JP5186813B2 - Bonding quality judgment method and apparatus - Google Patents

Bonding quality judgment method and apparatus Download PDF

Info

Publication number
JP5186813B2
JP5186813B2 JP2007162454A JP2007162454A JP5186813B2 JP 5186813 B2 JP5186813 B2 JP 5186813B2 JP 2007162454 A JP2007162454 A JP 2007162454A JP 2007162454 A JP2007162454 A JP 2007162454A JP 5186813 B2 JP5186813 B2 JP 5186813B2
Authority
JP
Japan
Prior art keywords
electrode
workpiece
displacement
upper electrode
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007162454A
Other languages
Japanese (ja)
Other versions
JP2009000702A (en
Inventor
真司 山本
信弥 奥村
晃 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007162454A priority Critical patent/JP5186813B2/en
Publication of JP2009000702A publication Critical patent/JP2009000702A/en
Application granted granted Critical
Publication of JP5186813B2 publication Critical patent/JP5186813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

この発明は、第1金ワークと第2金ワークとの接合部分を所定の重ね合わせ代で位置合わせし、加圧、通電によりリングマッシュ接合された接合部品の接合品質を、非破壊にて判定するような接合品質判定方法およびその装置に関する。 The present invention, the joint portion between the first Metals workpiece and second metals workpiece aligned at predetermined superposition allowance, pressure, the bonding quality of the bonding parts is a ring mash bonding energized, the non-destructive The present invention relates to a bonding quality determination method and apparatus for determining the connection quality.

従来、上述例の接合品質判定方法およびその装置としては、特許文献1に開示されたものがある。
すなわち、環状の開口部を備えた第1金ワーク(例えば、自動変速機のクラッチドラムのドラム部)に、該開口部よりも僅かに大きい外形部を備えた第2金ワーク(例えば、自動変速機のクラッチドラムのボス部)を、所定の重ね合わせ代で位置合わせをし、これら第1および第2の両金ワークを上部電極と下部電極とで加圧した状態で通電し、接合部位である上記開口部と上記外形部とを、リングマッシュ接合(ring mash Welding)するものにおいて、
上記接合時の上部電極の加圧方向への変位状態を、変位計測センサなどの変位検出手段にて検出して、接合品質の良否を判定するものである。
Conventionally, the joining quality determination method and apparatus of the above-described example are disclosed in Patent Document 1.
That is, the first metals work with an opening of the annular (for example, a drum portion of the clutch drum of an automatic transmission), the second metals workpiece having a slightly larger outer section than the opening (e.g., the boss portion of the clutch drum of an automatic transmission), and aligned at predetermined superposition allowance energizes the first and second Ryokin genus workpiece pressurized state between the upper and lower electrodes, In what performs the ring mash welding of the said opening part which is a junction part, and the said external shape part,
The displacement state of the upper electrode in the pressurizing direction at the time of joining is detected by a displacement detecting means such as a displacement measuring sensor, and the quality of the joining is judged.

この際、上述の変位計測センサなどの変位検出手段で測定した変位波形と、正常な変位波形とを比較して、一致しているか否かにより、接合品質の良否判定が行なわれていた。   At this time, the quality of the joint quality is determined by comparing the displacement waveform measured by the displacement detection means such as the above-described displacement measurement sensor with the normal displacement waveform and determining whether or not they match.

また、上述のリングマッシュ接合は、両金ワークに高加圧力、大電流が加えられ、抵抗発熱により金属ワークが軟化し、塑性流動しながら接合が行なわれ、表面の酸化被膜が流れて材料の新生面同士が固相拡散接合されるので、他の接合方法と比較して高い接合強度が得られるものである。 Further, the ring mash bonding described above, KoKa pressure Ryokin genus work, a large current is applied, the metal workpiece is softened by the resistance heat generation, joining with the plastic flow is performed by an oxide film on the surface flow material Since these new surfaces are bonded by solid phase diffusion bonding, higher bonding strength can be obtained compared to other bonding methods.

しかしながら、従来の接合品質判定方法およびその装置によれば、次のような問題点があった。
つまり、接合の繰返しにより、上部電極、下部電極が発熱して、両電極が温度上昇により熱膨張するが、接合品質の判定は上部電極の加圧方向の変位を検出して行なわれている関係上、熱膨張により上下両電極の加圧方向の測定レベルが変動し、測定誤差が発生して、精密な波形判定ができず、誤差が大きい場合には、接合品質OK品をNG品と誤判定したり、逆に接合品質NG品をOK品と誤判定する問題点があり、特に、接合寸法の良否を精度よく判定することができない問題点があった。
特開2006−898号公報
However, the conventional bonding quality determination method and apparatus have the following problems.
In other words, the upper electrode and the lower electrode generate heat due to repeated bonding, and both electrodes thermally expand due to temperature rise, but the determination of the bonding quality is performed by detecting the displacement of the upper electrode in the pressurizing direction. In addition, the measurement level in the pressurization direction of the upper and lower electrodes fluctuates due to thermal expansion, and a measurement error occurs. Precise waveform determination cannot be performed, and if the error is large, the bonding quality OK product is mistaken for an NG product. In contrast, there is a problem in that it is difficult to accurately determine whether or not the bonding dimensions are good.
JP 2006-898 A

そこで、この発明は、第1および第2の両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定し、該電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、補正した変位値により接合品質を判定することで両金ワークの接合品質、特にその接合寸法の良否を精度よく判定することができる接合品質判定方法およびその装置の提供を目的とする。 Accordingly, the present invention is a temperature change of at least one electrode of the upper electrode and the lower electrode corresponding to the junction of the first and second Ryokin genus workpiece is measured, the pressure direction due to the temperature change of the electrode based on the thermal expansion amount, and corrects the displacement values in the pressing direction of the upper electrode, the bonding quality of Ryokin genus workpiece by determining bond quality by correcting the displacement value may in particular accuracy the quality of the joint dimensions It is an object of the present invention to provide a bonding quality determination method and apparatus capable of determination.

この発明による接合品質判定方法は、開口部を備えた第1金ワークに、該開口部より僅かに大きい外形部を備えた第2金ワークを、所定の重ね合わせ代で位置合わせをし、第1および第2の両金ワークを上部電極と下部電極で加圧した状態で通電することで、接合部位である上記開口部と上記外形部とを接合し、この接合時の上部電極の加圧方向への変位状態を検出して接合品質を判定する接合品質判定方法において、上記両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定し、該電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、補正した変位値により接合品質を判定するものである。
上述の第1金ワークは、自動変速機のクラッチドラムのドラム部いわゆるクラッチハブに設定してもよく、上述の第2金ワークは、自動変速機のクラッチドラムのボス部いわゆるハブスリーブに設定してもよい。
Bond quality determination method according to the invention, the first metals workpiece having an opening, the second metals workpiece having a slightly larger outer section than the opening, the alignment at predetermined superposition allowance , by energization in a state in which the first and second Ryokin genus workpiece pressurized with upper and lower electrodes, bonding the said opening and the outer portion is a joining portion, the upper electrode at the time of bonding in the joining quality determination method for determining bond quality the displacement state is detected and in the pressure direction, by measuring the temperature change of at least one electrode of the upper electrode and the lower electrode corresponding to the junction of the Ryokin genus workpiece The displacement value of the upper electrode in the pressurizing direction is corrected based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the electrode, and the joining quality is determined based on the corrected displacement value.
The first metals work described above may be set to the drum unit called clutch hub of the clutch drum of the automatic transmission, the second metals work described above, the boss called hub sleeve of the clutch drum of the automatic transmission It may be set.

上記構成によれば、第1および第2の両金ワークの接合部と対応する上部電極、下部電極の少なくとも何れか一方の電極の温度変化を測定し、該電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、この補正した変位値により接合品質を判定するので、上部電極の加圧方向への変位状態を正確に検出することができ、両金ワークの接合品質、特にその接合寸法の良否を精度よく判定することができる。 According to the above configuration, the upper electrode and the corresponding junction of the first and second Ryokin genus workpiece, a temperature change of at least one of the electrodes of the lower electrode is measured, the pressure with a change in temperature of the electrode Based on the amount of thermal expansion in the direction, the displacement value of the upper electrode in the pressurizing direction is corrected, and the bonding quality is determined based on the corrected displacement value, so the displacement state of the upper electrode in the pressurizing direction is accurately detected. it can be, joint quality of Ryokin genus workpiece, in particular it is possible to accurately determine the quality of the junction dimensions.

この発明の一実施態様においては、上記電極の温度変化に伴う加圧方向の熱膨張量に基づいて補正値を演算し、上部電極の加圧方向への変位実測値を上記補正値で補正した後に、補正後の変位実測値と、予め設定された判定基準値とを比較して接合品質を判定するものである。
上述の判定基準値は、室温条件下で実験的に求めた正しい波形(マスタ波形)に対して上下許容幅をもたせた基準値とすることができる。
In one embodiment of the present invention, the correction value is calculated based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the electrode, and the actual displacement value in the pressurizing direction of the upper electrode is corrected with the correction value. After that, the bonding quality is determined by comparing the corrected displacement actual measurement value with a preset criterion value.
The above-described determination reference value can be a reference value having an allowable vertical range for a correct waveform (master waveform) obtained experimentally under room temperature conditions.

上記構成によれば、上部電極の加圧方向への変位実測値を上述の補正値で補正するので、補正処理の容易化を図ることができ、しかも、上部電極の加圧方向への変位状態を、電極の熱膨張の影響を受けないように正しく補正することができる。
つまり、上述の補正値は、電極を構成する材料の線膨張係数(既知数)と、電極の加圧方向の全高(既知数)と、電極の温度(測定値)とから簡単に演算することができるので、補正処理を容易に行なうことができる。
According to the above configuration, the actual displacement value in the pressurizing direction of the upper electrode is corrected with the above correction value, so that the correction process can be facilitated, and the displacement state of the upper electrode in the pressurizing direction can be achieved. Can be correctly corrected so as not to be affected by the thermal expansion of the electrode.
That is, the above correction value can be easily calculated from the linear expansion coefficient (known number) of the material constituting the electrode, the total height (known number) of the electrode in the pressing direction, and the electrode temperature (measured value). Therefore, the correction process can be easily performed.

この発明の一実施態様においては、上記上部電極と下部電極との温度変化を測定し、上下両電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上記補正値を演算するものである。   In one embodiment of the present invention, the temperature change between the upper electrode and the lower electrode is measured, and the correction value is calculated based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the upper and lower electrodes. is there.

上記構成によれば、上下の両電極の温度変化を直接測定し、上記補正値を演算した後に、上部電極の加圧方向への変位実測値を該補正値にて補正するので、上部電極の加圧方向への変位状態をより一層正確に検出することができ、両金ワークの接合品質、特に接合寸法の良否をさらに精度よく判定することができる。 According to the above configuration, the temperature change of both the upper and lower electrodes is directly measured, and after calculating the correction value, the displacement measurement value in the pressurizing direction of the upper electrode is corrected with the correction value. pressurizing the displacement state of the pressure direction further can be detected accurately, it is possible to further accurately determine the bond quality, especially quality of bonding size of Ryokin genus workpiece.

この発明の一実施態様においては、上記下部電極と隣接して配置され、第1金ワークに当接して該第1金ワークを位置決めすると共に、接合電流をリークさせる導電性位置決め部材の温度変化を測定し、上記下部電極および導電性位置決め部材の温度変化に伴う加圧方向の熱膨張量の差に基づいて第1および第2の両金ワークの接合寸法変化を判定するものである。
上記構成によれば、下部電極の熱膨張量と、導電性位置決め部材の熱膨張量との差に基づいて上記両金ワークの接合寸法(いわゆるアッシー段差)を計測および判定することができる。
In one embodiment of the invention, disposed adjacent to the lower electrode, with positioning the first metals workpiece in contact with the first metals workpiece, the temperature of the conductive locating member which leak junction current the change is measured, it is to determine the junction dimensional change of the first and second Ryokin genus workpiece based on a difference in thermal expansion amount of the pressure direction due to the temperature change of the lower electrode and the conductive locating member .
According to the above configuration, it is possible to measure and determine the amount of thermal expansion of the lower electrode, the bonding size of the Ryokin genus workpiece based on a difference between the thermal expansion of the conductive locating member (so-called assembly step).

この発明の一実施態様においては、上記導電性位置決め部材を第1金ワークから離間させた後に、上記上下の両電極を介して上記接合部に焼戻し用電流を流し、この焼戻し用電流通電時の上部電極の加圧方向への変位実測値を上記補正値で補正し、補正後の変位実測値に基づいて最終的な接合品質を判定するものである。 According to another embodiment of the present invention, the after separating the said conductive locating member from a first metals work, through the both electrodes of the vertical flow of tempering current to the junction, when the tempering for current application The displacement actual measurement value of the upper electrode in the pressurizing direction is corrected with the correction value, and the final bonding quality is determined based on the corrected displacement actual measurement value.

上記構成によれば、次のような効果がある。すなわち、リングマッシュ接合時に、両金ワークの接合部は大電流により急加熱された後に、例えば電極内の冷却水にて急冷され、第1および第2の各金ワークの少なくとも何れか一方が高炭素鋼で形成されていると、上述の接合部が焼入れされるので、この接合部を接合と同一電極を用いて焼戻しを行ない、接合部の靱性向上を図ることができ、しかも、この場合に補正後の変位実測値に基づいて最終的な接合品質を判定するので、最終製品としての品質判定を行なうことができる。 The above configuration has the following effects. That is, when the ring mash bonding, the joint Ryokin genus workpiece after being heated rapidly by a large current, for example, is rapidly cooled by the cooling water in the electrode, at least one of the first and second each gold genus workpiece Meanwhile Is made of high carbon steel, the above-mentioned joint is quenched, so that the joint can be tempered using the same electrode as the joint, and the toughness of the joint can be improved. In this case, since the final bonding quality is determined based on the corrected displacement actual measurement value, the quality determination as the final product can be performed.

この発明による接合品質判定装置は、開口部を備えた第1金ワークに、該開口部より僅かに大きい外形部を備えた第2金ワークを、所定の重ね合わせ代で位置合わせをし、第1および第2の両金ワークを上部電極と下部電極で加圧した状態で通電することで、接合部位である上記開口部と上記外形部とを接合し、この接合時の上部電極の加圧方向への変位状態を検出して接合品質を判定する接合品質判定装置において、接合時の上部電極の加圧方向への変位状態を検出する変位検出手段と、上記第1および第2の両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定する温度測定手段と、該温度測定手段で測定した電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、補正した変位値により接合品質を判定する接合品質判定手段と、を備えたものである。 Joint quality determination apparatus according to the present invention, the first metals workpiece having an opening, the second metals workpiece having a slightly larger outer section than the opening, the alignment at predetermined superposition allowance , by energization in a state in which the first and second Ryokin genus workpiece pressurized with upper and lower electrodes, bonding the said opening and the outer portion is a joining portion, the upper electrode at the time of bonding In the joining quality judging device for judging the joining quality by detecting the displacement state in the pressurizing direction, the displacement detecting means for detecting the displacement state of the upper electrode in the pressurizing direction at the time of joining, and the first and second at least one of a temperature measuring means for measuring the temperature change of the electrode, the pressing direction with a change in temperature of the electrode measured by the temperature measuring means heat the Ryokin genus workpiece upper and lower electrodes corresponding to the junction Based on the amount of expansion, pressurize the upper electrode The displacement value is corrected, is obtained and a joining quality judging means for judging bond quality by correcting the displacement value.

上記構成によれば、変位検出手段は、接合時の上部電極の加圧方向への変位状態を検出し、温度測定手段は、上記第1および第2の両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定し、接合品質判定手段は、上述の温度測定手段で測定した電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、この補正した変位値により接合品質を判定する。 According to the above arrangement, the displacement detector detects a displacement state of the pressing direction of the upper electrode at the time of bonding, the temperature measuring means, corresponding to the junction of the first and second Ryokin genus workpiece The temperature change of at least one of the upper electrode and the lower electrode is measured, and the bonding quality determination means is based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the electrode measured by the temperature measurement means described above. The displacement value in the pressurizing direction is corrected, and the bonding quality is determined based on the corrected displacement value.

このように、補正した変位値により接合品質を判定するので、上部電極の加圧方向への変位状態を正確に検出することができ、両金ワークの接合品質、特にその接合寸法の良否を精度よく判定することができる。 Thus, since determining the bond quality by correcting the displacement value, it is possible to accurately detect the displacement state of the pressing direction of the upper electrode, the bonding quality of Ryokin genus workpiece, especially quality of the joint dimensions It can be determined with high accuracy.

この発明の一実施態様においては、上記温度測定手段は、上部電極と下部電極との温度変化を測定するように構成され、上記接合品質判定手段は、上記上下の両電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正するように構成されたものである。   In one embodiment of the present invention, the temperature measuring means is configured to measure a temperature change between the upper electrode and the lower electrode, and the bonding quality determining means is added according to the temperature change of the upper and lower electrodes. Based on the amount of thermal expansion in the pressure direction, the displacement value in the pressure direction of the upper electrode is corrected.

上記構成によれば、温度測定手段で上下の両電極の温度変化を直接測定し、これら上下の両電極の温度変化に伴う加圧方向の熱膨張量に基づいて、接合品質判定手段が上部電極の加圧方向への変位値を補正し、この補正した変位値により接合品質を判定するので、上部電極の加圧方向への変位状態をより一層正確に検出することができ、両金ワークの接合品質、特にその接合寸法の良否をさらに精度よく判定することができる。 According to the above configuration, the temperature measurement means directly measures the temperature change of the upper and lower electrodes, and the joining quality determination means determines whether the upper electrode of the displacement value to the pressure direction is corrected, so determining the bond quality by the corrected displacement values, it is possible to detect the displacement state of the pressing direction of the upper electrode more accurately, Ryokin genus workpiece Therefore, it is possible to determine the quality of the bonding, particularly the quality of the bonding dimension, with higher accuracy.

この発明の一実施態様においては、上記下部電極と隣接して配置され、第1金ワークに当接して該第1金ワークを位置決めすると共に接合電流をリークさせる導電性位置決め部材を備え、上記接合品質判定手段は、下部電極および導電性位置決め部材の温度変化に伴う加圧方向の熱膨張量の差に基づいて第1および第2の両金ワークの接合寸法変化を判定するように構成されたものである。
上記構成によれば、下部電極の熱膨張量と、導電性位置決め部材の熱膨張量との差に基づいて上記両金ワークの接合寸法(いわゆるアッシー段差)を計測および判定することができる。
In one embodiment of the invention, it disposed adjacent to the lower electrode comprises a conductive locating member which leak junction current with contact with the first metals workpiece positioning the first metals workpiece, the joint quality determination means to determine a junction dimensional change of the first and second Ryokin genus workpiece based on a difference in thermal expansion amount of the pressure direction due to the temperature change of the lower electrode and the conductive locating member It is configured.
According to the above configuration, it is possible to measure and determine the amount of thermal expansion of the lower electrode, the bonding size of the Ryokin genus workpiece based on a difference between the thermal expansion of the conductive locating member (so-called assembly step).

この発明によれば、第1および第2の両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定し、該電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、補正した変位値により接合品質を判定するので両金ワークの接合品質、特にその接合寸法の良否を精度よく判定することができる効果がある。 According to the present invention, a temperature change of at least one electrode of the upper electrode and the lower electrode corresponding to the junction of the first and second Ryokin genus workpiece is measured, the pressure direction due to the temperature change of the electrode based on the thermal expansion amount, determined by correcting the displacement value of the pressing direction of the upper electrode, the bonding quality of Ryokin genus workpiece so determine bond quality by correcting the displacement value may in particular accuracy the quality of the joint dimensions There is an effect that can be done.

電極の熱膨張による影響を排除して両金ワークの接合品質、特に接合寸法の良否を精度よく判定するという目的を、開口部を備えた第1金ワークに、該開口部より僅かに大きい外形部を備えた第2金ワークを、所定の重ね合わせ代で位置合わせをし、第1および第2の両金ワークを上部電極と下部電極で加圧した状態で通電することで、接合部位である上記開口部と上記外形部とを接合し、この接合時の上部電極の加圧方向への変位状態を検出して接合品質を判定する接合品質判定方法およびその装置において、上記両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定し、該電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、補正した変位値により接合品質を判定する、という構成にて実現した。 Joint quality of thermal expansion due Ryokin genus work by eliminating the influence of the electrodes, the object of determining particularly well the acceptable bonding dimensional accuracy, the first metals workpiece having an opening, slightly above the opening the second metals workpiece having a large outer portion, and the alignment at predetermined superposition margin, by energization in a state in which the first and second Ryokin genus workpiece pressurized with upper and lower electrodes In the bonding quality determination method and apparatus for determining the bonding quality by bonding the opening and the outer shape which are bonding sites, and detecting the displacement state of the upper electrode during the bonding in the pressurizing direction. measuring a temperature change of at least one electrode of the upper electrode and the lower electrode corresponding to the junction of Ryokin genus workpiece, based on the thermal expansion amount of the pressure direction due to the temperature change of the electrode, the pressurization of the upper electrode Correct the displacement value in the direction, and the corrected displacement value More determined bond quality was realized by configuration in.

この発明の一実施例を以下図面に基づいて詳述する。
図1は、この実施例の接合品質判定装置を含むリングマッシュ接合装置1の全体を該略的に示す正面図であって、このリングマッシュ接合装置1は、設置台2上に装置前部で上下方向に延びる左右一対のフレーム体3,3と、装置内部に設けられた接合台4と、この接合台4上で左右方向に延びるスライドレール5と、このスライドレール5上でそれぞれ左右に移動する2つの下部電極6,6と、その上方に設けられ上下方向に移動可能な上部電極7と、この上部電極7に対して加圧力を付勢する加圧シリンダ8と、上記上部電極7に対して電流を供給する配線ケーブル9と、上記下部電極6の周囲に隣接して配置され、後述する第1ワークに当接して該第1ワークを位置決めすると共に、接合電流をリークさせる導電性位置決め部材としてのストッパ電極10と、このストッパ電極10を下部電極6に対して移動させるアクチュエータ11(図2参照)と、上部電極7の変位波形をモニタリングおよび判定する波形判定装置12と、接合装置1の操作を行う操作盤13とを備えている。
An embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view schematically showing the entire ring mash joining apparatus 1 including the joining quality judgment apparatus of this embodiment. This ring mash joining apparatus 1 is mounted on the installation base 2 at the front part of the apparatus. A pair of left and right frame bodies 3, 3 extending in the vertical direction, a joining base 4 provided inside the apparatus, a slide rail 5 extending in the left-right direction on the joining base 4, and a left and right movement on the slide rail 5, respectively. Two lower electrodes 6, 6, an upper electrode 7 provided above and movable in the vertical direction, a pressure cylinder 8 for biasing the upper electrode 7, and the upper electrode 7 A wiring cable 9 for supplying electric current to the lower electrode 6 and a conductive cable that is arranged adjacent to the lower electrode 6 and contacts the first work to be described later to position the first work and leak the bonding current. As a member Operation of the stopper electrode 10, an actuator 11 (see FIG. 2) that moves the stopper electrode 10 relative to the lower electrode 6, a waveform determination device 12 that monitors and determines the displacement waveform of the upper electrode 7, and the operation of the joining device 1 An operation panel 13 is provided.

なお、下部電極6は1つのみであってもよいが、図1に示すこの実施例では、作業性向上のため2つの下部電極6,6を交互に使用できるようにしている。すなわち、左右何れか一方の下部電極6を用い、これに後述のワークW1,W2をセットしておいてその下部電極6を中央に位置させた状態で、その下部電極6と上部電極7とを用いて後に詳述する接合とその後の焼戻しの処理を行う一方、その処理中に他方の下部電極6から処理後のワークW1,W2の取り外し及び新たなワークW1,W2のセットを行うようにして、交互に各下部電極6,6を用いるように構成している。 Although only one lower electrode 6 may be provided, in this embodiment shown in FIG. 1, the two lower electrodes 6 and 6 can be used alternately for improving workability. That is, either using one of the lower electrode 6 right and left to set the workpiece W1, W2 will be described later in this, with the the lower electrode 6 is positioned at the center, the lower electrode 6 and upper electrode 7 thereof Is used to perform the joining and the subsequent tempering process, which will be described in detail later, while removing the treated workpieces W1 and W2 and setting new workpieces W1 and W2 from the other lower electrode 6 during the treatment. Thus, the lower electrodes 6 and 6 are alternately used.

図2は接合品質判定装置を含むリングマッシュ接合装置の系統図であって、同図に示すように、下部電極6および上部電極7は共に、円筒形状の導電体で形成されており、下部電極6の上方に上部電極7が位置する状態で、上部電極7が下降、上昇することにより下部電極6に対して接近、離間するようになっている。   FIG. 2 is a system diagram of a ring mash joining apparatus including a joining quality judgment apparatus. As shown in FIG. 2, the lower electrode 6 and the upper electrode 7 are both formed of a cylindrical conductor, and the lower electrode When the upper electrode 7 is positioned above the upper electrode 7, the upper electrode 7 is lowered and raised so that the lower electrode 6 approaches and separates.

上記各電極6,7により接合される両ワークW1,W2のうちの第1ワーク(第1金ワーク)W1は予め金属板をプレス成形して構成されたもので、この第1ワークW1は、例えば自動変速機部品である円筒状のクラッチハブであって、その一端部内周側にフランジ部14を備え、このフランジ部14の内側に開口部15を有している。また、第2ワーク(第2金ワーク)W2は、予め熱間鍛造により筒状に構成されたもので、この第2ワークW2は、例えば自動変速機部品である筒状のスリーブであって、その一端部外周側にフランジ部16を備え、予めフランジ部16の外形部17(図3参照)が第1ワークW1のフランジ部14の開口部15よりも僅かに大きく形成されている。 First work (first Metal work) W1 of the two workpieces W1, W2 to be joined by the respective electrodes 6, 7 has been constructed by press-forming in advance a metal plate, the first work W1 is For example, it is a cylindrical clutch hub which is an automatic transmission component, and has a flange portion 14 on the inner peripheral side of one end portion thereof, and has an opening portion 15 on the inner side of the flange portion 14. The second workpiece (second metals workpiece) W2 has been configured into a cylindrical shape in advance by hot forging, the second work W2 is a cylindrical sleeve, for example automatic transmission parts The flange portion 16 is provided on the outer peripheral side of the one end portion, and the outer portion 17 (see FIG. 3) of the flange portion 16 is formed in advance slightly larger than the opening portion 15 of the flange portion 14 of the first workpiece W1.

上記第1ワークW1のフランジ部14の内周端つまり開口部15と第2ワークW2のフランジ部16の外周端つまり外形部17とが接合部位とされる。そして、接合に際しては、下部電極6の上面に第2ワークW2のフランジ部16載置されるとともに、上記接合部位に所定の重ね合わせ代OL(図3参照)を有して第2ワークW2に第1ワークW1が重ね合わされた状態で、位置合わせをし、両ワークW1,W2が下部電極6上にセットされる。 The inner peripheral end of the flange portion 14 of the first workpiece W1, that is, the opening portion 15, and the outer peripheral end of the flange portion 16 of the second workpiece W2, that is, the outer shape portion 17, serve as joint portions. When joining, the flange portion 16 of the second workpiece W2 is placed on the upper surface of the lower electrode 6, and the second workpiece W2 has a predetermined overlap margin OL (see FIG. 3) at the joining portion. In a state where the first workpiece W1 is overlaid, alignment is performed, and both the workpieces W1, W2 are set on the lower electrode 6.

このように下部電極6上に両ワークW1,W2がセットされた状態で、下部電極6の上面が第2ワークW2の接合部位近傍に当接し、また、上部電極7が下降したときに、上部電極7の下面が第1ワークW1の接合部位近傍に当接するように構成されている。   When the workpieces W1 and W2 are set on the lower electrode 6 as described above, the upper surface of the lower electrode 6 comes into contact with the vicinity of the joining portion of the second workpiece W2, and when the upper electrode 7 is lowered, The lower surface of the electrode 7 is configured to come into contact with the vicinity of the joining portion of the first workpiece W1.

また、上記導電性位置決め部材としてのストッパ電極10は、クロム銅、ベリリウム銅等の導電体からなり、下部電極6を囲う円筒状で、かつ、下部電極6に対して径方向外方の離間位置へ移動し得るように複数に分割形成され、この実施例では半筒状の2つの部分10a,10bに分割されている。
このストッパ電極10は、リングマッシュ接合時にはその内周面および下面が下部電極6に接する状態となる接合位置とされ、この状態において、ストッパ電極10の上面は下部電極6の上面より僅かに上方に位置して、第1ワークW1のフランジ部14に対面するようになっている。
The stopper electrode 10 as the conductive positioning member is made of a conductor such as chrome copper or beryllium copper, has a cylindrical shape surrounding the lower electrode 6, and is spaced apart radially outward from the lower electrode 6. In this embodiment, it is divided into two semi-cylindrical portions 10a and 10b.
The stopper electrode 10 is a bonding position where the inner peripheral surface and the lower surface thereof are in contact with the lower electrode 6 during ring mash bonding. In this state, the upper surface of the stopper electrode 10 is slightly above the upper surface of the lower electrode 6. It is located and faces the flange portion 14 of the first workpiece W1.

このストッパ電極10の各部分10a,10bは、それぞれ、駆動手段としてのアクチュエータ11,11に接続されている。この実施例においてアクチュエータ11は、エアシリンダからなり、シリンダ本体から出没可能なピストンロッド18の先端に絶縁用兼フローティング支持用のラバー19を介して上記各部分10a,10bが取付けられている。
また上記下部電極6の内周面には、第2ワークW2の位置決めを行う位置決め部20が設けられている。
The portions 10a and 10b of the stopper electrode 10 are connected to actuators 11 and 11 as driving means, respectively. In this embodiment, the actuator 11 is composed of an air cylinder, and the portions 10a and 10b are attached to the tip of a piston rod 18 that can be projected and retracted from the cylinder body via a rubber 19 for insulating and floating support.
A positioning portion 20 for positioning the second workpiece W2 is provided on the inner peripheral surface of the lower electrode 6.

一方、接合品質判定装置を含むリングマッシュ接合装置1は、図2に示すように、加圧、通電による開口部15と外形部17との接合時において上部電極7の加圧方向(図示の下降方向)への変位状態を検出する変位検出手段としての非接触レーザ変位計21と、上記両ワークW1,W2の接合部(開口部15,外形部17参照)に対応した上部電極7の温度変化を測定する温度測定手段としての非接触温度計22と、上記両ワークW1,W2の接合部(開口部15,外形部17参照)に対応した下部電極6の温度変化を測定する温度測定手段としての非接触温度計23と、上記下部電極6と隣接して配置され、第1ワークW1に当接して該第1ワークW1を位置決めすると共に、接合電流をリーク分流させるストッパ電極10の温度変化を測定する温度測定手段としての非接触温度計24と、装置1を起動させる起動スイッチ25と、アクチュエータ11としてのエアシリンダを駆動するアクチュエータ駆動部26と、上下の両電極7,6に対する通電回路27とを備えている。   On the other hand, as shown in FIG. 2, the ring mash joining apparatus 1 including the joining quality judgment apparatus is configured to apply a pressurizing direction (lowering in the drawing) of the upper electrode 7 when the opening 15 and the outer portion 17 are joined by pressurization and energization. Temperature change of the upper electrode 7 corresponding to the joint part (see the opening part 15 and the external part 17) of both the workpieces W1 and W2 as a displacement detecting means for detecting the displacement state in the direction). As a temperature measurement means for measuring the temperature change of the lower electrode 6 corresponding to the joint part (refer to the opening part 15 and the outer part 17) of both the workpieces W1 and W2 as a temperature measurement means for measuring temperature The non-contact thermometer 23 and the lower electrode 6 are arranged adjacent to each other, position the first work W1 in contact with the first work W1, and change the temperature of the stopper electrode 10 that leaks the junction current. A non-contact thermometer 24 as a temperature measuring means to be determined, an activation switch 25 for activating the apparatus 1, an actuator driving unit 26 for driving an air cylinder as the actuator 11, and an energization circuit 27 for the upper and lower electrodes 7, 6. And.

制御装置としてのCPU30は、起動スイッチ25の信号入力に基づいて、ROM(図示せず)に格納されたプログラムに従って、アクチュエータ駆動部26を介してアクチュエータ11を駆動し、また通電回路27を介して上下の両電極7,6に大電流を供給制御(この実施例では上部電極7側から通電)する。さらに、図示しないアクチュエータ駆動部を介して加圧シリンダ8(図1参照)を駆動する。   The CPU 30 as the control device drives the actuator 11 via the actuator drive unit 26 according to the program stored in the ROM (not shown) based on the signal input of the start switch 25, and also via the energization circuit 27. A large current is supplied and controlled to both the upper and lower electrodes 7 and 6 (in this embodiment, electricity is supplied from the upper electrode 7 side). Further, the pressurizing cylinder 8 (see FIG. 1) is driven through an actuator driving unit (not shown).

また、波形判定装置12は非接触レーザ変位計21で検出した上部電極7の加圧方向への変位状態(横軸に時間をとり、縦軸に上部電極7の変位量をとった変位波形)を、モニタリングおよび可否判定する。
さらに、上述のCPU30または/および波形判定装置12は、接合品質判定手段(図5で示すフローチャートのステップS4,S12,S13,特に各ステップS12,S13から成るルーチンR1参照)を兼ねるもので、この接合品質判定手段R1は、非接触温度計22,23,24で測定した各電極6,7,10の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極7の加圧方向への変位値(詳しくは変位実測値X)を補正し、補正した変位値(後述するX−Y参照)により接合品質を判定するものである。
Further, the waveform determination device 12 is a displacement state in the pressurizing direction of the upper electrode 7 detected by the non-contact laser displacement meter 21 (a displacement waveform in which time is taken on the horizontal axis and the amount of displacement of the upper electrode 7 is taken on the vertical axis). Are monitored and determined.
Further, the CPU 30 and / or the waveform determination device 12 described above also serves as a joining quality determination means (see the routine R1 including steps S4, S12, and S13, particularly steps S12 and S13 in the flowchart shown in FIG. 5). The joining quality determination means R1 moves in the pressurizing direction of the upper electrode 7 based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the electrodes 6, 7, 10 measured by the non-contact thermometers 22, 23, 24. The displacement value (more specifically, the displacement actual measurement value X) is corrected, and the joining quality is determined based on the corrected displacement value (see XY described later).

この場合、上記接合品質判定手段(ルーチンR1)は、上下の両電極7,6の温度変化に伴う加圧方向の熱膨張量に基づいて補正値Yを演算し、上部電極7の加圧方向への変位実測値Xを上記補正値Yで補正(具体的には減算処理)した後に、補正後の変位実測値(X−Y)と、予め設定された判定基準値Z(図4にハッチングを施して示す範囲の常に一定レベルの基準値)とを比較して接合品質を判定する。
また、上述の接合品質判定手段(ルーチンR1)は、下部電極6とストッパ電極10の温度変化に伴う加圧方向の熱膨張量の差に基づいて第1および第2の両ワークW1,W2の接合寸法(図8、図12に示すアッシー段差ΔH)の変化を判定する。
In this case, the joining quality determining means (routine R1) calculates the correction value Y based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the upper and lower electrodes 7 and 6, and the pressurizing direction of the upper electrode 7 After the actual displacement value X is corrected with the correction value Y (specifically, subtraction processing), the corrected displacement actual value (XY) and a preset criterion value Z (hatched in FIG. 4) The joint quality is determined by comparing with a reference value of a constant level in the range shown by applying.
Further, the above-described joining quality determination means (routine R1) is configured to determine whether the first and second workpieces W1 and W2 are based on the difference in thermal expansion amount in the pressurizing direction accompanying the temperature change between the lower electrode 6 and the stopper electrode 10. A change in the joining dimension (the assembly step ΔH shown in FIGS. 8 and 12) is determined.

さらに、上述の接合品質判定手段(図5で示すフローチャートのステップS4,S17,S18,特に各ステップS17,S18からなるルーチンR2参照)は、焼戻し用電流通電時においては、上部電極7の加圧方向への変位実測値Xを上記補正値Yで補正し、補正後の変位実測値(X−Y)に基づいて製品としての最終的な接合品質を判定する。   Further, the above-described joining quality determination means (see steps S4, S17, and S18 of the flowchart shown in FIG. 5, particularly the routine R2 including steps S17 and S18) pressurizes the upper electrode 7 during energization of the tempering current. The actual displacement value X in the direction is corrected with the correction value Y, and the final bonding quality as a product is determined based on the corrected displacement actual value (XY).

ここで、上述の判定基準値Z(図4参照)は、室温条件下で実験的に求めた正しい波形としてのマスタ波形β(点線参照)に対して上下許容幅をもたせたOK範囲の常に一定レベルの基準値(ハッチング部分参照)である。
また、上述の温度変化に伴う加圧方向の熱膨張量ΔL(熱膨張による高さレベルの変動量)は次の[数1]で演算することができる。
Here, the above-described determination reference value Z (see FIG. 4) is always constant in an OK range having a vertical allowable width with respect to the master waveform β (see dotted line) as a correct waveform experimentally obtained under room temperature conditions. Level reference value (see hatched area).
Further, the amount of thermal expansion ΔL in the pressurizing direction accompanying the above temperature change (the amount of fluctuation of the height level due to thermal expansion) can be calculated by the following [Equation 1].

すなわち、上下の両電極7,6を形成する材料を仮に銅とした時、銅の線膨張係数αは17.7μm/m/℃であり、上下の電極7,6の全高Hを250mmと仮定し、温度上昇ΔT(つまり温度変化)を50℃に仮定した場合、

Figure 0005186813
となる。 That is, assuming that the material forming both the upper and lower electrodes 7 and 6 is copper, the linear expansion coefficient α of copper is 17.7 μm / m / ° C. and the total height H of the upper and lower electrodes 7 and 6 is assumed to be 250 mm. When the temperature rise ΔT (that is, temperature change) is assumed to be 50 ° C.,
Figure 0005186813
It becomes.

自動変速機のクラッチドラムのドラム部とボス部のアッシー段差の寸法公差を150μmと仮定した時、熱膨張量ΔLが該寸法公差よりも大となる。
なお、上述の非接触レーザ変位計21と対向して上部電極7の下部にはレーザ光反射プレート(図示せず)を設け、このレーザ変位計21により上部電極7の加圧方向への変位状態いわゆるストローク変化を検出する。
When the dimensional tolerance of the assembly step difference between the drum portion and the boss portion of the clutch drum of the automatic transmission is assumed to be 150 μm, the thermal expansion amount ΔL becomes larger than the dimensional tolerance.
A laser light reflecting plate (not shown) is provided below the upper electrode 7 so as to face the non-contact laser displacement meter 21 described above, and the displacement state of the upper electrode 7 in the pressurizing direction by the laser displacement meter 21. A so-called stroke change is detected.

このように構成した接合品質判定装置を用いた接合品質判定方法について図5に示すフローチャートを参照して、以下に詳述する。   The joining quality judgment method using the joining quality judgment device configured as described above will be described in detail below with reference to the flowchart shown in FIG.

図5のフローチャートによる処理が開始される以前の準備段階で、まず、下部電極6に第2ワークW2がセットされ、さらに、この第2ワークW2上に第1ワークW1がセットされる。この場合、第2ワークW2に対して第1ワークW1は所定の重ね合わせ代OL(図3参照)で位置合わせされる。この位置合わせは作業者の手作業にて実行される。   In the preparation stage before the processing according to the flowchart of FIG. 5 is started, first, the second workpiece W2 is set on the lower electrode 6, and further, the first workpiece W1 is set on the second workpiece W2. In this case, the first workpiece W1 is aligned with the second workpiece W2 at a predetermined overlap margin OL (see FIG. 3). This alignment is performed manually by the operator.

ステップS1で、操作盤13(図1参照)の起動スイッチ25(図2参照)がON操作されると、次のステップS2でCPU30は非接触温度計22,23,24を駆動して、これらの各非接触温度計22,23,24により上部電極7の表面温度、下部電極6の表面温度、ストッパ電極10の表面温度をそれぞれ測定する。   When the start switch 25 (see FIG. 2) of the operation panel 13 (see FIG. 1) is turned on in step S1, the CPU 30 drives the non-contact thermometers 22, 23, 24 in the next step S2, and these The surface temperature of the upper electrode 7, the surface temperature of the lower electrode 6, and the surface temperature of the stopper electrode 10 are measured by the non-contact thermometers 22, 23, and 24, respectively.

次に、ステップS3(熱膨張量演算手段)で、CPU30は測定した各電極6,7,10の表面温度からその加圧方向(上下方向)の熱膨張量ΔLを演算(上述の[数1]参照)する。
なお、上述のステップS2では非接触温度計22,23の何れか一方を用いて、上部電極7または下部電極6の表面温度を測定し、ステップS3では温度測定した電極の熱膨張量を演算すると共に、温度測定しなかった電極の熱膨張量を推定してもよいが、それぞれの電極6,7,10の表面温度を測定し、ステップS3で各電極6,7、10の上下方向(加圧方向)の熱膨張量を演算すると、より一層正確な演算値を求めることができる。
Next, in step S3 (thermal expansion amount calculating means), the CPU 30 calculates a thermal expansion amount ΔL in the pressurizing direction (vertical direction) from the measured surface temperature of each electrode 6, 7, 10 (the above-mentioned [Expression 1] ]refer.
In step S2, the surface temperature of the upper electrode 7 or the lower electrode 6 is measured using any one of the non-contact thermometers 22 and 23, and in step S3, the thermal expansion amount of the temperature-measured electrode is calculated. At the same time, the amount of thermal expansion of the electrode whose temperature was not measured may be estimated, but the surface temperature of each electrode 6, 7, 10 is measured, and in the step S3, the vertical direction of each electrode 6, 7, 10 (increase) If the amount of thermal expansion in the pressure direction is calculated, a more accurate calculated value can be obtained.

次にステップS4で、CPU30は演算結果を補正値Yとして波形判定装置12にインプットする。   Next, in step S4, the CPU 30 inputs the calculation result as a correction value Y to the waveform determination device 12.

次にステップS5で、CPU30は油圧シリンダで構成された加圧シリンダ8を駆動して、上部電極7を降下させ、次のステップS6で、一旦、上部電極7が第1ワークW1に当接した状態で待機させる。この待機期間を設けることで、第1ワークW1に当接する際の上部電極7の衝撃による電極のへたり、変形を抑えることができる。なお、上記ステップS1〜S6は図4のセット工程に相当する。また上述のステップS6において非接触レーザ変位計21により上部電極7の変位量測定を開始する。   Next, in step S5, the CPU 30 drives the pressurizing cylinder 8 constituted by a hydraulic cylinder to lower the upper electrode 7, and in the next step S6, the upper electrode 7 once contacts the first work W1. Wait in state. By providing this waiting period, it is possible to suppress electrode sag and deformation due to the impact of the upper electrode 7 when contacting the first workpiece W1. Note that steps S1 to S6 correspond to the setting step of FIG. In step S6 described above, the displacement measurement of the upper electrode 7 is started by the non-contact laser displacement meter 21.

次にステップS7で、CPU30は上部電極7の加圧を開始する。加圧シリンダ8による加圧力は例えば、43トンと高いので、各ワークW1,W2はその材料が圧縮されて弾性変形する。なお、この時点では未だ接合は行なわれていない。 Next, in step S <b> 7, the CPU 30 starts pressurization of the upper electrode 7. The pressure applied by the pressure cylinder 8 is, for example, 4 . Since it is as high as 3 tons, the materials of the workpieces W1 and W2 are elastically deformed by being compressed. At this time, bonding is not yet performed.

ステップS8で、上部電極7の上記弾性変形量を上回る程度の変位があるか否かを判定する。つまり、上部電極7を加圧した段階で該上部電極7がワーク材料の弾性変形量を上回るように変位すると、重ね合わせ代OLが無いか、ほとんど無いことが推定され、このようなワークでは充分な接合が不可能であると判定し、ステップS20に移動して、このステップS20で設備に対してNG信号を出力する。   In step S8, it is determined whether or not there is a displacement that exceeds the amount of elastic deformation of the upper electrode 7. That is, if the upper electrode 7 is displaced so as to exceed the amount of elastic deformation of the workpiece material when the upper electrode 7 is pressurized, it is estimated that there is no or little overlap allowance. It is determined that a simple joining is impossible, and the process moves to step S20, and an NG signal is output to the equipment in step S20.

上述のステップS8で、上部電極7の上記弾性変形量を上回る程度の変位がないと判定した場合には、次のステップS9に移行して通電を開始し、この通電により、リングマッシュ接合を行なう。
なお、上記各ステップS7,S8は図4の加圧工程に相当する。
If it is determined in step S8 that there is no displacement that exceeds the amount of elastic deformation of the upper electrode 7, the process proceeds to the next step S9 to start energization, and ring mash joining is performed by this energization. .
Each of the above steps S7 and S8 corresponds to the pressurizing step of FIG.

ステップS9において高加圧条件下で図1に示す配線ケーブル9から上部電極7に大電流が通電されると、この電流は、図6に示すように上部電極7、第1ワークW1、第1ワークW1と第2ワークW2との重ね合わせ代OL(図3参照)に相当する部位、第2ワークW2、下部電極6の順に流れるので、両ワークW1,W2の接合部U(図8参照)が抵抗発熱により軟化し、塑性流動しながら接合が行なわれ、表面の酸化被膜が流れて材料の新生面同士が固相拡散接合され、図3、図6に示す状態から図7、図8に示す状態となる。つまり、第2ワークW2の外形部17に対して第1ワークW1の開口部15が押し込められて、拡散接合が行なわれることになる。 When a large current is passed from the wiring cable 9 shown in FIG. 1 to the upper electrode 7 in step S9, the current is supplied to the upper electrode 7, the first work W1, the first work , as shown in FIG. Since the part corresponding to the overlap allowance OL (see FIG. 3) of the first work W1 and the second work W2 flows in the order of the second work W2 and the lower electrode 6, the joint portion U (see FIG. 8) of both the works W1 and W2. ) Is softened by resistance heat generation, bonding is performed while plastic flow occurs, the oxide film on the surface flows, and the new surfaces of the materials are solid-phase diffusion bonded, from the state shown in FIGS. 3 and 6 to FIG. 7 and FIG. It will be in the state shown. That is, the opening 15 of the first workpiece W1 is pushed into the outer shape portion 17 of the second workpiece W2, and diffusion bonding is performed.

この接合時に、図7、図8に示すように、第1ワークW1が上部電極7で押下げられて、両ワークW1,W2が相対移動し、適正な接合状態に達すると、下部電極6に隣接して位置するストッパ電極10の上面に第1ワークW1が当接し、これにより、両ワークW1,W2の相対移動方向の位置決めが成されると共に、接合用の電流は第1ワークW1からストッパ電極10へリークされ、両ワークW1,W2の接合部Uに流れる電流が減少する。このため、接合部Uに過大電流が流れることが回避され、過大電流に起因するスパッタリングの発生等による接合品質の悪化が防止される。   At the time of this joining, as shown in FIG. 7 and FIG. 8, when the first work W1 is pushed down by the upper electrode 7 and both the works W1 and W2 move relative to each other and reach an appropriate joined state, The first workpiece W1 comes into contact with the upper surface of the stopper electrode 10 located adjacent thereto, whereby the workpieces W1 and W2 are positioned in the relative movement direction, and the joining current is supplied from the first workpiece W1 to the stopper. Leaked to the electrode 10, the current flowing through the joint U between the workpieces W1 and W2 decreases. For this reason, it is avoided that an excessive current flows through the bonding portion U, and deterioration of bonding quality due to generation of sputtering due to the excessive current is prevented.

ステップS10で、非接触レーザ変位計21は第1通電時(接合時の通電)の上部電極7の変位量を測定し、次のステップS11で、測定した演算結果を変位実測値Xとして波形判定装置12にインプットする。   In step S10, the non-contact laser displacement meter 21 measures the amount of displacement of the upper electrode 7 during the first energization (energization during bonding), and in the next step S11, determines the waveform using the measured calculation result as the displacement actual measurement value X. Input to device 12.

次のステップS12で、波形判定装置12は変位実測値Xから上述の補正値Yを減算(換言すれば、電極の熱膨張量を差し引く演算処理)し、補正後の変位実測値(X−Y)が予め設定した判定基準値Z内にあるか否かを波形判定する。   In the next step S12, the waveform determination device 12 subtracts the above-described correction value Y from the actual displacement value X (in other words, a calculation process for subtracting the thermal expansion amount of the electrode), and the corrected actual displacement value (XY) after correction. ) Is within the preset judgment reference value Z.

図4に示すように、接合の繰返しにより上下の電極7,6が熱膨張している場合には、アップセット工程における接合品質OK品であっても、その変位実測値Xは同図に示すように判定基準値Zよりも上側にずれた値となることがあるので、この変位実測値Xを補正値Yで補正することにより、接合品質OK品をNGと誤判定することがないようにしている。
同様に、接合品質NG品の場合にも、上下の電極7,6の熱膨張により、その変位実測値Xが判定基準値Zのエリア内に入るように上側にずれる場合があるので、この変位実測値Xを補正値Yで補正することにより、接合品質NG品をOKと誤判定することがないようにしている。
As shown in FIG. 4, when the repetition of the junction upper and lower electrodes 7,6 are thermally expanded, even joint quality OK articles in the upset step, the displacement measured value X is in the drawing As shown in the figure, the value may deviate upward from the determination reference value Z. Therefore, by correcting the displacement actual measurement value X with the correction value Y, the joint quality OK product is not erroneously determined to be NG. I have to.
Similarly, in the case of a joint quality NG product, due to thermal expansion of the upper and lower electrodes 7 and 6, the displacement measurement value X may shift upward so as to fall within the area of the determination reference value Z. By correcting the actual measurement value X with the correction value Y, a joint quality NG product is not erroneously determined to be OK.

次に、ステップS13で、波形判定装置12は接合品質(特に、その接合寸法)がOKか否かを判定し、接合品質OK時(YES判定時)には次のステップS14に移行して、設備に対してOK信号を出力する一方、接合品質NG時(NO判定時)には別のステップS20に移行して、設備に対してNG信号を出力する。 Next, in step S13, the waveform determination device 12 determines whether or not the joining quality (particularly, the joining dimension) is OK. When the joining quality is OK (YES judgment), the process proceeds to the next step S14. while outputs an OK signal to the facility, at the time of bonding quality NG (NO determination time), it proceeds to another step S20, and outputs an NG signal to the equipment.

図4に示す接合終了工程では、上部電極7の変位がなくなるので、この時点で波形判定装置12は上述の補正値Yに基づいて第1ワークW1と第2ワークW2の接合終了時における接合寸法ΔH(つまり、図8に示すアッシー段差)を判定することができる。   In the joining end step shown in FIG. 4, since the displacement of the upper electrode 7 is eliminated, the waveform determination device 12 at this point of time, based on the correction value Y described above, the joining dimensions at the end of joining of the first workpiece W1 and the second workpiece W2. ΔH (that is, the assembly step shown in FIG. 8) can be determined.

以上のようにしてリングマッシュ接合が終了すると、図9に示すように上部電極7に対する加圧および通電が解除され、上部電極7は同図に示すように上昇して各ワークW1,W2から離間する。一方、電極6,7内に設けられた冷却通路(図示せず)には冷却水が供給されて急冷される。
この場合、ワークW1,W2のうちの少なくとも一方、例えば第2ワークW2が高炭素鋼で形成されていると、接合時の大電流で第2ワークW2は急加熱された後において急冷されることになり、第2ワークW2の所定部(接合部U参照)が焼入れされ、靭性が低下する。そこで、以下の処理において接合部Uに焼戻し用の電流を流して、焼戻しを行ない、接合部Uの靭性向上を図るものである。
If the to-ring mash bonding as is completed or, as shown in FIG. 9, it is released pressurized and energization of the upper electrode 7, the upper electrode 7 from the raised to the workpiece W1 with, W2 as shown in FIG. Separate. On the other hand, cooling water (not shown) provided in the electrodes 6 and 7 is supplied with cooling water and rapidly cooled.
In this case, if at least one of the workpieces W1 and W2, for example , the second workpiece W2 is formed of high carbon steel, the second workpiece W2 is rapidly cooled after being rapidly heated by a large current at the time of joining. As a result, the predetermined portion (see the joint portion U) of the second workpiece W2 is quenched, and the toughness is reduced. Therefore, in the following treatment, a current for tempering is supplied to the joint portion U to perform tempering, thereby improving the toughness of the joint portion U.

各ワークW1,W2の接合部Uに対する焼戻し用の電流の通電に先立って、該焼戻し用の電流がストッパ電極10にリークするのを防止する目的で、図9の状態から図10に示すように、ストッパ電極10を下部電極6および第1ワークW1から径方向外方の離間位置へ後退すべくアクチュエータ11を駆動する。   As shown in FIG. 10 from the state of FIG. 9, in order to prevent the tempering current from leaking to the stopper electrode 10 prior to energization of the tempering current to the joints U of the workpieces W <b> 1 and W <b> 2. Then, the actuator 11 is driven to retract the stopper electrode 10 from the lower electrode 6 and the first workpiece W1 to a radially outwardly spaced position.

次に、図11、図12に示すように、ストッパ電極10の後退位置(離間位置)を保持した状態で、上部電極7が降下してワークW1,W2に押し当り、焼戻し用のテンパリング通電を行なうと、焼戻し用電流が上下の両電極7,6間のワークW1,W2の接合部Uに流される。   Next, as shown in FIGS. 11 and 12, the upper electrode 7 descends and presses against the workpieces W1 and W2 while holding the retracted position (separated position) of the stopper electrode 10 and energizes the tempering for tempering. If it carries out, the electric current for temper will be sent through the junction part U of the workpiece | work W1, W2 between the upper and lower electrodes 7,6.

ステップS15で、非接触レーザ変位計21は第2通電時(テンパリング用電流の通電時)の上部電極7の変位量を測定し、次のステップS16で、測定した演算結果を変位実測値Xとして波形判定装置12にインプットする。
次のステップS17で、波形判定装置12は変位実測値Xから上述の補正値Yを減算し、補正後の変位実測値(X−Y)が予め設定した判定基準値Z内にあるか否かを波形判定する。
In step S15, the non-contact laser displacement meter 21 measures the amount of displacement of the upper electrode 7 during the second energization (when the tempering current is energized), and in the next step S16, the measured calculation result is used as the displacement actual measurement value X. Input to the waveform determination device 12.
In the next step S17, the waveform determination device 12 subtracts the above-described correction value Y from the displacement actual measurement value X, and whether or not the corrected displacement actual measurement value (XY) is within the preset determination reference value Z. Determine the waveform.

先のステップS13で接合品質がOKであると判定された接合品質OK品のうち、テンパリング電流の通電時に第1ワークW1が下動(最大、アッシー段差ΔHに相当する距離だけ下動)すると、接合品質不良のNG品であるから、次のステップS18で、波形判定装置12は焼戻し完了時における接合品質(特に、その接合寸法)がOKか否かを判定し、接合品質OK時(YES判定時)には次のステップS19に移行して、設備に対してOK信号を出力する一方、接合品質NG時(NO判定時)には別のステップS20に移行して、設備に対してNG信号を出力する。   When the first workpiece W1 moves downward (maximum, moves down a distance corresponding to the assembly step ΔH) when the tempering current is energized among the bonding quality OK products whose bonding quality is determined to be OK in the previous step S13, Since it is an NG product with poor bonding quality, in the next step S18, the waveform determination device 12 determines whether or not the bonding quality (particularly the bonding dimension) at the time of tempering is OK, and when the bonding quality is OK (YES determination). ), The process proceeds to the next step S19 and outputs an OK signal to the equipment. On the other hand, when the joint quality is NG (NO determination), the process proceeds to another step S20 to send an NG signal to the equipment. Is output.

上述のテンパリング通電が所定時間に行なわれて焼戻しが完了すると、上部電極7に対する加圧およびテンパリング電流の通電がOFFとされ、上部電極7が上昇すると共に、ストッパ電極10は下部電極6に隣接する元の位置まで前進するようにアクチュエータ11が駆動されて、リングマッシュ接合装置1の各要素は接合以前のノーマル状態に復帰され、上記各ステップS1〜S20の一連の処理終了後に、ワークW1,W2は下部電極6から取外される。   When the above-described tempering energization is performed for a predetermined time and tempering is completed, the pressurization and tempering current energization to the upper electrode 7 are turned off, the upper electrode 7 is raised, and the stopper electrode 10 is adjacent to the lower electrode 6. The actuator 11 is driven so as to advance to the original position, each element of the ring mash joining apparatus 1 is returned to the normal state before joining, and the workpieces W1, W2 are completed after the series of processing of the above steps S1 to S20. Is removed from the lower electrode 6.

また、図5に示すフローチャートの繰返しにより、ワークW1,W2の接合品質(特に、接合寸法)をその全数について自動的に可否判定することができる。なお、図5に示すフローチャートの各ステップは、その処理内容に相当するそれぞれの手段を構成するものである。   Further, by repeating the flowchart shown in FIG. 5, it is possible to automatically determine whether or not the joining quality (particularly the joining dimension) of the workpieces W1 and W2 is acceptable for all the workpieces. Each step of the flowchart shown in FIG. 5 constitutes each means corresponding to the processing content.

上述のストッパ電極10は図13に示す構造を採用してもよい。すなわち、図13に示すストッパ電極10はその上部に第1ワークW1の外周部を位置決めするリング部10cを一体または一体的に備えたものである。このように構成すると第2ワークW2上に第1ワークW1をセットする作業の容易化を図ることができる。なお、図13において前図と同一の部分には同一符号を付して、その詳しい説明を省略している。   The stopper electrode 10 described above may adopt the structure shown in FIG. That is, the stopper electrode 10 shown in FIG. 13 is integrally or integrally provided with a ring portion 10c for positioning the outer peripheral portion of the first workpiece W1 on the upper portion thereof. If comprised in this way, the operation | work which sets the 1st workpiece | work W1 on the 2nd workpiece | work W2 can be aimed at. In FIG. 13, the same parts as those in the previous figure are denoted by the same reference numerals, and detailed description thereof is omitted.

このように、上記実施例の接合品質判定方法は、開口部15を備えた第1ワークW1に、該開口部15より僅かに大きい外形部17を備えた第2ワークW2を、所定の重ね合わせ代OLで位置合わせをし、第1および第2の各ワークW1,W2を上部電極7と下部電極6で加圧した状態で通電することで、接合部位である上記開口部15と上記外形部17とを接合し、この接合時の上部電極7の加圧方向への変位状態を検出して接合品質を判定する接合品質判定方法において、上記両ワークW1,W2の接合部Uに対応した上部電極7と下部電極6の少なくとも一方の電極の温度変化ΔTを測定(S2参照)し、該電極の温度変化ΔTに伴う加圧方向の熱膨張量ΔL(S3参照)に基づいて、上部電極7の加圧方向への変位値(変位実測値X参照)を補正(補正値Y、S12参照)し、補正した変位値(X−Y参照)により接合品質を判定(S13参照)するものである(図2、図3、図5参照)。   As described above, the bonding quality determination method according to the above embodiment is configured such that the first workpiece W1 having the opening 15 is overlapped with the second workpiece W2 having the outer portion 17 slightly larger than the opening 15 by a predetermined overlay. The opening 15 and the outer shape portion which are joint portions are aligned by a margin OL and energized in a state where the first and second workpieces W1 and W2 are pressurized by the upper electrode 7 and the lower electrode 6. 17, and in the joining quality judgment method for judging the joining quality by detecting the displacement state of the upper electrode 7 in the pressurizing direction at the time of joining, the upper part corresponding to the joining part U of both the workpieces W1 and W2 The temperature change ΔT of at least one of the electrode 7 and the lower electrode 6 is measured (see S2), and based on the thermal expansion amount ΔL (see S3) in the pressurizing direction accompanying the temperature change ΔT of the electrode, the upper electrode 7 Displacement value in the pressurizing direction (see displacement measured value X ) Was corrected (see correction value Y, S12), it is to determine the bond quality by correcting the displacement value (see X-Y) (see S13) (FIG. 2, FIG. 3, see FIG. 5).

この構成によれば、第1および第2の各ワークW1,W2の接合部Uと対応する上部電極7、下部電極6の少なくとも何れか一方の電極の温度変化ΔTを測定し、該電極の温度変化ΔTに伴う加圧方向の熱膨張量ΔLに基づいて、上部電極7の加圧方向への変位値(変位実測値X参照)を補正し、この補正した変位値(X−Y参照)により接合品質を判定するので、上部電極7の加圧方向への変位状態を正確に検出することができ、両ワークW1,W2の接合品質、特にその接合寸法(アッシー段差ΔH参照)の良否を精度よく判定することができる。   According to this configuration, the temperature change ΔT of at least one of the upper electrode 7 and the lower electrode 6 corresponding to the joint portion U of the first and second workpieces W1 and W2 is measured, and the temperature of the electrode is measured. Based on the amount of thermal expansion ΔL in the pressurizing direction accompanying the change ΔT, the displacement value (see the actual displacement value X) of the upper electrode 7 in the pressurizing direction is corrected, and the corrected displacement value (see XY) is used. Since the joining quality is determined, the displacement state of the upper electrode 7 in the pressurizing direction can be accurately detected, and the joining quality of both the workpieces W1 and W2, particularly the quality of the joining dimension (see assembly step ΔH) is accurately determined. Can be judged well.

また、上記電極の温度変化ΔTに伴う加圧方向の熱膨張量ΔLに基づいて補正値Yを演算(S3参照)し、上部電極7の加圧方向への変位実測値Xを上記補正値Yで補正(S12参照)した後に、補正後の変位実測値(X−Y)と、予め設定された判定基準値Zとを比較して接合品質を判定(ルーチンR1参照)するものである(図4、図5参照)。   Further, the correction value Y is calculated based on the amount of thermal expansion ΔL in the pressurization direction accompanying the temperature change ΔT of the electrode (see S3), and the displacement displacement measurement value X of the upper electrode 7 in the pressurization direction is calculated as the correction value Y. After correcting (see S12), the displacement actual measurement value (XY) after correction is compared with a preset criterion value Z to determine the joining quality (see routine R1) (see FIG. 4). 4, see FIG.

この構成によれば、上部電極7の加圧方向への変位実測値Xを上述の補正値Yで補正するので、補正処理の容易化を図ることができ、しかも、上部電極7の加圧方向への変位状態を、電極6,7の熱膨張の影響を受けないように正しく補正することができる。
つまり、上述の補正値Yは、電極6,7を構成する材料の線膨張係数(既知数)と、電極6,7の加圧方向の全高(既知数)と、電極6,7の温度(測定値)とから簡単に演算することができるので、補正処理を容易に行なうことができる。
According to this configuration, since the displacement measurement value X in the pressurizing direction of the upper electrode 7 is corrected by the correction value Y described above, the correction process can be facilitated, and the pressurizing direction of the upper electrode 7 can be facilitated. It is possible to correct the displacement state to the position correctly so as not to be affected by the thermal expansion of the electrodes 6 and 7.
That is, the correction value Y described above includes the linear expansion coefficient (known number) of the material constituting the electrodes 6, 7, the total height (known number) of the electrodes 6, 7 in the pressing direction, and the temperature of the electrodes 6, 7 ( Therefore, the correction process can be easily performed.

さらに、上記上部電極7と下部電極6との温度変化ΔTを測定し、上下両電極6,7の温度変化に伴う加圧方向の熱膨張量ΔLに基づいて、上記補正値Yを演算するものである(図4、図5参照)。
この構成によれば、上下の両電極6,7の温度変化ΔTを直接測定し、上記補正値Yを演算した後に、上部電極7の加圧方向への変位実測値Xを該補正値Yにて補正(X−Y)するので、上部電極7の加圧方向への変位状態をより一層正確に検出することができ、両ワークW1,W2の接合品質、特に接合寸法(アッシー段差ΔH参照)の良否をさらに精度よく判定することができる。
Further, the temperature change ΔT between the upper electrode 7 and the lower electrode 6 is measured, and the correction value Y is calculated based on the thermal expansion amount ΔL in the pressurizing direction accompanying the temperature change of the upper and lower electrodes 6, 7. (See FIGS. 4 and 5).
According to this configuration, the temperature change ΔT of both the upper and lower electrodes 6 and 7 is directly measured, and after calculating the correction value Y, the actual displacement value X in the pressurizing direction of the upper electrode 7 is used as the correction value Y. Therefore, the displacement state of the upper electrode 7 in the pressurizing direction can be detected more accurately, and the joining quality of both the workpieces W1 and W2, particularly the joining dimension (see assembly step ΔH). Can be determined with higher accuracy.

加えて、上記下部電極6と隣接して配置され、第1ワークW1に当接して該第1ワークW1を位置決めすると共に、接合電流をリークさせる導電性位置決め部材(ストッパ電極10参照)の温度変化を測定し、上記下部電極6および導電性位置決め部材(ストッパ電極10参照)の温度変化に伴う加圧方向の熱膨張量の差に基づいて第1および第2の両ワークW1,W2の接合寸法(アッシー段差ΔH参照)変化を判定するものである(図8参照)。
この構成によれば、下部電極7の熱膨張量と、導電性位置決め部材(ストッパ電極10参照)の熱膨張量との差に基づいて上記両ワークW1,W2の接合寸法(いわゆるアッシー段差ΔH)を計測および判定することができる。
In addition, the temperature change of the conductive positioning member (refer to the stopper electrode 10) that is disposed adjacent to the lower electrode 6 and contacts the first work W1 to position the first work W1 and leaks the bonding current. , And based on the difference in the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the lower electrode 6 and the conductive positioning member (see the stopper electrode 10), the joint dimensions of both the first and second workpieces W1, W2 (See assembly step ΔH) Changes are determined (see FIG. 8).
According to this configuration, based on the difference between the amount of thermal expansion of the lower electrode 7 and the amount of thermal expansion of the conductive positioning member (see the stopper electrode 10), the joint dimensions (so-called assembly step ΔH) of both the workpieces W1, W2 are described. Can be measured and determined.

また、上記導電性位置決め部材(ストッパ電極10参照)を第1ワークW1から離間させた後に、上記上下の両電極7,6を介して上記接合部Uに焼戻し用電流を流し、この焼戻し用電流通電時の上部電極7の加圧方向への変位実測値Xを上記補正値Yで補正(X−Y)し、補正後の変位実測値(X−Y)に基づいて最終的な接合品質を判定(ルーチンR2参照)するものである(図5参照)。   Further, after the conductive positioning member (see the stopper electrode 10) is separated from the first work W1, a tempering current is supplied to the joint portion U through the upper and lower electrodes 7 and 6, and the tempering current is supplied. The displacement measurement value X in the pressurizing direction of the upper electrode 7 during energization is corrected (XY) with the correction value Y, and the final joining quality is determined based on the corrected displacement measurement value (XY). The determination is made (see routine R2) (see FIG. 5).

この構成によれば、次のような効果がある。
すなわち、リングマッシュ接合時に、両ワークW1,W2の接合部Uは大電流により急加熱された後に、例えば電極6,7内の冷却水にて急冷され、該接合部Uが焼入れされるので、この接合部Uを接合と同一電極6,7を用いて焼戻しを行ない、接合部Uの靭性向上を図ることができ、しかも、この場合に補正後の変位実測値(X−Y)に基づいて最終的な接合品質(特に、接合寸法)を判定するので、最終製品としての品質判定を行なうことができる。
This configuration has the following effects.
That is, at the time of ring mash joining, the joint portion U of both workpieces W1 and W2 is rapidly heated by a large current, and then rapidly cooled with cooling water in the electrodes 6 and 7, for example, so that the joint portion U is quenched. The joint U can be tempered using the same electrodes 6 and 7 as the joint, and the toughness of the joint U can be improved. In this case, based on the corrected displacement actual measurement value (XY). Since the final bonding quality (particularly the bonding dimension) is determined, the quality determination as the final product can be performed.

さらに、上記実施例の接合品質判定装置は、開口部15を備えた第1ワークW1に、該開口部15より僅かに大きい外形部17を備えた第2ワークW2を、所定の重ね合わせ代OLで位置合わせをし、第1および第2の両ワークW1,W2を上部電極7と下部電極6で加圧した状態で通電することで、接合部位である上記開口部15と上記外形部17とを接合し、この接合時の上部電極7の加圧方向への変位状態を検出して接合品質を判定する接合品質判定装置において、接合時の上部電極7の加圧方向への変位状態を検出する変位検出手段(非接触レーザ変位計21参照)と、上記第1および第2の両ワークW1,W2の接合部Uに対応した上部電極7と下部電極6の少なくとも一方の電極の温度変化を測定する温度測定手段(非接触温度計22,23参照)と、該温度測定手段(非接触温度計22,23参照)で測定した電極(6,7の少なくとも一方の電極)の温度変化ΔTに伴う加圧方向の熱膨張量ΔLに基づいて、上部電極7の加圧方向への変位値(変位実測値X参照)を補正し、補正した変位値(X−Y)により接合品質を判定する接合品質判定手段(ルーチンR1参照)と、を備えたものである(図2、図3、図5参照)。   Furthermore, the joining quality determination apparatus according to the above-described embodiment is configured such that the second workpiece W2 having the outer shape portion 17 slightly larger than the opening portion 15 is applied to the first workpiece W1 having the opening portion 15 with a predetermined overlap margin OL. And the first and second workpieces W1 and W2 are energized in a state where they are pressurized by the upper electrode 7 and the lower electrode 6, so that the opening 15 and the outer portion 17 which are joint portions are In the joining quality judgment device for judging the joining quality by detecting the displacement state of the upper electrode 7 in the pressurizing direction at the time of joining, the displacement state in the pressurizing direction of the upper electrode 7 at the time of joining is detected. And a temperature change of at least one of the upper electrode 7 and the lower electrode 6 corresponding to the joint portion U of the first and second workpieces W1 and W2. Temperature measuring means to measure (non-contact temperature 22 and 23) and the amount of thermal expansion ΔL in the pressurizing direction accompanying the temperature change ΔT of the electrodes (at least one of the electrodes 6 and 7) measured by the temperature measuring means (see the non-contact thermometers 22 and 23). Based on the bonding quality determination means (refer to routine R1) for correcting the displacement value (refer to the displacement actual measurement value X) of the upper electrode 7 in the pressurization direction and determining the bonding quality based on the corrected displacement value (XY). (Refer to FIG. 2, FIG. 3, FIG. 5).

この構成によれば、変位検出手段(非接触レーザ変位計21)は、接合時の上部電極7の加圧方向への変位状態を検出し、温度測定手段(非接触温度計22,23参照)は、上記第1および第2の両ワークW1,W2の接合部Uに対応した上部電極7と下部電極6の少なくとも一方の電極の温度変化ΔTを測定し、接合品質判定手段(ルーチンR1参照)は、上述の温度測定手段(非接触温度計22,23)で測定した電極の温度変化ΔTに伴う加圧方向の熱膨張量ΔLに基づいて、上部電極7の加圧方向への変位値(変位実測値X参照)を補正し、この補正した変位値(X−Y)により接合品質を判定する。
このように、補正した変位値(X−Y)により接合品質を判定するので、上部電極7の加圧方向への変位状態を正確に検出することができ、両ワークW1,W2の接合品質、特にその接合寸法(アッシー段差ΔH参照)の良否を精度よく判定することができる。
According to this configuration, the displacement detecting means (non-contact laser displacement meter 21) detects the displacement state of the upper electrode 7 in the pressurizing direction at the time of joining, and temperature measuring means (see non-contact thermometers 22 and 23). Measures the temperature change ΔT of at least one of the upper electrode 7 and the lower electrode 6 corresponding to the joint U of the first and second workpieces W1 and W2, and determines the joining quality judgment means (see routine R1). Is the displacement value (in the pressurizing direction) of the upper electrode 7 based on the thermal expansion amount ΔL in the pressurizing direction accompanying the temperature change ΔT of the electrode measured by the temperature measuring means (non-contact thermometers 22, 23). The displacement quality (refer to the actual displacement value X) is corrected, and the bonding quality is determined based on the corrected displacement value (XY).
In this way, since the joining quality is determined based on the corrected displacement value (XY), the displacement state of the upper electrode 7 in the pressurizing direction can be accurately detected, and the joining quality of both the workpieces W1, W2 can be detected. In particular, the quality of the joining dimension (see assembly step ΔH) can be accurately determined.

また、上記温度測定手段(非接触温度計22,23参照)は、上部電極7と下部電極6との温度変化ΔTを測定するように構成され、上記接合品質判定手段(ルーチンR1参照)は、上記上下の両電極7,6の温度変化ΔTに伴う加圧方向の熱膨張量ΔLに基づいて、上部電極7の加圧方向への変位値(変位実測値X参照)を補正(X−Y)するように構成されたものである(図2、図5参照)。   The temperature measuring means (refer to the non-contact thermometers 22 and 23) is configured to measure a temperature change ΔT between the upper electrode 7 and the lower electrode 6, and the bonding quality determining means (refer to the routine R1) Based on the amount of thermal expansion ΔL in the pressurizing direction accompanying the temperature change ΔT of the upper and lower electrodes 7 and 6, the displacement value (see the actual displacement value X) of the upper electrode 7 in the pressurizing direction is corrected (XY). ) (See FIGS. 2 and 5).

この構成によれば、温度測定手段(非接触温度計22,23)で上下の両電極7,6の温度変化ΔTを直接測定し、これら上下の両電極7,6の温度変化ΔTに伴う加圧方向の熱膨張量ΔLに基づいて、接合品質判定手段(ルーチンR1参照)が上部電極7の加圧方向への変位値(変位実測値X参照)を補正(X−Y)し、この補正した変位値(X−Y)により接合品質を判定するので、上部電極7の加圧方向への変位状態をより一層正確に検出することができ、両ワークW1,W2の接合品質、特にその接合寸法(アッシー段差ΔH参照)の良否をさらに精度よく判定することができる。   According to this configuration, the temperature change ΔT of the upper and lower electrodes 7 and 6 is directly measured by the temperature measuring means (non-contact thermometers 22 and 23), and the temperature change ΔT associated with the upper and lower electrodes 7 and 6 is added. Based on the amount of thermal expansion ΔL in the pressure direction, the joining quality determination means (see routine R1) corrects (XY) the displacement value (see displacement actual measurement value X) of the upper electrode 7 in the pressurizing direction. Since the bonding quality is determined based on the displacement value (XY), the displacement state of the upper electrode 7 in the pressurizing direction can be detected more accurately, and the bonding quality of both the workpieces W1 and W2, particularly the bonding thereof. The quality of the dimension (see assembly step ΔH) can be determined with higher accuracy.

さらに、上記下部電極6と隣接して配置され、第1ワークW1に当接して該第1ワークW1を位置決めすると共に接合電流をリークさせる導電性位置決め部材(ストッパ電極10参照)を備え、上記接合品質判定手段(ルーチンR1参照)は、下部電極6および導電性位置決め部材(ストッパ電極10参照)の温度変化に伴う加圧方向の熱膨張量の差に基づいて第1および第2の両ワークW1,W2の接合寸法(アッシー段差ΔH参照)変化を判定するように構成されたものである(図5、図8参照)。
この構成によれば、下部電極6の熱膨張量と、導電性位置決め部材(ストッパ電極10参照)の熱膨張量との差に基づいて上記両ワークW1,W2の接合寸法(いわゆるアッシー段差ΔH)を計測および判定することができる。
Furthermore, it is disposed adjacent to the lower electrode 6, and includes a conductive positioning member (see the stopper electrode 10) that contacts the first workpiece W 1 to position the first workpiece W 1 and leaks a bonding current. The quality determination means (see routine R1) is based on the difference between the thermal expansion amounts in the pressurizing direction accompanying the temperature changes of the lower electrode 6 and the conductive positioning member (see the stopper electrode 10). , W2 (see FIG. 5 and FIG. 8).
According to this configuration, based on the difference between the thermal expansion amount of the lower electrode 6 and the thermal expansion amount of the conductive positioning member (see the stopper electrode 10), the joint dimension (so-called assembly step ΔH) of the workpieces W1 and W2 is determined. Can be measured and determined.

この発明の構成と、上述の実施例との対応において、
この発明の第1金ワークは、実施例の第1ワークW1に対応し、
以下同様に、
2金ワークは、第2ワークW2に対応し、
導電性位置決め部材は、ストッパ電極10に対応し、
変位検出手段は、非接触レーザ変位計21に対応し、
温度測定手段は、非接触温度計22,23,24に対応し、
接合品質判定手段は、ルーチンR1に対応するも、
この発明は、上述の実施例の構成のみに限定されるものではない。
例えば、上記実施例においては判定基準値Zと不変と成して、変位実測値Xを補正値Yで補正(X−Y)するように構成したが、この構成に代えて判定基準値Zを上記補正値Yで補正(Z+Y)し、この補正された判定基準値(Z+Y)と変位実測値Xとを比較して、接合品質(なかんず接合寸法)を判定すべく構成してもよい。
In the correspondence between the configuration of the present invention and the above-described embodiment,
The first metals work of the invention corresponds to the first work W1 embodiment,
Similarly,
Second metals workpiece corresponds to the second work W2,
The conductive positioning member corresponds to the stopper electrode 10,
The displacement detection means corresponds to the non-contact laser displacement meter 21,
The temperature measuring means corresponds to the non-contact thermometer 22, 23, 24,
The joining quality determination means corresponds to the routine R1,
The present invention is not limited to the configuration of the above-described embodiment.
For example, in the above embodiment, the determination reference value Z is not changed, and the displacement actual measurement value X is corrected with the correction value Y (XY). However, instead of this configuration, the determination reference value Z is changed to the correction reference value Z. corrected by the correction value Y is (Z + Y), the corrected determination reference value by comparing the (Z + Y) and the displacement measured values X, joint quality (such Cans rather joint dimension) may be configured to determine .

本発明の接合品質判定装置の全体構造を示す概略正面図The schematic front view which shows the whole structure of the joining quality determination apparatus of this invention 接合品質判定装置の要部を示す系統図System diagram showing the main parts of the joint quality judgment device 重ね合わせ代を示す部分拡大断面図Partial enlarged cross-sectional view showing the overlap allowance 上部電極の変位状態を示すグラフGraph showing the displacement state of the upper electrode 接合品質判定方法を示すフローチャートFlow chart showing joining quality judgment method 上部電極待機状態を示す要部拡大断面図The principal part expanded sectional view which shows the upper electrode waiting state リングマッシュ接合時の要部拡大断面図Expanded cross-sectional view of the main part during ring mash joining 図7の要部詳細断面図Detailed cross-sectional view of the main part of FIG. 上部電極上方移動時の要部拡大断面図Expanded cross-sectional view of the main part when the upper electrode is moved upward ストッパ電極後退時の要部拡大断面図Expanded cross-sectional view of the main part when the stopper electrode is retracted 焼戻し時の要部拡大断面図Enlarged sectional view of the main part during tempering 図11の要部詳細断面図Detailed cross-sectional view of the main part of FIG. ストッパ電極の他の実施例を示す説明図Explanatory drawing showing another embodiment of the stopper electrode

6…下部電極
7…上部電極
10…ストッパ電極(導電性位置決め部材)
15…開口部
17…外形部
21…非接触レーザ変位計(変位検出手段)
22,23,24…非接触温度計(温度測定手段)
R1…接合品質判定手段
W1…第1ワーク(第1金ワーク
W2…第2ワーク(第2金ワーク
U…接合部
OL…重ね合わせ代
6 ... Lower electrode 7 ... Upper electrode 10 ... Stopper electrode (conductive positioning member)
15 ... Opening part 17 ... Outer part 21 ... Non-contact laser displacement meter (displacement detecting means)
22, 23, 24 ... non-contact thermometer (temperature measuring means)
R1 ... joint quality determination unit W1 ... first work (first Metal work)
W2 ... the second work (the second metals work)
U ... Joint OL ... Overlay allowance

Claims (8)

開口部を備えた第1金ワークに、該開口部より僅かに大きい外形部を備えた第2金ワークを、所定の重ね合わせ代で位置合わせをし、第1および第2の両金ワークを上部電極と下部電極で加圧した状態で通電することで、接合部位である上記開口部と上記外形部とを接合し、この接合時の上部電極の加圧方向への変位状態を検出して接合品質を判定する接合品質判定方法において、
上記両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定し、
該電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、補正した変位値により接合品質を判定する
接合品質判定方法。
First Metal workpiece having an opening, the second metals workpiece having a slightly larger outer section than the opening, the alignment at predetermined superposition allowance, the first and second Ryokin By energizing the workpiece with the upper electrode and the lower electrode being pressurized, the opening and the outer shape, which are the joining parts, are joined, and the displacement state of the upper electrode during the joining in the pressing direction is changed. In the joining quality judgment method for detecting and judging the joining quality,
The temperature change of at least one electrode of the upper electrode and the lower electrode corresponding to the junction of the Ryokin genus workpiece is measured,
A joining quality determination method for correcting a displacement value of the upper electrode in the pressurizing direction based on a thermal expansion amount in the pressurizing direction accompanying the temperature change of the electrode and determining the joining quality based on the corrected displacement value.
上記電極の温度変化に伴う加圧方向の熱膨張量に基づいて補正値を演算し、
上部電極の加圧方向への変位実測値を上記補正値で補正した後に、
補正後の変位実測値と、予め設定された判定基準値とを比較して接合品質を判定する
請求項1記載の接合品質判定方法。
Calculate a correction value based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the electrode,
After correcting the displacement measured value in the pressing direction of the upper electrode with the above correction value,
The joint quality judgment method according to claim 1, wherein the joint quality is judged by comparing the actually measured displacement value after correction and a preset reference value.
上記上部電極と下部電極との温度変化を測定し、上下両電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上記補正値を演算する
請求項2記載の接合品質判定方法。
The bonding quality determination method according to claim 2, wherein the temperature change between the upper electrode and the lower electrode is measured, and the correction value is calculated based on the amount of thermal expansion in the pressurizing direction accompanying the temperature change of the upper and lower electrodes.
上記下部電極と隣接して配置され、第1金ワークに当接して該第1金ワークを位置決めすると共に、接合電流をリークさせる導電性位置決め部材の温度変化を測定し、上記下部電極および導電性位置決め部材の温度変化に伴う加圧方向の熱膨張量の差に基づいて第1および第2の両金ワークの接合寸法変化を判定する
請求項3記載の接合品質判定方法。
It is disposed adjacent to the lower electrode, with positioning the first metals workpiece in contact with the first metals workpiece, the junction current to measure the temperature variation of the conductive locating member for leakage, the lower electrode and joining quality determination method of claim 3, wherein determining the junction dimensional change of the first and second Ryokin genus workpiece based on a difference in thermal expansion amount of the pressure direction due to the temperature change of the conductive locating member.
上記導電性位置決め部材を第1金ワークから離間させた後に、
上記上下の両電極を介して上記接合部に焼戻し用電流を流し、
この焼戻し用電流通電時の上部電極の加圧方向への変位実測値を上記補正値で補正し、
補正後の変位実測値に基づいて最終的な接合品質を判定する
請求項4記載の接合品質判定方法。
After is separated the conductive locating member from a first metals workpiece,
A tempering current is passed through the joint through the upper and lower electrodes,
Correct the measured displacement value in the pressurizing direction of the upper electrode during current application for tempering with the above correction value,
The joining quality judgment method according to claim 4, wherein the final joining quality is judged based on the corrected displacement actual measurement value.
開口部を備えた第1金ワークに、該開口部より僅かに大きい外形部を備えた第2金ワークを、所定の重ね合わせ代で位置合わせをし、第1および第2の両金ワークを上部電極と下部電極で加圧した状態で通電することで、接合部位である上記開口部と上記外形部とを接合し、この接合時の上部電極の加圧方向への変位状態を検出して接合品質を判定する接合品質判定装置において、
接合時の上部電極の加圧方向への変位状態を検出する変位検出手段と、
上記第1および第2の両金ワークの接合部に対応した上部電極と下部電極の少なくとも一方の電極の温度変化を測定する温度測定手段と、
該温度測定手段で測定した電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正し、補正した変位値により接合品質を判定する接合品質判定手段と、を備えた
接合品質判定装置。
First Metal workpiece having an opening, the second metals workpiece having a slightly larger outer section than the opening, the alignment at predetermined superposition allowance, the first and second Ryokin By energizing the workpiece with the upper electrode and the lower electrode being pressurized, the opening and the outer shape, which are the joining parts, are joined, and the displacement state of the upper electrode during the joining in the pressing direction is changed. In the joint quality judgment device that detects and judges the joint quality,
A displacement detecting means for detecting a displacement state of the upper electrode in the pressurizing direction at the time of joining;
A temperature measuring means for measuring a temperature change of at least one electrode of the upper electrode and the lower electrode corresponding to the junction of the first and second Ryokin genus workpiece,
Based on the amount of thermal expansion in the pressurization direction accompanying the temperature change of the electrode measured by the temperature measuring means, the displacement value in the pressurization direction of the upper electrode is corrected, and the joint quality is determined based on the corrected displacement value A joining quality judging device comprising: a judging means;
上記温度測定手段は、上部電極と下部電極との温度変化を測定するように構成され、
上記接合品質判定手段は、上記上下の両電極の温度変化に伴う加圧方向の熱膨張量に基づいて、上部電極の加圧方向への変位値を補正するように構成された
請求項6記載の接合品質判定装置。
The temperature measuring means is configured to measure a temperature change between the upper electrode and the lower electrode,
The said joining quality determination means is comprised so that the displacement value to the pressurization direction of an upper electrode may be correct | amended based on the amount of thermal expansion of the pressurization direction accompanying the temperature change of the said both upper and lower electrodes. Bonding quality judgment device.
上記下部電極と隣接して配置され、第1金ワークに当接して該第1金ワークを位置決めすると共に接合電流をリークさせる導電性位置決め部材を備え、
上記接合品質判定手段は、下部電極および導電性位置決め部材の温度変化に伴う加圧方向の熱膨張量の差に基づいて第1および第2の両金ワークの接合寸法変化を判定するように構成された
請求項7記載の接合品質判定装置。
Is disposed adjacent to the lower electrode comprises a conductive locating member which leak junction current with contact with the first metals workpiece positioning the first metals workpiece,
The joint quality determination means to determine a junction dimensional change of the first and second Ryokin genus workpiece based on a difference in thermal expansion amount of the pressure direction due to the temperature change of the lower electrode and the conductive locating member The joining quality judgment device according to claim 7 constituted.
JP2007162454A 2007-06-20 2007-06-20 Bonding quality judgment method and apparatus Expired - Fee Related JP5186813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162454A JP5186813B2 (en) 2007-06-20 2007-06-20 Bonding quality judgment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162454A JP5186813B2 (en) 2007-06-20 2007-06-20 Bonding quality judgment method and apparatus

Publications (2)

Publication Number Publication Date
JP2009000702A JP2009000702A (en) 2009-01-08
JP5186813B2 true JP5186813B2 (en) 2013-04-24

Family

ID=40317662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162454A Expired - Fee Related JP5186813B2 (en) 2007-06-20 2007-06-20 Bonding quality judgment method and apparatus

Country Status (1)

Country Link
JP (1) JP5186813B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011253A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Ind Ltd Method for monitoring welding quality in upsetting butt welding, monitoring device therefor, and method for producing welded product by upsetting butt welding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288743A (en) * 1999-02-03 2000-10-17 Dengensha Mfg Co Ltd Controller for resistance welding equipment
JP2001038474A (en) * 1999-05-26 2001-02-13 Yazaki Corp Device and method for checking welding condition
JP3593981B2 (en) * 2000-01-20 2004-11-24 日産自動車株式会社 Method and apparatus for detecting movement amount between welding electrodes
JP4479368B2 (en) * 2004-06-18 2010-06-09 マツダ株式会社 Joining method and apparatus
JP4496953B2 (en) * 2004-12-24 2010-07-07 マツダ株式会社 Joining method and joining apparatus

Also Published As

Publication number Publication date
JP2009000702A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
CN110238499B (en) Resistance spot welding method and resistance spot welding apparatus
JP5196642B2 (en) Resistance welding method monitoring method and apparatus for carrying out the method
KR101634864B1 (en) Method for inspecting rivetting portions of metal panel
WO2014209839A2 (en) Method of monitoring thermal response, force and current during resistance welding
KR101689172B1 (en) A method of estimating welding quality in flash buttwelding process
JP5186813B2 (en) Bonding quality judgment method and apparatus
JP6971724B2 (en) One-sided spot welding equipment and one-sided spot welding method
US5814783A (en) Method and apparatus for real-time weld-quality control and post-process weld-quality verification for homopolar pulsed welding
JPH1094882A (en) Method and device for detecting and controlling pressure of welding gun
JP2009000712A (en) Method and apparatus for joining metallic member
KR20200136637A (en) Welding quality inspection apparatus and method of the same
JP2020171942A (en) Resistance spot welding device
JP4382504B2 (en) Friction stir welding apparatus and friction stir welding method
JP4915189B2 (en) Quality determination method and quality determination system for spot welding
CA2904933C (en) Welder with indirect sensing of weld fastener position
WO2022210248A1 (en) Inspection method for friction stir welded part, and welding device
JP4479368B2 (en) Joining method and apparatus
JP2006021226A (en) Lower electrode unit having function for detecting abnormal setting of nut and bolt
JP2011011253A (en) Method for monitoring welding quality in upsetting butt welding, monitoring device therefor, and method for producing welded product by upsetting butt welding
JP4448041B2 (en) Radiation thermometer optical axis positioning method
JP2005205421A (en) Method and device for determining welding quality
JP4835152B2 (en) Junction quality judgment method and junction tempering apparatus
KR20140126572A (en) System for monitoring of spot welding and method thereof
JP3660789B2 (en) Method and apparatus for increasing the thickness of metal strip
JP2023176125A (en) Resistance spot welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5186813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees