JP5184904B2 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
JP5184904B2
JP5184904B2 JP2008019784A JP2008019784A JP5184904B2 JP 5184904 B2 JP5184904 B2 JP 5184904B2 JP 2008019784 A JP2008019784 A JP 2008019784A JP 2008019784 A JP2008019784 A JP 2008019784A JP 5184904 B2 JP5184904 B2 JP 5184904B2
Authority
JP
Japan
Prior art keywords
film forming
magnetic field
film
pair
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008019784A
Other languages
Japanese (ja)
Other versions
JP2009182150A (en
Inventor
修司 大園
靖 西方
伸 浅利
正志 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008019784A priority Critical patent/JP5184904B2/en
Publication of JP2009182150A publication Critical patent/JP2009182150A/en
Application granted granted Critical
Publication of JP5184904B2 publication Critical patent/JP5184904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、成膜装置及び成膜方法に関する。   The present invention relates to a film forming apparatus and a film forming method.

大型FPD(Flat Panel Display )の製造技術には、原料ガスの化学反応を利用する
化学的気相成長法(CVD法:Chemical Vapor Deposition )が用いられている。CVD法としては、高温に加熱した基板表面上で化学反応を進行させる熱CVD法や、プラズマ化した雰囲気で化学反応を進行させるプラズマCVD法等が知られている。熱CVD法やプラズマCVD法では、基板を高温に加熱したり、基板をプラズマ空間に曝したりすることから、基板や下地膜に電気的、熱的損傷を与え易い問題がある。また、これらのCVD法では、膜厚の均一性を得るために、プラズマ密度や基板温度に高い均一性が要求されることから、基板の大型化に対応し難い問題がある。そこで、CVD法では、従来から、上記問題を解決するため、加熱したタングステン等の触媒線に原料ガスを接触させることにより原料ガスを成膜種に分解する、いわゆる、触媒CVD法が注目されている。
A chemical vapor deposition method (CVD: Chemical Vapor Deposition) using a chemical reaction of a raw material gas is used for a manufacturing technique of a large FPD (Flat Panel Display). Known CVD methods include a thermal CVD method in which a chemical reaction proceeds on a substrate surface heated to a high temperature, a plasma CVD method in which a chemical reaction proceeds in a plasma atmosphere. In the thermal CVD method or the plasma CVD method, the substrate is heated to a high temperature or the substrate is exposed to the plasma space, so that there is a problem that the substrate and the base film are easily damaged electrically and thermally. In addition, these CVD methods require high uniformity in plasma density and substrate temperature in order to obtain film thickness uniformity, and thus have a problem that it is difficult to cope with an increase in the size of the substrate. Therefore, in the CVD method, so-called catalytic CVD method, in which the source gas is decomposed into film-forming species by bringing the source gas into contact with a heated catalyst wire such as tungsten in order to solve the above problem, has been attracting attention. Yes.

触媒CVD法は、触媒線の表面が化学反応の進行を担い、基板へのプラズマ照射や基板の高温加熱を必要としないことから、基板や下地膜における電気的、熱的損傷を大幅に抑制できる。また、触媒CVD法は、触媒線を増量するだけで反応系を拡張できることから、基板の大型化に対しても比較的容易に対応できる。   In the catalytic CVD method, the surface of the catalyst wire is responsible for the progress of the chemical reaction and does not require plasma irradiation or high-temperature heating of the substrate, so that electrical and thermal damage to the substrate and the underlying film can be greatly suppressed. . Further, since the catalytic CVD method can expand the reaction system simply by increasing the number of catalyst wires, it can cope with the enlargement of the substrate relatively easily.

一方、触媒CVD法では、触媒線と基板成膜面との間の距離が短くなると、基板に到達する成膜種の量が増大し、反対に、触媒線と基板成膜面との間の距離が長くなると、基板に到達する成膜種の量が減少する。そのため、触媒線と基板成膜面との間の距離が基板成膜面の面内で大きく異なる場合には、膜厚均一性が大幅に損なわれてしまう。   On the other hand, in the catalytic CVD method, when the distance between the catalyst wire and the substrate film formation surface becomes short, the amount of film formation species reaching the substrate increases, and conversely, between the catalyst wire and the substrate film formation surface. As the distance increases, the amount of film formation species that reaches the substrate decreases. Therefore, when the distance between the catalyst wire and the substrate film formation surface is greatly different within the surface of the substrate film formation surface, the film thickness uniformity is greatly impaired.

特許文献1は、膜厚均一性の向上を図るため、鉛直方向に沿って基板を立設すると共に、鉛直方向下側に延びるU字状に形成された複数の触媒線を、それぞれ基板の成膜面に沿って吊下げる。これによれば、複数の触媒線の各々が自重によって撓む場合であっても、各触媒線が鉛直方向に沿って変形し易くなるため、触媒線と基板成膜面との間の距離の変動が軽減される。そのため、基板成膜面と触媒線との間の距離が均一になる分だけ、薄膜の膜厚が、基板成膜面の面内において、より均一になる。
特許2000‐303182号公報
In Patent Document 1, in order to improve the film thickness uniformity, a substrate is erected along the vertical direction, and a plurality of U-shaped catalyst wires extending downward in the vertical direction are respectively formed on the substrate. Suspend along the membrane surface. According to this, even when each of the plurality of catalyst wires is bent by its own weight, each catalyst wire is easily deformed along the vertical direction. Variation is reduced. For this reason, the film thickness of the thin film becomes more uniform in the plane of the substrate film-forming surface as the distance between the substrate film-forming surface and the catalyst wire becomes uniform.
Japanese Patent No. 2000-303182

図11は、触媒CVD法に利用される触媒CVD装置50の内部を示す図であって、上記のように、U字状に形成された複数の触媒線51の各々が、基板Sの成膜面Saに沿って吊下げられた状態を示す。図12及び図13は、それぞれ図11のA‐A断面図であって、図12は触媒線51に電流を供給しない状態を示し、図13は触媒線51に電流を供給した状態を示す。   FIG. 11 is a diagram showing the inside of the catalytic CVD apparatus 50 used for the catalytic CVD method. As described above, each of the plurality of catalyst lines 51 formed in a U-shape is formed on the substrate S. The state suspended along the surface Sa is shown. FIGS. 12 and 13 are cross-sectional views taken along the line AA of FIG. 11, respectively. FIG. 12 shows a state where no current is supplied to the catalyst wire 51, and FIG. 13 shows a state where current is supplied to the catalyst wire 51.

図11において、各触媒線51は、それぞれ鉛直方向下側へ延びる左右一対の平行な吊下げ部分52と、左右一対の吊下げ部分52の下端を結ぶ曲線状の連結部分53とに区分される。複数の触媒線51の各々は、成膜面Saの全体を覆うように、左右方向に沿って配列されている。図12において、各吊下げ部分52は、成膜面Saに沿って左右方向に略等間隔に吊下げられ、吊下げ部分52と成膜面Saとの間の距離Dを略等しくする位置(以下単に、初期位置と言う。)に配置されている。   In FIG. 11, each catalyst line 51 is divided into a pair of left and right parallel hanging portions 52 extending downward in the vertical direction and a curved connection portion 53 connecting the lower ends of the pair of left and right hanging portions 52. . Each of the plurality of catalyst wires 51 is arranged along the left-right direction so as to cover the entire film formation surface Sa. In FIG. 12, the suspended portions 52 are suspended at substantially equal intervals in the left-right direction along the film formation surface Sa, and the positions where the distances D between the suspension portions 52 and the film formation surface Sa are substantially equal ( Hereinafter, it is simply referred to as an initial position).

各触媒線51を所定温度に加熱するとき、各触媒線51には、それぞれ所定の電流Iが供給される。U字状の触媒線51に電流Iが供給されるとき、入力側の吊下げ部分52には、電流Iが鉛直方向下側へ流れ、出力側の吊下げ部分52には、電流Iが鉛直方向上側へ流れる。すなわち、左右一対の吊下げ部分52には、それぞれ相殺する方向へ電流Iが流れる。   When each catalyst line 51 is heated to a predetermined temperature, a predetermined current I is supplied to each catalyst line 51. When the current I is supplied to the U-shaped catalyst wire 51, the current I flows vertically downward in the input-side hanging part 52, and the current I flows vertically in the output-side hanging part 52. Flows upward in the direction. That is, the current I flows through the pair of left and right hanging portions 52 in directions that cancel each other.

図13において、各吊下げ部分52にそれぞれ電流Iが流れると、各吊下げ部分52の周囲には、それぞれ吊下げ部分52を囲む閉曲線に沿って、該吊下げ部分52に流れる電流Iの方向に応じた磁場が形成される。1つの吊下げ部分52を流れる荷電粒子は、該吊下げ部分52を流れる電流により生じる磁場と、他の吊下げ部分52に流れる電流により生じる磁場と、触媒CVD装置50の外部からの磁場との正味の磁場によって力を受ける。この結果、各吊下げ部分52は、それぞれ周囲の磁場の強度分布に応じて、その初期位置から大幅に変位してしまう。   In FIG. 13, when current I flows through each suspended portion 52, the direction of current I that flows through the suspended portion 52 around each suspended portion 52 is along a closed curve surrounding each suspended portion 52. A magnetic field corresponding to is formed. The charged particles flowing through one suspended portion 52 are divided into a magnetic field generated by a current flowing through the suspended portion 52, a magnetic field generated by a current flowing through the other suspended portion 52, and a magnetic field from the outside of the catalytic CVD apparatus 50. It receives power from the net magnetic field. As a result, each suspended portion 52 is greatly displaced from its initial position according to the intensity distribution of the surrounding magnetic field.

例えば、図13において、地磁気のベクトルが左から右に向かう場合、1つの触媒線15に電流Iが供給されると、各触媒線51における左側の吊下げ部分52は上側への力を受け、右側の吊下げ部分52は下側への力を受ける。この結果、各触媒線51は、それぞれ電流Iを受けることによって、初期位置から右回りに回転し、一対の吊下げ部分52と成膜面Saとの間の距離Dにバラツキを発生させてしまう。ひいては、薄膜の膜厚均一性を大きく損なってしまう。   For example, in FIG. 13, when the geomagnetic vector is directed from left to right, when the current I is supplied to one catalyst line 15, the left suspended portion 52 of each catalyst line 51 receives an upward force, The right suspension part 52 receives a downward force. As a result, each of the catalyst wires 51 receives the current I and rotates clockwise from the initial position, thereby causing a variation in the distance D between the pair of suspended portions 52 and the film formation surface Sa. . As a result, the film thickness uniformity of the thin film is greatly impaired.

本発明は、上記問題を解決するためになされたものであって、電流供給時における触媒線の変位を回避させた成膜装置及び成膜方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a film forming apparatus and a film forming method capable of avoiding displacement of a catalyst wire during current supply.

請求項1に記載の成膜装置は、基板の成膜面を立てて前記基板を保持する保持部と、前記成膜面と対向するように吊下げられる触媒線と、前記触媒線を加熱するために前記触媒線へ電流を供給する電源とを備え、加熱される前記触媒線へ原料ガスを供給することにより成膜種を生成し、前記成膜種を前記成膜面に堆積させることによって前記成膜面に薄膜を成膜する成膜装置であって、前記触媒線を流れる荷電粒子に作用して前記触媒線を前記成膜面に沿って引っ張る磁場を形成る磁場印加部を備えることを要旨とする。 The film forming apparatus according to claim 1, wherein the film forming surface of the substrate is raised to hold the substrate, the catalyst wire suspended to face the film forming surface, and the catalyst wire is heated. A power source for supplying a current to the catalyst line, and supplying a source gas to the catalyst line to be heated to generate a film-forming species and depositing the film-forming species on the film-forming surface wherein a film formation apparatus for forming a thin film on the film formation surface, the magnetic field applying unit that form a magnetic field that pulling along the deposition surface of the catalytic wire act on charged particles flowing through the catalytic wire The gist is to provide.

請求項1に記載の成膜装置によれば、磁場印加部によって形成される磁場が、触媒線を成膜面に沿って拘束する。そのため、触媒線に電流が供給されるとき、触媒線は、所定位置に非接触的に保持される。したがって、この成膜装置は、触媒線の変位を回避でき、ひいては、触媒線と成膜面との間の距離を維持することができる。   According to the film forming apparatus of the first aspect, the magnetic field formed by the magnetic field application unit restrains the catalyst wire along the film forming surface. Therefore, when current is supplied to the catalyst wire, the catalyst wire is held in a non-contact manner at a predetermined position. Therefore, this film forming apparatus can avoid displacement of the catalyst wire, and by extension, can maintain the distance between the catalyst wire and the film forming surface.

請求項2に記載の成膜装置は、請求項1に記載の成膜装置であって、前記保持部は、一対の基板の成膜面をそれぞれ対向させて前記一対の基板を保持し、前記触媒線は、前記一対の基板間の間隙に吊下げられる一対の吊下げ部分と、前記一対の吊下げ部分の下端を前記間隙の外側で結ぶ連結部分とからなり、前記磁場印加部は、前記間隙の外側に配置され、前記連結部分に流れる荷電粒子に作用することにより前記連結部分を前記成膜面に沿って引っ張る磁場を形成することを要旨とする。 The film forming apparatus according to claim 2 is the film forming apparatus according to claim 1, wherein the holding unit holds the pair of substrates with the film formation surfaces of the pair of substrates facing each other, and The catalyst wire includes a pair of suspended portions suspended in the gap between the pair of substrates, and a connecting portion that connects the lower ends of the pair of suspended portions outside the gap, and the magnetic field application unit includes: is located outside of the gap, and summarized in that a magnetic field that pulling along the connecting portion to the film formation face by acting on the charged particles flowing in the connecting portion.

請求項2に記載の成膜装置によれば、触媒線の連結部分と磁場印加部とが、一対の基板間の間隙の外側に配置され、磁場印加部によって形成される磁場が、連結部分を流れる荷電粒子に作用する。そのため、触媒線の連結部分は、触媒線の電流供給時に、一対の基板間の外側で拘束される。したがって、この成膜装置は、吊下げ部分への磁場の作用を抑え
ながら触媒線を拘束できることから、成膜種の生成反応に影響を及ぼすことなく、触媒線の変位を回避できる。
According to the film forming apparatus of claim 2, the connecting portion of the catalyst wire and the magnetic field applying unit are arranged outside the gap between the pair of substrates, and the magnetic field formed by the magnetic field applying unit Acts on flowing charged particles. Therefore, the connecting portion of the catalyst wire is restrained outside the pair of substrates when the current of the catalyst wire is supplied. Therefore, this film forming apparatus can restrain the catalyst wire while suppressing the action of the magnetic field on the suspended portion, and therefore can avoid displacement of the catalyst wire without affecting the formation reaction of the film forming species.

請求項3に記載の成膜装置は、請求項1又は2に記載の成膜装置であって、前記触媒線は、鉛直方向に沿う直線状に形成される一対の吊下げ部分と、水平方向に沿う直線状に形成されて前記一対の吊下げ部分の下端を結ぶ連結部分とからなり、前記磁場印加部は、前記連結部分の近傍に設けられて前記水平方向に沿う導電線と、前記磁場を形成するために前記導電線へ電流を供給する電源とを備えることを要旨とする。   The film forming apparatus according to claim 3 is the film forming apparatus according to claim 1 or 2, wherein the catalyst wire includes a pair of suspended portions formed in a straight line shape along a vertical direction, and a horizontal direction. And a connecting portion that connects the lower ends of the pair of hanging portions, and the magnetic field applying unit is provided in the vicinity of the connecting portion, the conductive line along the horizontal direction, and the magnetic field And a power source for supplying a current to the conductive line.

請求項3に記載の成膜装置によれば、連結部分と導電線とが、共通する水平方向に沿って配置され、導電線を流れる電流が連結部分を拘束するための磁場を形成する。そのため、連結部分が形成する磁場と、導電線が形成する磁場とは、水平方向と直交する同一面内に沿って形成される。したがって、この成膜装置は、連結部分を流れる荷電粒子への正味の磁場を、より簡素な構成にできることから、触媒線の変位を確実に回避できる。   According to the film-forming apparatus of Claim 3, a connection part and a conductive wire are arrange | positioned along the common horizontal direction, and the electric current which flows through a conductive line forms the magnetic field for constraining a connection part. For this reason, the magnetic field formed by the connecting portion and the magnetic field formed by the conductive wire are formed along the same plane orthogonal to the horizontal direction. Therefore, since this film forming apparatus can make the net magnetic field to the charged particles flowing through the connecting portion simpler, it is possible to reliably avoid displacement of the catalyst wire.

請求項4に記載の成膜装置は、請求項1又は2に記載の成膜装置であって、前記触媒線は、鉛直方向に沿う直線状に形成される一対の吊下げ部分と、水平方向に沿う直線状に形成されて前記一対の吊下げ部分の下端を結ぶ連結部分とからなり、前記磁場印加部は、前記連結部分の近傍に配置されて前記磁場を形成する磁性体を備えることを要旨とする。   The film forming apparatus according to claim 4 is the film forming apparatus according to claim 1 or 2, wherein the catalyst wire includes a pair of suspended portions formed in a straight line shape along a vertical direction, and a horizontal direction. And a connecting portion that connects the lower ends of the pair of hanging portions, and the magnetic field application unit includes a magnetic body that is disposed in the vicinity of the connecting portion and forms the magnetic field. The gist.

請求項4に記載の成膜装置によれば、磁性体を連結部分の近傍に配置するだけで、連結部分が拘束される。したがって、この成膜装置は、より簡素な構成の下で触媒線の変位を回避できる。   According to the film-forming apparatus of Claim 4, a connection part is restrained only by arrange | positioning a magnetic body in the vicinity of a connection part. Therefore, this film forming apparatus can avoid displacement of the catalyst wire under a simpler configuration.

請求項5に記載の成膜方法は、基板の成膜面を立てて前記基板を保持すると共に、前記成膜面と対向するように吊下げられる触媒線へ電流を供給することにより前記触媒線を加熱し、加熱される前記触媒線へ原料ガスを供給することにより成膜種を生成して前記成膜種を前記成膜面に堆積させることによって前記成膜面に薄膜を成膜する成膜方法であって、前記触媒線を流れる荷電粒子に作用して前記触媒線を前記成膜面に沿って引っ張る磁場を形成ることを要旨とする。 The film formation method according to claim 5, wherein the film formation surface of the substrate is raised to hold the substrate, and current is supplied to the catalyst line suspended so as to face the film formation surface, thereby the catalyst line. Forming a thin film on the film-forming surface by generating a film-forming seed by supplying a source gas to the heated catalyst wire and depositing the film-forming seed on the film-forming surface. a membrane method, and gist that you form a magnetic field that pulling along the deposition surface of the catalytic wire act on charged particles flowing through the catalytic wire.

請求項5に記載の成膜方法によれば、触媒線に対して加えられる磁場が、触媒線を成膜面に沿って拘束する。そのため、触媒線に電流が供給されるとき、触媒線は、成膜面に沿って非接触的に保持される。したがって、この成膜装置は、触媒線と成膜面との間の距離を維持することができ、触媒線の変位を回避できる。   According to the film forming method of the fifth aspect, the magnetic field applied to the catalyst wire restrains the catalyst wire along the film formation surface. Therefore, when current is supplied to the catalyst wire, the catalyst wire is held in a non-contact manner along the film formation surface. Therefore, this film forming apparatus can maintain the distance between the catalyst wire and the film forming surface, and can avoid displacement of the catalyst wire.

上記したように、本発明によれば、電流供給時における触媒線の変位を回避させた成膜装置及び成膜方法を提供することができる。   As described above, according to the present invention, it is possible to provide a film forming apparatus and a film forming method that can avoid displacement of the catalyst wire during current supply.

(第一実施形態)
以下、本発明を具体化した第一実施形態を図面に従って説明する。図1は、成膜装置としての触媒CVD装置10を鉛直方向上側から見た図である。図1において、触媒CVD装置10は、搬入室11と、複数の成膜室12と、搬出室13とを、順にゲートバルブGVを介して連結させたインライン式の成膜装置である。なお、図1では、触媒CVD装置10が2つの成膜室12を有する構成を示す。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view of a catalytic CVD apparatus 10 as a film forming apparatus as viewed from above in the vertical direction. In FIG. 1, a catalytic CVD apparatus 10 is an in-line film forming apparatus in which a carry-in chamber 11, a plurality of film forming chambers 12, and a carry-out chamber 13 are sequentially connected through a gate valve GV. FIG. 1 shows a configuration in which the catalytic CVD apparatus 10 has two film formation chambers 12.

搬入室11は、排気ラインPに連結される真空槽であり、外部からの基板Sを触媒CVD装置10の内部へ搬入する。搬入室11の内部には、基板Sを支持するための一対の搬
入ステージ11Sが配設されている。一対の搬入ステージ11Sは、それぞれ搬入室11に搬入された一対の基板Sを相対向するように保持すると共に、該一対の基板Sを成膜室12へ搬送する。
The carry-in chamber 11 is a vacuum chamber connected to the exhaust line P, and carries the substrate S from the outside into the catalytic CVD apparatus 10. Inside the loading chamber 11, a pair of loading stages 11 </ b> S for supporting the substrate S is disposed. The pair of carry-in stages 11 </ b> S hold the pair of substrates S carried into the carry-in chamber 11 so as to face each other and transfer the pair of substrates S to the film forming chamber 12.

各成膜室12は、それぞれ排気ラインPに連結される真空槽であり、ゲートバルブGVを介して他の真空槽に連結され、ゲートバルブGVが開くときに、他の真空槽と連通する。各成膜室12には、それぞれ図示しないガス供給系が連結され、該ガス供給系からの所定流量の原料ガスが供給される。各成膜室12の内部には、それぞれ基板Sを支持するための一対の成膜ステージ12Sが配設されている。一対の成膜ステージ12Sは、それぞれ他の真空槽からの基板Sを相対向するように保持し、一対の基板Sを所定温度に加熱すると共に、該一対の基板Sを他の真空槽へ搬送する。   Each film forming chamber 12 is a vacuum chamber connected to the exhaust line P, is connected to another vacuum chamber via a gate valve GV, and communicates with the other vacuum chamber when the gate valve GV is opened. Each film forming chamber 12 is connected to a gas supply system (not shown), and a raw material gas having a predetermined flow rate is supplied from the gas supply system. Inside each film forming chamber 12, a pair of film forming stages 12S for supporting the substrate S is provided. The pair of film forming stages 12S hold the substrates S from the other vacuum chambers so as to face each other, heat the pair of substrates S to a predetermined temperature, and transport the pair of substrates S to the other vacuum chambers. To do.

搬出室13は、排気ラインPに連結される真空槽であり、隣接する成膜室12からの基板Sを外部へ搬出する。搬出室13の内部には、基板Sを支持するための一対の搬出ステージ13Sが配設されている。一対の搬出ステージ13Sは、それぞれ搬出室13に搬入される一対の基板Sを水平方向へ倒し、該一対の基板Sを外部へ搬出する。   The carry-out chamber 13 is a vacuum chamber connected to the exhaust line P, and carries the substrate S from the adjacent film formation chamber 12 to the outside. Inside the carry-out chamber 13, a pair of carry-out stages 13S for supporting the substrate S are disposed. The pair of unloading stages 13 </ b> S tilt the pair of substrates S loaded into the unloading chamber 13 in the horizontal direction, and unload the pair of substrates S to the outside.

各成膜室12の内部であって、一対の成膜ステージ12Sの間には、それぞれ鉛直方向下側へ延びる複数の触媒線15が吊下げられている。各触媒線15は、それぞれ基板Sの搬送方向に沿って配列されている。また、各成膜室12の内部には、それぞれ各触媒線15を挟むように、搬送方向に延びる磁場印加部としての一対の拘束線20が張設されている。   A plurality of catalyst wires 15 extending downward in the vertical direction are suspended inside the film forming chambers 12 and between the pair of film forming stages 12S. Each catalyst line 15 is arranged along the transport direction of the substrate S. In addition, a pair of restraining wires 20 as a magnetic field application unit extending in the transport direction are stretched inside each film forming chamber 12 so as to sandwich each catalyst wire 15.

図2は、基板Sの成膜面Saから見た成膜室12の内部を示す断面図であり、図3は、鉛直方向上側から見た成膜室12の内部を示す断面図であり、図2のA‐A断面図である。図4は、基板Sの搬送方向から見た触媒線15と拘束線20とを示す断面図である。   2 is a cross-sectional view showing the inside of the film forming chamber 12 as seen from the film forming surface Sa of the substrate S, and FIG. 3 is a cross-sectional view showing the inside of the film forming chamber 12 as seen from the upper side in the vertical direction. It is AA sectional drawing of FIG. FIG. 4 is a cross-sectional view showing the catalyst wire 15 and the restraining wire 20 as viewed from the transport direction of the substrate S.

図2及び図3において、各触媒線15は、それぞれタンタル、タングステン、モリブデン等からなる導電線であって、鉛直方向下側へ延びるコ字状に形成されている。各触媒線15は、それぞれ左右一対の平行な吊下げ部分16と、左右一対の吊下げ部分16の下端を水平方向に沿って結ぶ直線状の連結部分17とに区分される。各触媒線15は、それぞれ基板Sの成膜面Saの全体を覆うように、左右方向(搬送方向)に沿って配列されている。各触媒線15は、それぞれ吊下げ部分16と一対の基板Sの成膜面Saとの間の距離Dが略等しくなる位置に吊下げられている。   2 and 3, each catalyst wire 15 is a conductive wire made of tantalum, tungsten, molybdenum or the like, and is formed in a U shape extending downward in the vertical direction. Each catalyst line 15 is divided into a pair of left and right parallel suspended portions 16 and a linear connecting portion 17 that connects the lower ends of the pair of left and right suspended portions 16 along the horizontal direction. Each catalyst line 15 is arranged along the left-right direction (transport direction) so as to cover the entire film-forming surface Sa of the substrate S. Each catalyst line 15 is suspended at a position where the distance D between the suspended portion 16 and the film formation surface Sa of the pair of substrates S is substantially equal.

各触媒線15は、それぞれ外部の直流電源に直列接続されている。各触媒線15は、直流電源からの所定の加熱電流I1を受けることにより、所定温度に昇温する。昇温した触媒線15は、原料ガスと接触することにより、原料ガスを活性化させ、基板Sの成膜面Saに成膜種を堆積させる。触媒線51に加熱電流I1が供給されるとき、入力側の吊下げ部分16には、加熱電流I1が鉛直方向下側へ流れ、出力側の吊下げ部分16には、加熱電流I1が鉛直方向上側へ流れる。そして、連結部分17には、加熱電流I1が、図2及び図3における右側から左側へ流れる。なお、本実施形態においては、各触媒線15の位置であって、加熱電流I1が供給されていない状態の位置を、初期位置と言う。   Each catalyst line 15 is connected in series to an external DC power source. Each catalyst line 15 is heated to a predetermined temperature by receiving a predetermined heating current I1 from a DC power source. The heated catalyst wire 15 is brought into contact with the source gas, thereby activating the source gas and depositing a film-forming species on the film-forming surface Sa of the substrate S. When the heating current I1 is supplied to the catalyst wire 51, the heating current I1 flows downward in the vertical direction in the hanging portion 16 on the input side, and the heating current I1 flows in the vertical direction in the hanging portion 16 on the output side. Flows upward. Then, the heating current I1 flows through the connecting portion 17 from the right side to the left side in FIGS. In the present embodiment, the position of each catalyst wire 15 in a state where the heating current I1 is not supplied is referred to as an initial position.

一対の拘束線20は、それぞれ熱的及び機械的耐性を有する導電線であって、水平方向に沿って張設され、かつ、各連結部分17の下側に位置決め固定されている。一対の拘束線20は、それぞれ成膜室12の左右両側に設けられる外部端子18を介して、外部の直流電源に接続されている。直流電源からの拘束電流I2が一対の拘束線20に供給されるとき、一対の拘束線20には、それぞれ拘束電流I2が、図2及び図3における右側から左側へ流れる。すなわち、各拘束線20と各連結部分17とには、同じ方向への電流が流
れる。
The pair of restraining wires 20 are conductive wires having thermal and mechanical resistances, are stretched along the horizontal direction, and are positioned and fixed below the connecting portions 17. The pair of restraining wires 20 are connected to an external DC power source via external terminals 18 provided on both the left and right sides of the film forming chamber 12, respectively. When the restraint current I2 from the DC power supply is supplied to the pair of restraint lines 20, the restraint current I2 flows through the pair of restraint lines 20 from the right side to the left side in FIGS. That is, a current in the same direction flows through each constraint line 20 and each connection portion 17.

図4において、加熱電流I1が触媒線15に供給されるとき、触媒線15における連結部分17の周囲には、連結部分17を囲む閉曲線に沿って、左回りの連結磁場B1が形成される。また、拘束電流I2が一対の拘束線20に供給されるとき、一対の拘束線20の周囲には、それぞれ拘束線20を囲む閉曲線に沿って、左周りの拘束磁場B2が形成される。連結部分17に流れる荷電粒子は、連結磁場B1と各拘束磁場B2との正味の磁場によって、鉛直方向下側への力(以下単に、作用力Fと言う。)を受ける。   In FIG. 4, when the heating current I <b> 1 is supplied to the catalyst wire 15, a counterclockwise connection magnetic field B <b> 1 is formed around the connection portion 17 in the catalyst wire 15 along a closed curve surrounding the connection portion 17. Further, when the restraining current I2 is supplied to the pair of restraining lines 20, a left-handed restraining magnetic field B2 is formed around the pair of restraining lines 20 along a closed curve surrounding the restraining lines 20, respectively. The charged particles flowing in the connecting portion 17 receive a downward force in the vertical direction (hereinafter simply referred to as an acting force F) by the net magnetic field of the connecting magnetic field B1 and each constraining magnetic field B2.

詳述すると、連結部分17を挟んで拘束線20の側(以下単に、内側と言う。)では、拘束磁場B2が連結磁場B1を打ち消すように形成される。また、連結部分17を挟んで拘束線20と反対側(以下単に、外側と言う。)では、拘束磁場B2が連結磁場B1に沿うように形成される。   More specifically, on the side of the constraint line 20 (hereinafter simply referred to as “inside”) across the coupling portion 17, the constraint magnetic field B <b> 2 is formed so as to cancel the coupling magnetic field B <b> 1. Further, on the side opposite to the restraining line 20 (hereinafter simply referred to as the outside) across the connecting portion 17, the restraining magnetic field B2 is formed along the connecting magnetic field B1.

そのため、連結部分17を流れる荷電粒子は、外側における正味の磁場によって相対的に大きな力を受け、内側における正味の磁場によって殆ど力を受けない。この結果、各連結部分17は、それぞれ一方の拘束線20へ向かう力と、他方の拘束線20へ向かう力との正味の力、すなわち、鉛直方向下側への作用力Fを受ける。   Therefore, the charged particles flowing through the connecting portion 17 receive a relatively large force by the net magnetic field on the outside, and hardly receive a force by the net magnetic field on the inside. As a result, each connecting portion 17 receives a net force of a force toward one of the constraint lines 20 and a force toward the other constraint line 20, that is, an acting force F downward in the vertical direction.

この結果、触媒CVD装置10は、各触媒線15に加熱電流I1を供給し、かつ、各拘束線20に拘束電流I2を供給することにより、各連結部分17に対して、非接触的に作用力Fを加えることができる。そのため、触媒CVD装置10は、触媒線15を鉛直方向に沿って非接触的に張設することができ、触媒CVD装置10の外部からの磁場や他の触媒線15からの磁場に関わらず、各触媒線15の初期位置を維持できる。ひいては、触媒CVD装置10は、各吊下げ部分16と成膜面Saとの間の距離Dを均一にすることができ、成膜面Saにおける膜厚分布を均一にできる。   As a result, the catalytic CVD apparatus 10 acts in a non-contact manner on each connecting portion 17 by supplying the heating current I1 to each catalyst wire 15 and supplying the restraining current I2 to each restraining wire 20. Force F can be applied. Therefore, the catalytic CVD apparatus 10 can stretch the catalyst wire 15 in a non-contact manner along the vertical direction, regardless of the magnetic field from the outside of the catalytic CVD apparatus 10 or the magnetic field from the other catalytic wires 15. The initial position of each catalyst line 15 can be maintained. As a result, the catalytic CVD apparatus 10 can make the distance D between each suspended portion 16 and the film formation surface Sa uniform, and can make the film thickness distribution on the film formation surface Sa uniform.

上記第一実施形態によれば、以下の効果を得ることができる。
(1)上記第一実施形態において、触媒CVD装置10は、触媒線15を流れる荷電粒子に作用して触媒線15を成膜面に沿って拘束する拘束磁場B2を形成する拘束線20を備え、拘束線20が、触媒線15に拘束磁場B2を加える。したがって、触媒線15に加熱電流I1が供給されるとき、触媒線15は、初期位置に非接触的に保持される。この結果、触媒CVD装置10は、触媒線15の変位を回避でき、ひいては、触媒線15と成膜面Saとの間の距離Dを維持することができる。
According to the first embodiment, the following effects can be obtained.
(1) In the first embodiment, the catalytic CVD apparatus 10 includes a constraining line 20 that forms a constraining magnetic field B2 that acts on charged particles flowing through the catalyst line 15 to constrain the catalyst line 15 along the film formation surface. The constraining line 20 applies a constraining magnetic field B2 to the catalyst line 15. Therefore, when the heating current I1 is supplied to the catalyst wire 15, the catalyst wire 15 is held in the initial position in a non-contact manner. As a result, the catalytic CVD apparatus 10 can avoid the displacement of the catalyst wire 15 and can maintain the distance D between the catalyst wire 15 and the film formation surface Sa.

(2)上記第一実施形態において、成膜ステージ12Sは、一対の基板Sの成膜面Saをそれぞれ対向させて一対の基板Sを保持し、触媒線15は、一対の基板Sの間の間隙に吊下げられる一対の吊下げ部分16と、一対の吊下げ部分16の下端を基板S間の間隙の外側で結ぶ連結部分17とからなる。そして、拘束線20は、基板S間の間隙の下側に配置され、連結部分17に流れる荷電粒子に作用することにより連結部分17を下側へ引っ張るための拘束磁場B2を形成する。   (2) In the first embodiment, the film formation stage 12S holds the pair of substrates S with the film formation surfaces Sa of the pair of substrates S facing each other, and the catalyst wire 15 is located between the pair of substrates S. It consists of a pair of hanging parts 16 suspended in the gap and a connecting part 17 that connects the lower ends of the pair of hanging parts 16 outside the gap between the substrates S. The constraining line 20 is disposed below the gap between the substrates S, and acts on the charged particles flowing through the connecting part 17 to form a constraining magnetic field B2 for pulling the connecting part 17 downward.

したがって、触媒線15の連結部分17は、触媒線15の電流供給時に、一対の基板S間の外側で拘束される。この結果、触媒CVD装置10は、吊下げ部分16への拘束磁場B2の作用を抑えながら触媒線15を拘束できることから、成膜反応に影響を及ぼすことなく、触媒線15の変位を回避できる。   Accordingly, the connecting portion 17 of the catalyst wire 15 is restrained outside the pair of substrates S when the current of the catalyst wire 15 is supplied. As a result, the catalytic CVD apparatus 10 can restrain the catalyst wire 15 while suppressing the action of the restraining magnetic field B2 on the suspended portion 16, and therefore can avoid displacement of the catalyst wire 15 without affecting the film formation reaction.

(3)上記第一実施形態において、連結部分17と拘束線20とが、共通する水平方向に沿って配置され、拘束線20を流れる拘束電流I2が連結部分17を拘束するための拘束磁場B2を形成する。そのため、連結部分17が形成する連結磁場B1と、拘束線20
が形成する拘束磁場B2とは、水平方向と直交する同一面内に沿って形成される。したがって、触媒CVD装置10は、連結部分17を流れる荷電粒子への正味の磁場を、より簡素な構成にできることから、触媒線15の変位を確実に回避できる。
(3) In the first embodiment, the coupling portion 17 and the constraint line 20 are arranged along the common horizontal direction, and the constraint magnetic field B2 for restraining the coupling portion 17 by the constraint current I2 flowing through the constraint line 20. Form. Therefore, the coupling magnetic field B1 formed by the coupling portion 17 and the constraint line 20
Is formed along the same plane orthogonal to the horizontal direction. Therefore, since the catalytic CVD apparatus 10 can make the net magnetic field to the charged particles flowing through the connecting portion 17 more simple, the displacement of the catalyst wire 15 can be surely avoided.

(第二実施形態)
以下、本発明を具体化した第二実施形態を図面に従って説明する。第二実施形態は、第一実施形態の拘束線20を変更したものである。そのため、以下においては、その変更点について詳しく説明する。図5は、基板Sの成膜面Saから見た成膜室12の内部を示す断面図であり、図6は、図5のA‐A断面図である。図7は、基板Sの搬送方向から見た触媒線15と磁性部材30とを示す断面図である。
(Second embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In the second embodiment, the constraint line 20 of the first embodiment is changed. Therefore, in the following, the changes will be described in detail. FIG. 5 is a cross-sectional view showing the inside of the film forming chamber 12 as viewed from the film forming surface Sa of the substrate S, and FIG. 6 is a cross-sectional view taken along the line AA of FIG. FIG. 7 is a cross-sectional view showing the catalyst wire 15 and the magnetic member 30 as viewed from the transport direction of the substrate S.

図5及び図6において、成膜室12の内部であって、各連結部分17の下方には、磁場印加部としての複数の磁性部材30が配設されている。各磁性部材30は、それぞれ鉛直方向から見て、各連結部分17の両側を挟むように配置され、図示しない取り付け部材によって成膜室12に位置決めされている。   5 and 6, a plurality of magnetic members 30 as magnetic field application units are disposed inside the film forming chamber 12 and below the respective connecting portions 17. Each magnetic member 30 is disposed so as to sandwich both sides of each connecting portion 17 when viewed from the vertical direction, and is positioned in the film forming chamber 12 by an attachment member (not shown).

各磁性部材30は、それぞれ連結部分17と直交する面に沿って拘束磁場B2を形成する磁性体を備えている。磁性部材30としては、例えば、外部からの電流の供給を受けることなく磁場を形成する永久磁石、あるいは、外部からの電流の供給を受けることにより磁場を形成する電磁石を用いることができる。   Each magnetic member 30 includes a magnetic body that forms a constraining magnetic field B <b> 2 along a plane orthogonal to the connecting portion 17. As the magnetic member 30, for example, a permanent magnet that forms a magnetic field without receiving an external current supply, or an electromagnet that forms a magnetic field by receiving an external current supply can be used.

図7において、各磁性部材30は、それぞれ連結部分17の側に、左周りの拘束磁場B2を形成する。連結部分17を挟んで磁性部材30の側(以下単に、内側と言う。)では、拘束磁場B2が連結磁場B1を打ち消すように形成される。また、連結部分17を挟んで磁性部材30の反対側(以下単に、外側と言う。)では、拘束磁場B2が連結磁場B1に沿うように形成される。   In FIG. 7, each magnetic member 30 forms a left-handed constraining magnetic field B <b> 2 on the connection portion 17 side. On the side of the magnetic member 30 (hereinafter simply referred to as “inside”) with the coupling portion 17 interposed therebetween, the restraining magnetic field B2 is formed so as to cancel the coupling magnetic field B1. Further, on the opposite side (hereinafter simply referred to as the outside) of the magnetic member 30 with the coupling portion 17 interposed therebetween, the restraining magnetic field B2 is formed along the coupling magnetic field B1.

そのため、連結部分17を流れる荷電粒子は、外側における正味の磁場によって相対的に大きな力を受け、内側における正味の磁場によって殆ど力を受けない。この結果、各連結部分17は、それぞれ一方の磁性部材30へ向かう力と、他方の磁性部材30へ向かう力との正味の力、すなわち、鉛直方向下側への作用力Fを受ける。   Therefore, the charged particles flowing through the connecting portion 17 receive a relatively large force by the net magnetic field on the outside, and hardly receive a force by the net magnetic field on the inside. As a result, each connecting portion 17 receives a net force of a force toward one magnetic member 30 and a force toward the other magnetic member 30, that is, an acting force F downward in the vertical direction.

この結果、触媒CVD装置10は、各触媒線15に加熱電流I1を供給し、かつ、各磁性部材30に拘束磁場B2を形成させることにより、各連結部分17に対して、鉛直方向下側への作用力Fを非接触的に加えることができる。そのため、触媒CVD装置10は、触媒線15を鉛直方向に沿って非接触的に張設することができる。ひいては、触媒CVD装置10は、各吊下げ部分16と成膜面Saとの間の距離Dを均一にすることができ、成膜面Saにおける膜厚分布を均一にできる。   As a result, the catalytic CVD apparatus 10 supplies the heating current I1 to each catalyst wire 15 and causes the magnetic members 30 to form a constraining magnetic field B2, thereby lowering each connecting portion 17 in the vertical direction. The acting force F can be applied in a non-contact manner. Therefore, the catalytic CVD apparatus 10 can stretch the catalyst wire 15 in a non-contact manner along the vertical direction. As a result, the catalytic CVD apparatus 10 can make the distance D between each suspended portion 16 and the film formation surface Sa uniform, and can make the film thickness distribution on the film formation surface Sa uniform.

上記第二実施形態によれば、以下の効果を得ることができる。
(5)上記第二実施形態において、磁性部材30は、連結部分17の下側近傍に配置されて拘束磁場B2を形成するための磁性体を備える。したがって、触媒CVD装置10は、磁性体を連結部分17の下側近傍に配置するだけで、連結部分17を拘束できる。この結果、触媒CVD装置10は、より簡素な構成の下で触媒線15の変位を回避できる。
According to the second embodiment, the following effects can be obtained.
(5) In said 2nd embodiment, the magnetic member 30 is provided with the magnetic body for arrange | positioning in the lower vicinity of the connection part 17, and forming the restraint magnetic field B2. Therefore, the catalytic CVD apparatus 10 can restrain the connecting portion 17 only by arranging the magnetic material near the lower side of the connecting portion 17. As a result, the catalytic CVD apparatus 10 can avoid displacement of the catalyst wire 15 under a simpler configuration.

尚、上記実施形態は、以下の態様で実施してもよい。
・上記実施形態において、磁場印加部(拘束磁場B2の発生源)は連結部分17の下方に配置される。これに限らず、拘束磁場B2の発生源は連結部分17の上方に配置される構成であっても良い。この際、図8に示すように、連結部分17を挟んで発生源PBの側(以下単に、内側と言う。)では、拘束磁場B2が連結磁場B1に沿うように形成される
。また、連結部分17を挟んで発生源PBと反対側(以下単に、外側と言う。)では、拘束磁場B2が連結磁場B1を打ち消すように形成される。
In addition, you may implement the said embodiment in the following aspects.
In the above embodiment, the magnetic field application unit (the generation source of the constraining magnetic field B <b> 2) is disposed below the connecting portion 17. However, the configuration is not limited to this, and the generation source of the restraining magnetic field B <b> 2 may be arranged above the coupling portion 17. At this time, as shown in FIG. 8, the constraining magnetic field B <b> 2 is formed along the coupling magnetic field B <b> 1 on the side of the generation source PB (hereinafter simply referred to as “inside”) with the coupling portion 17 interposed therebetween. In addition, on the side opposite to the generation source PB across the connecting portion 17 (hereinafter simply referred to as the outside), the restraining magnetic field B2 is formed so as to cancel the connecting magnetic field B1.

これによれば、連結部分17を流れる荷電粒子は、内側における正味の磁場によって、相対的に大きな力を受ける。その結果、連結部分17は、一方の発生源PBから離れる力と、他方の発生源PBから離れる力との正味の力、すなわち、鉛直方向下側への作用力Fを受ける。したがって、上記実施形態と同じく、触媒CVD装置10は、触媒線15を、鉛直方向に沿って非接触的に張設することができ、ひいては、成膜面Saにおける膜厚分布を均一にできる。   According to this, the charged particles flowing through the connecting portion 17 are subjected to a relatively large force by the net magnetic field inside. As a result, the connecting portion 17 receives the net force of the force separating from the one generation source PB and the force separating from the other generation source PB, that is, the acting force F downward in the vertical direction. Therefore, as in the above-described embodiment, the catalytic CVD apparatus 10 can stretch the catalyst wire 15 in a non-contact manner along the vertical direction, and as a result, the film thickness distribution on the film formation surface Sa can be made uniform.

・上記実施形態において、触媒CVD装置10は、1つの連結部分17に対して、一対の磁場印加部を具備する。これに限らず、触媒CVD装置10は、1つの連結部分17に対して、1つあるいは3つ以上の磁場印加部を具備する構成でも良い。   In the above embodiment, the catalytic CVD apparatus 10 includes a pair of magnetic field application units for one connection portion 17. However, the present invention is not limited to this, and the catalytic CVD apparatus 10 may include one or three or more magnetic field application units with respect to one connection portion 17.

例えば、図9に示すように、触媒CVD装置は、連結部分17の直下に、1つの磁場印加部による拘束磁場B2を形成する。そして、連結部分17を挟んで下側では、拘束磁場B2が連結磁場B1を打ち消すように形成される。また、連結部分17を挟んで上側では、拘束磁場B2が連結磁場B1に沿うように形成される。   For example, as shown in FIG. 9, the catalytic CVD apparatus forms a constrained magnetic field B <b> 2 by one magnetic field application unit immediately below the connecting portion 17. And on the lower side across the connecting portion 17, the restraining magnetic field B <b> 2 is formed so as to cancel the connecting magnetic field B <b> 1. In addition, on the upper side across the connecting portion 17, the restraining magnetic field B <b> 2 is formed along the connecting magnetic field B <b> 1.

これによれば、連結部分17が一つの磁場印加部によって鉛直方向下側への作用力Fを受けることから、より簡便な構成の下で、成膜面Saにおける膜厚分布を均一にできる。
・上記実施形態において、連結部分17は鉛直方向下側への作用力Fを受ける。これに限らず、連結部分17は鉛直方向上側への作用力Fを受ける構成であっても良い。すなわち、図10に示すように、拘束磁場B2の発生源PBが連結部分17の上方に配置される。そして、連結部分17を挟んで発生源PBの側(以下単に、内側と言う。)では、拘束磁場B2が連結磁場B1を打ち消すように形成される。また、連結部分17を挟んで発生源PBと反対側(以下単に、外側と言う。)では、拘束磁場B2が連結磁場B1に沿うように形成される構成であっても良い。
According to this, since the connecting portion 17 receives the acting force F downward in the vertical direction by one magnetic field applying unit, the film thickness distribution on the film forming surface Sa can be made uniform under a simpler configuration.
In the above embodiment, the connecting portion 17 receives the acting force F downward in the vertical direction. Not only this but the connection part 17 may be the structure which receives the acting force F to the vertical direction upper side. That is, as shown in FIG. 10, the generation source PB of the restraining magnetic field B <b> 2 is disposed above the connection portion 17. Then, on the side of the generation source PB (hereinafter simply referred to as “inside”) with the coupling portion 17 interposed therebetween, the restraining magnetic field B2 is formed so as to cancel the coupling magnetic field B1. In addition, on the side opposite to the generation source PB (hereinafter simply referred to as the outside) across the coupling portion 17, a configuration in which the restraining magnetic field B2 is formed along the coupling magnetic field B1 may be employed.

これによれば、連結部分17を流れる荷電粒子は、外側における正味の磁場によって相対的に大きな力を受ける。この結果、連結部分17に鉛直方向上側への作用力Fが加えられる分だけ、各吊下げ部分16に対して、基板Sへの移動が抑えられる。その結果、触媒CVD装置10は、各吊下げ部分16と成膜面Saとの間の距離Dを均一にすることができ、成膜面Saにおける膜厚分布を均一にできる。   According to this, the charged particles flowing through the connecting portion 17 are subjected to a relatively large force by the net magnetic field on the outside. As a result, the movement to the board | substrate S is suppressed with respect to each suspension part 16 by the part to which the acting force F to the vertical direction upper side is applied to the connection part 17. FIG. As a result, the catalytic CVD apparatus 10 can make the distance D between each suspended portion 16 and the film formation surface Sa uniform, and can make the film thickness distribution on the film formation surface Sa uniform.

・上記実施形態において、各触媒線15は、一つの直流電源に直列接続される。これに限らず、各触媒線15は、それぞれ一つの直流電源に並列接続されても良い。さらに、各触媒線15は、それぞれ異なる直流電源に接続されても良い。   In the above embodiment, each catalyst line 15 is connected in series to one DC power source. Not limited to this, each catalyst line 15 may be connected in parallel to one DC power source. Furthermore, each catalyst line 15 may be connected to a different DC power source.

・上記実施形態において、連結部分17は、水平方向に沿って延びる直線状を呈する。これに限らず、連結部分17は、成膜面Saに沿って延びる直線状、あるいは、曲線状であっても良い。すなわち、連結部分17は、連結部分17を流れる荷電粒子が拘束磁場B2を受けることにより、連結部分17が成膜面Saに沿う作用力Fを受ける構成であれば良い。   In the above embodiment, the connecting portion 17 has a linear shape extending along the horizontal direction. Not limited to this, the connecting portion 17 may be linear or curved along the film formation surface Sa. That is, the connecting portion 17 may be configured to receive the acting force F along the film formation surface Sa when the charged particles flowing through the connecting portion 17 receive the restraining magnetic field B2.

・上記実施形態において、磁場印加部を構成する拘束線20や磁性部材30は、それぞれ連結部分17に拘束磁場B2を加える。これに限らず、磁場印加部は、吊下げ部分16に拘束磁場B2を加える構成であっても良い。すなわち、磁場印加部は、触媒線15を流れる荷電粒子に作用して触媒線15を成膜面Saに沿って拘束する拘束磁場B2を形成する構成であれば良い。   In the above-described embodiment, the constraining wire 20 and the magnetic member 30 constituting the magnetic field applying unit apply a constraining magnetic field B2 to the connecting portion 17, respectively. However, the configuration is not limited to this, and the magnetic field application unit may be configured to apply the restraining magnetic field B <b> 2 to the suspended portion 16. That is, the magnetic field application unit may be configured to form a constraining magnetic field B2 that acts on charged particles flowing through the catalyst wire 15 to restrain the catalyst wire 15 along the film formation surface Sa.

・上記実施形態において、基板Sの成膜面Saは、鉛直方向に沿って立てられる。これに限らず、基板Sの成膜面Saは、鉛直方向に対して傾斜する方向に立てられる構成であっても良い。   In the above embodiment, the film formation surface Sa of the substrate S is erected along the vertical direction. The configuration is not limited to this, and the film formation surface Sa of the substrate S may be configured to stand in a direction inclined with respect to the vertical direction.

・上記実施形態において、連結部分17は、一対の基板Sの間の間隙の外側に配置されるが、これに限らず、連結部分17は、一対の基板Sの間の間隙に配置される構成であっても良い。   -In above-mentioned embodiment, although the connection part 17 is arrange | positioned outside the gap | interval between a pair of board | substrates S, it is not restricted to this, The connection part 17 is a structure arrange | positioned in the gap | interval between a pair of board | substrates S. It may be.

・上記第二実施形態において、各連結部分17が形成する拘束磁場B2は、それぞれ図7における左回りである。これに限らず、各連結部分17が形成する拘束磁場B2は、それぞれ図7における右回りと左回りのいずれか一方であっても良い。この際、連結部分17が、該連結部分17に対応する磁性部材30に近い側において、拘束磁場B2を相殺するように、連結磁場B1を形成する構成であれば良い。   In the second embodiment, the constraining magnetic field B2 formed by each connecting portion 17 is counterclockwise in FIG. Not limited to this, the constraining magnetic field B2 formed by each connecting portion 17 may be either clockwise or counterclockwise in FIG. At this time, the connecting portion 17 may be configured to form the connecting magnetic field B1 so as to cancel the restraining magnetic field B2 on the side close to the magnetic member 30 corresponding to the connecting portion 17.

触媒CVD装置を模式的に示す図。The figure which shows a catalytic CVD apparatus typically. 第一実施形態における成膜室の内部を示す断面図。Sectional drawing which shows the inside of the film-forming chamber in 1st embodiment. 図2のA‐A線断面図。FIG. 3 is a sectional view taken along line AA in FIG. 2. 第一実施形態における磁性部材の作用を示す断面図。Sectional drawing which shows the effect | action of the magnetic member in 1st embodiment. 第二実施形態における成膜室の内部を示す断面図。Sectional drawing which shows the inside of the film-forming chamber in 2nd embodiment. 図5のA‐A線断面図。FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. 第二実施形態における磁性部材の作用を示す断面図。Sectional drawing which shows the effect | action of the magnetic member in 2nd embodiment. 変更例における拘束磁場の作用を示す断面図。Sectional drawing which shows the effect | action of the restraint magnetic field in the example of a change. 変更例における拘束磁場の作用を示す断面図。Sectional drawing which shows the effect | action of the restraint magnetic field in the example of a change. 変更例における拘束磁場の作用を示す断面図。Sectional drawing which shows the effect | action of the restraint magnetic field in the example of a change. 従来例における触媒CVD装置を模式的に示す図。The figure which shows typically the catalytic CVD apparatus in a prior art example. 従来例における触媒線の位置を示す断面図。Sectional drawing which shows the position of the catalyst wire in a prior art example. 従来例における触媒線の位置を示す断面図。Sectional drawing which shows the position of the catalyst wire in a prior art example.

符号の説明Explanation of symbols

B1…連結磁場、I1…加熱電流、I2…拘束電流、S…基板、Sa…成膜面、12S…保持部としての成膜ステージ、10…成膜装置としての触媒CVD装置、15…触媒線、16…吊下げ部分、17…連結部分、20…磁場印加部を構成する導電線としての拘束線、30…磁場印加部を構成する磁性部材。   B1 ... coupled magnetic field, I1 ... heating current, I2 ... restraining current, S ... substrate, Sa ... deposition surface, 12S ... deposition stage as holding part, 10 ... catalytic CVD apparatus as deposition apparatus, 15 ... catalyst wire , 16 ... hanging part, 17 ... connecting part, 20 ... constraint wire as a conductive wire constituting the magnetic field application part, 30 ... magnetic member constituting the magnetic field application part.

Claims (5)

基板の成膜面を立てて前記基板を保持する保持部と、
前記成膜面と対向するように吊下げられる触媒線と、
前記触媒線を加熱するために前記触媒線へ電流を供給する電源とを備え、
加熱される前記触媒線へ原料ガスを供給することにより成膜種を生成し、前記成膜種を前記成膜面に堆積させることによって前記成膜面に薄膜を成膜する成膜装置であって、
前記触媒線を流れる荷電粒子に作用して前記触媒線を前記成膜面に沿って引っ張る磁場を形成る磁場印加部を備えることを特徴とする成膜装置。
A holding unit for holding the substrate by raising the film-forming surface of the substrate;
A catalyst wire suspended so as to face the film-forming surface;
A power source for supplying a current to the catalyst wire in order to heat the catalyst wire,
A film forming apparatus that forms a thin film on the film forming surface by generating a film forming seed by supplying a source gas to the heated catalyst wire and depositing the film forming seed on the film forming surface. And
Film forming apparatus characterized by comprising a magnetic field applying unit that form a magnetic field that pulling along the deposition surface of the catalytic wire act on charged particles flowing through the catalytic wire.
請求項1に記載の成膜装置であって、
前記保持部は、
一対の基板の成膜面をそれぞれ対向させて前記一対の基板を保持し、
前記触媒線は、
前記一対の基板間の間隙に吊下げられる一対の吊下げ部分と、前記一対の吊下げ部分の下端を前記間隙の外側で結ぶ連結部分とからなり、
前記磁場印加部は、
前記間隙の外側に配置され、前記連結部分に流れる荷電粒子に作用することにより前記連結部分を前記成膜面に沿って引っ張る磁場を形成することを特徴とする成膜装置。
The film forming apparatus according to claim 1,
The holding part is
Holding the pair of substrates with the film-forming surfaces of the pair of substrates facing each other,
The catalyst wire is
A pair of suspended portions suspended in the gap between the pair of substrates, and a connecting portion connecting the lower ends of the pair of suspended portions outside the gap,
The magnetic field application unit includes:
Wherein disposed on the outside of the gap, the film forming apparatus and forming a tensile that the magnetic field along the connecting portion to the film formation face by acting on the charged particles flowing in the connecting portion.
請求項1又は2に記載の成膜装置であって、
前記触媒線は、
鉛直方向に沿う直線状に形成される一対の吊下げ部分と、水平方向に沿う直線状に形成されて前記一対の吊下げ部分の下端を結ぶ連結部分とからなり、
前記磁場印加部は、
前記連結部分の近傍に設けられて前記水平方向に沿う導電線と、
前記磁場を形成するために前記導電線へ電流を供給する電源とを備えることを特徴とする成膜装置。
The film forming apparatus according to claim 1 or 2,
The catalyst wire is
A pair of hanging parts formed in a straight line along the vertical direction, and a connecting part formed in a straight line along the horizontal direction and connecting the lower ends of the pair of hanging parts,
The magnetic field application unit includes:
A conductive line provided in the vicinity of the connecting portion and extending along the horizontal direction;
A film forming apparatus comprising: a power source for supplying a current to the conductive line to form the magnetic field.
請求項1又は2に記載の成膜装置であって、
前記触媒線は、
鉛直方向に沿う直線状に形成される一対の吊下げ部分と、水平方向に沿う直線状に形成されて前記一対の吊下げ部分の下端を結ぶ連結部分とからなり、
前記磁場印加部は、
前記連結部分の近傍に配置されて前記磁場を形成する磁性体を備えることを特徴とする成膜装置。
The film forming apparatus according to claim 1 or 2,
The catalyst wire is
A pair of hanging parts formed in a straight line along the vertical direction, and a connecting part formed in a straight line along the horizontal direction and connecting the lower ends of the pair of hanging parts,
The magnetic field application unit includes:
A film forming apparatus comprising a magnetic body that is disposed in the vicinity of the connecting portion and forms the magnetic field.
基板の成膜面を立てて前記基板を保持すると共に、前記成膜面と対向するように吊下げられる触媒線へ電流を供給することにより前記触媒線を加熱し、加熱される前記触媒線へ
原料ガスを供給することにより成膜種を生成して前記成膜種を前記成膜面に堆積させることによって前記成膜面に薄膜を成膜する成膜方法であって、
前記触媒線を流れる荷電粒子に作用して前記触媒線を前記成膜面に沿って引っ張る磁場を形成ることを特徴とする成膜方法。
While raising the film formation surface of the substrate and holding the substrate, supplying the current to the catalyst wire suspended so as to face the film formation surface, the catalyst wire is heated, and the heated catalyst wire A film forming method for forming a thin film on the film forming surface by generating a film forming seed by supplying a source gas and depositing the film forming seed on the film forming surface,
Film forming method characterized that you form a magnetic field that pulling along the deposition surface of the catalytic wire act on charged particles flowing through the catalytic wire.
JP2008019784A 2008-01-30 2008-01-30 Film forming apparatus and film forming method Active JP5184904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019784A JP5184904B2 (en) 2008-01-30 2008-01-30 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019784A JP5184904B2 (en) 2008-01-30 2008-01-30 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2009182150A JP2009182150A (en) 2009-08-13
JP5184904B2 true JP5184904B2 (en) 2013-04-17

Family

ID=41035886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019784A Active JP5184904B2 (en) 2008-01-30 2008-01-30 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP5184904B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350164B2 (en) * 2009-10-02 2013-11-27 株式会社アルバック Catalytic chemical vapor deposition system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303182A (en) * 1999-04-16 2000-10-31 Anelva Corp Chemical vapor deposition device
JP5089906B2 (en) * 2006-04-05 2012-12-05 株式会社アルバック Vertical chemical vapor deposition system

Also Published As

Publication number Publication date
JP2009182150A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
TWI336899B (en)
KR100817644B1 (en) Substrate processing device
TW201033402A (en) Ground return for plasma processes
JP6418573B2 (en) Processing module
JP5677563B2 (en) Substrate processing apparatus, substrate manufacturing method, and semiconductor device manufacturing method
JP5919482B2 (en) Catalytic chemical vapor deposition apparatus, film forming method using the same, and surface treatment method for catalyst body
KR101129038B1 (en) In line type substrate processing apparatus
US20130264194A1 (en) Method for manufacturing carbon film and plasma cvd method
KR20150037561A (en) Heat treatment apparatus and heat treatment method
JP2015122503A (en) Substrate processing apparatus
JP5184904B2 (en) Film forming apparatus and film forming method
JP4728345B2 (en) Plasma processing apparatus and plasma processing method
JP6445735B2 (en) Base tray for thin film forming equipment
KR100921026B1 (en) Vacuum processing apparatus and vacuum processing method
JP2008235393A (en) Film formation apparatus and film formation method
KR20110121448A (en) Plasma processing apparatus
EP2854155B1 (en) Plasma reactor vessel and assembly, and a method of performing plasma processing
JP5052206B2 (en) CVD equipment
KR20120025572A (en) Method for transfering a substrate
JP2005294559A (en) Radical generating method and radical generator, thin film deposition equipment
JP2010070816A (en) Substrate treatment device and substrate treatment method
JP5393667B2 (en) Plasma processing apparatus, film forming method and etching method using the same
JP2002246386A (en) Method of processing substrate
JP2013115141A (en) Substrate processing apparatus
JP2012175076A (en) Substrate treatment apparatus, substrate manufacturing method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5184904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250