JP5188853B2 - SPD separation device - Google Patents

SPD separation device Download PDF

Info

Publication number
JP5188853B2
JP5188853B2 JP2008075362A JP2008075362A JP5188853B2 JP 5188853 B2 JP5188853 B2 JP 5188853B2 JP 2008075362 A JP2008075362 A JP 2008075362A JP 2008075362 A JP2008075362 A JP 2008075362A JP 5188853 B2 JP5188853 B2 JP 5188853B2
Authority
JP
Japan
Prior art keywords
surge
spd
current
contact
dedicated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008075362A
Other languages
Japanese (ja)
Other versions
JP2009232589A (en
Inventor
健七郎 三島
亨 高山
健治 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP2008075362A priority Critical patent/JP5188853B2/en
Publication of JP2009232589A publication Critical patent/JP2009232589A/en
Application granted granted Critical
Publication of JP5188853B2 publication Critical patent/JP5188853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Description

本発明は、雷撃によるサージ電圧を吸収して電気機器を保護するSPD(Surge Protective Device:サージ防護デバイス)に故障が発生した場合にそのSPDを電源線路から切り離すSPD切り離し装置に関する。   The present invention relates to an SPD disconnection device that disconnects an SPD from a power line when a failure occurs in an SPD (Surge Protective Device) that absorbs a surge voltage caused by a lightning strike and protects an electrical device.

雷害を防止する目的から、単相または三相交流電路から工場や一般家庭に引き込まれる電源線路と大地間に、雷撃による過渡的な過電圧であるサージ電圧を吸収して電気機器を保護するデバイスとしてSPDが設置されている(例えば、特許文献1参照)。このSPD用素子としては、酸化亜鉛形バリスタが一般的に使用されている。   For the purpose of preventing lightning damage, a device that protects electrical equipment by absorbing surge voltage, which is a transient overvoltage caused by lightning strike, between the power line drawn from a single-phase or three-phase AC circuit to a factory or general household and the ground SPD is installed (for example, refer to Patent Document 1). As this SPD element, a zinc oxide varistor is generally used.

この酸化亜鉛形バリスタは、雷サージを繰り返し放電することや過大な雷サージが入力することにより経時的に劣化する。酸化亜鉛形バリスタが劣化すると、漏れ電流が増加して発熱し、熱暴走による発煙発火の原因となる。また、SPDのサージ耐量を超える大きなサージ電流が流れるとSPDが故障して電気機器と大地間が瞬時に短絡する。その短絡状態が継続すると電源設備や周辺の電気機器に対して悪影響を与える。   This zinc oxide type varistor deteriorates with time due to repeated discharge of lightning surges or input of excessive lightning surges. When the zinc oxide varistor deteriorates, the leakage current increases and heat is generated, causing smoke and ignition due to thermal runaway. Further, when a large surge current exceeding the surge resistance of the SPD flows, the SPD breaks down and an electric device and the ground are short-circuited instantaneously. If the short-circuit state continues, it will adversely affect the power supply equipment and surrounding electrical equipment.

特に、短絡容量が大きな箇所にSPDを設置する場合、SPDの故障により発生する短絡状態を回避するためには、SPD設置箇所における短絡容量以上の遮断容量を有する遮断器を設ける必要がある。このような大きな遮断容量を有する遮断器を設置すると、遮断器自体の大型化で経済的にコストアップを招くと共に広い設置スペースを必要とする。   In particular, when an SPD is installed at a location where the short-circuit capacity is large, it is necessary to provide a circuit breaker having a breaking capacity equal to or greater than the short-circuit capacity at the SPD installation location in order to avoid a short-circuit state caused by a SPD failure. If a circuit breaker having such a large breaking capacity is installed, the circuit breaker itself is increased in size, resulting in an increase in cost and a large installation space.

また、直撃雷などのように非常に大きなエネルギーから電気機器を保護する直撃雷用SPDの場合、そのSPDに付設する配線用遮断器、漏電遮断器や電流ヒューズなどの切り離し装置が重要であるが、SPDの性能に追従する性能、例えば、規格で定められた直撃雷サージ電流に匹敵する25kAで10×350μs波形試験電流に耐える配線用遮断器、漏電遮断器や電流ヒューズなど、実用に供する切り離し装置が存在しないというのが現状であった。
特開2005−102415号公報
In addition, in the case of a direct lightning SPD that protects an electrical device from a very large energy such as a direct lightning strike, it is important to use a disconnecting device such as a circuit breaker, a leakage breaker, or a current fuse attached to the SPD. , Performance following the SPD performance, for example, circuit breakers that can withstand 10 x 350 μs waveform test current at 25 kA, equivalent to the direct lightning surge current specified in the standard, such as circuit breakers, earth leakage breakers, and current fuses. The current situation is that there is no device.
JP 2005-102415 A

ところで、既存の配線用遮断器や漏電遮断器をSPDの前段に設置した場合、その配線用遮断器や漏電遮断器に内蔵された接点を含む切り離し機構への大きなサージ電流通過時、その切り離し機構に瞬間的に作用する電磁力により、配線用遮断器や漏電遮断器が遮断する誤動作が発生したり、また、配線用遮断器や漏電遮断器に内蔵されたZCTにより大きなサージ電流を検出した場合、そのZCTの二次側に発生する振動出力によっても配線用遮断器や漏電遮断器が遮断する誤動作が発生したりする。この配線用遮断器や漏電遮断器の誤動作が発生すると、正常なSPDが電源線路から切り離されるという不具合が生じる。   By the way, when an existing circuit breaker or earth leakage breaker is installed in the front stage of the SPD, the separation mechanism when a large surge current passes to the separation mechanism including the contact incorporated in the circuit breaker or earth leakage breaker. When the circuit breaker or earth leakage circuit breaker malfunctions due to the electromagnetic force acting instantaneously on the circuit, or when a large surge current is detected by the ZCT built in the circuit breaker or earth leakage circuit breaker Also, a malfunction that the circuit breaker for circuit breaker or earth leakage circuit breaker breaks also occurs due to the vibration output generated on the secondary side of the ZCT. When the malfunction of the circuit breaker for wiring or the earth leakage circuit breaker occurs, there is a problem that a normal SPD is disconnected from the power supply line.

また、接触抵抗や導電部自体の抵抗によって発生するジュール熱および切り離し機構に作用する電磁反発力で瞬間的な浮き上がり現象が生じて接点が溶着したりする不具合が発生する。このような接点溶着が発生すると、配線用遮断器に交流事故電流が流れた時や漏電遮断器に交流漏洩電流が流れた時に、それら配線用遮断器や漏電遮断器を正常に遮断することができないことになる。この接点溶着により配線用遮断器や漏電遮断器を正常に遮断することができないと、SPDが故障している場合にそのSPDを電源線路から切り離すことができず、電源線路が短絡状態になるという不具合が生じる。   In addition, Joule heat generated by contact resistance or resistance of the conductive portion itself and electromagnetic repulsive force acting on the separation mechanism cause a momentary lifting phenomenon, resulting in a problem of contact welding. When such contact welding occurs, when an AC fault current flows through the circuit breaker or when an AC leakage current flows through the earth leakage breaker, the circuit breaker or earth leakage breaker may be normally interrupted. It will not be possible. If the circuit breaker and the earth leakage circuit breaker cannot be normally disconnected by this contact welding, the SPD cannot be disconnected from the power line when the SPD is broken, and the power line is short-circuited. A malfunction occurs.

一方、低圧の電流ヒューズをSPDの前段に設置した場合、例えば交流200V/100kAの遮断容量の性能を有する100A定格電流程度の電流ヒューズであっても、前述の直撃雷サージ電流に匹敵する25kAで10×350μs波形試験電流を電流ヒューズに流すと、その電流ヒューズが溶断あるいは容器破損に至って実用に耐えることが困難であるというのが現状であった。この場合、正常のSPDが電源線路から切り離されるという不具合が生じる。   On the other hand, when a low-voltage current fuse is installed in the front stage of the SPD, for example, even a current fuse of about 100 A rated current having an AC 200 V / 100 kA breaking capacity performance is 25 kA comparable to the direct strike lightning surge current described above. When a 10 × 350 μs waveform test current is passed through a current fuse, the current fuse is blown or broken, making it difficult to withstand practical use. In this case, there is a problem that a normal SPD is disconnected from the power line.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、従来の配線用遮断器や漏電遮断器の誤動作、あるいは電流ヒューズの溶断により正常なSPDが切り離されることを未然に防止すると共に、従来の配線用遮断器や漏電遮断器の接点溶着を未然に防止して故障のSPDを安全に切り離し得るSPD切り離し装置を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to disconnect a normal SPD due to a malfunction of a conventional circuit breaker for a wiring or an earth leakage circuit breaker, or by blowing a current fuse. An object of the present invention is to provide an SPD disconnecting device capable of preventing a faulty SPD safely by preventing the contact welding of a conventional circuit breaker or earth leakage circuit breaker.

前述の目的を達成するための技術的手段として、本発明は、電源線路と大地との間に挿入したSPDの前段に設置され、SPD故障時にそのSPDを電源線路から切り離すものであって、SPDを電源線路から切り離す接点機構およびサージ専用ヒューズを備え、SPD故障電流に対してSPDを接点機構により電源線路から切り離し、サージ専用ヒューズは所定の耐サージ電流通過性能および過大サージ遮断性能を有し、SPDの直撃雷用サージ電流耐量を超える過大サージ電流に対してSPDをサージ専用ヒューズにより電源線路から切り離し、SPDを電源線路から切り離す機能を接点機構とサージ専用ヒューズとで機能分離させたことを特徴とする。このSPDは、酸化亜鉛形バリスタで構成されていることが望ましい。 As a technical means for achieving the above-mentioned object, the present invention is installed in the front stage of the SPD inserted between the power line and the ground, and disconnects the SPD from the power line when the SPD fails. The SPD is disconnected from the power line by the contact mechanism against the SPD fault current, and the surge dedicated fuse has a predetermined surge current passing performance and excessive surge cutoff performance. disconnect city from the power supply line by surges dedicated fuse SPD against excessive surge current in excess of direct stroke surge current withstand of the SPD, it was functionally separated in the contact mechanism and the surge-only fuse the ability to disconnect the SPD from the power line It is characterized by. The SPD is preferably composed of a zinc oxide type varistor.

ここで、SPD故障電流とは、SPD故障時に発生した線間絶縁低下による小さな交流事故電流と、SPD故障時に発生した大地間絶縁低下による小さな交流漏洩電流を意味する。また、サージ専用ヒューズには、所定の耐サージ電流通過性能および過大サージ遮断性能を備えた電流ヒューズを使用することが可能である。なお、所定の耐サージ電流通過性能とは、SPDの耐サージ性能に基づいて決定されるもので、SPDが吸収し得るサージ電流の通過に耐え得る性能を意味し、また、所定の過大サージ遮断性能とは、SPDが吸収し得るサージ電流を超える過大なサージ電流に対して遮断する性能を意味する。   Here, the SPD fault current means a small AC fault current due to a decrease in insulation between lines generated at the time of SPD failure, and a small AC leakage current due to a decrease in insulation between grounds generated at the time of SPD failure. In addition, as the surge dedicated fuse, it is possible to use a current fuse having predetermined surge current passing performance and excessive surge interruption performance. The predetermined surge current passing performance is determined based on the surge resistance performance of the SPD, and means a performance that can withstand the passage of surge current that can be absorbed by the SPD. The term “performance” means the capability of blocking an excessive surge current exceeding the surge current that can be absorbed by the SPD.

なお、このサージ専用ヒューズとは電流ヒューズに系統づけされるが、一般的な交流定格の電流ヒューズと異なりSPD専用の保護ヒューズである。従って、常時は電流が流れることなく、電流定格に対してはSPD定格仕様に対応する最大サージ電流に耐える性能と、過大なサージ電流に対する遮断性能とに限定される。   The surge-dedicated fuses are grouped into current fuses, but are SPD-dedicated protection fuses, unlike general AC-rated current fuses. Therefore, the current does not always flow, and the current rating is limited to the performance capable of withstanding the maximum surge current corresponding to the SPD rated specification and the interruption performance against the excessive surge current.

本発明では、線間絶縁低下による小さな交流事故電流や大地間絶縁低下による小さな交流漏洩電流からなるSPD故障電流に対してSPDを接点機構により電源線路から切り離す。この場合、接点機構は大きくても100A程度の電流しか流れない限定条件の故障では、遮断距離も短く高速遮断が不要であり、過大サージ電流通過に対する溶着を防止することが容易となる。一方、サージ専用ヒューズとして、所定の耐サージ電流通過性能および過大サージ遮断性能を有する電流ヒューズを使用することから、SPDのサージ電流耐量を超える過大サージ電流が流れた時にはSPDの故障の有無に関係なく、サージ専用ヒューズを遮断させてSPDをそのサージ専用ヒューズにより電源線路から高速に切り離す。   In the present invention, the SPD is disconnected from the power supply line by the contact mechanism against an SPD fault current consisting of a small AC accident current due to a decrease in insulation between lines and a small AC leakage current due to a decrease in insulation between grounds. In this case, even if the contact mechanism has a large size, only a current of about 100 A flows at a limited condition, so the breaking distance is short and high-speed breaking is unnecessary, and it becomes easy to prevent welding against excessive surge current passage. On the other hand, since a current fuse having a predetermined surge current passing performance and excessive surge cutoff performance is used as a surge-dedicated fuse, when an excessive surge current exceeding the surge current capability of the SPD flows, it is related to the presence or absence of SPD failure. Without disconnecting the surge dedicated fuse, the SPD is disconnected from the power line at high speed by the surge dedicated fuse.

このように、SPD故障時にそのSPDを電源線路から切り離す機能を接点機構とサージ専用ヒューズとで機能分離したことにより、SPD正常時、従来の配線用遮断器や漏電遮断器に相当する接点機構の誤動作や、従来の電流ヒューズに相当するサージ専用ヒューズの溶断が発生することはない。   As described above, the function of separating the SPD from the power supply line at the time of the SPD failure is separated by the contact mechanism and the surge-dedicated fuse, so that when the SPD is normal, the contact mechanism corresponding to the conventional circuit breaker or earth leakage circuit breaker No malfunction or fusing of a surge-dedicated fuse equivalent to a conventional current fuse will occur.

なお、サージ専用ヒューズにおける所定の過大サージ遮断性能は、所定の耐サージ電流通過性能を発揮する通過電流領域における最大電流値以上で、かつ、その最大電流値の1.5倍以下の遮断電流領域を有することが望ましい。このサージ専用ヒューズの過大サージ遮断性能を、耐サージ電流通過性能の最大電流値の1.5倍を超える遮断電流領域とした場合、サージ専用ヒューズのコストアップを招くことになることから、耐サージ電流通過性能の最大電流値の1.5倍以下の遮断電流領域とすることが好ましい。   In addition, the specified excessive surge cutoff performance in the surge-dedicated fuse is greater than or equal to the maximum current value in the passing current region that exhibits the prescribed surge current passing performance, and is not more than 1.5 times the maximum current value. It is desirable to have If the surge-breaking performance of this surge-dedicated fuse is set to a breaking current range that exceeds 1.5 times the maximum current value of surge-resistant current-passing performance, the surge-dedicated fuse will be increased in cost. It is preferable to set it as the interruption | blocking electric current area | region of 1.5 times or less of the maximum electric current value of electric current passage performance.

本発明では、小さな交流事故電流や交流漏洩電流であるSPD故障電流に対してSPDを接点機構により電源線路から切り離し、SPDのサージ電流耐量を超える過大サージ電流に対してSPDをサージ専用ヒューズにより電源線路から切り離すようにして、SPD故障時にそのSPDを電源線路から切り離す機能を接点機構とサージ専用ヒューズとで機能分離させている。   In the present invention, the SPD is disconnected from the power supply line by a contact mechanism for an SPD fault current that is a small AC accident current or an AC leakage current, and the SPD is powered by a surge dedicated fuse for an excessive surge current exceeding the surge current capability of the SPD. The function of separating the SPD from the power supply line in the event of SPD failure is separated from the function by the contact mechanism and the surge dedicated fuse.

この接点機構とサージ専用ヒューズとで機能分離させることにより、SPD正常時、従来の配線用遮断器や漏電遮断器に相当する接点機構の誤動作や、従来の電流ヒューズに相当するサージ専用ヒューズの溶断が発生することはない。その結果、正常なSPDが切り離されることを未然に防止できる。また、SPD故障時に発生した小さな交流事故電流や交流漏洩電流に対しては接点機構によりSPDを切り離し、SPDのサージ電流耐量を超える過大サージ電流に対してはサージ専用ヒューズによりSPDを切り離すため、従来の配線用遮断器や漏電遮断器に相当する接点機構の接点溶着が発生することはない。その結果、故障のSPDを安全に切り離すことができる。このようにして、信頼性の高いSPD切り離し装置を提供できる。   By separating the function between this contact mechanism and the surge dedicated fuse, when the SPD is normal, malfunction of the contact mechanism corresponding to the conventional circuit breaker or earth leakage circuit breaker, or the melting of the surge dedicated fuse equivalent to the conventional current fuse Will not occur. As a result, it is possible to prevent a normal SPD from being disconnected. In addition, the SPD is disconnected by a contact mechanism for small AC accident currents and AC leakage currents that occur when an SPD failure occurs, and the SPD is disconnected by a surge dedicated fuse for excessive surge currents that exceed the surge current capability of the SPD. Contact welding of the contact mechanism corresponding to the circuit breaker for wiring and the earth leakage circuit breaker does not occur. As a result, the faulty SPD can be safely separated. In this way, a highly reliable SPD separation device can be provided.

本発明に係るSPD切り離し装置の実施形態を以下に詳述する。以下の実施形態では、交流単相3線式あるいは交流三相3線式の配電線から工場や一般家庭に分岐した電源線路と大地との間に挿入したSPDの前段に設置され、SPD故障時にそのSPDを電源線路から切り離すSPD切り離し装置を例示する。   An embodiment of the SPD separating apparatus according to the present invention will be described in detail below. In the following embodiments, an AC single-phase three-wire system or an AC three-phase three-wire distribution line is installed in the front stage of the SPD inserted between the power line branched to the factory or general home and the ground. An SPD disconnecting device that disconnects the SPD from the power supply line is illustrated.

この実施形態におけるSPD切り離し装置は、図1に示すようにSPD故障電流に対してSPD1a〜1cを電源線路2a〜2cから切り離す接点機構3a〜3cと、所定の耐サージ電流通過性能および過大サージ遮断性能を有し、過大なサージ電流に対してSPD1a〜1cを電源線路2a〜2cから切り離すサージ専用ヒューズ4a〜4cを備えている。このSPD1a〜1cは、酸化亜鉛形バリスタで構成されている。   As shown in FIG. 1, the SPD disconnecting device in this embodiment includes contact mechanisms 3 a to 3 c that disconnect the SPDs 1 a to 1 c from the power supply lines 2 a to 2 c with respect to the SPD fault current, a predetermined surge current passing performance, and an excessive surge cutoff. Surge-specific fuses 4a to 4c that have performance and disconnect SPDs 1a to 1c from power supply lines 2a to 2c against an excessive surge current. The SPDs 1a to 1c are composed of zinc oxide varistors.

接点機構3a〜3cがSPD1a〜1cを電源線路2a〜2cから切り離す条件であるSPD故障電流としては、SPD故障時に発生した線間絶縁低下による小さな交流事故電流と、SPD故障時に発生した大地間絶縁低下による小さな交流漏洩電流とがある。   The SPD fault current, which is a condition for the contact mechanisms 3a to 3c to disconnect the SPDs 1a to 1c from the power supply lines 2a to 2c, includes a small AC fault current due to a decrease in line insulation that occurs when the SPD fails, and a ground isolation that occurs when the SPD fails There is a small AC leakage current due to the decrease.

サージ専用ヒューズ4a〜4cには、所定の耐サージ電流通過性能および過大サージ遮断性能を備えた電流ヒューズを使用する。所定の耐サージ電流通過性能は、SPD1a〜1cの耐サージ性能に基づいて決定されるもので、SPD1a〜1cが吸収し得るサージ電流の通過に耐え得る性能であり、また、所定の過大サージ遮断性能は、SPD1a〜1cが吸収し得るサージ電流を超える過大なサージ電流に対して遮断する性能である。   As the surge dedicated fuses 4a to 4c, current fuses having predetermined surge current passing performance and excessive surge interruption performance are used. The predetermined surge current passing performance is determined based on the surge resistance performance of the SPDs 1a to 1c, and can withstand the passage of surge current that can be absorbed by the SPDs 1a to 1c. The performance is a performance that cuts off an excessive surge current exceeding the surge current that can be absorbed by the SPDs 1a to 1c.

なお、このサージ専用ヒューズ4a〜4cとは電流ヒューズに系統づけされるが、一般的な交流定格の電流ヒューズと異なりSPD専用の保護ヒューズである。従って、常時は電流が流れることなく、電流定格に対してはSPD定格仕様に対応する最大サージ電流に耐える性能と、過大なサージ電流に対する遮断性能とに限定される。   The surge-dedicated fuses 4a to 4c are grouped into current fuses, but are SPD-dedicated protective fuses unlike general AC-rated current fuses. Therefore, the current does not always flow, and the current rating is limited to the performance capable of withstanding the maximum surge current corresponding to the SPD rated specification and the interruption performance against the excessive surge current.

このSPD切り離し装置では、線間絶縁低下による小さな交流事故電流や大地間絶縁低下による小さな交流漏洩電流からなるSPD故障電流が接点機構3a〜3cに流れると、その接点機構3a〜3cの接点を開放することによりSPD1a〜1cを電源線路2a〜2cから切り離す。この場合、接点機構3a〜3cは大きくても100A程度の電流しか流れないので、遮断距離も短く高速遮断が不要であり、過大サージ電流通過に対する溶着を防止することが容易となる。   In this SPD disconnection device, when an SPD fault current consisting of a small AC fault current due to a decrease in insulation between lines and a small AC leakage current due to a decrease in insulation between grounds flows into the contact mechanisms 3a to 3c, the contacts of the contact mechanisms 3a to 3c are opened. Thus, the SPDs 1a to 1c are disconnected from the power supply lines 2a to 2c. In this case, even if the contact mechanisms 3a to 3c are large, only a current of about 100 A flows, so that the interruption distance is short and high-speed interruption is unnecessary, and it becomes easy to prevent welding against excessive surge current passage.

ここで、SPD故障電流を大きくても100A程度としたが、直撃雷用サージ電流耐量25kAの酸化亜鉛形バリスタに定格交流電圧を印加させた状態での重畳試験では10×350μsec波形の繰り返し印加試験を実施した。この場合、酸化亜鉛形バリスタは徐々に劣化して数アンペア〜十アンペア程度の漏れ電流から急激に電流が増加して完全短絡に至った。この現象は酸化亜鉛形バリスタの熱暴走破壊による特異な故障である。   Here, although the SPD fault current is about 100 A even when it is large, in the superposition test with the rated AC voltage applied to a zinc oxide varistor with a direct current lightning surge current withstand capability of 25 kA, a repeated application test with a 10 × 350 μsec waveform Carried out. In this case, the zinc oxide varistor gradually deteriorated, and the current suddenly increased from a leakage current of several amperes to 10 amperes, resulting in a complete short circuit. This phenomenon is a peculiar failure due to thermal runaway destruction of zinc oxide type varistors.

一方、サージ専用ヒューズ4a〜4cとして、所定の耐サージ電流通過性能および過大サージ遮断性能を有する電流ヒューズを使用することから、SPD1a〜1cのサージ電流耐量を超える過大サージ電流が流れた時にはSPD1a〜1cの故障の有無に関係なく、サージ専用ヒューズ4a〜4cを遮断させてSPD1a〜1cをそのサージ専用ヒューズ4a〜4cにより電源線路2a〜2cから高速に切り離す。   On the other hand, since current fuses having predetermined surge current passing performance and excessive surge interruption performance are used as the surge dedicated fuses 4a to 4c, when an excessive surge current exceeding the surge current resistance of the SPDs 1a to 1c flows, the SPD 1a to Regardless of the failure of 1c, surge dedicated fuses 4a to 4c are cut off, and SPDs 1a to 1c are disconnected from power supply lines 2a to 2c by surge dedicated fuses 4a to 4c at high speed.

サージ専用ヒューズ4a〜4cにおける所定の過大サージ遮断性能は、所定の耐サージ電流通過性能を発揮する通過電流領域における最大電流値以上で、かつ、その最大電流値の1.5倍以下の遮断電流領域を有する。このサージ専用ヒューズ4a〜4cの過大サージ遮断性能を、耐サージ電流通過性能の最大電流値の1.5倍を超える遮断電流領域とした場合、サージ専用ヒューズ4a〜4cのコストアップを招くことになることから、耐サージ電流通過性能の最大電流値の1.5倍以下の遮断電流領域とすることが好ましい。   The predetermined excessive surge cutoff performance in the surge-dedicated fuses 4a to 4c is equal to or higher than the maximum current value in the passing current region exhibiting the predetermined surge current passing performance, and 1.5 times or less the maximum current value. Has a region. If the excessive surge cutoff performance of the surge dedicated fuses 4a to 4c is set to a cutoff current region that exceeds 1.5 times the maximum current value of surge current passing performance, the surge dedicated fuses 4a to 4c may be increased in cost. Therefore, it is preferable to set the breaking current region to 1.5 times or less of the maximum current value of surge current passing performance.

例えば30kAサージ電流性能としたサージ専用ヒューズと30kA試験電流で短絡故障に至るSPDとを使用した場合、そのSPDが短絡故障に至るのは10×350μsec波形の波尾長である1〜2msec近傍であり、また、交流短絡電流が最大に達するのも回路時定数から2〜3msec要することから、サージ専用ヒューズが高速で十分な遮断距離を持ってサージ電流に対する遮断性能を有すれば、大きな交流電流に対する遮断性能を有さなくても特定の過大サージに対して安全にSPDを切り離すことができる。   For example, when a surge-dedicated fuse with 30 kA surge current performance and an SPD that causes a short-circuit failure with a 30 kA test current, the SPD causes a short-circuit failure in the vicinity of 1 to 2 msec, which is the wave tail length of a 10 × 350 μsec waveform. Also, it takes 2-3 msec from the circuit time constant for the AC short-circuit current to reach the maximum. Therefore, if the surge-dedicated fuse has a high-speed and sufficient cut-off distance and has a cut-off performance against the surge current, The SPD can be safely disconnected against a specific excessive surge without having a blocking performance.

このように、SPD故障時にそのSPD1a〜1cを電源線路2a〜2cから切り離す機能を接点機構3a〜3cとサージ専用ヒューズ4a〜4cとで機能分離したことにより、SPD正常時、従来の配線用遮断器や漏電遮断器に相当する接点機構の誤動作や、従来の電流ヒューズに相当するサージ専用ヒューズ4a〜4cの溶断が発生することはない。また、SPD故障時に発生した小さな交流事故電流や交流漏洩電流に対しては接点機構3a〜3cによりSPD1a〜1cを切り離し、SPD1a〜1cのサージ電流耐量を超える過大サージ電流に対してはサージ専用ヒューズ4a〜4cによりSPD1a〜1cを切り離すため、従来の配線用遮断器や漏電遮断器に相当する接点機構の接点溶着が発生することはない。   As described above, the function of separating the SPDs 1a to 1c from the power supply lines 2a to 2c when the SPD fails is separated by the contact mechanisms 3a to 3c and the surge dedicated fuses 4a to 4c, so that when the SPD is normal, the conventional wiring interruption is performed. The malfunction of the contact mechanism corresponding to the breaker and the earth leakage breaker and the fusing of the surge dedicated fuses 4a to 4c corresponding to the conventional current fuse do not occur. In addition, SPDs 1a to 1c are disconnected by contact mechanisms 3a to 3c for small AC fault currents and AC leakage currents generated at the time of SPD failure, and surge surge fuses are used for excessive surge currents exceeding the surge current tolerance of SPDs 1a to 1c. Since the SPDs 1a to 1c are separated by 4a to 4c, contact welding of a contact mechanism corresponding to a conventional circuit breaker or a ground fault circuit breaker does not occur.

つまり、接点機構3a〜3cでは小さい交流事故電流や交流漏洩電流で遮断機能を発揮するので、高速遮断や大きな遮断能力を必要とすることはない。また、従来のように大きな交流事故電流を遮断するときに必要とされる切り離し機構が不要となって小型化が可能であり、大きなサージ電流でもって切り離し機構に瞬間的に作用する電磁力により遮断動作するような誤動作の発生もなくなる。接点機構3a〜3cに大電流サージに対する接点溶着が発生することもない。   That is, since the contact mechanisms 3a to 3c exhibit a breaking function with a small alternating current accident current or alternating current leakage current, a high speed breaking or a large breaking ability is not required. In addition, it is possible to reduce the size by eliminating the disconnection mechanism that is required when interrupting large AC fault current as in the past, and it is interrupted by electromagnetic force that instantaneously acts on the disconnection mechanism with a large surge current. Occurrence of malfunctions that operate is eliminated. Contact welding against a large current surge does not occur in the contact mechanisms 3a to 3c.

電源線路2a〜2cと大地との間に挿入したSPD1a〜1cの前段に設置されたSPD切り離し装置は、図1〜図3に示すように接点機構3a〜3cとサージ専用ヒューズ4a〜4cを備えた構成となっている。この電源線路2a〜2cには負荷として電気機器5が接続されている。なお、図では電源線路2a〜2cに対してサージ専用ヒューズ4a〜4c、接点機構3a〜3cの順でSPD1a〜1cに接続した場合を例示しているが、電源線路2a〜2cに対して接点機構3a〜3c、サージ専用ヒューズ4a〜4cの順でSPD1a〜1cに接続することも可能である。   As shown in FIGS. 1 to 3, the SPD disconnecting device installed in front of the SPDs 1a to 1c inserted between the power supply lines 2a to 2c and the ground includes contact mechanisms 3a to 3c and surge dedicated fuses 4a to 4c. It becomes the composition. Electrical devices 5 are connected to the power lines 2a to 2c as loads. In addition, although the figure has illustrated the case where it connects to SPD1a-1c in order of fuse 4a-4c and contact mechanism 3a-3c for surge with respect to power supply lines 2a-2c, it is a contact with respect to power supply lines 2a-2c It is also possible to connect to the SPDs 1a to 1c in the order of the mechanisms 3a to 3c and the surge dedicated fuses 4a to 4c.

前述の接点機構3a〜3cは、その接点が手動で開閉される他、交流事故電流あるいは交流漏洩電流の発生時に接点が自動で開放される必要がある。そこで、図1〜図3に示す接点機構3a〜3cは、交流事故電流あるいは交流漏洩電流の発生時、電源線路2a〜2cからの電圧供給により接点を自動的に開放するための切り離し用コイル部6を備えている。また、線間絶縁低下により接点機構3a〜3cに流れる交流事故電流を検出する過電流検出センサ7a,7cの検出信号と、大地間絶縁低下により接点機構3a〜3cに流れる交流漏洩電流を検出する漏電センサ8からの検出信号とに基づいて、切り離し用コイル部6に電源線路2a〜2cからの電圧を供給するコイル駆動部9を備えている。   The contact mechanisms 3a to 3c described above need to be automatically opened and closed when the AC accident current or AC leakage current is generated, in addition to being manually opened and closed. Accordingly, the contact mechanisms 3a to 3c shown in FIGS. 1 to 3 are provided with a disconnecting coil portion for automatically opening the contacts by supplying voltage from the power supply lines 2a to 2c when an AC accident current or an AC leakage current is generated. 6 is provided. Further, the detection signals of the overcurrent detection sensors 7a and 7c for detecting the AC fault current flowing through the contact mechanisms 3a to 3c due to the line insulation drop and the AC leakage current flowing through the contact mechanisms 3a to 3c due to the earth insulation drop are detected. On the basis of the detection signal from the leakage sensor 8, a coil driving unit 9 is provided for supplying the voltage from the power supply lines 2 a to 2 c to the disconnecting coil unit 6.

ここで、従来の配線用遮断器では、交流事故電流あるいは交流漏洩電流の発生時、交流事故電流あるいは交流漏洩電流自体のエネルギーにより接点を自動で開放する瞬時切り離し機構を具備していた。これに対して、図1〜図3に示す接点機構3a〜3cでは、従来の配線用遮断器における瞬時切り離し機構がなく、電源線路2a〜2cからの電圧を切り離し用コイル部6に供給することによりその切り離し用コイル部6を駆動させて接点を自動で開放するようにしている。ただし、SPD1a〜1cに故障が発生すると、電源線路2a〜2cでの電圧降下により切り離し用コイル部6を駆動させるのに十分なエネルギー供給が困難となる。   Here, the conventional circuit breaker is provided with an instantaneous disconnection mechanism that automatically opens the contact by the energy of the AC fault current or the AC leakage current itself when the AC fault current or the AC leak current is generated. In contrast, in the contact mechanisms 3a to 3c shown in FIGS. 1 to 3, there is no instantaneous disconnection mechanism in the conventional circuit breaker for wiring, and the voltage from the power supply lines 2a to 2c is supplied to the disconnecting coil section 6. Thus, the separation coil section 6 is driven to automatically open the contact. However, when a failure occurs in the SPDs 1a to 1c, it becomes difficult to supply energy sufficient to drive the disconnecting coil unit 6 due to a voltage drop in the power supply lines 2a to 2c.

そこで、図1〜図3に示す接点機構3a〜3cでは、整流回路25およびコンデンサ26を付設することにより、電源線路2a〜2cから取り込んだ交流電圧を整流回路25で整流してコンデンサ26に充電し、そのコンデンサ26の充電エネルギーをコイル駆動部9を介して切り離し用コイル部6に供給する。このようにすれば、SPD1a〜1cの故障発生により電源線路2a〜2cでの電圧降下があったとしても、コンデンサ26の充電エネルギーにより切り離し用コイル部6を駆動させて接点機構3a〜3cの接点を自動で確実に開放することができ、SPD1a〜1cを電源線路2a〜2cから確実に切り離すことが可能となる。   Accordingly, in the contact mechanisms 3a to 3c shown in FIG. 1 to FIG. 3, the rectifier circuit 25 and the capacitor 26 are provided to rectify the AC voltage taken from the power supply lines 2a to 2c by the rectifier circuit 25 and charge the capacitor 26. Then, the charging energy of the capacitor 26 is supplied to the separation coil unit 6 through the coil driving unit 9. In this way, even if there is a voltage drop in the power supply lines 2a to 2c due to the failure of the SPDs 1a to 1c, the disconnecting coil unit 6 is driven by the charging energy of the capacitor 26 to contact the contact mechanisms 3a to 3c. The SPDs 1a to 1c can be reliably disconnected from the power supply lines 2a to 2c.

また、図1〜図3に示すサージ専用ヒューズには、そのサージ専用ヒューズ4a〜4cがSPD故障時に溶断したことを検出する遮断検知部27が付設され、その遮断検知部27からの検出信号を切り離し用コイル部6へ出力する。これにより、SPD故障時にサージ専用ヒューズ4a〜4cが溶断したことを遮断検知部27で検出し、その検出信号に基づいて切り離し用コイル部6を駆動させて接点機構3a〜3cの接点を自動で開放する。このようにすれば、過大な雷サ−ジにより少なくとも一つのサージ専用ヒューズ4a〜4cが遮断した時でも接点機構3a〜3cを自動で開放することで故障のSPD1a〜1cを電源線路2a〜2cから確実に切り離すことができる。   Further, the surge dedicated fuse shown in FIGS. 1 to 3 is provided with a cutoff detection unit 27 for detecting that the surge dedicated fuses 4a to 4c are blown at the time of SPD failure, and a detection signal from the cutoff detection unit 27 is received. It outputs to the coil part 6 for isolation | separation. Thereby, it is detected by the interruption detection unit 27 that the surge dedicated fuses 4a to 4c are blown at the time of SPD failure, and the disconnecting coil unit 6 is driven based on the detection signal to automatically connect the contacts of the contact mechanisms 3a to 3c. Open. In this way, even when at least one of the surge-dedicated fuses 4a to 4c is interrupted by an excessive lightning surge, the contact mechanisms 3a to 3c are automatically opened so that the failed SPDs 1a to 1c can be removed from the power lines 2a to 2c. Can be surely disconnected from.

図1に示す実施形態のSPD切り離し装置では、サージ専用ヒューズ4a〜4c、接点機構3a〜3cおよびSPD1a〜1cをそれぞれ独立した収納ケース10〜12内で構成している。サージ専用ヒューズ4a〜4cの収納ケース10にはサージ専用ヒューズ4a〜4cの電源側接続端子13a〜13cおよび負荷側接続端子14a〜14cが設けられている。接点機構3a〜3cの収納ケース11には接点機構3a〜3cの電源側接続端子15a〜15cおよび負荷側接続端子16a〜16cが設けられている。SPD1a〜1cの収納ケース13にはSPD1a〜1cの電源側接続端子17a〜17cおよび接地端子18が設けられている。   In the SPD disconnecting device of the embodiment shown in FIG. 1, the surge dedicated fuses 4a to 4c, the contact mechanisms 3a to 3c, and the SPDs 1a to 1c are configured in independent storage cases 10 to 12, respectively. The storage case 10 for the surge dedicated fuses 4a to 4c is provided with power supply side connection terminals 13a to 13c and load side connection terminals 14a to 14c for the surge dedicated fuses 4a to 4c. The storage cases 11 of the contact mechanisms 3a to 3c are provided with power supply side connection terminals 15a to 15c and load side connection terminals 16a to 16c of the contact mechanisms 3a to 3c. The storage cases 13 of the SPDs 1a to 1c are provided with power supply side connection terminals 17a to 17c and ground terminals 18 of the SPDs 1a to 1c.

図2に示す実施形態のSPD切り離し装置は、サージ専用ヒューズ4a〜4cと接点機構3a〜3cとを同一の収納ケース19内で構成すると共に、SPD1a〜1cを別の収納ケース12内で構成している。サージ専用ヒューズ4a〜4cと接点機構3a〜3cとを一体構成にした収納ケース19にはサージ専用ヒューズ4a〜4cの電源側接続端子13a〜13cおよび接点機構3a〜3cの負荷側接続端子16a〜16cが設けられている。SPD1a〜1cの収納ケース12にはSPD1a〜1cの電源側接続端子17a〜17cおよび接地端子18が設けられている。   In the SPD disconnecting device of the embodiment shown in FIG. 2, the surge dedicated fuses 4 a to 4 c and the contact mechanisms 3 a to 3 c are configured in the same storage case 19, and the SPDs 1 a to 1 c are configured in another storage case 12. ing. The storage case 19 in which the surge-dedicated fuses 4a to 4c and the contact mechanisms 3a to 3c are integrally configured has power supply side connection terminals 13a to 13c of the surge dedicated fuses 4a to 4c and load side connection terminals 16a to 16a of the contact mechanisms 3a to 3c. 16c is provided. The storage cases 12 of the SPDs 1a to 1c are provided with power supply side connection terminals 17a to 17c and ground terminals 18 of the SPDs 1a to 1c.

図3に示す実施形態のSPD切り離し装置は、サージ専用ヒューズ4a〜4cと接点機構3a〜3cとSPD1a〜1cとを同一の収納ケース20内で構成している。サージ専用ヒューズ4a〜4cと接点機構3a〜3cとSPD1a〜1cとを一体構成にした収納ケース20にはサージ専用ヒューズ4a〜4cの電源側接続端子13a〜13cおよびSPD1a〜1cの接地端子18が設けられている。   The SPD disconnecting device of the embodiment shown in FIG. 3 comprises surge dedicated fuses 4a to 4c, contact mechanisms 3a to 3c, and SPDs 1a to 1c in the same storage case 20. The storage case 20 in which the surge-dedicated fuses 4a to 4c, the contact mechanisms 3a to 3c, and the SPDs 1a to 1c are integrally formed has power supply side connection terminals 13a to 13c of the surge-dedicated fuses 4a to 4c and ground terminals 18 of the SPDs 1a to 1c. Is provided.

図2に示すようにサージ専用ヒューズ4a〜4cと接点機構3a〜3cとを同一の収納ケース19内で構成した場合、サージ専用ヒューズ4a〜4cと接点機構3a〜3cとをそれぞれ独立した収納ケース10,11内で構成した場合(図1参照)と比較して、サージ専用ヒューズ4a〜4cの負荷側接続端子14a〜14cと接点機構3a〜3cの電源側接続端子15a〜15cが不要となり部品点数の低減が図れ、接続工程も不要となるので組立工数の低減も図れ、装置の小型化も可能となる。   As shown in FIG. 2, when the surge dedicated fuses 4a to 4c and the contact mechanisms 3a to 3c are configured in the same storage case 19, the surge dedicated fuses 4a to 4c and the contact mechanisms 3a to 3c are respectively independent storage cases. 10 and 11 (see FIG. 1), the load side connection terminals 14a to 14c of the surge-dedicated fuses 4a to 4c and the power source side connection terminals 15a to 15c of the contact mechanisms 3a to 3c become unnecessary. Since the number of points can be reduced and a connection process is not required, the number of assembly steps can be reduced, and the apparatus can be downsized.

図3に示すようにサージ専用ヒューズ4a〜4cと接点機構3a〜3cとSPD1a〜1cとを同一の収納ケース20内で構成した場合、サージ専用ヒューズ4a〜4cの負荷側接続端子14a〜14cと接点機構3a〜3cの電源側接続端子15a〜15cに加えて、接点機構3a〜3cの負荷側接続端子16a〜16cとSPD1a〜1cの電源側接続端子17a〜17cも不要となり部品点数をさらに低減させることができ、接続工程も不要となるので組立工数をさらに低減することができ、装置をさらに小型化することが可能となる。   As shown in FIG. 3, when the surge dedicated fuses 4a to 4c, the contact mechanisms 3a to 3c and the SPDs 1a to 1c are configured in the same storage case 20, the load side connection terminals 14a to 14c of the surge dedicated fuses 4a to 4c In addition to the power supply side connection terminals 15a to 15c of the contact mechanisms 3a to 3c, the load side connection terminals 16a to 16c of the contact mechanisms 3a to 3c and the power supply side connection terminals 17a to 17c of the SPDs 1a to 1c are not required, thereby further reducing the number of parts. This eliminates the need for a connecting step, further reducing the number of assembly steps, and further miniaturizing the apparatus.

一方、前述したように、サージ専用ヒューズ4a〜4cと接点機構3a〜3c、あるいは、サージ専用ヒューズ4a〜4cと接点機構3a〜3cとSPD1a〜1cとを同一の収納ケース19,20内で構成することにより装置の小型化を図ることで、例えば直撃雷などの大きなサージ電流が流れる接点機構3a〜3cとコイル駆動部9が近接配置されることになる。そのため、コイル駆動部9を構成する電子回路部品などに対するサージ電流の強電界作用がもたらす誘導での誤動作や電子回路部品の破壊などの課題が生じる。この対策としてサージ専用ヒューズ4a〜4c、接点機構3a〜3cおよびコイル駆動部9における部品配置やシ−ルド構造が重要となる。   On the other hand, as described above, the surge dedicated fuses 4a to 4c and the contact mechanisms 3a to 3c, or the surge dedicated fuses 4a to 4c, the contact mechanisms 3a to 3c, and the SPDs 1a to 1c are configured in the same storage case 19, 20. Thus, by reducing the size of the device, the contact mechanisms 3a to 3c through which a large surge current such as a direct lightning strike flows and the coil driving unit 9 are arranged close to each other. Therefore, problems such as malfunction due to induction caused by the strong electric field effect of surge current on the electronic circuit components constituting the coil drive unit 9 and destruction of the electronic circuit components occur. As countermeasures, component arrangement and shield structure in the surge dedicated fuses 4a to 4c, the contact mechanisms 3a to 3c, and the coil driving unit 9 are important.

例えば、大きなサージ電流が流れる接点機構3a〜3cやサージ専用ヒューズ4a〜4cから電子回路部品との離隔距離を出来る限り大きくとって影響を受けにくくしたり、離隔距離を大きくとればよい。それが困難な場合には、接点機構3a〜3cやサージ専用ヒューズ4a〜4cと電子回路部品との間にアルミ箔等の電界シールド部品を挿入する対策が必要となる。この場合であっても、サージ電流の影響を受ける電子回路部品も特定部品である場合が多く、設計要素として実験的検証によって対策される個別対策が一般的である。上記のように部品相互間の距離や部品の向き、シールドの可否等は設計要素であり、より効率的、効果的とするためには一体化構造とすることで部品固有の特性が明確化できることで容易となる。   For example, the distance between the contact mechanisms 3a to 3c through which a large surge current flows and the surge dedicated fuses 4a to 4c are separated from the electronic circuit parts as much as possible to reduce the influence, or to increase the distance. When this is difficult, it is necessary to take measures to insert an electric field shielding component such as an aluminum foil between the contact mechanisms 3a to 3c and the surge dedicated fuses 4a to 4c and the electronic circuit component. Even in this case, the electronic circuit component affected by the surge current is often a specific component, and an individual measure generally taken as a design element by experimental verification is common. As described above, the distance between parts, the direction of parts, the availability of shielding, etc. are design elements, and in order to make it more efficient and effective, the unique characteristics of the parts can be clarified by adopting an integrated structure It becomes easy.

さらに、過大な雷サ−ジに対してSPD切り離し装置は、その性能保証値を超えるために故障するが、その場合であっても安全な故障状態とすることが好ましい。つまり、サージ専用ヒュ−ズ4a〜4c、接点機構3a〜3cおよび収納ケース10〜12,19,20の接続端子のうちで一箇所に過大な雷サージに対して弱い部分を設けることで設計的に故障箇所を特定でき、故障時の内圧上昇エネルギーに対する放圧設計が容易となる。この結果、放圧部は故障箇所近傍の一部に部分的に対策するだけでよくなるので、放圧に対する部品の飛散防止構造が容易で低コスト化が可能となる。   Furthermore, although the SPD disconnection device fails due to exceeding its performance guarantee value against an excessive lightning surge, it is preferable to make it a safe failure state even in that case. That is, it is designed by providing a weak portion against excessive lightning surge at one place among the connection terminals of the surge dedicated fuses 4a to 4c, the contact mechanisms 3a to 3c and the storage cases 10 to 12, 19, and 20. Therefore, it is possible to specify the failure location, and it is easy to design the pressure relief for the internal pressure increase energy at the time of failure. As a result, the pressure release portion only needs to partially take measures against a part near the failure location, so that a structure for preventing parts from scattering against pressure release can be easily achieved and the cost can be reduced.

このように、過大な雷サージに対する故障箇所の特定が容易になることで、サージ専用ヒューズ4a〜4c、接点機構3a〜3cおよび各収納ケース10〜12,19,20の接続端子における相互間の熱的、機械的強度の設計余裕度を大きくとる必要がなくなる。その結果、サージ専用ヒューズ4a〜4cの遮断性能の最大電流通過エネルギーに合せた部品の熱設計や、雷サージ通過により接点機構3a〜3cに作用する電磁力に耐える構造設計が可能となり、サージ専用ヒューズ4a〜4cと接点機構3a〜3c、あるいは、サージ専用ヒューズ4a〜4cと接点機構3a〜3cとSPD1a〜1cを同一の収納ケース内で一体構成する設計と併せ、接点機構3a〜3cにおける導電部材の断面積の削減や収納ケースの肉厚削減など、使用部材の削減効果によって、より一層の低コスト化、小型化が可能となる。   As described above, since it becomes easy to identify a failure point for an excessive lightning surge, the surge fuses 4a to 4c, the contact mechanisms 3a to 3c, and the connection terminals of the storage cases 10 to 12, 19, and 20 are connected to each other. There is no need to increase the design margin for thermal and mechanical strength. As a result, it is possible to design components that match the maximum current passing energy of the interrupting performance of the surge-dedicated fuses 4a to 4c, and to design a structure that can withstand the electromagnetic force acting on the contact mechanisms 3a to 3c by passing lightning surges. In addition to the fuses 4a to 4c and the contact mechanisms 3a to 3c, or the surge dedicated fuses 4a to 4c, the contact mechanisms 3a to 3c, and the SPDs 1a to 1c are integrated in the same storage case, the contact mechanisms 3a to 3c are electrically conductive. Due to the effect of reducing the number of members used, such as reducing the cross-sectional area of the member and reducing the thickness of the storage case, the cost can be further reduced and the size can be reduced.

図4(A)(B)は前述した接点機構3a〜3cの具体的構造を例示する。この接点機構3a〜3cは、固定接点部21とその固定接点部21と突合せ可能に対向配置された可動接点部22とを備え、固定接点部21の外側と可動接点部22の外側に、サ−ジ電流により現出する電磁力でもって可動接点部22に固定接点部21への吸引力を作用させる一対の磁性鉄片23,24を対向配置した構造を具備する。   4A and 4B illustrate the specific structures of the contact mechanisms 3a to 3c described above. The contact mechanisms 3 a to 3 c include a fixed contact portion 21 and a movable contact portion 22 disposed so as to face the fixed contact portion 21 so as to face each other. A structure is provided in which a pair of magnetic iron pieces 23 and 24 that cause the movable contact portion 22 to be attracted to the fixed contact portion 21 by the electromagnetic force that appears due to the dicurrent are arranged to face each other.

図4(A)(B)は固定接点部21に対して可動接点部22が接触した状態を示し、固定接点部21は固定接点板21aの先端部に固定接点21bを加締めまたはロウ付けで固着した構造を具備し、同様に、可動接点部22は可動接点板22aの先端に可動接点22bを加締めまたはロウ付けで固着した構造を具備する。この固定接点板21aの先端部の外側に、断面コ字状を有する一方の磁性鉄片23を加締めまたはねじで固着すると共に、可動接点板22aの先端部の外側に、断面コ字状を有する他方の磁性鉄片24を加締めまたはねじで固着する。この固定接点側の一方の磁性鉄片23と可動接点側の他方の磁性鉄片24は対をなし、相互間でギャップgを有する状態で対向配置されている。   4 (A) and 4 (B) show a state in which the movable contact portion 22 is in contact with the fixed contact portion 21, and the fixed contact portion 21 is formed by crimping or brazing the fixed contact 21b to the tip portion of the fixed contact plate 21a. Similarly, the movable contact portion 22 has a structure in which the movable contact 22b is fixed to the tip of the movable contact plate 22a by caulking or brazing. One magnetic iron piece 23 having a U-shaped cross section is fixed to the outside of the front end portion of the fixed contact plate 21a by caulking or screwing, and has a U-shaped cross section outside the front end portion of the movable contact plate 22a. The other magnetic iron piece 24 is fixed with caulking or screws. One magnetic iron piece 23 on the fixed contact side and the other magnetic iron piece 24 on the movable contact side form a pair, and are arranged to face each other with a gap g between them.

このような構造を有する接点機構3a〜3cにおいて、大きなサージ電流が流れると、一対の磁性鉄片23,24とギャップgに磁束Φが発生する結果、ギャップgを介する固定接点側の磁性鉄片23と可動接点側の磁性鉄片24との間で吸引力が作用する。この吸引力の作用により、固定接点21bと可動接点22bとの間に発生する電磁反発力が相殺され、電磁反発力により可動接点22bが固定接点21bから浮き上がることを抑制できる。   In the contact mechanisms 3a to 3c having such a structure, when a large surge current flows, a magnetic flux Φ is generated in the pair of magnetic iron pieces 23 and 24 and the gap g. As a result, the magnetic iron piece 23 on the fixed contact side via the gap g and An attractive force acts between the magnetic iron piece 24 on the movable contact side. By the action of this attractive force, the electromagnetic repulsive force generated between the fixed contact 21b and the movable contact 22b is canceled out, and the movable contact 22b can be prevented from being lifted from the fixed contact 21b by the electromagnetic repulsive force.

なお、この接点機構3a〜3cにおける固定接点板21aおよび固定接点21b、可動接点板22aおよび可動接点22bの材質はタングステンカ−バイトと銀の合金とする。このように、固定接点板21aおよび固定接点21b、可動接点板22aおよび可動接点22bの材質をタングステンカ−バイトと銀の合金とすれば、耐溶着性と遮断性能を向上させることが可能となる。   In the contact mechanisms 3a to 3c, the fixed contact plate 21a and the fixed contact 21b, and the movable contact plate 22a and the movable contact 22b are made of an alloy of tungsten carbide and silver. As described above, if the material of the fixed contact plate 21a and the fixed contact 21b, the movable contact plate 22a and the movable contact 22b is an alloy of tungsten carbide and silver, it is possible to improve the welding resistance and the interruption performance. .

一般的な銀を材質とした場合、銀の溶融点が760℃であるのに対して、材質をタングステンとすれば、タングステンの溶融点が3382℃と格段に高いので、耐溶着性の向上が容易に図れる。ただし、銀に比べタングステンの接触抵抗は非常に大きく常時負荷電流が流れる一般的な接点機構では温度上昇が高く使用に耐えないが、SPD切り離し装置ではサージ電流が接点機構3a〜3cに流れる時間が瞬間的であるため、接触抵抗が大きい点は許容範囲内である。   When general silver is used as a material, the melting point of silver is 760 ° C., but when tungsten is used as the material, the melting point of tungsten is 3382 ° C., so that the welding resistance is improved. Easy to plan. However, the contact resistance of tungsten is very large compared to silver, and a general contact mechanism in which a load current always flows has a high temperature rise and cannot be used. However, in the SPD disconnecting device, the time during which surge current flows through the contact mechanisms 3a to 3c Since it is instantaneous, the point where the contact resistance is large is within an allowable range.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

本発明に係るSPD切り離し装置の実施形態で、電源線路に接地接続されたSPDの前段に設けられたサージ専用ヒューズおよび接点機構を示す概略回路構成図である。In the embodiment of the SPD disconnecting device according to the present invention, it is a schematic circuit configuration diagram showing a surge-dedicated fuse and a contact mechanism provided in the front stage of the SPD that is grounded to the power line. 本発明の他の実施形態で、図1のサージ専用ヒューズと接点機構を一体構成とした概略回路構成図である。FIG. 5 is a schematic circuit configuration diagram in which the surge dedicated fuse and the contact mechanism of FIG. 1 are integrally configured in another embodiment of the present invention. 本発明の他の実施形態で、図1のサージ専用ヒューズと接点機構とSPDを一体構成とした概略回路構成図である。FIG. 5 is a schematic circuit configuration diagram in which the surge dedicated fuse, the contact mechanism, and the SPD of FIG. 1 are integrally configured in another embodiment of the present invention. (A)は接点機構の接点の概略構成を示す正面図、(B)は(A)の側面図である。(A) is a front view which shows schematic structure of the contact of a contact mechanism, (B) is a side view of (A).

符号の説明Explanation of symbols

1a〜1c SPD
2a〜2c 電源線路
3a〜3c 接点機構
4a〜4c サージ専用ヒューズ
1a-1c SPD
2a-2c Power line 3a-3c Contact mechanism 4a-4c Surge dedicated fuse

Claims (3)

電源線路と大地との間に挿入したSPDの前段に設置され、前記SPD故障時にそのSPDを電源線路から切り離すものであって、前記SPDを電源線路から切り離す接点機構およびサージ専用ヒューズを備え、SPD故障電流に対してSPDを前記接点機構により電源線路から切り離し、前記サージ専用ヒューズは所定の耐サージ電流通過性能および過大サージ遮断性能を有し、前記SPDの直撃雷用サージ電流耐量を超える過大サージ電流に対してSPDを前記サージ専用ヒューズにより電源線路から切り離し、前記SPDを電源線路から切り離す機能を前記接点機構と前記サージ専用ヒューズとで機能分離させたことを特徴とするSPD切り離し装置。 Installed before the SPD inserted between the power line and the ground, and disconnects the SPD from the power line when the SPD fails, and includes a contact mechanism for disconnecting the SPD from the power line and a surge-dedicated fuse. The SPD is disconnected from the power line by the contact mechanism against a fault current, and the surge dedicated fuse has a predetermined surge current passing performance and an excessive surge cutoff performance, and an excessive surge exceeding the surge current capability for the direct lightning strike of the SPD disconnect city from the power line the SPD by the surge-only fuse with respect to the current, SPD disconnect device characterized by the ability to disconnect the SPD from the power supply line was functionally separated between the surge dedicated fuse and the contact mechanism. 前記サージ専用ヒューズにおける所定の過大サージ遮断性能は、所定の耐サージ電流通過性能を発揮する通過電流領域における最大電流値以上で、かつ、その最大電流値の1.5倍以下の遮断電流領域を有する請求項1に記載のSPD切り離し装置。   The predetermined surge surge cutoff performance in the surge-dedicated fuse is a cutoff current region that is not less than the maximum current value in the passing current region that exhibits the predetermined surge current passing performance and not more than 1.5 times the maximum current value. The SPD separation device according to claim 1, comprising: 前記SPDは、酸化亜鉛形バリスタ素子で構成されている請求項1又は2に記載のSPD切り離し装置。   The SPD separation device according to claim 1 or 2, wherein the SPD is composed of a zinc oxide varistor element.
JP2008075362A 2008-03-24 2008-03-24 SPD separation device Active JP5188853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075362A JP5188853B2 (en) 2008-03-24 2008-03-24 SPD separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075362A JP5188853B2 (en) 2008-03-24 2008-03-24 SPD separation device

Publications (2)

Publication Number Publication Date
JP2009232589A JP2009232589A (en) 2009-10-08
JP5188853B2 true JP5188853B2 (en) 2013-04-24

Family

ID=41247365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075362A Active JP5188853B2 (en) 2008-03-24 2008-03-24 SPD separation device

Country Status (1)

Country Link
JP (1) JP5188853B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795548B (en) * 2018-04-04 2023-03-11 德商Tdk電子股份有限公司 Three phase surge protection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570388A (en) * 2010-12-29 2012-07-11 孙巍巍 Controllable device of surge protector
JP2016163523A (en) * 2015-03-05 2016-09-05 株式会社Nttファシリティーズ Separator and separation method
JP6610173B2 (en) * 2015-08-25 2019-11-27 三菱電機株式会社 Earth leakage breaker
DE102016000355A1 (en) * 2015-09-11 2017-03-16 DEHN + SÖHNE GmbH + Co. KG. Arrangement for the safe, independent of switchgear or fuses, mains-side separation of overvoltage protection devices in the case of critical operating conditions
CN114512975B (en) * 2022-04-19 2022-07-12 合肥航太电物理技术有限公司 Multi-channel lightning electromagnetic protection real-time fault monitoring suppressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103660A (en) * 1999-09-28 2001-04-13 Kyocera Corp Loading device
JP4176675B2 (en) * 2004-05-25 2008-11-05 音羽電機工業株式会社 Lightning arrestor
JP2006352955A (en) * 2005-06-13 2006-12-28 Otowa Denki Kogyo Kk Leakage protective relay
JP4756991B2 (en) * 2005-10-24 2011-08-24 日東工業株式会社 Surge protection device with automatic closing mechanism
JP4298694B2 (en) * 2005-11-07 2009-07-22 森長電子株式会社 Lightning arrester disconnect control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795548B (en) * 2018-04-04 2023-03-11 德商Tdk電子股份有限公司 Three phase surge protection device

Also Published As

Publication number Publication date
JP2009232589A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US6782329B2 (en) Detection of arcing faults using bifurcated wiring system
US10134555B2 (en) Fuse for a device to be protected
JP2016213179A (en) DC circuit breaker and method of use
JP5188853B2 (en) SPD separation device
US9300126B2 (en) Electrical apparatus for the short-circuit protection of a three-phase load in a three-phase system
JP2003536353A (en) Arc fault detection circuit breaker system
EP2919254B1 (en) Surge protection device having short-circuit current protection function
US7573692B1 (en) Protective device with improved surge protection
JP5189892B2 (en) Surge protection device
JP5295635B2 (en) Surge protection device
JP5042895B2 (en) SPD separation device
JP5220561B2 (en) Surge protection device
JP5220529B2 (en) Surge protection device
CN101499653A (en) Method for protecting electrical appliance by over-current side path
JP2018526964A (en) Configuration to safely remove the overvoltage protection device from the power supply, independent of the switchgear or backup fuse, during critical operating conditions
JP5220530B2 (en) Surge protection device
CN110383413B (en) Fuse protector for low voltage applications
US10672581B2 (en) Type-II overvoltage protection device
CN215646148U (en) Back-up protector of surge protector and surge protection system
CN206293872U (en) A kind of SPD back-up protection devices based on electromagnetic differential
CN106451335B (en) SPD back-up protection devices based on electromagnetic differential
CN111224390A (en) Overvoltage protection device with thermal overload protection device
US20240222956A1 (en) Electronic circuit breaker configured to provide a fail-safe mode
US20230361560A1 (en) Electronic circuit breaker configured to provide a fail-safe mode
JP7103727B1 (en) Lightning surge protector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250