JP5189547B2 - Carbon fiber bundle and carbon fiber reinforced composite material - Google Patents

Carbon fiber bundle and carbon fiber reinforced composite material Download PDF

Info

Publication number
JP5189547B2
JP5189547B2 JP2009100935A JP2009100935A JP5189547B2 JP 5189547 B2 JP5189547 B2 JP 5189547B2 JP 2009100935 A JP2009100935 A JP 2009100935A JP 2009100935 A JP2009100935 A JP 2009100935A JP 5189547 B2 JP5189547 B2 JP 5189547B2
Authority
JP
Japan
Prior art keywords
carbon fiber
epoxy resin
sizing agent
sizing
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009100935A
Other languages
Japanese (ja)
Other versions
JP2010248664A (en
Inventor
渡辺  賢一
巧己 若林
一城 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009100935A priority Critical patent/JP5189547B2/en
Publication of JP2010248664A publication Critical patent/JP2010248664A/en
Application granted granted Critical
Publication of JP5189547B2 publication Critical patent/JP5189547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は、炭素繊維用サイジング剤、炭素繊維束及び炭素繊維強化複合材料に関する。   The present invention relates to a sizing agent for carbon fiber, a carbon fiber bundle, and a carbon fiber reinforced composite material.

繊維強化複合材料の一つに、炭素繊維からなる強化材とマトリクス樹脂とにより形成される炭素繊維強化複合材料がある。該炭素繊維強化複合材料の製造方法としては、マトリクス樹脂を薄く塗布した離型紙上に、炭素繊維を一方向に並べて配置したり、製織した炭素繊維を配置したりすることによって樹脂を含浸させるプリプレグ法、マトリクス樹脂浴中に炭素繊維を浸しながら通過させるディッピング法等が挙げられる。炭素繊維強化複合材料の多くは、プリプレグ法により製造されたものである。   One of the fiber reinforced composite materials is a carbon fiber reinforced composite material formed of a reinforcing material made of carbon fiber and a matrix resin. As a method for producing the carbon fiber reinforced composite material, a prepreg impregnated with resin by arranging carbon fibers in one direction or arranging woven carbon fibers on a release paper coated with a thin matrix resin. And a dipping method in which carbon fibers are passed while being immersed in a matrix resin bath. Many of the carbon fiber reinforced composite materials are manufactured by a prepreg method.

マトリクス樹脂としては、エポキシ樹脂や、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の種々の樹脂が使用されており、なかでもエポキシ樹脂が広く使用されている。
一方、炭素繊維は、再生セルロース、ポリアクリロニトリル、ピッチ等を出発原料として製造することができ、その化学組成の約90%以上が炭素からなる繊維が使用されている。このような炭素繊維は、例えば高強度炭素繊維や高弾性炭素繊維等に区分される。また、該炭素繊維は、軽量で、比強度及び比弾性率に優れており、しかも耐熱性、耐薬品性にも優れていることから、広範囲にわたる用途の炭素繊維強化複合材料に使用されている。
As the matrix resin, various resins such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, and a phenol resin are used, and among them, an epoxy resin is widely used.
On the other hand, carbon fibers can be produced using regenerated cellulose, polyacrylonitrile, pitch or the like as starting materials, and fibers in which about 90% or more of the chemical composition is made of carbon are used. Such carbon fibers are classified into, for example, high-strength carbon fibers and high-elasticity carbon fibers. In addition, the carbon fiber is lightweight, excellent in specific strength and specific modulus, and also excellent in heat resistance and chemical resistance, so it is used in a wide range of carbon fiber reinforced composite materials. .

炭素繊維を強化材とする炭素繊維強化複合材料は、軽量でかつ強度及び弾性率等に優れているため、スポーツ・レジャー用品の構成部品や、車輌・航空宇宙用機材、エネルギー・土木建築用の産業資材等の材料として幅広い分野にわたって用途開発が進められている。そのため、強化材としての炭素繊維に対する高性能化の要望は非常に強い。特に、車輌・航空宇宙用途における構造材料や産業資材として適用される炭素繊維では、高強度化・高弾性率化を目的とする開発が進められている。このような構造材料や産業資材の用途の炭素繊維強化複合材料には、その繊維長手方向に沿った引張強度を高いレベルで保有することが求められる。   Carbon fiber reinforced composite materials using carbon fiber as a reinforcing material are lightweight and have excellent strength and elastic modulus. Therefore, they are used for components for sports and leisure products, vehicles and aerospace equipment, energy and civil engineering buildings. Applications are being developed over a wide range of fields as industrial materials. Therefore, there is a strong demand for high performance of carbon fibers as a reinforcing material. In particular, carbon fibers used as structural materials and industrial materials in vehicles and aerospace applications are being developed for the purpose of increasing the strength and increasing the elastic modulus. Carbon fiber reinforced composite materials for use in such structural materials and industrial materials are required to have a high level of tensile strength along the fiber longitudinal direction.

一方、炭素繊維は、それ自体は伸度が小さくかつ脆い性質を有するため、機械的摩擦等によって毛羽が発生しやすい。そのため、毛羽の発生抑制等を目的として、炭素繊維強化複合材料の製造工程において、炭素繊維にサイジング処理が施される。サイジング処理によって炭素繊維に集束性を付与することにより、炭素繊維の毛羽の発生を抑えることが可能となる。
また、以下に示すように、炭素繊維の集束性を向上させる機能以外に、炭素繊維の繊維長手方向の引張強度を向上させる機能を付与したサイジング剤によりサイジング処理する方法が示されている。
ダイマー酸型エポキシ樹脂を含有するサイジング剤によりサイジング処理する方法(特許文献1)。
脂肪族エポキシ化合物からなるサイジング剤によりサイジング処理する方法(特許文献2)。
ビフェニル骨格を有するエポキシ樹脂を含むサイジング剤によりサイジング処理する方法(特許文献3)。
On the other hand, since carbon fiber itself has a low elongation and a brittle nature, fluff is likely to occur due to mechanical friction or the like. Therefore, sizing treatment is performed on the carbon fiber in the manufacturing process of the carbon fiber reinforced composite material for the purpose of suppressing the generation of fuzz. By imparting bundling properties to the carbon fiber by sizing treatment, it becomes possible to suppress the occurrence of fluff of the carbon fiber.
Further, as shown below, a method of performing sizing treatment with a sizing agent imparted with a function of improving the tensile strength in the fiber longitudinal direction of the carbon fiber in addition to the function of improving the converging property of the carbon fiber is shown.
A method of sizing with a sizing agent containing a dimer acid type epoxy resin (Patent Document 1).
A method of sizing with a sizing agent comprising an aliphatic epoxy compound (Patent Document 2).
A method of sizing treatment with a sizing agent containing an epoxy resin having a biphenyl skeleton (Patent Document 3).

特開2004−149721号公報JP 2004-149721 A 特開平7−279040号公報JP-A-7-279040 特開2007−100250号公報JP 2007-100250 A

特許文献1〜3のサイジング剤による処理方法によれば、炭素繊維強化複合材料の繊維長手方向に沿った引張強度を向上させることができる。
しかし、これらの処理方法に用いられるサイジング剤は、用途によっては該引張強度を向上させる効果が充分でない場合がある。また、その効果を向上させるためにサイジング剤の量を増加させると、処理後の炭素繊維が硬くなりすぎて取り扱い性が低下する。特に車輌・航空宇宙用途における構造材料や産業資材等に用いる炭素繊維強化複合材料においては、その繊維長手方向に沿った引張強度が優れていることが求められているため、サイジング剤による該引張強度の向上効果をさらに向上させることが望まれている。
According to the treatment method using the sizing agent in Patent Documents 1 to 3, the tensile strength along the fiber longitudinal direction of the carbon fiber reinforced composite material can be improved.
However, the sizing agent used in these treatment methods may not have sufficient effect of improving the tensile strength depending on the application. Moreover, when the amount of the sizing agent is increased in order to improve the effect, the treated carbon fiber becomes too hard and the handleability is lowered. In particular, carbon fiber reinforced composite materials used for structural materials and industrial materials in vehicles and aerospace applications are required to have excellent tensile strength along the longitudinal direction of the fiber. It is desired to further improve the improvement effect.

本発明は、繊維長手方向に沿った引張強度に優れた炭素繊維強化複合材料を与える、取り扱い性に優れた炭素繊維束を製造できる炭素繊維用サイジング剤、該サイジング剤を用いて得られる炭素繊維束、及び該炭素繊維束を用いた炭素繊維強化複合材料の提供を目的とする。   The present invention provides a carbon fiber sizing agent capable of producing a carbon fiber bundle excellent in handleability, which gives a carbon fiber reinforced composite material excellent in tensile strength along the fiber longitudinal direction, and a carbon fiber obtained using the sizing agent An object is to provide a bundle and a carbon fiber reinforced composite material using the carbon fiber bundle.

本発明は、前記課題を達成するために以下の構成を採用した。
[1]ダイマー酸型エポキシ樹脂(A)と、水酸基を有するエポキシ樹脂の重合体の水酸基にアルコキシシラン化合物を導入したエポキシ樹脂(B)とを含む炭素繊維用サイジング剤を、付着率が0.05〜5.0質量%となるように炭素繊維に付着してなる炭素繊維束
[2]前記炭素繊維用サイジング剤が、さらに乳化剤を含み、前記炭素繊維用サイジング剤中の前記エポキシ樹脂(A)の含有量が20〜70質量%であり、前記エポキシ樹脂(B)の含有量が20〜70質量%であり、前記乳化剤の含有量が10〜30質量%である、前記[1]に記載の炭素繊維束。
]前記[又は[2]に記載の炭素繊維束を用いてなる炭素繊維強化複合材料。
The present invention employs the following configuration in order to achieve the above-described problems.
[1] A carbon fiber sizing agent containing a dimer acid type epoxy resin (A) and an epoxy resin (B) in which an alkoxysilane compound is introduced into a hydroxyl group of a polymer of an epoxy resin having a hydroxyl group, has an adhesion rate of 0. The carbon fiber bundle formed by adhering to the carbon fiber so that it may become 05-5.0 mass% .
[2] The carbon fiber sizing agent further contains an emulsifier, the content of the epoxy resin (A) in the carbon fiber sizing agent is 20 to 70% by mass, and the content of the epoxy resin (B) the amount is 20 to 70 wt%, the content of the emulsifier is 10 to 30 wt%, the carbon fiber bundle according to [1].
[ 3 ] A carbon fiber reinforced composite material using the carbon fiber bundle according to [ 1 ] or [2] .

本発明の炭素繊維用サイジング剤を用いることにより、繊維長手方向に沿った引張強度に優れた炭素繊維強化複合材料を与える、取り扱い性に優れた炭素繊維束を得ることができる。
また、本発明の炭素繊維束は取り扱い性に優れており、該炭素繊維束を用いることにより繊維長手方向に沿った引張強度に優れた炭素繊維強化複合材料を得ることができる。
また、本発明の炭素繊維強化複合材料は、繊維長手方向に沿った引張強度に優れている。
By using the sizing agent for carbon fiber of the present invention, a carbon fiber bundle excellent in handleability which gives a carbon fiber reinforced composite material excellent in tensile strength along the fiber longitudinal direction can be obtained.
Moreover, the carbon fiber bundle of the present invention is excellent in handleability, and a carbon fiber reinforced composite material having excellent tensile strength along the fiber longitudinal direction can be obtained by using the carbon fiber bundle.
Moreover, the carbon fiber reinforced composite material of the present invention is excellent in tensile strength along the fiber longitudinal direction.

[炭素繊維用サイジング剤]
本発明の炭素繊維用サイジング剤(以下、「本サイジング剤」という。)は、ダイマー酸型エポキシ樹脂(A)(以下、「エポキシ樹脂(A)」という。)と、水酸基を有するエポキシ樹脂の重合体の水酸基にアルコキシシラン化合物を導入したエポキシ樹脂(B)(以下、「エポキシ樹脂(B)」という。)とを含む。
[Carbon fiber sizing agent]
The sizing agent for carbon fiber of the present invention (hereinafter referred to as “the sizing agent”) is a dimer acid type epoxy resin (A) (hereinafter referred to as “epoxy resin (A)”) and an epoxy resin having a hydroxyl group. And an epoxy resin (B) in which an alkoxysilane compound is introduced into the hydroxyl group of the polymer (hereinafter referred to as “epoxy resin (B)”).

エポキシ樹脂(A)は、ダイマー酸型のエポキシ樹脂である。すなわち、不飽和脂肪酸を二量化して得られる二塩基酸にグリシジル基を導入したエポキシ樹脂である。
前記不飽和脂肪酸は、柔軟性の点から、炭素数11〜22の高級不飽和脂肪酸が好ましい。
高級不飽和脂肪酸としては、例えば、オレイン酸、リノール酸、リノレン酸、エイコセン酸、ドコセン酸、分岐オクタデセン酸、分岐ヘキサデセン酸、ウンデシレン酸が挙げられる。
エポキシ樹脂(A)は、1種を単独で使用してもよく、2種以上を併用してもよい。
The epoxy resin (A) is a dimer acid type epoxy resin. That is, it is an epoxy resin in which a glycidyl group is introduced into a dibasic acid obtained by dimerizing an unsaturated fatty acid.
From the viewpoint of flexibility, the unsaturated fatty acid is preferably a higher unsaturated fatty acid having 11 to 22 carbon atoms.
Examples of higher unsaturated fatty acids include oleic acid, linoleic acid, linolenic acid, eicosenoic acid, docosenoic acid, branched octadecenoic acid, branched hexadecenoic acid, and undecylenic acid.
An epoxy resin (A) may be used individually by 1 type, and may use 2 or more types together.

エポキシ樹脂(A)の市販品としては、例えば、リノレン酸のダイマーにグリシジル基を導入したエポキシ樹脂である、商品名「JER871」、「JER872」(以上、ジャパンエポキシレジン社製)が挙げられる。   As a commercial item of an epoxy resin (A), brand name "JER871" and "JER872" (above, the Japan Epoxy Resin company make) which are the epoxy resins which introduce | transduced the glycidyl group into the dimer of a linolenic acid are mentioned, for example.

本サイジング剤(100質量%)におけるエポキシ樹脂(A)の含有量は、20〜70質量%であることが好ましく、30〜50質量%であることがより好ましい。エポキシ樹脂(A)の含有量が20質量%以上であれば、得られる炭素繊維束の柔軟性が向上する。また、エポキシ樹脂(A)の含有量が70質量%以下であれば、エポキシ樹脂(B)が少なくなりすぎて、最終的に得られる炭素繊維強化複合材料の繊維長手方向に沿った引張強度が低下することを抑制しやすい。   The content of the epoxy resin (A) in the present sizing agent (100% by mass) is preferably 20 to 70% by mass, and more preferably 30 to 50% by mass. If content of an epoxy resin (A) is 20 mass% or more, the softness | flexibility of the carbon fiber bundle obtained will improve. Moreover, if content of an epoxy resin (A) is 70 mass% or less, an epoxy resin (B) will decrease too much and the tensile strength along the fiber longitudinal direction of the carbon fiber reinforced composite material finally obtained will be. It is easy to suppress the decrease.

エポキシ樹脂(B)は、水酸基を有するエポキシ樹脂の重合体の水酸基にアルコキシシラン化合物を導入したエポキシ樹脂である。
前記水酸基を有するエポキシ樹脂としては、例えば、エポキシ樹脂の重合体が挙げられる。具体例としては、ビスフェノールA型エポキシ樹脂の重合体、ビスフェノールF型エポキシ樹脂の重合体、フェノールノボラックエポキシ樹脂の重合体等が挙げられる。
前記アルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランが挙げられる。
エポキシ樹脂(B)は、1種を単独で使用してもよく、2種以上を併用してもよい。
The epoxy resin (B) is an epoxy resin in which an alkoxysilane compound is introduced into a hydroxyl group of a polymer of an epoxy resin having a hydroxyl group.
Examples of the epoxy resin having a hydroxyl group include an epoxy resin polymer. Specific examples include a polymer of bisphenol A type epoxy resin, a polymer of bisphenol F type epoxy resin, a polymer of phenol novolac epoxy resin, and the like.
Examples of the alkoxysilane compound include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, and phenyl. Examples include trimethoxysilane and phenyltriethoxysilane.
An epoxy resin (B) may be used individually by 1 type, and may use 2 or more types together.

エポキシ樹脂(B)の市販品としては、例えば、ビスフェノールA型エポキシ樹脂の重合体にアルコキシシラン化合物を導入したエポキシ樹脂である、商品名「コンポセランE201」、「コンポセランE202」(以上、荒川化学社製)が挙げられる。   As a commercially available product of the epoxy resin (B), for example, trade names “Composeran E201” and “Composeran E202” (Arakawa Chemical Co., Ltd.), which are epoxy resins obtained by introducing an alkoxysilane compound into a polymer of a bisphenol A type epoxy resin. Manufactured).

本サイジング剤(100質量%)におけるエポキシ樹脂(B)の含有量は、20〜70質量%であることが好ましく、30〜50質量%であることがより好ましい。エポキシ樹脂(B)の含有量が20質量%以上であれば、繊維長手方向に沿った引張強度が高い炭素繊維束が得られやすい。また、エポキシ樹脂(B)の含有量が70質量%以下であれば、炭素繊維束にエポキシ樹脂(B)によって形成される界面樹脂層が過度に固くなることを抑制しやすい。   The content of the epoxy resin (B) in the sizing agent (100% by mass) is preferably 20 to 70% by mass, and more preferably 30 to 50% by mass. If content of an epoxy resin (B) is 20 mass% or more, a carbon fiber bundle with high tensile strength along a fiber longitudinal direction will be easy to be obtained. Moreover, if content of an epoxy resin (B) is 70 mass% or less, it will be easy to suppress that the interface resin layer formed with an epoxy resin (B) on a carbon fiber bundle becomes too hard.

また、本サイジング剤には、エポキシ樹脂(A)及びエポキシ樹脂(B)以外の他のエポキシ樹脂(C)が含有されていてもよい。他のエポキシ樹脂(C)は、液状又は固体状のいずれのエポキシ樹脂であってもよい。
他のエポキシ樹脂(C)としては、例えば、ビスフェノールAから得られるビスフェノールA型エポキシ樹脂、ビスフェノールFから得られるビスフェノールF型エポキシ樹脂、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、アルカンジオールジグリシジルエーテル等のジグリシジルエーテル類が挙げられる。なかでも、粘度調整の点から、ビスフェノールA型エポキシ樹脂を用いることがより好ましい。
これら他のエポキシ樹脂(C)は、1種を単独で使用してもよく、2種以上を併用してもよい。
Moreover, this epoxy resin (C) other than an epoxy resin (A) and an epoxy resin (B) may contain in this sizing agent. The other epoxy resin (C) may be either liquid or solid epoxy resin.
Examples of other epoxy resins (C) include bisphenol A type epoxy resins obtained from bisphenol A, bisphenol F type epoxy resins obtained from bisphenol F, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, alkanediol diglycidyl. Examples thereof include diglycidyl ethers such as ether. Especially, it is more preferable to use a bisphenol A type epoxy resin from the point of viscosity adjustment.
These other epoxy resins (C) may be used alone or in combination of two or more.

本サイジング剤は、炭素繊維に付着させる際には前述のエポキシ樹脂(A)、エポキシ樹脂(B)、及び必要に応じて用いる他のエポキシ樹脂(C)を、水、又はアセトン、エタノール、ジメチルフォルムアミド等の有機溶剤に分散・溶解させてサイジング液として使用することが好ましい。ただし、人体、環境、工程へ影響が小さい点から、サイジング液は水に分散・溶解させたものであることが好ましい。以下、前記各成分を水等の分散媒に分散させた本サイジング剤を特にサイジング分散液という。   When this sizing agent is attached to the carbon fiber, the above-mentioned epoxy resin (A), epoxy resin (B), and other epoxy resin (C) used as necessary are mixed with water, acetone, ethanol, dimethyl. It is preferable to use as a sizing solution by dispersing and dissolving in an organic solvent such as formamide. However, it is preferable that the sizing liquid is dispersed and dissolved in water from the viewpoint of little influence on the human body, environment, and process. Hereinafter, the present sizing agent in which each of the above components is dispersed in a dispersion medium such as water is particularly referred to as a sizing dispersion.

また、本サイジング剤として、前記各成分を水に分散させたサイジング分散液を用いる場合には、分散媒として乳化剤を用いることが好ましい。乳化剤は特に限定されるものではなく、サイジング分散液の貯蔵安定性の点から、ノニオン系乳化剤が好ましい。
ノニオン系乳化剤としては、例えば、高級アルコールエーテル型ポリオキシエチレン付加物、高級脂肪酸型ポリオキシエチレン付加物、アルキルフェニルエーテル型ポリオキシエチレン付加物が挙げられる。なかでも、エポキシ樹脂(A)及びエポキシ樹脂(B)に対する乳化性能が特に高いことから、アルキルフェニルエーテル型ポリオキシエチレン付加物がより好ましい。
Moreover, when using the sizing dispersion liquid which disperse | distributed each said component in water as this sizing agent, it is preferable to use an emulsifier as a dispersion medium. The emulsifier is not particularly limited, and a nonionic emulsifier is preferable from the viewpoint of storage stability of the sizing dispersion.
Examples of the nonionic emulsifier include higher alcohol ether type polyoxyethylene adducts, higher fatty acid type polyoxyethylene adducts, and alkylphenyl ether type polyoxyethylene adducts. Especially, since the emulsification performance with respect to an epoxy resin (A) and an epoxy resin (B) is especially high, the alkyl phenyl ether type polyoxyethylene adduct is more preferable.

サイジング分散液中における乳化剤の含有量は、10〜30質量%であることが好ましい。乳化剤の含有量が10質量%以上であれば、サイジング分散液中にエポキシ樹脂(A)、エポキシ樹脂(B)等の樹脂成分を安定して分散させやすい。また、乳化剤の含有量が30質量%以下であれば、エポキシ樹脂(A)及びエポキシ樹脂(B)による効果が得られやすい。   The emulsifier content in the sizing dispersion is preferably 10 to 30% by mass. If content of an emulsifier is 10 mass% or more, it will be easy to disperse | distribute resin components, such as an epoxy resin (A) and an epoxy resin (B), stably in a sizing dispersion liquid. Moreover, if content of an emulsifier is 30 mass% or less, the effect by an epoxy resin (A) and an epoxy resin (B) will be easy to be acquired.

また、サイジング分散液は、その固形分濃度が0.1質量%より多く12質量%未満であることが好ましい。固形分濃度が0.1質量%より多ければ、得られる炭素繊維束の取り扱い性が良好になる。また、固形分濃度が12質量%未満であれば、炭素繊維にサイジング分散液を付着させることが容易になる。   The sizing dispersion preferably has a solid content concentration of more than 0.1% by mass and less than 12% by mass. When the solid content concentration is more than 0.1% by mass, the handleability of the obtained carbon fiber bundle is improved. Moreover, if solid content concentration is less than 12 mass%, it will become easy to make a sizing dispersion liquid adhere to carbon fiber.

本発明者らは、鋭意検討した結果、前述したエポキシ樹脂(A)とエポキシ樹脂(B)を必須成分とする本サイジング剤を炭素繊維に付着させることにより、得られる炭素繊維束の繊維長手方向の引張強度を向上させることができ、さらに該サイジング処理後の炭素繊維束を用いることで繊維長手方向の引張強度に優れた炭素繊維強化複合材料が得られることを見出した。   As a result of intensive studies, the inventors of the present invention have adhered the sizing agent containing the above-described epoxy resin (A) and epoxy resin (B) as essential components to the carbon fiber, thereby obtaining a fiber longitudinal direction of the obtained carbon fiber bundle. It was found that a carbon fiber reinforced composite material excellent in tensile strength in the fiber longitudinal direction can be obtained by using the carbon fiber bundle after the sizing treatment.

本サイジング剤によって前記繊維長手方向の引張強度の向上効果が得られる技術的作用の詳細については明確ではないが、以下に示すような要因が考えられる。
エポキシ樹脂(B)が有するアルコキシシラン部分は分子間で反応することができ、それにより塗膜を形成することができる。また、アルコキシシラン部分は、カップリング機能により炭素繊維表面に存在する官能基と化学結合できるため、エポキシ樹脂(B)が炭素繊維との界面近傍に留まる。さらに、エポキシ樹脂(B)は、前記塗膜形成反応及びカップリング反応と同時に、柔軟な構造を有するエポキシ樹脂(A)とも反応できる。これにより、エポキシ樹脂(A)も界面近傍に留まるため、炭素繊維との界面近傍に柔軟な物性を有する界面樹脂層を形成することが可能となる。この柔軟な界面樹脂層の存在により、引張荷重が加わった際に生じるクラックが進行することが抑制されるため、処理後の炭素繊維束が優れた引張強度を発揮できると考えられる。
また、エポキシ樹脂(A)とエポキシ樹脂(B)は、炭素繊維強化複合材料において炭素繊維に含浸するマトリクス樹脂を構成するエポキシ樹脂への溶解性が非常に低い。そのため、マトリクス樹脂と混合しにくく、炭素繊維強化複合材料の製造時においても炭素繊維束の界面近傍に留まって前記界面樹脂層が維持されやすいと考えられる。
Although the details of the technical action by which the effect of improving the tensile strength in the fiber longitudinal direction can be obtained by the present sizing agent are not clear, the following factors can be considered.
The alkoxysilane part which an epoxy resin (B) has can react between molecules, and can form a coating film by it. Moreover, since the alkoxysilane part can be chemically bonded to the functional group present on the surface of the carbon fiber by the coupling function, the epoxy resin (B) remains in the vicinity of the interface with the carbon fiber. Furthermore, the epoxy resin (B) can react with the epoxy resin (A) having a flexible structure simultaneously with the coating film forming reaction and the coupling reaction. Thereby, since an epoxy resin (A) also remains in the interface vicinity, it becomes possible to form the interface resin layer which has a flexible physical property in the interface vicinity with carbon fiber. The presence of this flexible interfacial resin layer suppresses the progress of cracks that occur when a tensile load is applied, and thus it is considered that the treated carbon fiber bundle can exhibit excellent tensile strength.
Moreover, the epoxy resin (A) and the epoxy resin (B) have very low solubility in the epoxy resin constituting the matrix resin impregnated in the carbon fiber in the carbon fiber reinforced composite material. Therefore, it is difficult to mix with the matrix resin, and it is considered that the interface resin layer is easily maintained by staying in the vicinity of the interface of the carbon fiber bundle even when the carbon fiber reinforced composite material is manufactured.

また、本サイジング剤には、本サイジング剤を用いて得られる炭素繊維束により製造される炭素繊維強化複合材料の繊維長手方向に沿った引張強度を低下させすぎない範囲内であれば、前記各成分に加えて添加剤が含有されていてもよい。
添加剤としては、例えば、分散剤、硬化剤、ポリエチレングリコール、ポリウレタン、ポリエステル等の他の樹脂が挙げられる。
Further, in the present sizing agent, as long as the tensile strength along the fiber longitudinal direction of the carbon fiber reinforced composite material produced by the carbon fiber bundle obtained using the present sizing agent is within a range that does not excessively decrease, An additive may be contained in addition to the components.
Examples of the additive include other resins such as a dispersant, a curing agent, polyethylene glycol, polyurethane, and polyester.

[炭素繊維束]
本発明の炭素繊維束(以下、「本炭素繊維束」という。)は、前述した本サイジング剤を付着してなる炭素繊維束である。
本サイジング剤を付着させる炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン・セルロース系等の種々の炭素繊維を用いることができる。なかでも、高弾性・高強度の所望の炭素繊維を得やすい点から、PAN系炭素繊維が好ましい。
また炭素繊維は、例えば、引張弾性率が250GPa以上の中弾性タイプの炭素繊維、300GPa以上の高弾性タイプの炭素繊維を用いることができ、250GPa〜300GPaの引張弾性率を有する炭素繊維が好ましい。ここで、引張弾性率は、JIS R7608に準拠して測定される値を意味する。
また、炭素繊維の繊維径、炭素繊維束のフィラメント数等の条件は特に限定されず、用途に応じて適宜選定すればよい。
[Carbon fiber bundle]
The carbon fiber bundle of the present invention (hereinafter referred to as “the present carbon fiber bundle”) is a carbon fiber bundle formed by adhering the above-described sizing agent.
As the carbon fiber to which the present sizing agent is attached, various carbon fibers such as polyacrylonitrile (PAN), pitch, and rayon / cellulose can be used. Of these, PAN-based carbon fibers are preferable because desired carbon fibers with high elasticity and high strength can be easily obtained.
As the carbon fiber, for example, a medium elastic type carbon fiber having a tensile elastic modulus of 250 GPa or more and a high elastic type carbon fiber having a tensile elastic modulus of 300 GPa or more can be used, and a carbon fiber having a tensile elastic modulus of 250 GPa to 300 GPa is preferable. Here, the tensile elastic modulus means a value measured according to JIS R7608.
Moreover, conditions, such as the fiber diameter of a carbon fiber and the number of filaments of a carbon fiber bundle, are not specifically limited, What is necessary is just to select suitably according to a use.

本炭素繊維束における本サイジング剤の付着率は、0.05〜5.0質量%であり、0.20〜1.0質量%であることが好ましい。
本サイジング剤の付着率が0.05質量%以上であれば、炭素繊維表面全体を本サイジング剤で覆いつくすことが容易になる。また、それにより炭素繊維強化複合材料を製造する際に本炭素繊維束とマトリクス樹脂を混合させたときに、前述した界面樹脂層による靭性等の機能発現性が低下することを抑制できる。また、本サイジング剤の付着率が5.0質量%以下であれば、炭素繊維表面に本サイジング剤が多く堆積しすぎて本炭素繊維束が硬くなることで、本炭素繊維束の取り扱い性が低下することを抑制できる。また、炭素繊維強化複合材料において、マトリクス樹脂から界面樹脂層を介して炭素繊維に伝わる応力の伝達に不具合が生じて機械的特性が低下することを抑制できる。
The adhesion rate of the present sizing agent in the present carbon fiber bundle is 0.05 to 5.0% by mass, and preferably 0.20 to 1.0% by mass.
If the adhesion rate of the present sizing agent is 0.05% by mass or more, it becomes easy to cover the entire carbon fiber surface with the present sizing agent. Moreover, when manufacturing this carbon fiber reinforced composite material, when this carbon fiber bundle and a matrix resin are mixed, it can suppress that functional expression, such as toughness by the interface resin layer mentioned above falls. Further, if the adhesion rate of the present sizing agent is 5.0% by mass or less, the carbon fiber bundle is hardened by depositing too much of the present sizing agent on the carbon fiber surface, so that the handleability of the present carbon fiber bundle is improved. It can suppress that it falls. In addition, in the carbon fiber reinforced composite material, it is possible to suppress a failure in transmission of stress transmitted from the matrix resin to the carbon fiber via the interface resin layer, and deterioration of mechanical characteristics.

本サイジング剤の付着率は、下記式(1)により求めることができる。
R=100×(W2−W1)/W1 ・・・(1)
R:付着率(単位:質量%)
W1:本サイジング剤の付着前の炭素繊維の質量(単位:g)
W2:本サイジング剤の付着後の炭素繊維の質量(単位:g)
The adhesion rate of the sizing agent can be obtained by the following formula (1).
R = 100 × (W2−W1) / W1 (1)
R: Adhesion rate (unit: mass%)
W1: Mass of carbon fiber before adhering this sizing agent (unit: g)
W2: Mass of carbon fiber after adhering this sizing agent (unit: g)

本炭素繊維束は、炭素繊維とマトリクス樹脂を含有する炭素繊維強化複合材料における炭素繊維材料として好適である。
本炭素繊維束は本サイジング剤が付着されていることでその繊維長手方向に沿った引張強度に優れているため、本炭素繊維束を用いることにより、繊維長手方向に沿った引張強度に優れた炭素繊維強化複合材料を得ることができる。
The present carbon fiber bundle is suitable as a carbon fiber material in a carbon fiber reinforced composite material containing carbon fibers and a matrix resin.
This carbon fiber bundle is excellent in tensile strength along the longitudinal direction of the fiber because the sizing agent is attached to the carbon fiber bundle. Therefore, by using this carbon fiber bundle, the tensile strength along the longitudinal direction of the fiber is excellent. A carbon fiber reinforced composite material can be obtained.

[炭素繊維束の製造方法]
本発明の炭素繊維束の製造方法は、本サイジング剤を前述した炭素繊維に塗布する工程を有する方法である。該製造方法においては、本サイジング剤はサイジング液(サイジング分散液)として使用することが好ましい。
サイジング液を炭素繊維に塗布する方法としては、炭素繊維に該サイジング液を均一に塗布できる方法であればよく、例えば、ローラーサイジング法、スプレー法、サイジング液中に炭素繊維束を浸漬させることにより塗布するローラー浸漬法が挙げられる。なかでも、一束あたりの単繊維数が多い炭素繊維束であってもサイジング液を均一に塗布することが容易である点から、ローラー浸漬法が好ましい。
[Method for producing carbon fiber bundle]
The manufacturing method of the carbon fiber bundle of this invention is a method which has the process of apply | coating this sizing agent to the carbon fiber mentioned above. In the production method, the sizing agent is preferably used as a sizing liquid (sizing dispersion).
As a method for applying the sizing liquid to the carbon fiber, any method can be used as long as the sizing liquid can be uniformly applied to the carbon fiber. For example, a roller sizing method, a spray method, and a method of immersing the carbon fiber bundle in the sizing liquid. The roller dipping method to apply | coat is mentioned. Among these, the roller dipping method is preferable because it is easy to uniformly apply the sizing liquid even to a carbon fiber bundle having a large number of single fibers per bundle.

本炭素繊維束における本サイジング剤の付着率Rは、本サイジング剤の固形分濃度を調節することにより調節することができる。例えば、付着率Rに応じて固形分濃度を倍程度(2.5R程度)に調節することにより本サイジング剤の塗布量を調節することができる。   The adhesion rate R of the sizing agent in the carbon fiber bundle can be adjusted by adjusting the solid content concentration of the sizing agent. For example, the application amount of the sizing agent can be adjusted by adjusting the solid content concentration to about twice (about 2.5 R) according to the adhesion rate R.

本サイジング液を塗布した後は、乾燥工程にて溶媒(分散媒)を除去する。
乾燥は、120〜250℃の温度で10秒〜15分間行うことが好ましく、140〜200℃の温度で30秒〜10分間行うことがより好ましい。乾燥温度が120℃以上であれば、溶媒が充分に除去されやすい。また、乾燥温度が250℃以下であれば、本炭素繊維束の品質が熱により劣化することを防ぎやすい。
After applying this sizing solution, the solvent (dispersion medium) is removed in the drying step.
The drying is preferably performed at a temperature of 120 to 250 ° C. for 10 seconds to 15 minutes, and more preferably at a temperature of 140 to 200 ° C. for 30 seconds to 10 minutes. When the drying temperature is 120 ° C. or higher, the solvent is easily removed. Moreover, if the drying temperature is 250 ° C. or less, it is easy to prevent the quality of the present carbon fiber bundle from being deteriorated by heat.

[炭素繊維強化複合材料]
本発明の炭素繊維強化複合材料(以下、「本複合材料」という。)は、本炭素繊維束を用いてなる複合材料であり、本炭素繊維束からなる強化材とマトリクス樹脂とにより形成される。
マトリクス樹脂としては、炭素繊維強化複合材料に通常用いられるマトリクス樹脂を用いることができ、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の種々の樹脂が挙げられる。
本複合材料の製造方法としては、本炭素繊維束を用いる以外は、炭素繊維強化複合材料の製造に通常用いられる製造方法を用いることができる。
[Carbon fiber reinforced composite material]
The carbon fiber reinforced composite material of the present invention (hereinafter referred to as “the present composite material”) is a composite material using the present carbon fiber bundle, and is formed of a reinforcing material composed of the present carbon fiber bundle and a matrix resin. .
As the matrix resin, a matrix resin usually used for a carbon fiber reinforced composite material can be used, and examples thereof include various resins such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, and a phenol resin.
As a manufacturing method of this composite material, the manufacturing method normally used for manufacture of a carbon fiber reinforced composite material can be used except using this carbon fiber bundle.

本複合材料は、0°引張強度が2800〜3300MPaであることが好ましい。ここで、0°引張強度とは、ASTM−D3039に準拠し、引張り試験機のクロスヘッドスピードを1.27mm/分、n=6とした方法で測定された値を意味する。   The composite material preferably has a 0 ° tensile strength of 2800 to 3300 MPa. Here, 0 degree tensile strength means the value measured by the method which made the crosshead speed of the tensile tester 1.27 mm / min and n = 6 based on ASTM-D3039.

以上説明した本複合材料は、本サイジング剤を用いてサイジング処理が施された本炭素繊維束を用いているため、繊維長手方向に沿った引張強度が優れている。
本複合材料の用途は特に限定されないが、特に車輌・航空宇宙用途における構造材料や産業資材として好適である。
Since the present composite material described above uses the present carbon fiber bundle that has been subjected to sizing treatment using the present sizing agent, the tensile strength along the fiber longitudinal direction is excellent.
The use of the composite material is not particularly limited, but is particularly suitable as a structural material or industrial material for vehicle / aerospace applications.

以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
<サイジング剤の調製>
本実施例においてサイジング剤の調製に用いた各成分を以下に示す。
[エポキシ樹脂(A)]
A−1:JER872(商品名、リノレン酸のダイマーにグリシジル基を導入したエポキシ樹脂、ジャパンエポキシレジン社製)
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
<Preparation of sizing agent>
Each component used for the preparation of the sizing agent in this example is shown below.
[Epoxy resin (A)]
A-1: JER872 (trade name, epoxy resin having a glycidyl group introduced into a dimer of linolenic acid, manufactured by Japan Epoxy Resin Co., Ltd.)

[エポキシ樹脂(B)]
B−1:コンポセランE−201(商品名、ビスフェノールA型エポキシ樹脂の重合体の水酸基にアルコキシシラン化合物を導入したエポキシ樹脂、荒川化学社製)
[Epoxy resin (B)]
B-1: Composelane E-201 (trade name, epoxy resin in which an alkoxysilane compound is introduced into the hydroxyl group of a polymer of bisphenol A type epoxy resin, manufactured by Arakawa Chemical Co., Ltd.)

[他の樹脂(C)]
C−1:JER1001(商品名、ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製)
C−2:JER828(商品名、ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製)
C−3:エピオールE−1000(商品名、ポリオキシエチレン骨格を有する脂肪族エポキシ樹脂、日油社製)
C−4:YX−4000(商品名、ビフェニル骨格を有するエポキシ樹脂、ジャパンエポキシレジン社製)
[Other resins (C)]
C-1: JER1001 (trade name, bisphenol A type epoxy resin, manufactured by Japan Epoxy Resin Co., Ltd.)
C-2: JER828 (trade name, bisphenol A type epoxy resin, manufactured by Japan Epoxy Resin Co., Ltd.)
C-3: Epiol E-1000 (trade name, aliphatic epoxy resin having a polyoxyethylene skeleton, manufactured by NOF Corporation)
C-4: YX-4000 (trade name, epoxy resin having a biphenyl skeleton, manufactured by Japan Epoxy Resin Co., Ltd.)

[乳化剤(D)]
D−1:エマノーン CH−25(商品名、ノニオン系乳化剤、花王社製)
[Emulsifier (D)]
D-1: Emanon CH-25 (trade name, nonionic emulsifier, manufactured by Kao Corporation)

[製造例1]
エポキシ樹脂(A)である樹脂(A−1)45質量%と、エポキシ樹脂(B)である樹脂(B−1)45質量%とを、乳化剤(D−1)10質量%に混合して分散させることにより、固形分濃度1.0質量%のサイジング分散液を得た。
[Production Example 1]
45 mass% of resin (A-1) which is epoxy resin (A) and 45 mass% of resin (B-1) which is epoxy resin (B) are mixed with 10 mass% of emulsifier (D-1). By dispersing, a sizing dispersion having a solid content concentration of 1.0% by mass was obtained.

[製造例2〜12]
乳化剤(D−1)に混合して分散させる樹脂の組成を表1に示すとおりに変更した以外は、製造例1と同様にしてサイジング分散液を得た。得られた各サイジング分散液の固形分濃度は表1に示す通りである。
[Production Examples 2 to 12]
A sizing dispersion was obtained in the same manner as in Production Example 1 except that the composition of the resin mixed and dispersed in the emulsifier (D-1) was changed as shown in Table 1. The solid content concentrations of the obtained sizing dispersions are as shown in Table 1.

Figure 0005189547
Figure 0005189547

<炭素繊維強化複合材料の製造>
次に、製造例1〜12で得られたサイジング分散液を用いて炭素繊維束をサイジング処理し、該炭素繊維束を用いて作成した炭素繊維強化複合材料(硬化板)の繊維長手方向に沿った引張強度を評価した。
[実施例1]
(サイジング処理)
サイジング処理を行う炭素繊維として、商品名「パイロフィルMR60H」(炭素繊維束、フィラメント数24000本、繊維径5μm、三菱レイヨン社製)を用いた。
フリーローラーを有する浸漬槽内に製造例1で得られたサイジング分散液を満たし、該サイジング分散液中に前記炭素繊維束を浸漬させた後、温度140℃の雰囲気下で10分間の乾燥処理を施し、サイジング処理した炭素繊維束をボビンに巻き取った。得られた炭素繊維束におけるサイジング剤の付着率Rは0.35質量%であった。
(マトリクス樹脂の調製)
商品名「JER828」(ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製)の50質量部と、商品名「JER604」(テトラグリシジル型エポキシ樹脂、ジャパンエポキシレジン社製)の50質量部と、商品名「フェノトートYP−70」(フェノキシ樹脂、東都化成社製)の10質量部と、4,4’−ジアミノジフェニルスルホン(和歌山精化社製)の32質量部とを混合してマトリクス樹脂を調製した。
(プリプレグの作成)
離型紙上に前記マトリクス樹脂を薄く塗布したホットメルトシートを作成した。その後、該ホットメルトシート上に、サイジング処理を施した前記炭素繊維束を並列に引き揃えて配置し、マトリクス樹脂を含浸させた。得られたプリプレグは、マトリクス樹脂の含有量が約35質量%、繊維目付が200g/mであった。
(硬化板の作成)
前記プリプレグを、炭素繊維束の向きを一方向に揃えて積層し、オートクレーブを用いて加熱・加圧硬化(室温から180℃まで2時間かけて昇温させ、温度180℃、圧力0.6MPaで2時間保持した。)を行い、厚さ1mmの硬化板を作成した。
<Manufacture of carbon fiber reinforced composite materials>
Next, the carbon fiber bundle is sizing using the sizing dispersion obtained in Production Examples 1 to 12, and along the fiber longitudinal direction of the carbon fiber reinforced composite material (cured plate) created using the carbon fiber bundle. The tensile strength was evaluated.
[Example 1]
(Sizing process)
The trade name “Pyrofil MR60H” (carbon fiber bundle, 24,000 filaments, fiber diameter 5 μm, manufactured by Mitsubishi Rayon Co., Ltd.) was used as the carbon fiber for sizing treatment.
After filling the sizing dispersion obtained in Production Example 1 in a dipping tank having a free roller and immersing the carbon fiber bundle in the sizing dispersion, a drying treatment is performed for 10 minutes in an atmosphere at a temperature of 140 ° C. The carbon fiber bundle that had been applied and sized was wound around a bobbin. The adhesion rate R of the sizing agent in the obtained carbon fiber bundle was 0.35% by mass.
(Preparation of matrix resin)
50 parts by mass of trade name “JER828” (bisphenol A type epoxy resin, manufactured by Japan Epoxy Resin Co., Ltd.), 50 parts by mass of product name “JER604” (tetraglycidyl type epoxy resin, manufactured by Japan Epoxy Resin Co., Ltd.), and trade name A matrix resin was prepared by mixing 10 parts by mass of “Phenototo YP-70” (phenoxy resin, manufactured by Toto Kasei Co., Ltd.) and 32 parts by mass of 4,4′-diaminodiphenylsulfone (manufactured by Wakayama Seika Co., Ltd.). did.
(Create prepreg)
A hot melt sheet was prepared by thinly applying the matrix resin on a release paper. Thereafter, the sizing-treated carbon fiber bundles were arranged in parallel on the hot melt sheet and impregnated with a matrix resin. The obtained prepreg had a matrix resin content of about 35% by mass and a fiber basis weight of 200 g / m 2 .
(Creating a hardened plate)
The prepreg is laminated with the orientation of the carbon fiber bundle aligned in one direction, and is heated and pressurized using an autoclave (temperature is raised from room temperature to 180 ° C. over 2 hours, at a temperature of 180 ° C. and a pressure of 0.6 MPa. Held for 2 hours) to produce a cured plate having a thickness of 1 mm.

[実施例2〜7]
サイジング処理に用いたサイジング分散液及びサイジング剤の付着率Rを表2に示すとおりに変更した以外は、実施例1と同様にして硬化板を作成した。付着率Rは、サイジング分散液の固形分濃度を調節することにより調整した。
[Examples 2 to 7]
A cured plate was produced in the same manner as in Example 1 except that the sizing dispersion used in the sizing treatment and the adhesion rate R of the sizing agent were changed as shown in Table 2. The adhesion rate R was adjusted by adjusting the solid content concentration of the sizing dispersion.

[比較例1〜5]
サイジング処理に用いたサイジング分散液及びサイジング剤の付着率Rを表2に示すとおりに変更した以外は、実施例1と同様にして硬化板を作成した。付着率Rは、サイジング分散液の固形分濃度を調節することにより調整した。
[Comparative Examples 1-5]
A cured plate was produced in the same manner as in Example 1 except that the sizing dispersion used in the sizing treatment and the adhesion rate R of the sizing agent were changed as shown in Table 2. The adhesion rate R was adjusted by adjusting the solid content concentration of the sizing dispersion.

[繊維長手方向に沿った引張強度の測定]
実施例及び比較例で得られた硬化板について、以下に示す方法で0°引張強度を測定することにより、繊維長手方向に沿った引張強度を評価した。
(0°引張強度の測定)
0°引張強度は、実施例及び比較例で得られた硬化板から、長さ230mm、幅12.5mmの寸法の試験片を切り出し、該試験片についてASTM−D3039に従って測定した。測定条件は、引張り試験機(インストロン社製、商品名:万能試験機5882型)のクロスヘッドスピードを1.27mm/分、n=6とした。
実施例及び比較例におけるサイジング剤の付着率R、及び各硬化板についての0°引張強度の測定結果を表2に示す。
[Measurement of tensile strength along the longitudinal direction of fiber]
About the hardening board obtained by the Example and the comparative example, the tensile strength along the fiber longitudinal direction was evaluated by measuring 0 degree tensile strength with the method shown below.
(Measurement of 0 ° tensile strength)
The 0 ° tensile strength was measured according to ASTM-D3039 by cutting out a test piece having a length of 230 mm and a width of 12.5 mm from the cured plates obtained in Examples and Comparative Examples. The measurement conditions were a tensile tester (manufactured by Instron, trade name: universal tester 5882 type) with a crosshead speed of 1.27 mm / min and n = 6.
Table 2 shows the measurement results of the adhesion rate R of the sizing agent and the 0 ° tensile strength of each cured plate in the examples and comparative examples.

Figure 0005189547
Figure 0005189547

表2に示すように、本サイジング剤を、付着率Rが0.05〜5.0質量%となるように付着させた炭素繊維束を用いて作成した実施例1〜7の硬化板は、0°引張強度が高く、繊維長手方向に沿った引張強度が優れていた。
また、実施例1〜5と実施例6及び7との比較から、エポキシ樹脂(A)とエポキシ樹脂(B)の含有量が共に20質量%以上であるサイジング剤を用いることで、繊維長手方向に沿った引張強度がより優れた炭素繊維強化複合材料が得られることがわかった。
As shown in Table 2, the cured plates of Examples 1 to 7 prepared using a carbon fiber bundle in which the present sizing agent was adhered so that the adhesion rate R was 0.05 to 5.0% by mass, The 0 ° tensile strength was high, and the tensile strength along the fiber longitudinal direction was excellent.
In addition, from comparison between Examples 1 to 5 and Examples 6 and 7, by using a sizing agent in which the contents of the epoxy resin (A) and the epoxy resin (B) are both 20% by mass or more, the longitudinal direction of the fiber It was found that a carbon fiber reinforced composite material having a higher tensile strength along the line was obtained.

一方、サイジング剤の付着率Rを5.1質量%とした比較例1では、炭素繊維束が非常に硬くなり、その後のプリプレグの作成工程及び硬化板の作成工程における工程通過性が悪かったため硬化板を得ることができず、引張強度測定が行えなかった。
また、エポキシ樹脂(A)、エポキシ樹脂(B)のいずれか一方のみを含むサイジング剤でサイジング処理した比較例2及び3では、得られた硬化板の0°引張強度が低く、実施例に比べて繊維長手方向に沿った引張強度が劣っていた。
また、エポキシ樹脂(A)及びエポキシ樹脂(B)を共に含まないサイジング剤でサイジング処理した比較例4及び5でも、得られた硬化板の0°引張強度が低く、実施例に比べて繊維長手方向に沿った引張強度が劣っていた。
On the other hand, in Comparative Example 1 in which the adhesion rate R of the sizing agent was 5.1% by mass, the carbon fiber bundle was very hard and cured because the process passability in the subsequent prepreg creation process and the cured plate creation process was poor. The plate could not be obtained and the tensile strength could not be measured.
Moreover, in Comparative Examples 2 and 3 sized with a sizing agent containing only one of the epoxy resin (A) and the epoxy resin (B), the obtained cured plate has a low 0 ° tensile strength, which is lower than that of the example. The tensile strength along the fiber longitudinal direction was poor.
Moreover, also in Comparative Examples 4 and 5 in which sizing treatment was performed with a sizing agent containing neither epoxy resin (A) nor epoxy resin (B), the obtained cured plate had a low 0 ° tensile strength, and the fiber length was longer than that of the examples. The tensile strength along the direction was poor.

Claims (3)

ダイマー酸型エポキシ樹脂(A)と、
水酸基を有するエポキシ樹脂の重合体の水酸基にアルコキシシラン化合物を導入したエポキシ樹脂(B)とを含む炭素繊維用サイジング剤を、付着率が0.05〜5.0質量%となるように炭素繊維に付着してなる炭素繊維束
Dimer acid type epoxy resin (A),
Carbon fiber sizing agent containing epoxy resin (B) in which an alkoxysilane compound is introduced into the hydroxyl group of an epoxy resin polymer having a hydroxyl group, and carbon fiber so that the adhesion rate is 0.05 to 5.0% by mass. A carbon fiber bundle made by adhering .
前記炭素繊維用サイジング剤が、さらに乳化剤を含み、
前記炭素繊維用サイジング剤中の前記エポキシ樹脂(A)の含有量が20〜70質量%であり、前記エポキシ樹脂(B)の含有量が20〜70質量%であり、前記乳化剤の含有量が10〜30質量%である請求項1に記載の炭素繊維束
The carbon fiber sizing agent further comprises an emulsifier,
Wherein 20 to 70% by weight content of carbon fibers for the epoxy resin in the sizing agent (A), the content of the previous SL epoxy resin (B) is 20 to 70 wt%, the content of the emulsifying agent The carbon fiber bundle according to claim 1, wherein is 10 to 30% by mass.
請求項1または2に記載の炭素繊維束を用いてなる炭素繊維強化複合材料。 A carbon fiber reinforced composite material using the carbon fiber bundle according to claim 1 .
JP2009100935A 2009-04-17 2009-04-17 Carbon fiber bundle and carbon fiber reinforced composite material Expired - Fee Related JP5189547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100935A JP5189547B2 (en) 2009-04-17 2009-04-17 Carbon fiber bundle and carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100935A JP5189547B2 (en) 2009-04-17 2009-04-17 Carbon fiber bundle and carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2010248664A JP2010248664A (en) 2010-11-04
JP5189547B2 true JP5189547B2 (en) 2013-04-24

Family

ID=43311301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100935A Expired - Fee Related JP5189547B2 (en) 2009-04-17 2009-04-17 Carbon fiber bundle and carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5189547B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070218B2 (en) * 2012-09-14 2017-02-01 東レ株式会社 Sizing agent-coated carbon fiber, method for producing sizing agent-coated carbon fiber, prepreg, and carbon fiber reinforced composite material
JP6115461B2 (en) * 2012-12-21 2017-04-19 東レ株式会社 Carbon fiber coated with sizing agent and method for producing the same, carbon fiber reinforced thermoplastic resin composition
JP6056517B2 (en) * 2013-02-05 2017-01-11 東レ株式会社 Sizing agent-coated carbon fiber, method for producing sizing agent-coated carbon fiber, prepreg, and carbon fiber-reinforced thermoplastic resin composition
CN110158317A (en) * 2019-05-30 2019-08-23 叶小文 A kind of preparation method of high mating type carbon fiber epoxy sizing agent
CN113717389B (en) * 2021-07-07 2022-08-26 东北师范大学 Preparation method of lignin-based hydrophilic sizing agent and application of lignin-based hydrophilic sizing agent in polyolefin composite material
CN114182533A (en) * 2021-12-07 2022-03-15 陈宗良 Carbon fiber sizing agent and preparation method thereof, and carbon fiber composite material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212836B2 (en) * 1972-12-25 1977-04-09
JPH03227458A (en) * 1990-03-31 1991-10-08 Toho Rayon Co Ltd Carbon fiber roving material and polyamide resin composition
JP2004149721A (en) * 2002-10-31 2004-05-27 Toho Tenax Co Ltd Carbon fiber strand

Also Published As

Publication number Publication date
JP2010248664A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5189547B2 (en) Carbon fiber bundle and carbon fiber reinforced composite material
TWI220147B (en) Sizing agent for carbon fibers and water dispersion thereof, sized carbon fibers, sheet-like articles using said carbon fibers, and carbon fiber enhanced composite material
WO2007060833A1 (en) Carbon fiber bundle, prepreg, and carbon fiber reinforced composite material
JP4141479B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2017101227A (en) Epoxy resin composition, and molding, prepreg and fiber-reinforced plastic prepared therewith
RU2736820C2 (en) Epoxy resin composition, prepreg and composite material reinforced with carbon fiber
WO2013046434A1 (en) Benzoxazine resin composition, and fiber-reinforced composite material
JPWO2019225442A1 (en) Toupreg and its manufacturing method, and pressure vessel manufacturing method
WO2019181402A1 (en) Prepreg and fiber-reinforced composite material
JP2014227473A (en) Epoxy resin composition for composite material, fiber-reinforced composite material, and methods for producing the same
JP4866701B2 (en) Carbon fiber sizing agent, sizing treated carbon fiber, sheet
CN111295414A (en) Prepreg and fiber-reinforced composite material
JP2018095675A (en) Epoxy resin composition, and molding, prepreg and fiber-reinforced plastic prepared therewith
WO2019026724A1 (en) Sheet molding compound, prepreg, and fiber-reinforced composite material
KR20210022664A (en) Prepreg and its manufacturing method, slit tape prepreg, carbon fiber reinforced composite material
JP6240560B2 (en) Matrix material
JP2014145003A (en) Prepreg and fiber reinforced composite material
JP5059579B2 (en) Sizing agent and sizing treated carbon fiber bundle
JP6015027B2 (en) Sizing agent, carbon fiber bundle and method for producing carbon fiber bundle
JP7167980B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg, carbon fiber reinforced composite material
JP2010144118A (en) Prepreg and method for manufacturing the same
JP2004224979A (en) Prepreg and fiber-reinforced composite material-formed product using the same
JP2022140568A (en) Sizing agent, sizing agent-attached carbon fiber and method for producing the same, water dispersion of sizing agent, prepreg and method for producing the same, and method for producing carbon fiber-reinforced composite material
JP6447791B1 (en) Sheet molding compounds, prepregs and fiber reinforced composites
JP6356497B2 (en) Sizing agent-attached fiber bundle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees