEC's FilterPaper NO. 2B obtained by cutting 5B into 3mm squares with scissors is placed in a 200ml beaker, 75ml of N, N-dimethylformamide and 50g of ionic liquid 1-butyl-3-methylimidazolium chloride are added, and constant at 60 ° C by magnetic stirring After swelling and defibrating in a short time, the mixture was stirred at 13000 rpm for 5 minutes using an Ultra-Turrax homogenizer. The obtained fiber dispersion was observed with an optical microscope. The time when the form of the fiber before the treatment can no longer be seen is defined as the defibration time. The obtained photograph observation results and defibration time are shown in FIG. 1 and Table 1, respectively.

前記セルロース微細繊維のイオン液体分散液を遠心分離によってイオン液体を抽出し、さらにメタノールを用いて洗浄した。洗浄したセルロース微細繊維を蒸留水に分散させ、光学顕微鏡で観察した。結果は図2に示す。
実施例2
N,N−ジメチルホルムアミド100mLを用いた以外は実施1と同様に実施した。結果は表1に示す。
実施例3
N,N−ジメチルホルムアミドの代わりにN,N−ジメチルアセトアミドを用いた以外は実施2と同様に実施した。結果は表1に示す。
実施例4
N,N−ジメチルホルムアミドの代わりに1−メチル−2−ピロリドンを用いた以外は実施1と同様に実施した。結果は表1に示す。
実施例5
セルロース濾紙5Bの代わりに溶解パルプを用いた以外は実施例1と同様に実施した。結果は表1と図3に示す。
実施例6
セルロース濾紙5Bの変わりに市販されるキチン(ナカライテスク(株)製)を用いた以外は実施例1と同様に実施した。結果は(表1)と図4に示す。
実施例7
N,N−ジメチルホルムアミドの代わりにジメチルスルフォキサイドを用いた以外は実施1と同様に実施した。結果は表1に示す。解繊時間は実施例1とほぼ同等である。
比較例1
細かく切ったセルロース濾紙5B、2gを100gのアミド系溶剤に加え、それを実施例1と同様な方法と時間で攪拌させた後光学顕微鏡で観察した。繊維の形はほぼ変化しなかった。結果は図5に示す。
An ionic liquid was extracted from the ionic liquid dispersion of cellulose fine fibers by centrifugation, and further washed with methanol. The washed cellulose fine fibers were dispersed in distilled water and observed with an optical microscope. The results are shown in FIG.
Example 2
The same procedure as in Example 1 was performed except that 100 mL of N, N-dimethylformamide was used. The results are shown in Table 1.
Example 3
The same procedure as in Example 2 was performed except that N, N-dimethylacetamide was used instead of N, N-dimethylformamide. The results are shown in Table 1.
Example 4
The same procedure as in Example 1 was performed except that 1-methyl-2-pyrrolidone was used instead of N, N-dimethylformamide. The results are shown in Table 1.
Example 5
The same procedure as in Example 1 was performed except that dissolved pulp was used instead of cellulose filter paper 5B. The results are shown in Table 1 and FIG.
Example 6
It implemented like Example 1 except having used chitin (Nacalai Tesque Co., Ltd. product) marketed instead of cellulose filter paper 5B. The results are shown in (Table 1) and FIG.
Example 7
The same procedure as in Example 1 was performed except that dimethyl sulfoxide was used instead of N, N-dimethylformamide. The results are shown in Table 1. The defibration time is almost the same as in Example 1.
Comparative Example 1
The finely cut cellulose filter paper 5B and 2 g were added to 100 g of an amide solvent, which was stirred with the same method and time as in Example 1 and then observed with an optical microscope. The fiber shape remained almost unchanged. The results are shown in FIG.

Figure 0005190277
表1から本発明によりセルロースやキチンは短時間内で解繊されることが分った。
Figure 0005190277
From Table 1, it was found that cellulose and chitin were defibrated within a short time according to the present invention.

本発明は、特別な前処理を必要とせず木質セルロースおよびキチンなどの微細繊維を含む物質から効率よく高品質なセルロースまたはキチン微細繊維を製造することが出来る。本発明の製造方法により得られたセルロース、キチン微細繊維は医用材料、衣料、不織布、フィルム、樹脂の補強材として利用できる。さらに、キチン不織布は医療分野における創傷被覆保護材等に好適である。   The present invention can efficiently produce high-quality cellulose or chitin fine fibers from a substance containing fine fibers such as woody cellulose and chitin without requiring any special pretreatment. The cellulose and chitin fine fibers obtained by the production method of the present invention can be used as a reinforcing material for medical materials, clothing, nonwoven fabrics, films and resins. Furthermore, chitin nonwoven fabrics are suitable for wound covering protective materials in the medical field.

実施例1で得られたセルロース微細繊維の形態を示す光学顕微鏡写真。The optical microscope photograph which shows the form of the cellulose fine fiber obtained in Example 1. FIG. 実施例1で得られたセルロース微細繊維の洗浄後の形態を示す光学顕微鏡写真。The optical microscope photograph which shows the form after washing | cleaning of the cellulose fine fiber obtained in Example 1. FIG. 実施例5で得られたセルロース微細繊維の形態を示す光学顕微鏡写真。The optical microscope photograph which shows the form of the cellulose fine fiber obtained in Example 5. FIG. 実施例6で得られたキチン微細繊維の形態を示す光学顕微鏡写真。The optical microscope photograph which shows the form of the chitin fine fiber obtained in Example 6. FIG. 比較例1でのセルロース繊維の光学顕微鏡写真。The optical microscope photograph of the cellulose fiber in the comparative example 1.

Claims (2)

微細繊維を含有するセルロースまたはキチン原料からイオン液体を含有する溶媒を用いて微細繊維を製造する方法であって、
塩化1−ブチル−3−メチルイミダゾリウム、臭化1−ブチル−3−メチルイミダゾリウム、塩化1−アリル−3−メチルイミダゾリウム、臭化1−アリル−3−メチルイミダゾリウム及び臭化1−プロピル−3−メチルイミダゾリウムの中から選ばれた少なくとも一つ以上のイオン液体を含有する溶媒として、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ジメチルスルフォキサイド、アセトニトリル、メタノール、エタノールの中から選ばれた少なくとも一つ以上の溶媒を含有する溶媒を用いて、前記溶媒に対してセルロースまたはキチン原料を、0.5〜30重量%の範囲で添加して、処理温度20〜120℃でもってセルロースまたはキチン原料を膨潤及び/または部分溶解、解繊させ、セルロースまたはキチンを構成する微細繊維を分離、抽出することを特徴とする微細繊維の製造方法。
A method for producing fine fibers from a cellulose or chitin raw material containing fine fibers using a solvent containing an ionic liquid ,
1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-allyl-3-methylimidazolium chloride, 1-allyl-3-methylimidazolium bromide and 1-butyl bromide As a solvent containing at least one ionic liquid selected from propyl-3-methylimidazolium , N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, dimethylsulfate Using a solvent containing at least one solvent selected from foxside, acetonitrile, methanol, and ethanol , the cellulose or chitin raw material is used in the range of 0.5 to 30% by weight based on the solvent. was added, the treatment temperature 20 to 120 ° C. in having to cellulose or swelling and / or partially dissolve the chitin raw material, is defibrated Separating the fine fiber forming the cellulose or chitin, extraction method for producing fine fibers, which comprises.
前記イオン液体を含有する溶媒でセルロースまたはキチン原料を膨潤及び/または部分溶解させてから、機械処理または超音波処理により更に解繊することを特徴とする請求項1に記載の微細繊維の製造方法。
The method for producing fine fibers according to claim 1, wherein the cellulose or chitin raw material is swollen and / or partially dissolved in the solvent containing the ionic liquid and then further defibrated by mechanical treatment or ultrasonic treatment. .
JP2008021108A 2008-01-31 2008-01-31 Method for producing fine fibers of cellulose and chitin Expired - Fee Related JP5190277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021108A JP5190277B2 (en) 2008-01-31 2008-01-31 Method for producing fine fibers of cellulose and chitin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021108A JP5190277B2 (en) 2008-01-31 2008-01-31 Method for producing fine fibers of cellulose and chitin

Publications (2)

Publication Number Publication Date
JP2009179913A JP2009179913A (en) 2009-08-13
JP5190277B2 true JP5190277B2 (en) 2013-04-24

Family

ID=41034104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021108A Expired - Fee Related JP5190277B2 (en) 2008-01-31 2008-01-31 Method for producing fine fibers of cellulose and chitin

Country Status (1)

Country Link
JP (1) JP5190277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104768A (en) * 2008-10-02 2010-05-13 Kri Inc Polysaccharide nanofiber, method for manufacturing the same, and ionic liquid solution and composite material containing polysaccharide nanofiber

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167237A (en) * 2010-02-16 2011-09-01 Kanazawa Inst Of Technology Bio-applicable material
JP5677754B2 (en) * 2010-03-05 2015-02-25 オリンパス株式会社 Cellulose nanofiber and method for producing the same, composite resin composition, molded article
FI20105272A (en) * 2010-03-18 2011-09-19 Univ Helsinki Method for fibrillation of lignocellulosic material, fibers and their use
JP5874993B2 (en) * 2010-10-20 2016-03-02 国立大学法人金沢大学 Biotreatment method for biomass
JP5851418B2 (en) * 2010-11-30 2016-02-03 株式会社ブリヂストン Method for producing purified cellulose fiber, method for producing fiber-rubber composite, and method for producing tire
US8431319B2 (en) * 2011-03-22 2013-04-30 Xerox Corporation Toner wash comprising ionic liquid
JP2013044076A (en) * 2011-08-26 2013-03-04 Olympus Corp Cellulose nanofiber, method for producing the same, composite resin composition and molded body
JP2014074145A (en) * 2012-10-05 2014-04-24 Olympus Corp Cellulose nanofiber and method for producing the same, composite resin composition, and molded article
CN103388272B (en) * 2013-07-31 2015-10-28 东北林业大学 A kind of preparation method of ionic liquid plasticizing lignocellulosic material
CN108457111A (en) * 2018-03-05 2018-08-28 安徽工业大学 A kind of method of liquid nitrogen coupling ammonia explosion preprocessing biomass
JP7015201B2 (en) * 2018-03-29 2022-02-02 大阪瓦斯株式会社 Modified chitin nanofibers and their manufacturing methods
CN114737277A (en) * 2021-01-07 2022-07-12 洛阳常龙新材料科技有限公司 Glue making method for dissolving chitin and vinylon fibers by using ionic liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105882A (en) * 2000-09-25 2002-04-10 Rengo Co Ltd Method for producing cellulosic single fiber by fibrillation
US6824599B2 (en) * 2001-10-03 2004-11-30 The University Of Alabama Dissolution and processing of cellulose using ionic liquids
US20100151527A1 (en) * 2007-03-30 2010-06-17 Takashi Endo Fine fibrous cellulosic material and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104768A (en) * 2008-10-02 2010-05-13 Kri Inc Polysaccharide nanofiber, method for manufacturing the same, and ionic liquid solution and composite material containing polysaccharide nanofiber

Also Published As

Publication number Publication date
JP2009179913A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5190277B2 (en) Method for producing fine fibers of cellulose and chitin
Dilamian et al. A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw
JP5676860B2 (en) Polysaccharide nanofibers and production method thereof, ionic liquid solution containing polysaccharide nanofibers and composite material
Rajinipriya et al. Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review
Liu et al. Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization
Mtibe et al. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres
Chirayil et al. REVIEW OF RECENT RESEARCH IN NANO CELLULOSE PREPARATION FROM DIFFERENT LIGNOCELLULOSIC FIBERS.
Goh et al. Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation
Khoo et al. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review
Nawawi et al. Nanomaterials derived from fungal sources—is it the new hype?
Chowdhury et al. Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process
Jonoobi et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review
Rebouillat et al. State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications
JP5500842B2 (en) Method for producing cellulose nanofiber
Abraham et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach
US9469696B2 (en) Method for processing nanofibrillar cellulose and product obtained by the method
JP6454427B2 (en) Modified cellulose fine fiber and method for producing the same
Wicaksono et al. Cellulose nanofibers from cassava bagasse: Characterization and application on tapioca-film
Agate et al. Innovating generation of nanocellulose from industrial hemp by dual asymmetric centrifugation
Asem et al. Entangled cellulose nanofibers produced from sugarcane bagasse via alkaline treatment, mild acid hydrolysis assisted with ultrasonication
Wang et al. Preparation of nanocellulose with high-pressure homogenization from pretreated biomass with cooking with active oxygen and solid alkali
Uddin et al. Preparing Bombyx mori silk nanofibers using a sustainable and scalable approach
JP2009108426A (en) Method for producing starch fiber
JP2017190437A (en) Modified cellulose fine fiber and manufacturing method therefor
US20200339783A1 (en) Filaments of microfibrillated cellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5190277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees