JP5186696B2 - Cyclization reaction of polyenes - Google Patents

Cyclization reaction of polyenes Download PDF

Info

Publication number
JP5186696B2
JP5186696B2 JP2006356085A JP2006356085A JP5186696B2 JP 5186696 B2 JP5186696 B2 JP 5186696B2 JP 2006356085 A JP2006356085 A JP 2006356085A JP 2006356085 A JP2006356085 A JP 2006356085A JP 5186696 B2 JP5186696 B2 JP 5186696B2
Authority
JP
Japan
Prior art keywords
reaction
temperature
methylcyclohexene
polyenes
cyclization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006356085A
Other languages
Japanese (ja)
Other versions
JP2008162973A (en
Inventor
俊彦 日秋
秀 岩村
究 陶
暁子 中村
里香 今野
千恵 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2006356085A priority Critical patent/JP5186696B2/en
Publication of JP2008162973A publication Critical patent/JP2008162973A/en
Application granted granted Critical
Publication of JP5186696B2 publication Critical patent/JP5186696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、有機溶媒や触媒を用いることなく、ポリエン類を環化反応させる方法に関する。より具体的には、高温高圧水中、触媒無添加において、ポリエン類から環状化合物を製造する方法に関する。   The present invention relates to a method for cyclizing polyenes without using an organic solvent or a catalyst. More specifically, the present invention relates to a method for producing a cyclic compound from polyenes without adding a catalyst in high-temperature and high-pressure water.

トリテルペンは、炭素数30の化合物であり、抗がん剤などの新薬の候補物質の一つとして注目され、近年、化学合成や酵素を使用した生合成が研究されている。また、トリテルペンは、殆どの植物中に存在しているとされ、天然には、80種類以上のトリテルペン骨格の存在が確認されている。
トリテルペンは、in vitroでは、酵素による生合成により、ステロイド骨格の中間体であるスクワレンを原料として、2,3-オキシドスクワレンを経由する求電子的環化反応で得られてきた。このスクワレン環化酵素は、真核・原核生物由来であり、その活性部位などが比較的解析されており、主に最適なバクテリアは、アリサイクロバシラス アシドカルダリウス(Alicyclobacillus acidocaldarius)である。しかし、他のイソプレノイド環化酵素の反応機構等は一般化するには至っていない。その理由として、真核生物を用いた場合、遺伝子取得が難しいことや、酵素調製が難しいことなどが挙げられる。
また、in vitroでは、化学合成によりスクワレンから5員環トリテルペンが生成するが、この典型的な有機化学反応で鍵となる求電子反応の促進には、有機溶剤や酸触媒の使用が不可欠である。したがって、生成物を取り出す際には、塩基を加えて中和を行い、さらに溶媒を留去するか水蒸気蒸留する必要があり、分離工程でのコスト増加につながっている。また、炭化水素系、エーテル系、含塩素系有機溶媒には揮発性のものが多く、大部分は大気中に放出され、エネルギー・資源の浪費となっているばかりでなく、対流圏オゾンの発生及びスモッグの原因という環境負荷を与えてきた。
Triterpene is a compound having 30 carbon atoms, and has attracted attention as one of candidate substances for new drugs such as anticancer agents. In recent years, biosynthesis using chemical synthesis or enzymes has been studied. Triterpenes are considered to exist in most plants, and the existence of 80 or more types of triterpene skeletons has been confirmed in nature.
Triterpenes have been obtained in vitro by enzymatic electrosynthesis from electrophilic cyclization via 2,3-oxide squalene using squalene, an intermediate of the steroid skeleton, as a raw material. This squalene cyclase is derived from a eukaryotic / prokaryotic organism and its active site has been relatively analyzed. The most suitable bacterium is Alicyclobacillus acidocaldarius . However, the reaction mechanism of other isoprenoid cyclases has not been generalized. The reason for this is that, when eukaryotes are used, it is difficult to obtain genes or difficult to prepare enzymes.
In vitro, chemical synthesis produces 5-membered triterpenes from squalene, but the use of organic solvents and acid catalysts is indispensable to promote the electrophilic reaction that is the key to this typical organic chemical reaction. . Therefore, when taking out the product, it is necessary to neutralize by adding a base, and further it is necessary to distill off the solvent or steam distillation, which leads to an increase in cost in the separation step. In addition, many hydrocarbon-based, ether-based, and chlorine-containing organic solvents are volatile, and most of them are released into the atmosphere, which is not only a waste of energy and resources, but also the generation of tropospheric ozone. The environmental impact of smog has been given.

一方、超臨界状態またはこれに近い高温高圧水環境では、水は、常温常圧の有機溶媒に相当する低い誘電率を示し、更に高いイオン積も有することから、有機物に対して高い溶解性を示すことが知られている。また、高いH+やOH-濃度の反応場を形成できるため、従来有機溶媒中で酸・塩基触媒を用いて行なわれてきた有機合成反応を、多量の有機溶媒や酸・塩基触媒用いることなく進行させ得る可能性が示唆され、代表的な求電子置換反応であるフリーデル・クラフツアルキル化及びアシル化について無触媒で進行することが報告されている(非特許文献1)。
また、このような超臨界水中での有機合成に関して、ピコナール転位反応によるピコナリン生成反応という特殊な環化反応が報告されている(特許文献1)が、その他の汎用性を有する環化反応については何ら報告がない。
K.Chandler等 AIChE J., 1998,44,2080 特開2000-136161号公報
On the other hand, in a supercritical state or a high temperature and high pressure water environment close to this, water exhibits a low dielectric constant corresponding to an organic solvent at room temperature and normal pressure, and also has a high ionic product, so that it has high solubility in organic matter. It is known to show. In addition, because a reaction field with high H + or OH concentration can be formed, organic synthesis reactions that have been performed using an acid / base catalyst in an organic solvent can be performed without using a large amount of the organic solvent or acid / base catalyst. The possibility of proceeding is suggested, and it has been reported that Friedel-Crafts alkylation and acylation, which are typical electrophilic substitution reactions, proceed without catalyst (Non-patent Document 1).
In addition, regarding such organic synthesis in supercritical water, a special cyclization reaction called piconarine formation reaction by piconal rearrangement reaction has been reported (Patent Document 1). There are no reports.
K. Chandler et al. AIChE J., 1998, 44, 2080 JP 2000-136161 A

本発明は、スクワレンからトリテルペンへの環化反応のようなポリエン類の環化反応を、有機溶媒や酸・塩基触媒を用いることなく、環境負荷を与えないで化学合成できる方法を提供することを課題とする。   The present invention provides a method for chemically synthesizing a cyclization reaction of a polyene such as a cyclization reaction from squalene to a triterpene without using an organic solvent or an acid / base catalyst without causing an environmental load. Let it be an issue.

本発明者らは、上記課題を解決するために鋭意検討した結果、超臨界状態に近い高温高圧水環境において、触媒無添加で、ポリエン類の環化反応が進行することを見出し、本発明に至った。
すなわち、本発明者らは、ポリエン類の環化が、高温高圧水環境において、自発的に進行することを見出したものである。この手法は、有機溶媒や酸・塩基触媒を用いることがないので、低環境負荷のプロセスであることに加え、生成物が水相と分離して取得できるため、分離取得工程の簡略化が達成できるメリットもある。
本発明者らは、スクワレンからトリテルペンへの環化反応のようなポリエン類の環化反応のモデルとして1,6-へプタジエンを選択して検討をしたが、その結果、環化反応が進行することが明らかとなった。1,6-へプタジエンの環化反応は、上述のような多環式化合物を合成する上で基本となる反応であるので、各種単環式及び多環式化合物へ応用しうる可能性を発見した。
As a result of intensive studies to solve the above problems, the present inventors have found that a cyclization reaction of polyenes proceeds without adding a catalyst in a high-temperature and high-pressure water environment close to a supercritical state. It came.
That is, the present inventors have found that cyclization of polyenes proceeds spontaneously in a high temperature and high pressure water environment. Since this method does not use organic solvents or acid / base catalysts, in addition to being a low environmental load process, the product can be obtained separately from the aqueous phase, thus simplifying the separation and acquisition process. There are also benefits.
The present inventors selected and studied 1,6-heptadiene as a model for the cyclization reaction of polyenes such as the cyclization reaction from squalene to triterpene, and as a result, the cyclization reaction proceeds. It became clear. Since the cyclization reaction of 1,6-heptadiene is a basic reaction for the synthesis of polycyclic compounds as described above, the possibility of applying to various monocyclic and polycyclic compounds was discovered. did.

すなわち、本発明は、次に関するものである。
(1)高温高圧水中、触媒無添加において、ポリエン類を環化することを特徴とする環状化合物の製造方法。
(2)ポリエン類の炭素数が6〜30である上記(1)に記載の製造方法。
(3)ポリエン類の炭素数が6〜8である上記(1)に記載の製造方法。
(4)ポリエン類が1,5-ジエンあるいは1,6-ジエンである上記(1)記載の製造方法。
(5)1,6-へプタジエンからメチルシクロヘキセンを製造する上記(1)記載の方法。
(6)温度350 ℃以上、圧力17 MPa以上で反応させることを特徴とする上記(1)〜(5)のいずれかに記載の方法。
That is, the present invention relates to the following.
(1) A method for producing a cyclic compound, characterized in that polyenes are cyclized in high temperature and high pressure water without addition of a catalyst.
(2) The production method according to the above (1), wherein the polyene has 6 to 30 carbon atoms.
(3) The production method according to the above (1), wherein the polyene has 6 to 8 carbon atoms.
(4) The production method according to the above (1), wherein the polyene is 1,5-diene or 1,6-diene.
(5) The method according to (1) above, wherein methylcyclohexene is produced from 1,6-heptadiene.
(6) The method according to any one of (1) to (5) above, wherein the reaction is carried out at a temperature of 350 ° C. or higher and a pressure of 17 MPa or higher.

本発明の環化方法は、有機溶媒や酸・塩基触媒を用いないので、環境調和型の製造方法を提供することができる。   Since the cyclization method of the present invention does not use an organic solvent or an acid / base catalyst, an environmentally conscious production method can be provided.

以下に、本発明を具体的に説明するが、本発明はそれに限定されるものではない。
本発明において原料となるポリエン類は、2重結合を2個以上有する炭化水素である。ポリエン類の炭素数は6〜30であり、特に炭素数6〜8である1,5-ジエンあるいは1,6-ジエンを原料とするのが好ましい。
炭素数7である1,6-へプタジエンを原料として環化する場合、メチルシクロヘキセンが生成する。

炭素数30のポリエンであるスクワレンを原料として環化すれば、5員環トリテルペンが生成する。
Hereinafter, the present invention will be specifically described, but the present invention is not limited thereto.
The polyenes used as a raw material in the present invention are hydrocarbons having two or more double bonds. The polyenes have 6 to 30 carbon atoms, and it is particularly preferable to use 1,5-diene or 1,6-diene having 6 to 8 carbon atoms as a raw material.
When cyclizing 1,6-heptadiene having 7 carbon atoms as a raw material, methylcyclohexene is produced.

If squalene, a polyene having 30 carbon atoms, is cyclized as a raw material, a 5-membered triterpene is produced.

高温高圧水は、常温常圧の有機溶媒に相当する低い誘電率を示すが、本発明者らは、温度350 ℃以上、圧力17 MPa以上の高温高圧水環境でポリエン類の環化が進行することを見出した。
本発明で高温高圧水中、無触媒において、1,6-へプタジエンからメチルシクロヘキセンの生成を確認できたことにより、高温高圧水中で1,6-へプタジエンが自発的に環化されることが明らかになった。このことは、原料の炭素数を増加させることにより、各種単環式及び多環式化合物、例えば5員環トリテルペン合成が可能であることを示唆している。
Although high-temperature and high-pressure water has a low dielectric constant corresponding to an organic solvent at normal temperature and normal pressure, the present inventors proceed with cyclization of polyenes in a high-temperature and high-pressure water environment at a temperature of 350 ° C. or higher and a pressure of 17 MPa or higher. I found out.
According to the present invention, the formation of methylcyclohexene from 1,6-heptadiene can be confirmed spontaneously cyclized in high-temperature and high-pressure water by confirming the formation of methylcyclohexene from 1,6-heptadiene without any catalyst in high-temperature and high-pressure water. Became. This suggests that various monocyclic and polycyclic compounds such as a 5-membered triterpene can be synthesized by increasing the number of carbon atoms in the raw material.

以下には、1,6-へプタジエンからメチルシクロヘキセンを生成する反応について本発明を具体的に説明するが、本発明はそれに限定されるものではない。   Hereinafter, the present invention will be specifically described with respect to a reaction for producing methylcyclohexene from 1,6-heptadiene, but the present invention is not limited thereto.

<反応手順>
実験に用いた回分式反応管は、SUS316製、内容積10 cm3、最高使用条件は、温度537 ℃、圧力35 MPaである。
反応管に超純水約3〜6 gと1,6−へプタジエン約0.2〜2 gを仕込み、密閉した後、所定温度に設定した金属溶融塩浴に投入することで反応を開始させた。温度は350〜400 ℃、圧力は17〜35 MPa、反応時間は30〜120分(昇温時間約1分を含む)に設定した。
所定時間経過後、金属溶融塩浴から反応管を引き上げ、冷水浴で急冷し、反応を停止させた。有機相と水相に液液分離した回収液に塩を添加することで、塩析効果により水相中の有機化合物を有機相中に移動させた。その後有機相のみを採取して、生成物について下記分析手段により分析した。
<Reaction procedure>
The batch-type reaction tube used in the experiment was made of SUS316, the internal volume was 10 cm3, and the maximum operating conditions were a temperature of 537 ° C and a pressure of 35 MPa.
About 3 to 6 g of ultrapure water and about 0.2 to 2 g of 1,6-heptadiene were charged in a reaction tube, sealed, and then charged into a metal molten salt bath set to a predetermined temperature to initiate the reaction. The temperature was set to 350 to 400 ° C., the pressure was set to 17 to 35 MPa, and the reaction time was set to 30 to 120 minutes (including a heating time of about 1 minute).
After a predetermined time, the reaction tube was pulled up from the metal molten salt bath and quenched in a cold water bath to stop the reaction. By adding a salt to the recovered liquid obtained by liquid-liquid separation into an organic phase and an aqueous phase, the organic compound in the aqueous phase was moved into the organic phase due to the salting out effect. Thereafter, only the organic phase was collected, and the product was analyzed by the following analysis means.

<分析手段>
(1)ガスクロマトグラフィー(GC)
島津製作所製ガスクロマトグラフGC-2010、水素炎イオン検出器(FID)により生成物の定性、定量分析を行なった。GC分析において、注入量は、島津製作所製オートインジェクターAOC-20iを使用し、0.5 μLの一定量に制御した。気化室と検出器の温度はそれぞれ230 ℃、250 ℃に設定した。カラム恒温槽内は35〜80 ℃の温度範囲で1.0 ℃/minの速度で昇温させた。また、線速度を10 cm/sec、スプリット比を200:1として分析を行なった。カラムにはAgilent Technologies社製HP-1を用いた。
(2)GC/MS
日本電子製GC(HP-6890)/MS(JMS-600H)により生成物の定性を行った。注入量は0.5〜2.0μL、気化室の温度を200 ℃に設定し、カラム恒温槽内は35〜60 ℃の温度範囲で2.0 ℃/min、60〜200℃の温度範囲で15 ℃/minの速度で昇温させた。また、線速度を20 cm/sec、スプリット比を100:1として分析を行った。カラムにはAgilent Technologies社製HP-FFAPを使用した。
<Analytical means>
(1) Gas chromatography (GC)
Qualitative and quantitative analysis of the product was performed using a Shimadzu gas chromatograph GC-2010 and a flame ion detector (FID). In the GC analysis, the injection volume was controlled to a fixed amount of 0.5 μL using an auto injector AOC-20i manufactured by Shimadzu Corporation. The vaporization chamber and detector temperatures were set to 230 ° C and 250 ° C, respectively. The temperature in the column thermostat was raised at a rate of 1.0 ° C./min in the temperature range of 35 to 80 ° C. The analysis was performed with a linear velocity of 10 cm / sec and a split ratio of 200: 1. HP-1 manufactured by Agilent Technologies was used for the column.
(2) GC / MS
The product was qualified by JEOL GC (HP-6890) / MS (JMS-600H). The injection volume is 0.5 to 2.0 μL, the temperature of the vaporization chamber is set to 200 ° C, and the inside of the column thermostat is 2.0 ° C / min in the temperature range of 35 to 60 ° C, 15 ° C / min in the temperature range of 60 to 200 ° C The temperature was raised at a rate. The analysis was performed at a linear velocity of 20 cm / sec and a split ratio of 100: 1. HP-FFAP made by Agilent Technologies was used for the column.

反応管に超純水4.2654 g、1,6-へプタジエン0.4750 g仕込み、温度400 ℃で90分反応させた。なお本条件は純水換算で圧力32 MPaに相当する。
反応生成物をGC分析した結果を図1に示す。この結果からメチルシクロヘキセンの生成を確認できた。
A reaction tube was charged with 4.2654 g of ultrapure water and 0.4750 g of 1,6-heptadiene, and reacted at a temperature of 400 ° C. for 90 minutes. This condition corresponds to a pressure of 32 MPa in terms of pure water.
The result of GC analysis of the reaction product is shown in FIG. This result confirmed the formation of methylcyclohexene.

目的物、すなわち、メチルシクロヘキセンの確認を精確にするためにGC/MS分析を行なった。GC/MS分析に用いたサンプルは、400 ℃、35 MPa、60分の反応によって得られた反応生成物である。
図2は、標準物質としての純物質3-メチルシクロヘキセン及び4-メチルシクロへキセンについてのGC/MS結果である。図2−aは、3-メチルシクロヘキセン及び4-メチルシクロへキセン混合物のTIC(トータルイオンクロマトグラフ)、図2−bは、保持時間5.63 minの3-メチルシクロヘキセンピークのMSスペクトル、図2−cは、保持時間5.77 minの4-メチルシクロヘキセンピークのMSスペクトルである。
図3は、反応生成物についてのGC/MS結果である。図3−aは、反応生成物(混合物)のTIC 、図3−bは、保持時間5.77 minのピークのMSスペクトル、図3−cは、保持時間5.75 minのピークのMSスペクトル、図3−dは、保持時間5.83 minのピークのMSスペクトルである。
図2の純物質のフラグメントと比較して保持時間5.7 min(図3−bと図3−c)のピークが3-メチルシクロヘキセン、保持時間5.8 min(図3−d)のピークが4-メチルシクロヘキセンであることが確認された。
GC / MS analysis was performed to confirm the identity of the target, ie methylcyclohexene. The sample used for GC / MS analysis is a reaction product obtained by a reaction at 400 ° C. and 35 MPa for 60 minutes.
FIG. 2 shows GC / MS results for pure substances 3-methylcyclohexene and 4-methylcyclohexene as standard substances. Fig. 2-a is a TIC (total ion chromatograph) of a mixture of 3-methylcyclohexene and 4-methylcyclohexene, Fig. 2-b is an MS spectrum of a 3-methylcyclohexene peak with a retention time of 5.63 min, Fig. 2-c Is the MS spectrum of the 4-methylcyclohexene peak with a retention time of 5.77 min.
FIG. 3 is a GC / MS result for the reaction product. Fig. 3-a shows the TIC of the reaction product (mixture), Fig. 3-b shows the MS spectrum of the peak with a retention time of 5.77 min, Fig. 3-c shows the MS spectrum of the peak with a retention time of 5.75 min, d is the MS spectrum of the peak with a retention time of 5.83 min.
Compared with the pure substance fragment of FIG. 2, the peak of retention time 5.7 min (FIGS. 3-b and 3-c) is 3-methylcyclohexene, and the peak of retention time 5.8 min (FIG. 3-d) is 4-methyl. It was confirmed to be cyclohexene.

1,6-へプタジエンからメチルシクロヘキセンを生成する反応に関して、最適条件を検討するために、温度と圧力、反応時間を変化させてメチルシクロヘキセンの生成を確認した。結果を表1に示す。
表1において、×は、GC分析を行なったが目的生成物が確認できなかったもの、○と●はGC分析を行なった結果、目的生成物が確認されたもので、そのうち●について収率を算出した(収率の結果は実施例4で示す)。
この結果から、温度350 ℃以上、圧力17 MPa以上、反応時間60分以上の高温高圧水中での反応により環化が進行することが分かった。
In order to investigate the optimum conditions for the reaction for producing methylcyclohexene from 1,6-heptadiene, the production of methylcyclohexene was confirmed by changing the temperature, pressure and reaction time. The results are shown in Table 1.
In Table 1, × indicates that the target product was not confirmed after GC analysis, and ○ and ● indicate that the target product was confirmed as a result of GC analysis. (Yield results are shown in Example 4).
From this result, it was found that cyclization proceeds by reaction in high-temperature high-pressure water at a temperature of 350 ° C. or higher, a pressure of 17 MPa or higher, and a reaction time of 60 minutes or longer.

実施例3において、目的生成物が確認されたものについて、収率を算出した。結果を表2に示す。表3には、原料の転化率も示した。   In Example 3, the yield was calculated for those in which the target product was confirmed. The results are shown in Table 2. Table 3 also shows the conversion rate of the raw materials.

以上のとおり、本発明によって、高温高圧水中、触媒無添加において、1,6-へプタジエンの環化反応が進行することを見出した。この環化反応は、トリテルペンのような多環式化合物を合成する上で基本となる反応であるので、各種単環式及び多環式化合物へ応用しうる可能性がある。   As described above, the present invention has found that the cyclization reaction of 1,6-heptadiene proceeds in high-temperature and high-pressure water without addition of a catalyst. Since this cyclization reaction is a basic reaction for synthesizing a polycyclic compound such as triterpene, it may be applicable to various monocyclic and polycyclic compounds.

実施例1の生成物のガスクロマトグラフィー。Gas chromatography of the product of Example 1. 標準物質のGC/MS。GC / MS of reference material. 実施例2の生成物のGC/MS。GC / MS of the product of Example 2.

Claims (1)

温度350℃以上、圧力17MPa以上、触媒無添加において1,6−ヘプタジエンを環化してメチルシクロヘキセンを製造する方法。   A process for producing methylcyclohexene by cyclizing 1,6-heptadiene at a temperature of 350 ° C. or higher and a pressure of 17 MPa or higher without adding a catalyst.
JP2006356085A 2006-12-28 2006-12-28 Cyclization reaction of polyenes Expired - Fee Related JP5186696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356085A JP5186696B2 (en) 2006-12-28 2006-12-28 Cyclization reaction of polyenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356085A JP5186696B2 (en) 2006-12-28 2006-12-28 Cyclization reaction of polyenes

Publications (2)

Publication Number Publication Date
JP2008162973A JP2008162973A (en) 2008-07-17
JP5186696B2 true JP5186696B2 (en) 2013-04-17

Family

ID=39692927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356085A Expired - Fee Related JP5186696B2 (en) 2006-12-28 2006-12-28 Cyclization reaction of polyenes

Country Status (1)

Country Link
JP (1) JP5186696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344293B2 (en) * 2009-03-06 2013-11-20 学校法人日本大学 Method for producing 1,3,5-tribenzoylbenzene
US20220204423A1 (en) * 2020-08-12 2022-06-30 Cardolite Corporation Cashew nut shell liquid based substituted cyclohexene derivatives and uses thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099317B2 (en) * 1991-12-29 2000-10-16 株式会社クラレ Method for producing (±) -nor umbrenolide
JP3174849B2 (en) * 1998-10-30 2001-06-11 経済産業省産業技術総合研究所長 Non-catalytic organic synthesis reaction method
JP2002322145A (en) * 2001-02-26 2002-11-08 Sumitomo Chem Co Ltd Method for producing cyclic terpenoid derivative
WO2003011802A1 (en) * 2001-07-09 2003-02-13 Symrise Gmbh & Co. Kg Iso-$g(b)-bisabolol as fragrance and aroma substance
JP4530992B2 (en) * 2003-06-06 2010-08-25 志朗 坂 Method for producing fatty acid ester composition
JP2005281270A (en) * 2004-03-31 2005-10-13 National Institute Of Advanced Industrial & Technology Isomerization of allyl alcohol and apparatus for the same

Also Published As

Publication number Publication date
JP2008162973A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
Chen et al. Cyclobutenones and benzocyclobutenones: versatile synthons in organic synthesis
Zhang et al. Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone
Evans et al. Complementarity of (4+ 2) cycloaddition reactions and [2, 3] sigmatropic rearrangements in synthesis. New synthesis of functionalized hasubanan derivatives
Kalinski et al. Multicomponent reactions as a powerful tool for generic drug synthesis
Chadwick et al. Scalable synthesis of strained cyclooctyne derivatives
Lin et al. Visible light photocatalysis of intramolecular radical cation Diels–Alder cycloadditions
Kawamura et al. Rhodium (I)‐Catalyzed Intramolecular Carbonylative [2+ 2+ 1] Cycloadditions and Cycloisomerizations of Bis (sulfonylallene) s
Bennett et al. Synthesis of enantioenriched γ-quaternary cycloheptenones using a combined allylic alkylation/Stork–Danheiser approach: preparation of mono-, bi-, and tricyclic systems
Hamlin et al. Studies on C20-diterpenoid alkaloids: Synthesis of the hetidine framework and its application to the synthesis of dihydronavirine and the atisine skeleton
Ren et al. Ring Expansion fluorination of unactivated Cyclopropanes mediated by a new monofluoroiodane (III) reagent
Gholap et al. Regioselective Alkylative Carboxylation of Allenamides with Carbon Dioxide and Dialkylzinc Reagents Catalyzed by an N‐Heterocyclic Carbene–Copper Complex
Zhang et al. A Two‐Step Sequence to Ethyl α‐Fluorocyclopropanecarboxylates Through MIRC Reaction of Ethyl Dichloroacetate and Highly Regioselective Fluorination
JP5186696B2 (en) Cyclization reaction of polyenes
Guo et al. Expedient Construction of the [5‐6‐7] Tricyclic Core of Calyciphylline A‐Type Alkaloids
Luche A few questions on the sonochemistry of solutions
Cimarelli et al. An efficient Lewis acid catalyzed Povarov reaction for the one-pot stereocontrolled synthesis of polyfunctionalized tetrahydroquinolines
Wu et al. Combining engineering and chemistry for the selective continuous production of four different oxygenated compounds by photo-oxidation of cyclopentadiene using liquid and supercritical CO2 as solvents
Williams et al. Azomethine Ylide Cycloaddition Approach toward Dendrobine: Synthesis of 5-Deoxymubironine C
Aynetdinova et al. Alcohols as Efficient Intermolecular Initiators for a Highly Stereoselective Polyene Cyclisation Cascade
Lautens New methods for the control of multiple stereocenters
Hoshino et al. Lanosterol Biosynthesis: The Critical Role of the Methyl‐29 Group of 2, 3‐Oxidosqualene for the Correct Folding of this Substrate and for the Construction of the Five‐Membered D Ring
Batsomboon et al. Tandem nucleophilic addition/fragmentation of vinylogous acyl nonaflates for the synthesis of functionalized alkynes, with new mechanistic insight
Bringmann, Gerhard* & Schupp Stereocontrolled'twisting'of biaryl systems–a new pathway to axial chirality
Aldous et al. The dihydrofuran template approach to furofuran synthesis
Primerano et al. Sustainable improvement of the tetrabromoethylcyclohexane synthesis using Amino ILs as Catalysts in Water. A facile and environmentally‐friendly procedure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees