JP5182237B2 - Manufacturing method of electron source electrode - Google Patents

Manufacturing method of electron source electrode Download PDF

Info

Publication number
JP5182237B2
JP5182237B2 JP2009153407A JP2009153407A JP5182237B2 JP 5182237 B2 JP5182237 B2 JP 5182237B2 JP 2009153407 A JP2009153407 A JP 2009153407A JP 2009153407 A JP2009153407 A JP 2009153407A JP 5182237 B2 JP5182237 B2 JP 5182237B2
Authority
JP
Japan
Prior art keywords
cnt
substrate
carbon nanotubes
electron source
membrane filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009153407A
Other languages
Japanese (ja)
Other versions
JP2011009131A (en
Inventor
真 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009153407A priority Critical patent/JP5182237B2/en
Publication of JP2011009131A publication Critical patent/JP2011009131A/en
Application granted granted Critical
Publication of JP5182237B2 publication Critical patent/JP5182237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カーボンナノチューブを用いた電界放出型電子放出用電極の製造方法に関するものである。   The present invention relates to a method for producing a field emission type electron emission electrode using carbon nanotubes.

カーボンナノチューブは、化学的気相成長法(CVD法)またはアーク放電法によって生成され、炭素原子が六角形状に規則正しく並んだシート(以下、グラフェンシートと称す。)が円筒形に丸まったものであり、特異な性質を有していることから新素材として注目されている。   Carbon nanotubes are produced by a chemical vapor deposition method (CVD method) or an arc discharge method, and a sheet in which carbon atoms are regularly arranged in a hexagonal shape (hereinafter referred to as graphene sheet) is rounded into a cylindrical shape. It has attracted attention as a new material because of its unique properties.

なお、グラフェンシートの筒が一重のものを単層カーボンナノチューブと称し、その直径は1〜数nm、長さは1〜数μm程度である。一方、グラフェンシートの筒が同芯状に幾重も重なっているものを多層カーボンナノチューブと称し、その直径は数nm〜数十nmである。また、グラフェンシートが略円錐状に丸まったものをカーボンナノホーンと称し、単層または多層カーボンナノホーンがある。本発明においては、これらをカーボンナノチューブ(以下、CNTと称す。)と総称する。また、このCNT単体をCNT繊維、該CNT繊維が集合したものをCNT集合体と称す。   A single graphene sheet tube is referred to as a single-walled carbon nanotube, and has a diameter of 1 to several nm and a length of about 1 to several μm. On the other hand, a graphene sheet tube in which a plurality of layers are concentrically overlapped is referred to as a multi-walled carbon nanotube, and its diameter is several nm to several tens of nm. A graphene sheet rounded into a substantially conical shape is referred to as a carbon nanohorn, and there is a single-layer or multi-layer carbon nanohorn. In the present invention, these are collectively referred to as carbon nanotubes (hereinafter referred to as CNT). Further, this single CNT is referred to as a CNT fiber, and a collection of the CNT fibers is referred to as a CNT aggregate.

このCNTの先端部は非常に高い電界電子放出特性を有しており、蛍光表示管、X線管、フィールドエミッションディスプレイ(FED)等の電界放出型冷陰極用材料として、実用化が検討されている。   The tip of this CNT has very high field electron emission characteristics, and its practical application as a field emission cold cathode material for fluorescent display tubes, X-ray tubes, field emission displays (FEDs), etc. has been studied. Yes.

アーク放電法、CVD法等によりCNTはほとんどの場合単体で生成されるため、これを用いたCNT電極素子は、CNT繊維を導電性ペースト材料に混ぜて、陰極基板にスクリーン印刷等により成膜して製作する方法が一般的である。ペーストとしては、例えば、1〜33重量%のCNTとガラス粉末との混合物に分散剤とバインダー溶液としてエチルセルロースのテルビネオール溶液を加えて混練したものが用いられ、これを図8に示すように基板表面にスクリーン印刷し、大気中で焼成して、テープで起毛処理して製造している(特許文献1)。 Since CNTs are almost always produced alone by arc discharge method, CVD method, etc., CNT electrode element using this is formed by mixing CNT fiber with conductive paste material and forming film on cathode substrate by screen printing etc. Is generally used. As the paste, for example, a mixture of 1 to 33% by weight of CNT and glass powder is added and kneaded by adding a terbinol solution of ethyl cellulose as a dispersant and a binder solution, and this is used as shown in FIG. It is manufactured by screen printing, firing in the air, and raising with a tape (Patent Document 1).

特開2007−115675号公報JP 2007-115675 A

上記のペーストを使用する方法は、スクリーン上に多量のペーストが残るためCNTのロスが多く、また、CNTに対し3〜20倍量の樹脂を焼成によって除去する際に金属基板の酸化が起こり、CNTの燃焼や損傷劣化を引き起こす。このため、エミッション特性が悪く、不安定で放電しやすく、耐久性も充分でなかった。   The method using the above paste has a lot of CNT loss because a large amount of paste remains on the screen, and oxidation of the metal substrate occurs when removing 3 to 20 times the amount of resin by calcination, Causes CNT combustion and damage deterioration. For this reason, emission characteristics were poor, unstable and easy to discharge, and durability was not sufficient.

本発明者は、上記課題を解決するべく鋭意検討の結果、CNT分散液を作成してこれをメンブレンフィルターで濾過することにより、CNTの高密度堆積成膜が得られることを見出した。そして、これを基板に転写し、真空環境下で電子ビーム照射してCNTを基板上に固着し、起毛処理して電子源電極を製造することができた。すなわち、本発明は、カーボンナノチューブを分散媒に分散させた分散液をメンブレンフィルターで濾過し、メンブレンフィルター上に堆積したカーボンナノチューブを基板に転写し、真空環境下で電子ビームを照射してカーボンナノチューブを基板上に固着し、次いで、カーボンナノチューブを起毛させることを特徴とする電子源電極の製造方法を提供するものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a CNT high density deposition film can be obtained by preparing a CNT dispersion and filtering it with a membrane filter. Then, this was transferred to a substrate, irradiated with an electron beam in a vacuum environment to fix the CNTs on the substrate, and brushed to produce an electron source electrode. That is, in the present invention, a dispersion liquid in which carbon nanotubes are dispersed in a dispersion medium is filtered with a membrane filter, the carbon nanotubes deposited on the membrane filter are transferred to a substrate, and irradiated with an electron beam in a vacuum environment. Is provided on the substrate, and then the carbon nanotubes are raised, and a method for producing an electron source electrode is provided.

本発明により、原料CNTをほぼ100%成膜して転写するためCNTのロスがない。樹脂等の含有不純物を酸素環境下で加熱し、燃焼させる必要がなく、CNT損傷がなく、エミッション特性にすぐれ耐久性も良好な電子源電極が得られる。   According to the present invention, almost 100% of the raw material CNT is deposited and transferred, so there is no loss of CNT. It is not necessary to heat and burn impurities contained in a resin or the like in an oxygen environment, there is no CNT damage, and an electron source electrode with excellent emission characteristics and good durability can be obtained.

CNT分散液をメンブレンフィルターで濾過している状態を示す図である。It is a figure which shows the state which is filtering the CNT dispersion liquid with a membrane filter. メンブレンフィルター上に堆積したCNTを基板に転写している状態を示す工程図である。It is process drawing which shows the state which is transferring the CNT deposited on the membrane filter to a board | substrate. 基板に転写されたCNTに電子ビームを照射して固着している状態を示す図である。It is a figure which shows the state which irradiates the electron beam and fixed to CNT transferred by the board | substrate. 基板上に固着したCNTにYAGレーザを照射して起毛したCNT電極のSEM写真とエミッション電界電流密度特性を示すグラフである。It is a graph which shows the SEM photograph and emission electric field current density characteristic of the CNT electrode which raised by irradiating YAG laser to CNT adhering on a board | substrate. 上記CNT電極のエミッション分布を示す図である。It is a figure which shows the emission distribution of the said CNT electrode. 基板上に固着したCNTをテープで起毛したCNT電極のSEM写真とエミッション電界電流密度特性を示すグラフである。It is a graph which shows the SEM photograph and emission electric field current density characteristic of the CNT electrode which raised CNT fixed on the board | substrate with the tape. 上記CNT電極のエミッション分布を示す図である。It is a figure which shows the emission distribution of the said CNT electrode. 従来のペーストでCNTを固着する方法を模式的に示す図である。It is a figure which shows typically the method of adhering CNT with the conventional paste.

本発明に用いるカーボンナノチューブ(CNT)は、単層、二層、多層等の種類やCVD法やアーク法などの製法を問わないが、低エミッション電圧、高許容電流密度等の電子放出特性に優れたものが適している。一般的にCNTは直径が小さい(単層)ほど低エミッション電圧であり、層数が多くかつ結晶性が高いほど許容電流密度が高く耐久性に優れている。従来のアーク放電法で得られるCNTの純度は、一般に70重量%であるが、本発明では80重量%以上、好ましくは90重量%以上のものが好ましい。この純度は、走査型電子顕微鏡(SEM)を用いて観察することにより測定したものであり、アモルファスカーボン等の不純物を含むCNT集合体におけるCNTの占める割合を意味する。このようなCNTは、例えば、特開2004−292184号公報に開示されているテープ状のCNTの製造方法で得ることができる。   The carbon nanotube (CNT) used in the present invention is excellent in electron emission characteristics such as a low emission voltage and a high allowable current density, regardless of the type such as single-walled, double-walled, or multilayered, and the manufacturing method such as the CVD method or the arc method. Is suitable. In general, the smaller the diameter (single layer) of CNT, the lower the emission voltage, and the higher the number of layers and the higher the crystallinity, the higher the allowable current density and the better the durability. The purity of the CNT obtained by the conventional arc discharge method is generally 70% by weight, but in the present invention, the purity is preferably 80% by weight or more, preferably 90% by weight or more. This purity is measured by observing using a scanning electron microscope (SEM), and means the proportion of CNT in a CNT aggregate containing impurities such as amorphous carbon. Such a CNT can be obtained, for example, by a method for producing a tape-like CNT disclosed in Japanese Patent Application Laid-Open No. 2004-292184.

CNTを分散するための分散媒は有機溶媒でよく、例えば、メタノール、イソプロパノール等の低級アルコール、アセトン、メチルエチルケトン等のケトン、ジメチルホルムアミド、エーテル、クロロホルム等の塩化炭化水素等から幅広く選択することができる。分散濃度は、CNTの分散性によるが、分散媒40mlに対し、CNTを0.1〜3mg程度でよい。   The dispersion medium for dispersing CNTs may be an organic solvent, and can be widely selected from, for example, lower alcohols such as methanol and isopropanol, ketones such as acetone and methyl ethyl ketone, chlorinated hydrocarbons such as dimethylformamide, ether and chloroform. . The dispersion concentration depends on the dispersibility of CNTs, but may be about 0.1 to 3 mg of CNTs with respect to 40 ml of the dispersion medium.

分散は、例えば超音波発振器や振動装置などを用いて、数分から数十分超音波を照射することによって行うことができる。
この分散液をメンブレンフィルターで濾過する。メンブレンフィルターの材質は、使用溶媒に対する耐性に優れ、CNTの剥離性が良好なものが良く、ポリカーボネート(PC)、ポリテトラフルオロエチレン(PTFE、一般名テフロン)、ポリプロピレン(PP)等のものが適当である。フィルターの孔径(ポアサイズ)は、CNT種や分散状態にもよるが、0.1〜5μm程度である。この方式の利点は、通常のろ過堆積とは異なり、高速堆積させるため再凝集しやすいCNT分散液に対し、非常に高分散したCNTをしかも均一に堆積成膜させることが出来ることにある。
Dispersion can be performed by irradiating ultrasonic waves for several minutes to several tens of minutes using, for example, an ultrasonic oscillator or a vibration device.
This dispersion is filtered through a membrane filter. The material of the membrane filter should be excellent in the resistance to the solvent used and have good CNT releasability. Polycarbonate (PC), polytetrafluoroethylene (PTFE, generic name Teflon), polypropylene (PP), etc. are suitable. It is. The pore size (pore size) of the filter is about 0.1 to 5 μm, although it depends on the CNT type and dispersion state. The advantage of this method is that, unlike ordinary filtration deposition, it is possible to deposit CNTs with very high dispersion evenly on a CNT dispersion liquid that is easily re-aggregated because of high-speed deposition.

この際、CNTよりも小さなアモルファスカーボン、ナノ粒子などの不純物を同時にろ過精製することも可能である。また、予めCNTが通過する孔径5〜10μmのフィルターを大きいほうから順次ろ過することにより、大径の不純物をろ過精製することもできる。濾過器には、一般的な減圧濾過器を使用することができる。   At this time, impurities such as amorphous carbon and nanoparticles smaller than CNT can be simultaneously filtered and purified. Moreover, a large-diameter impurity can also be filtered and refined by sequentially filtering a filter having a pore diameter of 5 to 10 μm through which CNTs pass in order from the larger one. As the filter, a general vacuum filter can be used.

図1に示す減圧濾過器を簡単に説明すると、メンブレンフィルター下のフラスコ内を真空ポンプとともに減圧と同時あるいは前後してフィルター上の容器へCNT分散液を投入する。フィルター下部は減圧状態であるため、溶媒は一気に下部へ吸引され、数秒から数十秒以内にすばやくCNTはフィルター上に堆積する。   Briefly explaining the vacuum filter shown in FIG. 1, the CNT dispersion liquid is introduced into the container on the filter in the flask under the membrane filter together with the vacuum pump or simultaneously with or before the vacuum. Since the lower part of the filter is in a reduced pressure state, the solvent is sucked to the lower part at once, and CNT is quickly deposited on the filter within several seconds to several tens of seconds.

CNTの堆積状態は膜厚0.05〜3μmで重量密度0.1〜3μg/mm2のものである。この堆積CNT膜を基板へ転写するフローを図2に示す。
CNTが堆積したフィルターを電子源用の金属基板にのせ、メタノールなどの揮発性溶媒をCNTに浸透させた状態で、0.5〜20kg/cm2程度の圧力で加圧すると、溶媒が蒸発するに従い基板側へCNT膜が転写される。これは、メンブレンフィルターと基板表面とのCNTに対する密着性の差によって生じるものと考えられる。CNT堆積形状を基板形状に合わせることにより、使用したCNTを100%基板に成膜させることが出来る。
The CNT is deposited in a thickness of 0.05 to 3 μm and a weight density of 0.1 to 3 μg / mm 2 . A flow for transferring the deposited CNT film to the substrate is shown in FIG.
When the filter on which the CNTs are deposited is placed on a metal substrate for an electron source and a volatile solvent such as methanol is infiltrated into the CNTs, the solvent evaporates when pressurized at a pressure of about 0.5 to 20 kg / cm 2. Accordingly, the CNT film is transferred to the substrate side. This is considered to be caused by a difference in adhesion to the CNT between the membrane filter and the substrate surface. By matching the CNT deposition shape to the substrate shape, the used CNTs can be deposited on a 100% substrate.

基板は導電性のものである。これは、ステンレス鋼やFe−Ni系合金等のNi合金、Al、Cu、W、Ti、Co、Cr、Mo、Nb、Mn、Si等の金属およびその合金製のもののほか、ガラスやセラミック等の表面に金属や導電性半導体を蒸着等により被着させたもの等がある。半導体の例としては、導電性の良好なITO(錫ドープ酸化インジウム)、ZnO、SnO2、TiO2などのn型酸化物半導体等を挙げることができる。基板の形状や大きさは基板の用途等に応じて定まるが、通常は、基本形状が円形、4角形、長方形等の板状、等である。 The substrate is conductive. This includes Ni alloys such as stainless steel and Fe-Ni alloys, metals such as Al, Cu, W, Ti, Co, Cr, Mo, Nb, Mn, Si, and alloys thereof, as well as glass and ceramics. There are those in which a metal or a conductive semiconductor is deposited on the surface by vapor deposition or the like. Examples of semiconductors include n-type oxide semiconductors such as ITO (tin-doped indium oxide), ZnO, SnO 2 , and TiO 2 with good conductivity. The shape and size of the substrate are determined according to the use of the substrate, etc., but the basic shape is usually a plate shape such as a circle, a quadrangle, or a rectangle.

CNT膜を付着させる面は鏡面加工あるいは脱脂処理、酸化膜除去たとえば熱処理イオンボンバート等の前処理を施すことができる。
CNTが転写された基板は、このままの状態ではCNTと基板の接合性は弱く固着処理が必要である。スクリーン印刷による一般的なCNT電子源製造方法(特開2007−115675号、特開2008−176968号、特開2008−243789号など)では、CNTペーストに低融点ガラスの微粒子を予め混入し印刷成膜後、大気あるいは窒素雰囲気中で350〜500℃焼成処理時にガラスを溶融させ固着させる方法が知られている。この方法はペースト中の多量バインダー樹脂(CNT重量比20〜70倍)除去のため大気中あるいは酸化雰囲気中での焼成が必要であり、酸化する金属基板に適用することはできず、ガラス基板専用の方法である。本方法でも低融点ガラス微粒子を用いることも出来るが、不導体のものによる固着は、CNTの電子放出性を損ない、チャージアップによる放電発生等の損傷要因ともなり好ましくない。
The surface to which the CNT film is attached can be subjected to a pre-treatment such as mirror finishing or degreasing treatment, oxide film removal such as heat treatment ion bombardment.
In the state in which the CNT is transferred, the bonding property between the CNT and the substrate is weak and needs to be fixed. In general CNT electron source manufacturing methods by screen printing (JP 2007-115675, JP 2008-176968, JP 2008-243789, etc.), low-melting-point glass particles are mixed in advance in the CNT paste to perform printing. After film formation, a method is known in which glass is melted and fixed during firing at 350 to 500 ° C. in air or nitrogen atmosphere. This method requires baking in the atmosphere or in an oxidizing atmosphere to remove a large amount of binder resin (CNT weight ratio 20 to 70 times) in the paste, and cannot be applied to a metal substrate to be oxidized. It is a method. Although low melting point glass fine particles can also be used in this method, fixing with a non-conductive material is not preferable because it impairs the electron emission properties of the CNT and causes damage such as discharge due to charge-up.

そこで、本発明では、基板上に転写されたCNTに、真空環境下で電子ビームを照射してCNTを基板に固着させる方法をとる。
100%CNT(ナノカーボン、アモルファスカーボン等のカーボン不純物を含む)膜と金属基板を固着させる方法として、CNTを電子源とした電子ビームを真空中でCNT成膜面に照射する方法を用いたのである。この方法では図3に示すように真空中でCNTが成膜された基板に5〜20keVのエネルギーを持った電子ビームを照射すると電子ビームはCNT膜を透過し、基板表面に到達する。凡そ数μm厚さのCNT膜は10keV程度の電子ビームは透過し、金属とCNT膜を反応させ固着することができる。この固着機構は明らかではないが、CNT及び金属は変質損傷していないため、金属中の酸素、水素、炭酸ガス、水等の含有物と低エネルギーの2次電子が電子ビーム照射により放出され、CNTに付着しているカーボン系不純物と反応、変質、成膜することにより基板と固着していると考えられる。また、基板とだけでなくCNT同士も固着されており、電子ビームのエネルギーを変化させることにより、電子ビームの透過距離を変えCNT膜厚に対し基板からどの程度の厚さまでを固着させるかを制御することができる。
Therefore, in the present invention, a method is adopted in which the CNT transferred onto the substrate is irradiated with an electron beam in a vacuum environment to fix the CNT to the substrate.
As a method of fixing a 100% CNT (including carbon impurities such as nanocarbon and amorphous carbon) film and a metal substrate, a method of irradiating an electron beam using CNT as an electron source on a CNT film formation surface in a vacuum is used. is there. In this method, as shown in FIG. 3, when a substrate on which CNTs are formed in a vacuum is irradiated with an electron beam having an energy of 5 to 20 keV, the electron beams pass through the CNT film and reach the substrate surface. The CNT film having a thickness of about several μm transmits an electron beam of about 10 keV, and can be fixed by reacting the metal and the CNT film. Although this fixing mechanism is not clear, since CNT and metal are not altered and damaged, contents such as oxygen, hydrogen, carbon dioxide gas, and water in the metal and low energy secondary electrons are emitted by electron beam irradiation, It is considered that the carbon-based impurities adhering to the CNT are adhered to the substrate by reacting, changing, and forming a film. Also, not only the substrate but also the CNTs are fixed, and by changing the energy of the electron beam, the transmission distance of the electron beam is changed to control how much the CNT film is fixed from the substrate. can do.

電子ビーム照射により基板表面とその近傍のCNTが固着されたCNT膜はレーザ照射、プラズマによる表面処理、粘着テープ起毛等の方法で電子放出するための起毛処理が施される。YAGレーザによる起毛処理は、パルス幅10ns前後、波長532nmのパルスYAGレーザをスポットあるいはライン上に集光し、CNT膜表面にエネルギー密度50〜500mJ/cm2の範囲で全面に照射する。 The CNT film on which the substrate surface and CNTs in the vicinity thereof are fixed by electron beam irradiation is subjected to raising treatment for emitting electrons by a method such as laser irradiation, plasma surface treatment, and adhesive tape raising. In the raising treatment with a YAG laser, a pulse YAG laser having a pulse width of about 10 ns and a wavelength of 532 nm is focused on a spot or line, and the entire surface of the CNT film is irradiated in an energy density range of 50 to 500 mJ / cm 2 .

照射回数は1〜数回程度で全体が起毛した状態となる。このレーザ照射処理は極表層部に作用するため、前記固定処理工程と本工程の順序を逆にすることも可能である。レーザ照射による起毛処理の詳細は特開2005−166432号公報に開示されている。   The number of irradiation is about 1 to several times, and the whole is raised. Since this laser irradiation treatment acts on the extreme surface layer portion, the order of the fixing treatment step and this step can be reversed. The details of the raising process by laser irradiation are disclosed in JP-A-2005-166432.

また、粘着テープによる起毛法は、CNT表面に緻密で適度な粘着性を持ち、粘着剤がテープから剥離しにくいテープをCNT表面に隙間無く貼り付け、一定の角度と速度でテープを引き剥がす。引き剥がす際に基板側に固着していないCNT部分はテープと共に引き剥がされ、基板に固着しているCNT領域と固着していない領域の境界部が剥離し、基板側のCNT膜が起毛する。   In the raising method using an adhesive tape, a tape that has a dense and appropriate adhesiveness on the CNT surface and the adhesive is difficult to peel off from the tape is stuck on the CNT surface without any gap, and the tape is peeled off at a constant angle and speed. At the time of peeling, the CNT portion not fixed to the substrate side is peeled off together with the tape, the boundary portion between the CNT region fixed to the substrate and the non-fixed region is peeled off, and the CNT film on the substrate side is raised.

特開2004−292184号公報の実施例1に記載されているテープ状CNTを用いた。このテープ状CNTは大気中アーク放電法で製造された高結晶、高純度の直径Φ10nm程度の多層CNTであり、単層CNTの低エミッション電圧と多層で高結晶性のCNTの許容電流密度の高さと耐久性の両者の特性を備えたものである。   Tape-like CNT described in Example 1 of JP-A No. 2004-292184 was used. This tape-shaped CNT is a high-crystal, high-purity multi-layer CNT having a diameter of about 10 nm manufactured by an arc discharge method in the atmosphere, and has a low emission voltage of single-walled CNT and a high allowable current density of multi-walled and highly crystalline CNT. And durability.

このCNT0.5mgをメタノール40mlに加え、60分間超音波を照射して充分に分散させた。
このCNT分散液を図1に示す減圧濾過器で濾過した。メンブレンフィルターには、孔径が3μmのPTFEを用いた。濾過は5秒以内に終了し、メンブレンフィルター上に膜厚0.6μmで重量密度0.6μg/mm2の堆積CNT膜が形成された。
0.5 mg of this CNT was added to 40 ml of methanol, and ultrasonic waves were applied for 60 minutes to sufficiently disperse.
The CNT dispersion was filtered with a vacuum filter shown in FIG. As the membrane filter, PTFE having a pore diameter of 3 μm was used. Filtration was completed within 5 seconds, and a deposited CNT film having a thickness of 0.6 μm and a weight density of 0.6 μg / mm 2 was formed on the membrane filter.

この堆積CNT膜を直径4mmのステンレスの基板上にのせ溶媒を加えて、8kg/cm2で加圧して、図2に示すようにして転写した。
続いて、真空中で10keVの電子線を照射してCNTを基板上に固着させ、レーザ照射法を用いて基板上に固着したCNT膜を起毛処理した。
This deposited CNT film was placed on a stainless steel substrate having a diameter of 4 mm, a solvent was added , the pressure was applied at 8 kg / cm 2 , and transfer was performed as shown in FIG.
Subsequently, the electron beam of 10 keV was irradiated in vacuum to fix the CNTs on the substrate, and the CNT film fixed on the substrate was brushed using a laser irradiation method.

レーザ照射は、パルス幅10ns前後、波長532nmのパルスYAGレーザを使用し、CNT膜表面にエネルギー密度220mJ/cm2で1回全面に行なった。
以上の方法で製造したCNT電極表面のSEM写真及びエミッション電界電流密度特性とそのエミッション分布を測定した結果を図4、5に示す。SEM写真ではCNTが起毛した状態で基板に固着しており、電界電流密度特性ではエミッションの閾値電界が1.1V/μmと非常に低く、またその均一性も高いことが分かる。
Laser irradiation was performed once on the entire surface of the CNT film at an energy density of 220 mJ / cm 2 using a pulse YAG laser having a pulse width of about 10 ns and a wavelength of 532 nm.
FIGS. 4 and 5 show the SEM photograph of the surface of the CNT electrode manufactured by the above method, the emission field current density characteristics, and the measurement result of the emission distribution. The SEM photograph shows that the CNT is raised and fixed to the substrate, and the electric field current density characteristic shows that the emission threshold electric field is as low as 1.1 V / μm and the uniformity is high.

上記実施例1において基板上に固着したCNT膜を、粘着テープ起毛法を用いて起毛処理した。
粘着テープ起毛では、剥離強さ3N/cmのテープをCNT膜に貼り、165°の角度を保ちながら200mm/分で引き剥がして行った。
The CNT film fixed on the substrate in Example 1 was subjected to raising treatment using an adhesive tape raising method.
In the case of raising the adhesive tape, a tape having a peel strength of 3 N / cm was attached to the CNT film and peeled off at 200 mm / min while maintaining an angle of 165 °.

以上の方法で製造したCNT電極の表面SEM写真及びエミッション特性とエミッション分布を測定した結果を図6、7に示す。基板にCNTが非常に薄く固着しており、エミッションの閾値電界は実施例1のレーザ処照射法の場合に比べてやや高いがより均一性に優れた電極が得られることが分かる。   The surface SEM photograph of the CNT electrode manufactured by the above method and the results of measuring the emission characteristics and emission distribution are shown in FIGS. It can be seen that the CNTs are fixed very thinly on the substrate, and the emission threshold electric field is slightly higher than that of the laser treatment method of Example 1, but an electrode with better uniformity can be obtained.

本発明により、エミッション特性にすぐれた電子源電極を効率よく製作できるので、種々の電気機器、電子装置に幅広く利用できる。   According to the present invention, an electron source electrode having excellent emission characteristics can be efficiently manufactured, and thus can be widely used in various electric devices and electronic devices.

Claims (1)

カーボンナノチューブを分解媒に分散させた分散液を、ポリカーボネート、ポリテトラフルオロエチレン、ポリプロピレンのいずれかの材質であり、かつ、孔径が0.1〜5μmのメンブレンフィルターで濾過し、メンブレンフィルター上に堆積したカーボンナノチューブを電子源用の金属基板に転写し、真空環境下で電子ビームを照射してカーボンナノチューブを前記金属基板上に固着し、次いで、カーボンナノチューブを起毛させる電子源電極の製造方法であって、前記分散媒が揮発性溶媒であり、前記メンブレンフィルター上に堆積したカーボンナノチューブを前記金属基板にのせ、新たに揮発性溶媒を該カーボンナノチューブに浸透させた状態で、0.5〜20kg/cmの圧力で加圧することにより、前記金属基板に転写することを特徴とする電子源電極の製造方法。 A dispersion liquid in which carbon nanotubes are dispersed in a decomposition medium is filtered through a membrane filter made of polycarbonate, polytetrafluoroethylene, or polypropylene and having a pore diameter of 0.1 to 5 μm, and deposited on the membrane filter. the carbon nanotubes were transferred to a metal substrate for an electron source, by irradiating an electron beam under a vacuum environment fixed carbon nanotubes on the metal substrate, then the manufacturing method of the Ru electron source electrodes brushed carbon nanotubes a is, the a dispersion medium volatile solvent, wherein the carbon nanotubes deposited on a membrane filter placed on the metal substrate, in a state where a new volatile solvent impregnated in the carbon nanotube, 0.5 by pressurizing at a pressure of 20 kg / cm 2, the child transferred to the metal substrate Method of manufacturing an electron source electrode and said.
JP2009153407A 2009-06-29 2009-06-29 Manufacturing method of electron source electrode Active JP5182237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153407A JP5182237B2 (en) 2009-06-29 2009-06-29 Manufacturing method of electron source electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153407A JP5182237B2 (en) 2009-06-29 2009-06-29 Manufacturing method of electron source electrode

Publications (2)

Publication Number Publication Date
JP2011009131A JP2011009131A (en) 2011-01-13
JP5182237B2 true JP5182237B2 (en) 2013-04-17

Family

ID=43565544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153407A Active JP5182237B2 (en) 2009-06-29 2009-06-29 Manufacturing method of electron source electrode

Country Status (1)

Country Link
JP (1) JP5182237B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323306B1 (en) * 2012-02-15 2013-10-29 고려대학교 산학협력단 Manufacturing method of electron emitting device by using carbon nano tube
KR101458267B1 (en) * 2012-02-28 2014-11-07 세종대학교산학협력단 Emitter for Field Emission, Method of manufacturing the same and Field Emission Device using the same
KR101491206B1 (en) * 2012-02-29 2015-02-06 세종대학교산학협력단 Method of manufacturing Emitter for Field Emission and Field Emission Device manufactured by using the same
JP7376077B2 (en) * 2019-10-26 2023-11-08 国立大学法人山形大学 Method for forming a carbonaceous structure and substrate having a carbonaceous structure
CN114171359B (en) * 2021-12-06 2023-06-23 国家纳米科学中心 Carbon nanotube cold cathode electron source and alignment welding method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055655B2 (en) * 2000-11-20 2012-10-24 日本電気株式会社 Emitter manufacturing method, field emission cold cathode using the emitter, and flat image display device
JP3843447B2 (en) * 2000-12-01 2006-11-08 日本電気株式会社 Carbon nanotube pattern formation method
JP2005100885A (en) * 2003-09-26 2005-04-14 Shimadzu Corp Field emission electron source and microscope using this
JP4844722B2 (en) * 2006-03-22 2011-12-28 Jfeエンジニアリング株式会社 Method for fixing carbon nanotubes
JP4273364B2 (en) * 2007-01-09 2009-06-03 財団法人大阪産業振興機構 Method for modifying carbon nanotubes and aggregates of carbon nanotubes
JP2009104928A (en) * 2007-10-24 2009-05-14 Jfe Engineering Corp Carbon nanotube napping method
FI20075767A0 (en) * 2007-10-30 2007-10-30 Canatu Oy Surface coating and electrical devices comprising this

Also Published As

Publication number Publication date
JP2011009131A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
KR100482241B1 (en) Carbon nanotube and method for producing the same, electron source and method for producing the same, and display
KR100615103B1 (en) Nanotubes, field emission cathode and cathode ray tube having nanotubes and method for forming them
EP1245704B1 (en) Uses of carbon fibers
JP5698982B2 (en) Illumination lamp, nanocarbon material composite substrate, and manufacturing method thereof
JP2006513048A (en) Method of collecting and classifying materials comprising nanostructures and related articles
JPH11194134A (en) Carbon nano tube device, its manufacture and elecfron emission element
JP5182237B2 (en) Manufacturing method of electron source electrode
Kaur et al. Metal foam-carbon nanotube-reduced graphene oxide hierarchical structures for efficient field emission
Lee et al. High-performance field emission from a carbonized cork
JP2010192245A (en) Method of manufacturing emitter, emitter, method of manufacturing field emission light emitting element, field emission light emitting element, and lighting device
JP4915309B2 (en) Electron emitting device, manufacturing method thereof, and apparatus equipped with the same
JP3897794B2 (en) Method for manufacturing electron-emitting device, electron source, and image forming apparatus
JP2010177214A (en) Field emission device made of laser and/or plasma-treated carbon nanotube mat, film or ink
JP3734400B2 (en) Electron emitter
JP5213099B2 (en) Carbon nanotube growth method and carbon nanotube emitter on carbon fiber sheet
JP3912276B2 (en) Tape-like aggregate of carbon nanotubes and carbon nanotube installation device provided with the same
TWI309428B (en) Emission source having carbon nanotube
JP3912273B2 (en) Tape-like aggregate of carbon nanotubes and carbon nanotube installation device provided with the same
JP3912274B2 (en) Tape-like aggregate of carbon nanotubes and carbon nanotube installation device provided with the same
JP5099331B2 (en) Nanocarbon material composite, method for producing the same, and electron-emitting device using the same
JP2009104928A (en) Carbon nanotube napping method
JP5376197B2 (en) Method for producing nanocarbon material composite
JP3912275B2 (en) Tape-like aggregate of carbon nanotubes and carbon nanotube installation device provided with the same
JP2005332612A (en) Carbon nano-tube electrode and manufacturing method of the same
Chen et al. Boosting field electron emission of carbon nanotubes through small-hole-patterning design of the substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Ref document number: 5182237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350