JP5184334B2 - Probe for temperature measurement - Google Patents

Probe for temperature measurement Download PDF

Info

Publication number
JP5184334B2
JP5184334B2 JP2008332310A JP2008332310A JP5184334B2 JP 5184334 B2 JP5184334 B2 JP 5184334B2 JP 2008332310 A JP2008332310 A JP 2008332310A JP 2008332310 A JP2008332310 A JP 2008332310A JP 5184334 B2 JP5184334 B2 JP 5184334B2
Authority
JP
Japan
Prior art keywords
probe
temperature
probe head
sensor
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008332310A
Other languages
Japanese (ja)
Other versions
JP2010151733A (en
Inventor
浩二 松野
信一 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamari Industries Ltd
Original Assignee
Yamari Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamari Industries Ltd filed Critical Yamari Industries Ltd
Priority to JP2008332310A priority Critical patent/JP5184334B2/en
Publication of JP2010151733A publication Critical patent/JP2010151733A/en
Application granted granted Critical
Publication of JP5184334B2 publication Critical patent/JP5184334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、加熱処理環境下の板状体の温度を接触方式で測定する温度測定用プローブに関する。   The present invention relates to a temperature measurement probe that measures the temperature of a plate-like body under a heat treatment environment by a contact method.

この種の温度測定用プローブとしては、従来、シース熱電対を細管状の被覆部材に内挿して、シース熱電対の全身を被覆部材で被覆した構造を有し、被覆部材は先端が閉塞された細長い円管であり、先端部が幅0.5mm、長さ15mm程度の平坦面に加工形成されており、該平坦面で半導体ウエハの表面と面接触するように使用されるものが提案されている(例えば、特許文献1、2参照。)。とくに特許文献2では、加熱された半導体ウエハの反りや被覆部材の反りや歪みにより、前記した平坦面と半導体ウエハとの間に浮きが発生し、半導体ウエハからの熱伝導を阻害して温度測定精度の低下や応答性の低下の原因になっていることを見出し、これを解消するために前記平坦面が半導体ウエハから受ける荷重を原動力として被覆部材を3次元複数方向に回転させて平坦面を半導体ウエハ下面に面接触させる姿勢修正機構を設けたものが提案されている。しかしながら、このような特許文献2の姿勢修正機構は大掛かりな装置となり、コストアップの原因になるとともに、被覆部材の全体を回転させる機構であるため、加熱処理装置内にある程度の余剰空間が必要であった。   Conventionally, this type of temperature measurement probe has a structure in which a sheath thermocouple is inserted into a thin tubular covering member and the whole body of the sheath thermocouple is covered with the covering member, and the tip of the covering member is blocked. A long and thin circular tube, whose tip is processed and formed into a flat surface with a width of about 0.5 mm and a length of about 15 mm, is proposed to be used to come into surface contact with the surface of a semiconductor wafer. (For example, refer to Patent Documents 1 and 2.) In particular, in Patent Document 2, due to warpage of a heated semiconductor wafer and warpage or distortion of a covering member, floating occurs between the above-described flat surface and the semiconductor wafer, thereby inhibiting heat conduction from the semiconductor wafer and measuring temperature. It has been found that this is the cause of deterioration in accuracy and responsiveness, and in order to eliminate this, the flat surface is formed by rotating the covering member in three-dimensional directions using the load received by the flat surface from the semiconductor wafer as a driving force. There has been proposed one provided with a posture correcting mechanism for making surface contact with the lower surface of the semiconductor wafer. However, such a posture correction mechanism of Patent Document 2 becomes a large-scale device, which increases costs and is a mechanism that rotates the entire covering member, and therefore requires a certain amount of extra space in the heat treatment apparatus. there were.

これに対し、被覆部材であるプローブ本体を動かすことなく、プローブ本体と別に構成された板状のプローブヘッドを、半導体ウエハの重さを受けて旋回できるようにプローブ本体の先端側に取り付け、このプローブヘッドに熱電対の感温部を設け、該プローブヘッドを半導体ウエハの裏面に密着させて温度測定できるものも提案されている(例えば、特許文献3、4参照。)。しかしながら、特許文献3の温度測定用プローブは、プローブ本体先端において筒状に突出した隆起リップ上にプローブヘッドを載置し、両者の間を熱電対のセンサー線により連結した状態に取り付けたものであり、プローブヘッドがウエハの重さを受けてリップ上を傾くことができるものの円環状に接触した状態から傾けるためにリップ端面からプローブヘッドが浮き上がり、熱電対のセンサー線が引っ張られたり、浮き上がった隙間に挟まれるなどによりストレスを受け、破損・断線の虞がある。また、プローブヘッドとプローブ本体が円環状に接触するため、その接触面積は大きく、プローブヘッドの熱が本体側に逃げてしまい、温度測定精度が低下する。   On the other hand, a plate-like probe head configured separately from the probe main body is attached to the tip end side of the probe main body so that it can be swung in response to the weight of the semiconductor wafer without moving the probe main body which is a covering member. There has also been proposed a probe head that is provided with a thermocouple temperature sensing portion, and the probe head is closely attached to the back surface of the semiconductor wafer to measure the temperature (see, for example, Patent Documents 3 and 4). However, the temperature measurement probe of Patent Document 3 is a probe head mounted on a raised lip protruding in a cylindrical shape at the tip of the probe body and attached in a state where the two are connected by a thermocouple sensor wire. Yes, the probe head can tilt on the lip due to the weight of the wafer, but the probe head has lifted from the end surface of the lip to tilt from the contact with the ring, and the sensor wire of the thermocouple has been pulled or lifted There is a risk of breakage or disconnection due to stress due to being caught in the gap. In addition, since the probe head and the probe main body are contacted in an annular shape, the contact area is large, and the heat of the probe head escapes to the main body side, resulting in a decrease in temperature measurement accuracy.

他方、特許文献4の温度測定用プローブは、プローブヘッドが温度センサのセンサー線によってのみ支持され、プローブ本体がプローブヘッドに触れないように構成されている。この場合、プローブヘッドがプローブ本体から熱的に分離されているので、熱の逃げは回避できる。具体的には、温度センサのセンサー線がヘッド頂点となる三角形の2つの脚部を形成しており、センサー線自体がプローブヘッドを支持するのに適当な硬さを有し、半導体ウエハの重さを受けてセンサー線が撓むことによりプローブヘッドをウエハに追従・傾斜させるように構成されているが、このような構成においてはセンサー線に強度及び弾性を有する特別なものが求められ、精度のよい細い線など選択できる幅が限られることとなり不便である。また、一度センサー線の弾性域を超える角度にプローブヘッドが傾斜すると元に戻らず、繰り返し使用することでセンサー線は複数個所で屈曲した形状となり、十分な支持強度も得られず、接触圧が低下して測定精度に影響するとともに屈曲したセンサー線がプローブヘッドとプローブ本体の間に挟まるなどして、センサー線の破損・断線の虞が生じる。   On the other hand, the temperature measurement probe of Patent Document 4 is configured such that the probe head is supported only by the sensor wire of the temperature sensor and the probe body does not touch the probe head. In this case, since the probe head is thermally separated from the probe body, heat escape can be avoided. Specifically, the sensor line of the temperature sensor forms two triangular legs with the head apex, and the sensor line itself has an appropriate hardness to support the probe head and the weight of the semiconductor wafer. In response to this, the sensor wire is bent so that the probe head follows and tilts the wafer. However, in such a configuration, a special sensor wire that has strength and elasticity is required, and the accuracy is high. This is inconvenient because the width that can be selected is limited. Also, once the probe head is tilted at an angle exceeding the elastic range of the sensor wire, it will not return to its original shape, and repeated use will cause the sensor wire to be bent at multiple locations, resulting in insufficient support strength and contact pressure. The sensor line is lowered and affects the measurement accuracy, and the bent sensor wire may be sandwiched between the probe head and the probe body.

特開平4−148545号公報JP-A-4-148545 特開2000−81355号公報JP 2000-81355 A 米国特許第5791782号明細書US Pat. No. 5,791,782 特開2000−227363号公報JP 2000-227363 A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、板状体の荷重をセンサー線に負担をかけることなく支持することができ、プローブヘッドが板状体の重さを受けてスムーズに角度変更(相対回転移動)して追従し、密着させることができ、その回転移動の際にもセンサー線にまったく負担がかからず、より細い感度のよいセンサー線を用いることも可能となり、更には、プローブヘッドからの熱の逃げも最小限とすることができ、温度測定をより正確に行うことができる温度測定用プローブを提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve the problem that the load of the plate-like body can be supported without imposing a load on the sensor wire, and the probe head receives the weight of the plate-like body. The angle can be changed smoothly (relative rotational movement) to follow and adhere closely, and even during the rotational movement, the sensor line is not burdened at all, and it is possible to use a sensor line with finer sensitivity. Furthermore, another object of the present invention is to provide a temperature measurement probe that can minimize heat escape from the probe head and perform temperature measurement more accurately.

本発明は、前述の課題解決のために、温度センサーが内蔵され、加熱処理環境下の板状体の温度を測定するための温度測定用プローブにおいて、前記温度センサーの感温部を有し、且つ前記板状体に面接触する平面部を備えたプローブヘッドを設けるとともに、該プローブヘッドから延出される前記感温部からのセンサー線を、先端側の壁面の導入孔から内部に引き入れ、基端側に案内する長尺な保護管よりなるプローブ本体を設け、前記プローブヘッドのセンサー線延出部とプローブ本体の前記導入孔の開口部との間に、センサー線が上下に通される貫通孔を有する略球体状の支持体を介装してなることを特徴とする温度測定用プローブを構成した。   In order to solve the above-mentioned problems, the present invention includes a temperature sensor, and a temperature measurement probe for measuring the temperature of a plate-like body under a heat treatment environment, including a temperature sensing portion of the temperature sensor, In addition, a probe head having a flat surface that comes into surface contact with the plate-like body is provided, and a sensor wire extending from the probe head from the temperature sensing portion is drawn into the inside through the introduction hole in the wall surface on the front end side. A probe main body made of a long protective tube that guides to the end side is provided, and the sensor wire passes vertically between the sensor wire extension of the probe head and the opening of the introduction hole of the probe main body. A temperature measuring probe comprising a substantially spherical support having a hole was constructed.

ここで、前記プローブヘッドのセンサー線延出部、または前記プローブ本体の導入孔の開口部の少なくとも一方または双方に、対面する前記支持体の凸球面に平行な凹球面部を形成したものが好ましい。   Here, it is preferable that at least one or both of the sensor wire extension part of the probe head and the opening part of the introduction hole of the probe main body be formed with a concave spherical surface part parallel to the convex spherical surface of the support body facing each other. .

また、前記プローブヘッドが熱伝導性の高い材料からなり、且つ前記プローブ本体および前記支持体が光の透過率が高く且つ熱伝導性が低い材料からなり、光照射により加熱される加熱処理環境下の板状体の温度測定に用いるものが好ましい。   Further, the probe head is made of a material having high thermal conductivity, and the probe main body and the support are made of a material having high light transmittance and low thermal conductivity. What is used for the temperature measurement of this plate-shaped body is preferable.

また、前記センサー線が、セラミックスで熱電対素線がコートされたセラミックスコート熱電対、または熱電対素線が細管シース内に封入されたシース熱電対であるものが好ましい。   The sensor wire is preferably a ceramic-coated thermocouple in which a thermocouple element is coated with ceramic, or a sheath thermocouple in which a thermocouple element is enclosed in a thin tube sheath.

以上にしてなる本願発明に係る温度測定用プローブは、プローブヘッドのセンサー線延出部とプローブ本体の前記導入孔の開口部との間に略球体状の支持体を介装したことで、プローブヘッドが板状体からの重さを受けて自在に角度変更(相対回転移動)して追従し、密着させることができるとともに、該支持体によりプローブヘッドに作用する板状体の荷重を完全に支持することができるので、センサー線に何ら負担が掛からず、支持強度はまったく要求されない。また、支持体を略球体状としているので、これに上下で接するプローブヘッド、およびプローブ本体との各間の接触は点接触に近くなり、従来のような隆起リップにより支持されたものに比べ、追従時の角度変更がスムーズになる。   The temperature measuring probe according to the present invention having the above configuration is obtained by interposing a substantially spherical support between the sensor wire extension of the probe head and the opening of the introduction hole of the probe body. The head receives the weight from the plate-like body and can freely change the angle (relative rotational movement) to follow and closely adhere to it, and the support can completely load the plate-like body acting on the probe head Since it can be supported, no load is applied to the sensor wire and no support strength is required. In addition, since the support body has a substantially spherical shape, the contact between each of the probe head and the probe main body that contact the upper and lower sides is close to a point contact, compared to a conventional support by a raised lip, Smooth angle change when following.

また、点接触に近くなることでプローブヘッドから支持体への伝熱量も小さくなることから、板状体からプローブヘッドに伝わった熱が支持体側に逃げることなく、より正確で安定した温度測定ができる。また、上記相対回転移動の際には、支持体に対してプローブヘッドが過度に浮き上がることもなく、センサー線が引っ張られたり双方の部材間に挟まれたりすることも未然に回避され、センサー線には何らストレスが生じないため、より感度のよい細いセンサー線を用いることも可能となる。   In addition, since the amount of heat transfer from the probe head to the support is reduced by approaching point contact, the heat transferred from the plate to the probe head does not escape to the support, allowing more accurate and stable temperature measurement. it can. Further, when the relative rotation is performed, the probe head does not float excessively with respect to the support, and the sensor wire is prevented from being pulled or sandwiched between both members. Since no stress is generated, it is possible to use a thin sensor line with higher sensitivity.

また、前記プローブヘッドのセンサー線延出部、または前記プローブ本体の導入孔の開口部の少なくとも一方または双方に、対面する前記支持体の凸球面に平行な凹球面部を形成したので、支持体の貫通孔を多少大きく設定してもスムーズな相対回転移動が維持され、支持体の角度変更時にセンサー線が引っ張られたり挟まれたりすることを防止できる。   In addition, a concave spherical surface portion parallel to the convex spherical surface of the support body facing the support body is formed in at least one or both of the sensor wire extension portion of the probe head or the opening portion of the introduction hole of the probe body. Even if the through hole is set to be slightly larger, smooth relative rotational movement is maintained, and the sensor wire can be prevented from being pulled or pinched when the angle of the support is changed.

また、前記プローブヘッドが熱伝導性の高い材料からなり、且つ前記プローブ本体および前記支持体が光の透過率が高く且つ熱伝導性が低い材料からなるので、板状体の温度が正確にプローブヘッドに反映され、より正確な温度測定ができるとともに、とくに光照射により加熱される加熱処理環境下の板状体の温度測定に用いる場合、プローブ本体の加熱を防止でき、内部のセンサー線が加熱されて測定誤差の原因になるといった不都合も回避できる。   In addition, since the probe head is made of a material having high thermal conductivity, and the probe main body and the support are made of material having high light transmittance and low thermal conductivity, the temperature of the plate-like body is accurately measured. Reflected in the head, more accurate temperature measurement is possible, and especially when used to measure the temperature of a plate-like body under heat treatment environment heated by light irradiation, the probe body can be prevented from being heated, and the internal sensor wire is heated. Inconvenience such as causing measurement errors can be avoided.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る温度測定用プローブの要部を示す斜視図、図2は、同じく温度測定用プローブを板状体Wに接触させて温度を測定している様子を示す縦断面図であり、図中符号1は温度測定用プローブ、2は温度センサー、3はプローブヘッド、4はプローブ本体、5は支持体をそれぞれ示している。   FIG. 1 is a perspective view showing a principal part of a temperature measurement probe according to the present invention, and FIG. 2 is a longitudinal sectional view showing a state in which the temperature measurement probe is similarly brought into contact with a plate-like body W to measure the temperature. In the figure, reference numeral 1 is a temperature measurement probe, 2 is a temperature sensor, 3 is a probe head, 4 is a probe body, and 5 is a support.

温度測定用プローブ1は、図1、2に示すように、温度センサー2が内蔵された接触型のプローブであり、温度センサー2のセンサー線21、22が内部に挿通される長尺な保護管40よりなるプローブ本体4と、該プローブ本体4の先端部側方に設けられるプローブヘッド3とを備え、プローブ本体4を加熱処理環境下の板状体Wの下面6側に延ばし、その先端のプローブヘッド3を板状体Wの下面6に接触させて、板状体Wを支持すると同時にその温度を測定するものである。本発明においては、特にこのプローブヘッド3をプローブ本体4の先端部側方に設けるための支持構造として、双方の間に略球体状の支持体5を介装し、板状体Wの反りや歪みに応じて、該板状体からの重さを受けたプローブヘッド3がプローブ本体4に対して内部の温度センサー線21、22に負担をかけることなくスムーズに角度変更して板状体の傾きに追従し、密着できるように支持したことを特徴としている。   As shown in FIGS. 1 and 2, the temperature measurement probe 1 is a contact type probe with a built-in temperature sensor 2, and is a long protective tube into which the sensor wires 21 and 22 of the temperature sensor 2 are inserted. 40, and a probe head 3 provided on the side of the distal end portion of the probe body 4. The probe body 4 extends to the lower surface 6 side of the plate-like body W under the heat treatment environment, and The probe head 3 is brought into contact with the lower surface 6 of the plate-like body W to support the plate-like body W and simultaneously measure its temperature. In the present invention, as a support structure for providing the probe head 3 to the side of the distal end portion of the probe body 4 in particular, a substantially spherical support 5 is interposed between the two so that the warpage of the plate-like body W is reduced. In response to the strain, the probe head 3 receiving the weight from the plate-like body smoothly changes the angle of the plate-like body without imposing a burden on the internal temperature sensor wires 21 and 22 with respect to the probe body 4. It is characterized by following the inclination and supporting it so that it can be in close contact.

なお、以下の説明では、光照射により加熱される加熱処理環境下の板状体(半導体ウエハ)の温度測定に用いるプローブについて説明し、各部の構造、素材についてはそれに適した材料を説明しているが、測定対象物は半導体ウエハに限定されず、他の板状体にも適宜応用できる。また、板状体(半導体ウエハ)Wの当該光照射による加熱処理方法は、従来から公知のものを適用でき、たとえば板状体Wは、加熱処理装置内において図示しない複数の支持凸部と本発明に係る温度測定用プローブ1との3点以上の支持構造によって略水平姿勢で支えられる。また、加熱処理装置内の構造によっては、図8に示すようにプローブヘッド3をプローブ本体4の先端部中央に設けたものを用いることも可能である。   In the following description, a probe used for measuring the temperature of a plate-like body (semiconductor wafer) heated under light irradiation will be described, and the structure and materials of each part will be described with suitable materials. However, the object to be measured is not limited to the semiconductor wafer, and can be appropriately applied to other plate-like bodies. In addition, a conventionally known heat treatment method by light irradiation of the plate-like body (semiconductor wafer) W can be applied. For example, the plate-like body W includes a plurality of support protrusions and a book not shown in the heat treatment apparatus. The temperature measurement probe 1 according to the invention is supported in a substantially horizontal posture by a support structure of three or more points. Further, depending on the structure in the heat treatment apparatus, it is possible to use a probe head 3 provided at the center of the tip of the probe body 4 as shown in FIG.

内蔵される温度センサー2は、本例ではセラミックスコート熱電対が用いられ、セラミックスでコートされた各センサー線21、22の先端部には、各線端部を接続した温接点よりなる感温部23が形成されている。各センサー線21、22の直径は、0.1mm或いは0.2mm程度のものが用いられる。なお、加熱温度領域によっては、その他のコーティング熱電対を用いることもでき、例えばフッ素樹脂等の合成樹脂を被覆した熱電対も使用できる。また、本例では単線の熱電対素線をそれぞれ被覆して2本のセンサー線21、22を構成したが、一対の熱電対素線を一体的に被覆して1本のセンサー線のみとしてもよい。また、シース熱電対を用いることも勿論可能であり、更には、熱電対以外に、測温抵抗体、その他の温度センサーを用いることも可能である。   The built-in temperature sensor 2 uses a ceramic-coated thermocouple in this example, and a temperature-sensing portion 23 formed by a hot junction connecting each wire end to the tip of each sensor wire 21, 22 coated with ceramics. Is formed. The diameters of the sensor wires 21 and 22 are about 0.1 mm or 0.2 mm. Depending on the heating temperature region, other coating thermocouples can be used. For example, a thermocouple coated with a synthetic resin such as a fluororesin can also be used. Further, in this example, two sensor wires 21 and 22 are formed by covering a single thermocouple wire, but a pair of thermocouple wires may be integrally covered to form only one sensor wire. Good. Of course, it is possible to use a sheathed thermocouple, and it is also possible to use a resistance temperature detector or other temperature sensors in addition to the thermocouple.

プローブヘッド3は、板状体Wに面接触する平面部30を上面に有する円板状の部材であり、プローブ本体4から支持体5を通じて延ばされた温度センサー線21、22先端の感温部23が内部に埋め込まれている。具体的には、プローブヘッド3の略中央部に温度センサーの感温部23を取り付けるための取付孔32が穿設され、該取付孔32に温度センサー2の先端部を挿通してカシメあるいは導電性接着剤で固めることにより、感温部23が一部表面の平面部30に露出した形態に固定されている。感温部23の取付構造はこれに何ら限定されないが、本例のごとく表面に露出させて板状体Wに直接触れるようにすることで、より正確な温度測定ができる。   The probe head 3 is a disk-shaped member having a flat surface portion 30 in surface contact with the plate-like body W on its upper surface, and the temperature sensing lines 21 and 22 at the tips of the temperature sensor wires 21 and 22 extended from the probe body 4 through the support body 5. The part 23 is embedded inside. Specifically, a mounting hole 32 for mounting the temperature sensor 23 of the temperature sensor is formed in the substantially central portion of the probe head 3, and the tip of the temperature sensor 2 is inserted into the mounting hole 32 to be caulked or conductive. The thermosensitive part 23 is fixed in a form exposed to the flat part 30 on the surface by being hardened with the adhesive. Although the attachment structure of the temperature sensing portion 23 is not limited to this, more accurate temperature measurement can be performed by exposing the surface and directly touching the plate-like body W as in this example.

このプローブヘッド3は、感温部23に板状体Wの熱を正確に伝えられるように熱伝導性の高い材料から構成され、本例ではアルミニウム又はアルミニウム合金より構成されているが、その他の材料からなるものでも勿論よい。また、板状体Wに接触する平面部30に当該熱伝導性の高い材料からなる伝熱層を被覆しておき、他の部分は他部材で構成することも可能である。このプローブヘッド3の形状は円板状にとくに限定されず、略球体状の支持体5上に載置でき、上記面接触用の平面部を有するものであれば種々の形状のものを採用しうる。   This probe head 3 is made of a material having high thermal conductivity so that the heat of the plate-like body W can be accurately transmitted to the temperature sensing part 23, and in this example, it is made of aluminum or an aluminum alloy. Of course, it may be made of a material. It is also possible to cover the flat portion 30 in contact with the plate-like body W with a heat transfer layer made of a material having high thermal conductivity, and to configure other portions with other members. The shape of the probe head 3 is not particularly limited to a disc shape, and various shapes can be adopted as long as the probe head 3 can be placed on a substantially spherical support 5 and has a flat portion for surface contact. sell.

プローブ本体4は、プローブヘッド3から延出される感温部23からのセンサー線21、22を、後述する支持体5の貫通孔50を通じて、先端側の壁面42に横方向に設けられた導入孔41から内部に引き入れ、基端側に案内する長尺な中空の保護管40からなり、該保護管40は加熱処理装置の光照射による光の吸収を抑え、温度上昇を防止することができるように光の透過率が高く且つ熱伝導性が低い材料から構成され、本例では石英ガラスより構成されているが、その他の光透過率が高く且つ熱伝導性が低い材料を用いることも好ましい。プローブ本体4を構成する保護管40が温度上昇すると、内部のセンサー線21、22の温度も上昇し、測温値の変化が生じて測定誤差の原因となるが、本例ではこれが防止できることとなる。また、本例では、保護管40の内部に、さらにセンサー線21、22が挿通されるステンレス等のガイド管20が設けられており、このガイド管20によりセンサー線21、22へのノイズ等の信号入力を防止するとともに製造時の組み付けが容易とされている。ここで、ガイド管20についても光透過率が高く且つ熱伝導性が低い石英ガラス等で構成することも好ましい。   The probe body 4 has sensor wires 21 and 22 extending from the probe head 3 through the through holes 50 of the support 5 described later, and introduced into the wall 42 on the tip side in the lateral direction. It is composed of a long hollow protective tube 40 drawn into the interior from 41 and guided to the proximal end side. The protective tube 40 can suppress light absorption due to light irradiation of the heat treatment apparatus and prevent temperature rise. In this example, it is made of quartz glass. However, it is also preferable to use other materials having high light transmittance and low thermal conductivity. When the temperature of the protective tube 40 constituting the probe body 4 rises, the temperature of the internal sensor wires 21 and 22 also rises, resulting in a change in the measured temperature value and causing a measurement error. In this example, this can be prevented. Become. In the present example, a guide tube 20 made of stainless steel or the like through which the sensor wires 21 and 22 are inserted is further provided inside the protective tube 40, and noise or the like to the sensor wires 21 and 22 is provided by the guide tube 20. This prevents signal input and facilitates assembly during manufacture. Here, the guide tube 20 is also preferably made of quartz glass having a high light transmittance and a low thermal conductivity.

支持体5は、プローブヘッド3のセンサー線延出部31とプローブ本体4の導入孔41の開口部との間に介装されており、縦方向にセンサー線21、22を上下に通すための貫通孔50が設けられている。支持体5の素材は、プローブ本体4と同じ理由により同じ石英ガラス製とされているが、その他の光透過率が高く且つ熱伝導性が低い材料を用いることも好ましい。この支持体5により、プローブヘッド3に掛かる板状体Wの荷重が完全に支持され、挿通されているセンサー線21、22には何らストレスは作用しない。そして、この支持体5が略球体状に構成されているため、上側においてプローブヘッドのセンサー線延出部31との間で小さい面積で接触し、板状体Wからプローブヘッド3に伝わった熱が支持体5側に逃げることなく、より正確で安定した温度測定を可能としている。   The support body 5 is interposed between the sensor wire extension portion 31 of the probe head 3 and the opening portion of the introduction hole 41 of the probe body 4 for passing the sensor wires 21 and 22 up and down in the vertical direction. A through hole 50 is provided. The material of the support 5 is made of the same quartz glass for the same reason as the probe main body 4, but it is also preferable to use other materials having high light transmittance and low thermal conductivity. The support 5 completely supports the load of the plate-like body W applied to the probe head 3, and no stress acts on the inserted sensor wires 21 and 22. And since this support body 5 is comprised by the substantially spherical body shape, it contacts in the small area between the sensor wire extension parts 31 of a probe head on the upper side, and the heat transmitted from the plate-shaped body W to the probe head 3 is carried out. However, more accurate and stable temperature measurement is possible without escaping to the support 5 side.

また、このように支持体5が略球体状であることから、これに上下で接しているプローブヘッド3およびプローブ本体4は、それぞれ支持体5の球面上をスムーズに摺動することとなり、浮き上がりによりセンサー線が引っ張られる等のストレスを受けることなく角度変更(相対回転移動)自在な接触状態とされている。すなわち、反り等で傾いた板状体Wの荷重がプローブヘッド3に作用すると、プローブヘッド3が当該傾きに追従するように、支持体5に対して相対回転移動するか、支持体5とプローブ本体4が相対回転移動するか、或いはその両方の相対回転移動により、プローブヘッド3の上面が板状体Wの下面に密着するまで該プローブヘッド3が角度変更(相対回転移動)することとなる。   Further, since the support body 5 is substantially spherical in this way, the probe head 3 and the probe main body 4 that are in contact with the support body 5 slide smoothly on the spherical surface of the support body 5 and lift up. The contact state is such that the angle can be changed (relatively rotated) without being subjected to stress such as the sensor wire being pulled. That is, when the load of the plate-like body W tilted due to warpage or the like acts on the probe head 3, the probe head 3 moves relative to the support 5 so as to follow the tilt, or the support 5 and the probe The angle of the probe head 3 is changed (relative rotation movement) until the upper surface of the probe head 3 comes into close contact with the lower surface of the plate-like body W due to the relative rotation movement of the main body 4 or both. .

本実施形態では、図2に示すようにプローブ本体4の導入孔41の開口部に、対面する支持体5の凸球面に平行な凹球面部41aが形成されており、よりスムーズな回転移動動作が可能とされている。図3は、板状体Wが傾いているときにプローブヘッド3が追従して密着した状態を示しており、プローブヘッド3と支持体5は相対回転移動せず、支持体5とプローブ本体4が相対回転移動することにより追従・密着した例である。なお、本例のように凹球面部41aを設けることなく、例えば図6に示すように、ストレートの孔としても勿論よく、図6よりも狭い孔でも勿論可能である。   In this embodiment, as shown in FIG. 2, a concave spherical surface portion 41 a parallel to the convex spherical surface of the support 5 that faces the support body 5 is formed in the opening portion of the introduction hole 41 of the probe main body 4. Is possible. FIG. 3 shows a state in which the probe head 3 follows and closely contacts when the plate-like body W is tilted. The probe head 3 and the support body 5 do not move relative to each other. This is an example of following and adhering due to relative rotational movement. It should be noted that, as shown in FIG. 6, for example, as shown in FIG. 6, a straight hole may be used, and a hole narrower than that shown in FIG.

図4は、プローブヘッド3のセンサー線延出部31にも、同様に対面する支持体5の凸球面に平行な凹球面部31aを設けた変形例を示しており、支持体5とプローブ本体4が相対回転移動するとともに、さらにプローブヘッド3と支持体5も相対回転移動し、より大きく傾いた板状体Wにも追従・密着している例である。図1〜3の例ではこのような凹球面部31aが形成されていないので、支持体5の貫通孔50の内径が大きくなるとプローブヘッド3との接触がより大きな円環状となり、プローブヘッド3と支持体5との間の相対回転移動がスムーズに機能しない、すなわち円環状の貫通孔50の開口部にプローブヘッド3が安定支持されてしまうことになるが、図4のように凹球面部31aを設ければ貫通孔50の内径が多少大きくなってもスムーズな相対回転移動が可能となる。   FIG. 4 shows a modified example in which the sensor line extending portion 31 of the probe head 3 is also provided with a concave spherical surface portion 31a parallel to the convex spherical surface of the supporting member 5 facing the same. In this example, the probe head 3 and the support 5 are also rotated relative to each other, and the probe head 3 and the support 5 are also rotated relative to each other so as to follow and adhere to the plate-like body W that is further inclined. In the example of FIGS. 1 to 3, such a concave spherical surface portion 31 a is not formed. Therefore, when the inner diameter of the through hole 50 of the support 5 is increased, the contact with the probe head 3 becomes a larger annular shape. The relative rotational movement with respect to the support 5 does not function smoothly, that is, the probe head 3 is stably supported by the opening of the annular through hole 50, but the concave spherical surface portion 31a as shown in FIG. If the inner diameter of the through hole 50 is somewhat increased, smooth relative rotational movement is possible.

また図5は、支持体5の貫通孔50の一端または両端開口部に端部に向けて拡径する拡径部50bを形成した変形例を示しており、相対回転の移動量が大きくなってもセンサー線21、22が貫通孔50の開口端部にあたって屈曲等のストレスを受けないように構成している。図示したものではテーパー状に形成されているが、R状に緩やかに拡径させたものも好ましい。また、図6はプローブ本体4の導入孔41をストレートの孔にし、さらに孔径を大きく設定して支持体5と相対回転移動してもセンサー線21、22が導入孔41の縁部に当たらないように構成されている。また、図7は支持体5の貫通孔5の内径を大きくし、その一方でプローブ本体4の導入孔41の内径を小さくし、角度変更(相対回転移動)の際にもセンサー線21、22が貫通孔50内で自由に左右に移動でき、センサー線21、22にストレスが作用するのを回避した例である。ただし、貫通孔5の内径が大きくなりすぎると上記したとおり相対回転移動がスムーズにできなくなるので、その内径はスムーズな回転移動を阻害しない範囲内に設定される。また、図8は導入孔41を保護管40の先端側壁面42の端部中央に縦方向に設け、支持体5とプローブヘッド3をプローブ本体4の先端部中央に縦方向に設けた例である。このようなものは加熱処理装置内の板状体W下の空間構造によっては使用可能となる。   FIG. 5 shows a modified example in which a diameter-expanded portion 50b that expands toward one end or both end openings of the through hole 50 of the support 5 is formed, and the amount of relative rotation increases. Also, the sensor wires 21 and 22 are configured not to be subjected to stress such as bending at the opening end portion of the through hole 50. In the figure, it is formed in a tapered shape, but it is also preferable that the diameter is gradually increased in an R shape. Further, in FIG. 6, even if the introduction hole 41 of the probe main body 4 is a straight hole and the hole diameter is set to be larger and the relative rotation movement with respect to the support 5 is performed, the sensor wires 21 and 22 do not hit the edge of the introduction hole 41. It is configured as follows. 7 increases the inner diameter of the through hole 5 of the support body 5 while reducing the inner diameter of the introduction hole 41 of the probe main body 4 so that the sensor wires 21 and 22 can be changed even when the angle is changed (relative rotational movement). This is an example in which stress can be prevented from acting on the sensor wires 21 and 22 by being able to move freely left and right within the through hole 50. However, if the inner diameter of the through-hole 5 becomes too large, the relative rotational movement cannot be performed smoothly as described above. Therefore, the inner diameter is set within a range that does not hinder the smooth rotational movement. FIG. 8 shows an example in which the introduction hole 41 is provided vertically in the center of the end portion of the tip side wall surface 42 of the protective tube 40, and the support 5 and the probe head 3 are provided vertically in the center of the tip portion of the probe body 4. is there. Such a thing can be used depending on the space structure under the plate-like body W in the heat treatment apparatus.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

本発明の代表的実施形態に係る温度測定用プローブの要部を示す斜視図。The perspective view which shows the principal part of the probe for temperature measurement which concerns on typical embodiment of this invention. 同じく温度測定用プローブの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the probe for temperature measurement similarly. プローブヘッドが傾いている板状体に追従して密着した状態を示す縦断面図。The longitudinal cross-sectional view which shows the state which followed and closely_contact | adhered to the plate-shaped object in which the probe head inclines. プローブヘッドのセンサー線延出部に凹球面部を設けた変形例を示す縦断面図。The longitudinal cross-sectional view which shows the modification which provided the concave spherical surface part in the sensor wire extension part of a probe head. (a),(b)は支持体の貫通孔開口部に端部に拡径部を形成した変形例を示す縦断面図。(A), (b) is a longitudinal cross-sectional view which shows the modification which formed the enlarged diameter part in the edge part in the through-hole opening part of a support body. (a),(b)はプローブ本体の導入孔を内径が大きいストレート孔とした変形例を示す縦断面図。(A), (b) is a longitudinal cross-sectional view which shows the modification which made the introduction hole of the probe main body the straight hole with a large internal diameter. (a),(b)は支持体の貫通孔の内径を大きくした変形例を示す縦断面図。(A), (b) is a longitudinal cross-sectional view which shows the modification which enlarged the internal diameter of the through-hole of the support body. プローブヘッドをプローブ本体の先端部中央に縦方向に設けた変形例を示す縦断面図。The longitudinal cross-sectional view which shows the modification which provided the probe head in the vertical direction in the center of the front-end | tip part of a probe main body.

符号の説明Explanation of symbols

1 温度測定用プローブ
2 温度センサー
3 プローブヘッド
4 プローブ本体
5 支持体
6 下面
20 ガイド管
21,22 センサー線
23 感温部
30 平面部
31 延出部
31a 凹球面部
32 取付孔
40 保護管
41 導入孔
41a 凹球面部
42 壁面
50 貫通孔
50b 拡径部
W 板状体
DESCRIPTION OF SYMBOLS 1 Probe for temperature measurement 2 Temperature sensor 3 Probe head 4 Probe main body 5 Support body 6 Lower surface 20 Guide tube 21 and 22 Sensor wire 23 Temperature sensing part 30 Plane part 31 Extension part 31a Concave spherical part 32 Mounting hole 40 Protective tube 41 Introduction Hole 41a Concave spherical portion 42 Wall surface 50 Through hole 50b Expanded portion W Plate-like body

Claims (4)

温度センサーが内蔵され、加熱処理環境下の板状体の温度を測定するための温度測定用プローブにおいて、
前記温度センサーの感温部を有し、且つ前記板状体に面接触する平面部を備えたプローブヘッドを設けるとともに、
該プローブヘッドから延出される前記感温部からのセンサー線を、先端側の壁面の導入孔から内部に引き入れ、基端側に案内する長尺な保護管よりなるプローブ本体を設け、
前記プローブヘッドのセンサー線延出部とプローブ本体の前記導入孔の開口部との間に、センサー線が上下に通される貫通孔を有する略球体状の支持体を介装してなることを特徴とする温度測定用プローブ。
In the temperature measurement probe that has a built-in temperature sensor and measures the temperature of the plate in the heat treatment environment,
While providing a probe head having a temperature sensing part of the temperature sensor and having a flat part in surface contact with the plate-like body,
A probe main body made of a long protective tube is provided to guide the sensor wire from the temperature sensing portion extending from the probe head from the introduction hole of the wall surface on the distal end side to the inside, and guiding it to the proximal end side,
Between the sensor wire extension part of the probe head and the opening part of the introduction hole of the probe body, a substantially spherical support body having a through hole through which the sensor line passes vertically is interposed. A characteristic temperature measurement probe.
前記プローブヘッドのセンサー線延出部、または前記プローブ本体の導入孔の開口部の少なくとも一方または双方に、対面する前記支持体の凸球面に平行な凹球面部を形成してなる請求項1記載の温度測定用プローブ。   2. The concave spherical surface parallel to the convex spherical surface of the supporting body is formed on at least one or both of the sensor wire extension portion of the probe head and the opening portion of the introduction hole of the probe main body. Temperature measurement probe. 前記プローブヘッドが熱伝導性の高い材料からなり、且つ前記プローブ本体および前記支持体が光の透過率が高く且つ熱伝導性が低い材料からなり、光照射により加熱される加熱処理環境下の板状体の温度測定に用いる請求項1又は2記載の温度測定用プローブ。   A plate in a heat treatment environment in which the probe head is made of a material having high thermal conductivity, and the probe body and the support are made of a material having high light transmittance and low thermal conductivity, and are heated by light irradiation. The temperature measuring probe according to claim 1 or 2, which is used for measuring a temperature of a solid body. 前記センサー線が、セラミックスで熱電対素線がコートされたセラミックスコート熱電対、または熱電対素線が細管シース内に封入されたシース熱電対である請求項1〜3の何れか1項に記載の温度測定用プローブ。   The sensor wire according to any one of claims 1 to 3, wherein the sensor wire is a ceramic-coated thermocouple in which a thermocouple element is coated with ceramics, or a sheath thermocouple in which a thermocouple element is enclosed in a thin tube sheath. Temperature measurement probe.
JP2008332310A 2008-12-26 2008-12-26 Probe for temperature measurement Active JP5184334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332310A JP5184334B2 (en) 2008-12-26 2008-12-26 Probe for temperature measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332310A JP5184334B2 (en) 2008-12-26 2008-12-26 Probe for temperature measurement

Publications (2)

Publication Number Publication Date
JP2010151733A JP2010151733A (en) 2010-07-08
JP5184334B2 true JP5184334B2 (en) 2013-04-17

Family

ID=42570978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332310A Active JP5184334B2 (en) 2008-12-26 2008-12-26 Probe for temperature measurement

Country Status (1)

Country Link
JP (1) JP5184334B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222259A (en) * 2011-04-13 2012-11-12 Koyo Thermo System Kk Wafer with thermocouple, wafer support pin, and wafer support structure
JP6540364B2 (en) * 2015-08-20 2019-07-10 国立研究開発法人物質・材料研究機構 Sample stand, thermoelectric characteristic evaluation device, method of evaluating thermoelectric characteristics, and method of evaluating electrode
EP3324163A1 (en) 2016-11-22 2018-05-23 Whirlpool Corporation Temperature probe for domestic oven and domestic oven using such probe
SG11202000620SA (en) * 2017-09-13 2020-02-27 Kokusai Electric Corp Substrate treatment apparatus, method for manufacturing semiconductor device, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670533U (en) * 1979-11-01 1981-06-10
DE4039336C5 (en) * 1990-12-10 2004-07-01 Carl Zeiss Process for fast workpiece temperature measurement on coordinate measuring machines
DE60034496T2 (en) * 1999-02-01 2008-01-10 Axcelis Technologies, Inc., Beverly Contact temperature sensor with thermal decoupling between the sensor head and the heat shield of the electrical supply lines
US6796711B2 (en) * 2002-03-29 2004-09-28 Axcelis Technologies, Inc. Contact temperature probe and process

Also Published As

Publication number Publication date
JP2010151733A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5184334B2 (en) Probe for temperature measurement
JP4751174B2 (en) Ear thermometer
JP4940938B2 (en) Thermal mass flow meter
WO2013018475A1 (en) Distance detection device, distance detection method, computer program, and computer-readable recording medium
TWI564551B (en) Temperature sensor and heat treating apparatus
JP5229355B2 (en) Temperature sensor
JP2013031607A (en) In-ear information acquiring apparatus and fixing mechanism
JP7458409B2 (en) Improved temperature sensor for a gas burner and assembly comprising the temperature sensor and burner
JP2004264297A (en) Electronic thermometer
JP7313657B2 (en) ear thermometer
EP1026489B1 (en) Contact temperature probe with thermal isolation between probe head and heat shield of sensor wires
JPH10318854A (en) Contact-type thermometer
JP2009121968A (en) Temperature sensor
JP2007057430A (en) Contact-type thermometer
JPS6145462Y2 (en)
US4729798A (en) Long life right angle thermocouple with constant contact pressure
JP2021169954A5 (en)
JP2021534391A (en) Low profile surface temperature sensor
JP6896263B2 (en) Measuring device
JP3147015U (en) Differential scanning calorimeter
JP2017090293A (en) Thermocouple for temperature measurement
JP2015190938A (en) contact internal thermometer
KR101934839B1 (en) Flow Reactor temperature measurement system using Quartz material
WO2023161998A1 (en) Temperature measurement device
JP2023008276A (en) temperature measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250