JP5187844B2 - CO oxidation catalyst - Google Patents

CO oxidation catalyst Download PDF

Info

Publication number
JP5187844B2
JP5187844B2 JP2008313902A JP2008313902A JP5187844B2 JP 5187844 B2 JP5187844 B2 JP 5187844B2 JP 2008313902 A JP2008313902 A JP 2008313902A JP 2008313902 A JP2008313902 A JP 2008313902A JP 5187844 B2 JP5187844 B2 JP 5187844B2
Authority
JP
Japan
Prior art keywords
catalyst
nial
reaction
nanoparticles
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008313902A
Other languages
Japanese (ja)
Other versions
JP2010137131A (en
Inventor
亜 許
君友 楊
雅彦 出村
敏幸 平野
原  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008313902A priority Critical patent/JP5187844B2/en
Publication of JP2010137131A publication Critical patent/JP2010137131A/en
Application granted granted Critical
Publication of JP5187844B2 publication Critical patent/JP5187844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、COを酸化してCOにする触媒であって、より詳しくは、250℃以上の温度で触媒活性を示すものに関する。 The present invention relates to a catalyst that oxidizes CO to CO 2 , and more particularly relates to a catalyst that exhibits catalytic activity at a temperature of 250 ° C. or higher.

以下の特許文献示されるように、従来CO酸化触媒は主にPt,Auなどの高価な貴金属や希土類等の稀少元素が使われている。
これら貴金属の使用は、CO酸化によるCO回収作業を困難とし地球温暖化防止の活動を阻害する要因の一つとなっていた。
特開2005−230616 特開2001−220103 特開2002−058924
As shown in the following patent documents, the conventional CO oxidation catalyst mainly uses expensive noble metals such as Pt and Au, and rare elements such as rare earths.
The use of these precious metals has been one of the factors that make it difficult to recover CO 2 by CO oxidation and hinders activities to prevent global warming.
JP-A-2005-230616 JP 2001-220103 A JP 2002-058924 A

本願発明は、このような実情に鑑み、貴金属や希少金属を使用せず、一般に得やすいNiとAlを用いて、CO酸化機能を発現する触媒を提供することを特徴とする。   In view of such circumstances, the present invention is characterized by providing a catalyst that expresses a CO oxidation function using Ni and Al that are generally easily obtained without using noble metals or rare metals.

発明1の触媒は、 Ni−Al金属間化合物のナノ粒子からなることを特徴とする。   The catalyst of the invention 1 is characterized by comprising Ni-Al intermetallic compound nanoparticles.

発明2は、発明1の触媒において、その金属間化合物は、NiAl, NiAl, Ni相の少なくとも1つ以上を有することを特徴とする。 Invention 2 is characterized in that in the catalyst of Invention 1, the intermetallic compound has at least one of Ni 3 Al, NiAl, and Ni phases.

発明3は、発明1又は2の触媒において、ナノ粒子のBET比表面積が50m/g以上であることを特徴とすることを特徴とする。 Invention 3 is characterized in that, in the catalyst of Invention 1 or 2, the nanoparticle has a BET specific surface area of 50 m 2 / g or more.

発明4は、発明1から3のいずれかの触媒において、NiAl合金インゴットを真空アークプラズマ蒸着法によりナノ粒子化されたものであることを特徴とする。 Invention 4 is characterized in that, in the catalyst according to any one of Inventions 1 to 3, a NiAl alloy ingot is nanoparticulated by a vacuum arc plasma deposition method.

本発明の触媒は、貴金属や希少元素を含有しないにもかかわらず、一酸化炭素(CO)の酸化反応に対して高い触媒活性を示した。
さらに空気中でも安定なので、従来のラネーNi触媒より取り扱いが簡単である。
The catalyst of the present invention showed high catalytic activity for the oxidation reaction of carbon monoxide (CO), although it contained no precious metal or rare element.
Furthermore, since it is stable in the air, it is easier to handle than conventional Raney Ni catalysts.

金属間化合物ナノ粒子の粒径の好ましい範囲は1nmから100nmである。その範囲のサイズの粒子は安定的に存在することが可能で、高い比表面積を有するためである。
Ni−Alの重量比の好ましい範囲は、Niは76−95重量%、Alは5−24重量%である。Ni−Alの2元状態図により、この範囲では、NiAlとNiAlの金属間化合物相は存在する。
この金属間化合物ナノ粒子の相構造が、NiAl,NiAl,Ni,NiO及びAl相のすべてを有する必要がなく、触媒活性を有するNiAl,NiAl,Niの中の1つ又1つ以上の相があれば良い。
A preferable range of the particle size of the intermetallic compound nanoparticles is 1 nm to 100 nm. This is because particles having a size within that range can exist stably and have a high specific surface area.
The preferred range of the Ni-Al weight ratio is 76-95 wt% for Ni and 5-24 wt% for Al. In this range, there is an intermetallic compound phase of Ni 3 Al and NiAl according to the Ni—Al binary phase diagram.
The phase structure of the intermetallic compound nanoparticles need not have all of the Ni 3 Al, NiAl, Ni, NiO, and Al 2 O 3 phases, and is one of Ni 3 Al, NiAl, Ni having catalytic activity. There may be more than one phase.

Ni−Al金属間化合物ナノ粒子の作製
Ni(ニッケル)とAl(アルミニウム)をアーク溶解炉で以下の組成の合金インゴットを作製した。


上記のNiAl合金インゴットを用いて、真空アークプラズマ蒸着法により、表2に示すように各組成のナノ粒子試料を作製した。粉末X線回折測定によりこれらのナノ粒子試料の相の構成を確認したところ、図1に示すように、これらのナノ粒子試料は、NiAl,NiAl,Ni,NiO及びAl相を主相とするものであった。
なお、図中の略称は、原材料とした合金の略称を示すものである。
Production of Ni-Al Intermetallic Compound Nanoparticles An alloy ingot having the following composition was produced using Ni (nickel) and Al (aluminum) in an arc melting furnace.


Using the above-described NiAl alloy ingot, nanoparticle samples of each composition were prepared as shown in Table 2 by vacuum arc plasma deposition. When the composition of the phases of these nanoparticle samples was confirmed by powder X-ray diffraction measurement, as shown in FIG. 1, these nanoparticle samples contained Ni 3 Al, NiAl, Ni, NiO and Al 2 O 3 phases. It was the main phase.
In addition, the abbreviation in a figure shows the abbreviation of the alloy used as a raw material.

マイクロトラック粒度分布測定装置を用いてレーザー回折・散乱法により粒子全体的粒度分布を測定した。表2のNo.2のナノ粒子は1nmから600nmまでの範囲で、No.5のナノ粒子は1nmから800nmまでの範囲であることが分かった。透過電子顕微鏡(TEM)及び走査透過電子顕微鏡(STEM)により作製した表2のNo.2のナノ粒子のサイズ、形状、組成を分析した。粒子サイズは主に1nmから100nmまでの範囲に分布することが分かった(図2)。
窒素ガス吸着により比表面積を測定した。これらのナノ粒子試料の比表面積(BET法)は、50から112m/gであることが分かった(表2)。これは、従来のラネーNi触媒に匹敵する大きな比表面積(50−100m/g)である。
さらに、本ナノ粒子触媒はラネーNiより安定であるという大きなメリットがある。ラネーNi触媒は空気中で強烈に酸化・燃焼するため、水などの液体中に保存する必要がある。そのため、主に液体反応にしか適用できない。これに対して、本ナノ粒子触媒は空気中でも安定で燃えることはないので、取扱いが簡単で、高温ガス反応にも応用できる。
The overall particle size distribution was measured by laser diffraction / scattering method using a microtrack particle size distribution analyzer. No. in Table 2 No. 2 nanoparticles range from 1 nm to 600 nm. 5 nanoparticles were found to range from 1 nm to 800 nm. No. 1 in Table 2 prepared by a transmission electron microscope (TEM) and a scanning transmission electron microscope (STEM). The size, shape and composition of the two nanoparticles were analyzed. It was found that the particle size was distributed mainly in the range from 1 nm to 100 nm (FIG. 2).
The specific surface area was measured by nitrogen gas adsorption. The specific surface area (BET method) of these nanoparticle samples was found to be 50 to 112 m 2 / g (Table 2). This is a large specific surface area (50-100 m 2 / g) comparable to conventional Raney Ni catalysts.
Furthermore, this nanoparticle catalyst has a great merit that it is more stable than Raney Ni. Raney Ni catalyst oxidizes and burns strongly in the air, so it must be stored in a liquid such as water. Therefore, it can be mainly applied only to liquid reactions. On the other hand, the present nanoparticle catalyst is stable even in air and does not burn, so it is easy to handle and can be applied to high temperature gas reactions.

以下のCO酸化反応に対して本ナノ粒子の触媒特性を測定した。
2CO + O → 2CO
反応装置システム
触媒反応は固定床流通式触媒反応装置により行った。5〜20mg程度のナノ粒子試料を内径8mmの石英反応管に導入し、試料層の上下に石英ウールを10mm厚さ程度詰めて、試料層を固定する。反応管を電気炉により加熱し、所定の温度で触媒反応を行った。温度制御は試料層に接触する熱電対により行った。反応管上部にCO+O+Heの混合ガスのラインに接続した。反応管下部にガスクロマトグラフィ及びガス流量計に接続し、反応物の組成と生成量を測定した。図3は反応装置システムを示す。
The catalytic properties of the nanoparticles were measured for the following CO oxidation reaction.
2CO + O 2 → 2CO 2
Reactor system The catalytic reaction was carried out by a fixed bed flow type catalytic reactor. A nanoparticle sample of about 5 to 20 mg is introduced into a quartz reaction tube having an inner diameter of 8 mm, and a sample layer is fixed by filling quartz wool with a thickness of about 10 mm above and below the sample layer. The reaction tube was heated by an electric furnace to carry out a catalytic reaction at a predetermined temperature. Temperature control was performed by a thermocouple in contact with the sample layer. The upper part of the reaction tube was connected to a mixed gas line of CO + O 2 + He. A gas chromatograph and a gas flow meter were connected to the lower part of the reaction tube, and the composition and amount of the reaction product were measured. FIG. 3 shows the reactor system.

COの酸化反応における触媒活性
組成Ni22.4Al、Ni25Al及びNi27Alのナノ粒子試料をそれぞれに用いて、COの酸化反応を行った。CO,O,Heの混合ガス(体積比CO:O:He=1:2:97)を100 ml/minの流量で反応管に導入して、室温から575℃の温度範囲でガスクロマトグラフィにより反応管出口のCO, O, CO, He各ガス成分の濃度を測定した。比較のため、市販の純Pt粉末試料(フルヤ金属(株))及び回転アトマイズ法で作製したNi−25原子%Al粉末試料(高純度化学(株)作製)を用いて、同じ触媒反応を行った。Pt粉末の場合、篩で集めて粒径150μm以下の粉末0.15gを反応管に導入した。アトマイズNiAl粉末の場合、篩で得られた粒径32〜75μmの粉末0.40gを反応管に導入した。測定した各温度でのCO、COの濃度から、次の式でCOの転化率を求めた。
COの転化率(%)= COの濃度/(COの濃度+COの濃度)×10
Catalytic activity in the oxidation reaction of CO The oxidation reaction of CO was performed using nanoparticle samples of compositions Ni22.4Al, Ni25Al and Ni27Al, respectively. A mixed gas of CO, O 2 and He (volume ratio CO: O 2 : He = 1: 2: 97) was introduced into the reaction tube at a flow rate of 100 ml / min, and gas chromatography was performed in a temperature range from room temperature to 575 ° C. Was used to measure the concentrations of CO, O 2 , CO 2 , and He gas components at the outlet of the reaction tube. For comparison, the same catalytic reaction was carried out using a commercially available pure Pt powder sample (Furuya Metal Co., Ltd.) and a Ni-25 atomic% Al powder sample (manufactured by High Purity Chemical Co., Ltd.) prepared by the rotary atomization method. It was. In the case of Pt powder, 0.15 g of powder having a particle size of 150 μm or less collected by a sieve was introduced into the reaction tube. In the case of atomized Ni 3 Al powder, 0.40 g of powder having a particle size of 32 to 75 μm obtained by sieving was introduced into the reaction tube. From the measured concentrations of CO and CO 2 at each temperature, the CO conversion rate was determined by the following equation.
CO conversion (%) = CO 2 concentration / (CO concentration + CO 2 concentration) × 10 2

表3は計算した各温度でのCOの転化率である。
図4はこれらのCO転化率を反応温度の関数としてグラフで示したものである。Ni22.4Al、Ni25AlとNi27Alは、250℃から活性が出始め、温度の上昇に伴い、転化率が増加し、400℃では約100%のCO転化率が得られた。
これらのNi−Alナノ粒子の触媒活性は純Pt粉末の触媒活性(図4に示す)とほぼ同じである。
一方、アトマイズで作製したNi25Alは375℃から活性が出始め、CO転化率は温度の上昇に伴い上昇するが、575℃の高温でも86%しか得られなかった。よって、本技術のナノNiAl粒子はアトマイズ法で作製したNiAl粉末より高い活性を持つことを示す。さらに、この結果から、貴金属元素を含まないNiとAlからなるナノ粒子触媒がCO酸化反応に純Pt粉末並みの活性を示すことが分かった。
Table 3 shows the calculated CO conversion at each temperature.
FIG. 4 graphically illustrates these CO conversions as a function of reaction temperature. Ni22.4Al, Ni25Al, and Ni27Al started to show activity at 250 ° C., and the conversion increased with increasing temperature, and a CO conversion of about 100% was obtained at 400 ° C.
The catalytic activity of these Ni—Al nanoparticles is almost the same as that of pure Pt powder (shown in FIG. 4).
On the other hand, Ni25Al produced by atomization started to show activity at 375 ° C., and the CO conversion increased with increasing temperature, but only 86% was obtained even at a high temperature of 575 ° C. Therefore, it shows that the nano NiAl particle | grains of this technique have higher activity than the NiAl powder produced by the atomization method. Furthermore, from this result, it was found that a nanoparticle catalyst composed of Ni and Al not containing a noble metal element exhibits an activity similar to that of pure Pt powder in the CO oxidation reaction.

NiAlナノ粒子試料の粉末X線回折測定結果を示すグラフ。The graph which shows the powder X-ray-diffraction measurement result of a NiAl nanoparticle sample. NiAlナノ粒子のTEM観察結果を示す写真。The photograph which shows the TEM observation result of a NiAl nanoparticle. 触媒反応装置システムを示す概略図。Schematic which shows a catalyst reaction apparatus system. 表3の各試料のCOの転化率を反応温度の関数として示したグラフ。The graph which showed the conversion of CO of each sample of Table 3 as a function of reaction temperature.

Claims (4)

COを酸化してCOにする触媒であって、Ni−Al金属間化合物のナノ粒子からなることを特徴とする触媒。 A catalyst that oxidizes CO to CO 2 and comprises nanoparticles of a Ni-Al intermetallic compound. 請求項1に記載の触媒において、その金属間化合物は、NiAl, NiAl, Ni相の少なくとも1つ以上の相を有することを特徴とする触媒。 The catalyst according to claim 1, wherein the intermetallic compound has at least one phase of Ni 3 Al, NiAl, and Ni phase. 請求項1又は2に記載の触媒において、ナノ粒子のBET比表面積が50m/g以上であることを特徴とすることを特徴とする触媒。 The catalyst according to claim 1 or 2, wherein the BET specific surface area of the nanoparticles is 50 m 2 / g or more. 請求項1から3のいずれかに記載の触媒において、NiAl合金インゴットを真空アークプラズマ蒸着法によりナノ粒子化されたものであることを特徴とする触媒。   The catalyst according to any one of claims 1 to 3, wherein the NiAl alloy ingot is nanoparticulated by a vacuum arc plasma deposition method.
JP2008313902A 2008-12-10 2008-12-10 CO oxidation catalyst Expired - Fee Related JP5187844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313902A JP5187844B2 (en) 2008-12-10 2008-12-10 CO oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313902A JP5187844B2 (en) 2008-12-10 2008-12-10 CO oxidation catalyst

Publications (2)

Publication Number Publication Date
JP2010137131A JP2010137131A (en) 2010-06-24
JP5187844B2 true JP5187844B2 (en) 2013-04-24

Family

ID=42347735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313902A Expired - Fee Related JP5187844B2 (en) 2008-12-10 2008-12-10 CO oxidation catalyst

Country Status (1)

Country Link
JP (1) JP5187844B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798425B2 (en) * 2011-09-26 2015-10-21 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
EP3450013A4 (en) 2016-04-27 2019-10-02 University of Science and Technology of China Preparation method for wide-temperature catalyst used for preferential oxidation of co in a hydrogen-rich atmosphere, and product and applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1123818A (en) * 1977-08-05 1982-05-18 Anthony Gartshore Catalyst for purification and/or control of exhaust gases
US5204302A (en) * 1991-09-05 1993-04-20 Technalum Research, Inc. Catalyst composition and a method for its preparation
JP2001220103A (en) * 2000-02-10 2001-08-14 Yusaku Takita Hydrogen producing method by decomposition of hydrocarbon
JP2002058924A (en) * 2000-08-21 2002-02-26 Ube Ind Ltd Diesel particulate filter
JP4547930B2 (en) * 2004-02-17 2010-09-22 日産自動車株式会社 Catalyst, catalyst preparation method and exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2010137131A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
Liu et al. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas
Déronzier et al. Catalysis on nanoporous gold–silver systems: Synergistic effects toward oxidation reactions and influence of the surface composition
Zhang et al. One-pot synthesis of Ni-nanoparticle-embedded mesoporous titania/silica catalyst and its application for CO2-reforming of methane
Mrabet et al. One-pot solvothermal synthesis of mixed Cu-Ce-Ox nanocatalysts and their catalytic activity for low temperature CO oxidation
Shen et al. Novel Fe–Ni nanoparticle catalyst for the production of CO-and CO2-free H2 and carbon nanotubes by dehydrogenation of methane
Chen et al. Preferential oxidation of CO in H2 stream on Au/ZnO–TiO2 catalysts
Yuan et al. Silica-and titania-supported Ni–Au: Application in catalytic hydrodechlorination
Mesrar et al. Syngas production from dry reforming of methane over ni/perlite catalysts: effect of zirconia and ceria impregnation
Ko et al. Ordered mesoporous tungsten carbide nanoplates as non-Pt catalysts for oxygen reduction reaction
Yan et al. Gold on carbon and titanium oxides composites: Highly efficient and stable acetylene hydrogenation in large excess of ethylene
Liu et al. Synthesis of Au–Ag alloy nanoparticles supported on silica gel via galvanic replacement reaction
Xu et al. Replacement reaction-based synthesis of supported palladium catalysts with atomic dispersion for catalytic removal of benzene
Salipira et al. Carbon produced by the catalytic decomposition of methane on nickel: carbon yields and carbon structure as a function of catalyst properties
Grigorieva et al. Titania nanotubes supported platinum catalyst in CO oxidation process
Liu et al. Rational design of ethanol steam reforming catalyst based on analysis of Ni/La 2 O 3 metal–support interactions
JP2019048249A (en) Catalyst for hydrogen reduction of carbon dioxide and method of producing the same, method of hydrogen reduction of carbon dioxide and device for hydrogen reduction of carbon dioxide
Barman et al. Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction
Zhou et al. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2, 4-dichlorophenol
Xu et al. Catalytic performance of Ni–Al nanoparticles fabricated by arc plasma evaporation for methanol decomposition
Gu et al. Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas
Li et al. Nanoporous CeO2-Ag catalysts prepared by etching the CeO2/CuO/Ag2O mixed oxides for CO oxidation
Ali et al. Strong synergism between gold and manganese in an Au–Mn/triple-oxide-support (TOS) oxidation catalyst
JP5187844B2 (en) CO oxidation catalyst
WO2016039361A1 (en) Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same
Lu et al. The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process: The effect of precursors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees