JP5180745B2 - Visible light responsive photocatalyst and method for producing the same - Google Patents

Visible light responsive photocatalyst and method for producing the same Download PDF

Info

Publication number
JP5180745B2
JP5180745B2 JP2008226198A JP2008226198A JP5180745B2 JP 5180745 B2 JP5180745 B2 JP 5180745B2 JP 2008226198 A JP2008226198 A JP 2008226198A JP 2008226198 A JP2008226198 A JP 2008226198A JP 5180745 B2 JP5180745 B2 JP 5180745B2
Authority
JP
Japan
Prior art keywords
visible light
iodate
titanium oxide
iodide
periodate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008226198A
Other languages
Japanese (ja)
Other versions
JP2010058047A (en
Inventor
桂一 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2008226198A priority Critical patent/JP5180745B2/en
Publication of JP2010058047A publication Critical patent/JP2010058047A/en
Application granted granted Critical
Publication of JP5180745B2 publication Critical patent/JP5180745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は可視光応答型酸化チタン光触媒とその製造方法に関する。   The present invention relates to a visible light responsive titanium oxide photocatalyst and a method for producing the same.

酸化チタンは、380nm以下の紫外線照射によって強い酸化力および超親水性を発現する光触媒材料として、脱臭、防汚、抗菌、親水化処理等への利用が進められている。しかし、室内のような弱紫外線環境下では、その光触媒活性はほとんど発現されないため、可視光下で強い酸化力を発現する可視光応答型光触媒が求められている。   Titanium oxide is being used for deodorization, antifouling, antibacterial treatment, hydrophilic treatment, and the like as a photocatalytic material that exhibits strong oxidizing power and super hydrophilicity when irradiated with ultraviolet rays of 380 nm or less. However, since the photocatalytic activity is hardly expressed under a weak ultraviolet environment such as indoors, a visible light responsive photocatalyst that expresses strong oxidizing power under visible light is required.

特許文献1には、酸化チタンなどの光触媒粒子の表面にハロゲン化白金を担持して、可視光下での光触媒活性を付与する技術が記載されている。しかしながら、使用する白金化合物が高価であるため、汎用性に乏しいという問題がある。   Patent Document 1 describes a technique of imparting photocatalytic activity under visible light by supporting platinum halide on the surface of photocatalytic particles such as titanium oxide. However, since the platinum compound to be used is expensive, there is a problem that the versatility is poor.

特許文献2には、窒素原子含有酸化チタンまたは硫黄原子含有酸化チタンの表面に3価の鉄化合物を担持して、可視光下でも高い光触媒活性を示す光触媒を得る技術が記載されている。しかしながら、脱臭能力や防汚能力に代表される該光触媒の光触媒活性は、紫外光応答型光触媒と比較すると、はるかに低く、利用者が脱臭作用や防汚作用を実感することは困難という問題がある。このことは、既存の可視光応答型光触媒に共通して言える問題であり、実用化への大きな障害となっている。   Patent Document 2 describes a technique for obtaining a photocatalyst exhibiting high photocatalytic activity even under visible light by supporting a trivalent iron compound on the surface of nitrogen atom-containing titanium oxide or sulfur atom-containing titanium oxide. However, the photocatalytic activity of the photocatalyst represented by the deodorizing ability and antifouling ability is much lower than that of the ultraviolet light responsive photocatalyst, and it is difficult for the user to realize the deodorizing action and the antifouling action. is there. This is a problem common to existing visible light responsive photocatalysts, and is a major obstacle to practical use.

特開2002−239395JP2002-239395 特開2007−090336JP2007-090336

そのため白金化合物に代表される高価な原料を使用せず、脱臭能力や防汚能力においてこれまで知られている可視光応答型酸化チタン光触媒よりも光触媒性能において優れる可視光応答型酸化チタン光触媒の提供が望まれる。   Therefore, it is possible to provide a visible light responsive titanium oxide photocatalyst that is superior in photocatalytic performance to visible light responsive titanium oxide photocatalysts that have been known so far in terms of deodorizing ability and antifouling ability without using expensive raw materials typified by platinum compounds. Is desired.

上記要望を満たすため、本発明は、少なくとも表面の一部分が無機ヨウ素化合物で被覆されていることを特徴とする可視光応答型酸化チタン光触媒粒子を提供する。   In order to satisfy the above-described demand, the present invention provides visible light-responsive titanium oxide photocatalyst particles characterized in that at least a part of the surface is coated with an inorganic iodine compound.

本発明はまた、本発明の可視光応答型酸化チタン光触媒粒子の製造法にも関し、該方法は、
(a)酸化チタン光触媒粒子を無機ヨウ素化合物水溶液に均一に分散させ、スラリーを得る工程、
(b)得られたスラリーから水分を蒸発乾固する工程、および
(c)生成物を粉砕する工程を含む。
The present invention also relates to a method for producing the visible light responsive titanium oxide photocatalyst particles of the present invention,
(A) a step of uniformly dispersing titanium oxide photocatalyst particles in an inorganic iodine compound aqueous solution to obtain a slurry;
(B) a step of evaporating and drying moisture from the obtained slurry, and (c) a step of pulverizing the product.

本発明において使用し得る無機ヨウ素化合物は、水溶性の無機ヨウ素化合物である。具体的にはヨウ化ナトリウム、ヨウ化カリウム、ヨウ化アンモニウム、ヨウ素酸ナトリウム、ヨウ素酸カリウム、ヨウ素酸アンモニウム、過ヨウ素酸ナトリウム、および過ヨウ素酸カリウムである。   The inorganic iodine compound that can be used in the present invention is a water-soluble inorganic iodine compound. Specifically, sodium iodide, potassium iodide, ammonium iodide, sodium iodate, potassium iodate, ammonium iodate, sodium periodate, and potassium periodate.

本発明は、酸化チタン光触媒粒子の表面に、無機ヨウ素化合物を担持することにより、可視光下で高い光触媒活性を発現する光触媒を提供する。   The present invention provides a photocatalyst exhibiting high photocatalytic activity under visible light by supporting an inorganic iodine compound on the surface of titanium oxide photocatalyst particles.

ヨウ素化合物を担持することによって、可視光下で光触媒活性を発現する機構は明らかではないが、ヨウ化物イオンおよび/あるいはヨウ素酸イオンおよび/あるいは過ヨウ素酸イオンが、酸化チタンと電子および/あるいは正孔の授受をすることにより、電子-正孔対の再結合を抑制する働きを果たしていると思われる。このため、可視光のような弱エネルギー下においても、高い光触媒活性を示すと考えられる。   Although the mechanism for developing photocatalytic activity under visible light by supporting an iodine compound is not clear, iodide ions and / or iodate ions and / or periodate ions can be combined with titanium oxide and electrons and / or positive ions. It seems that it plays the role of suppressing the recombination of electron-hole pairs by exchanging holes. For this reason, it is considered that high photocatalytic activity is exhibited even under weak energy such as visible light.

ヨウ素化合物の最適担持量は、ヨウ素化合物種によって異なる。ヨウ化ナトリウムを用いた場合、0.01〜30wt%の範囲であることが好ましく、また、5〜20wt%であることがより好ましい。さらに、10wt%であることが最も好ましい。一方、ヨウ化カリウムまたはアンモニウムを用いた場合、0.01〜40wt%の範囲であることが好ましく、また、5〜30wt%であることがより好ましい。さらに、20wt%であることが最も好ましい。ヨウ素酸ナトリウムまたはカリウムを用いた場合、0.01〜20wt%の範囲であることが好ましく、また、5wt%であることが最も好ましい。過ヨウ素酸ナトリウムまたはカリウムを用いた場合、0.01〜20wt%であることが好ましい。また、5wt%であることが最も好ましい。   The optimum loading amount of the iodine compound varies depending on the iodine compound species. When sodium iodide is used, it is preferably in the range of 0.01 to 30 wt%, more preferably 5 to 20 wt%. Furthermore, it is most preferable that it is 10 wt%. On the other hand, when potassium iodide or ammonium is used, it is preferably in the range of 0.01 to 40 wt%, more preferably 5 to 30 wt%. Furthermore, it is most preferable that it is 20 wt%. When sodium or potassium iodate is used, it is preferably in the range of 0.01 to 20 wt%, and most preferably 5 wt%. When sodium periodate or potassium is used, the content is preferably 0.01 to 20 wt%. Moreover, it is most preferable that it is 5 wt%.

使用し得るヨウ素化合物としては、各種ヨウ化物、ヨウ素酸塩、過ヨウ素酸塩を含む。例えば、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化アンモニウム、ヨウ素酸ナトリウム、ヨウ素酸カリウム、ヨウ素酸アンモニウム、過ヨウ素酸ナトリウム、過ヨウ素酸カリウムなどを使用することができる。   Examples of iodine compounds that can be used include various iodides, iodates, and periodates. For example, sodium iodide, potassium iodide, ammonium iodide, sodium iodate, potassium iodate, ammonium iodate, sodium periodate, potassium periodate and the like can be used.

酸化チタン光触媒粒子としては市販のものを使用することができる。結晶形はアナタース型でもルチル型でも良い。また、これまで知られている窒素や遷移金属をドープした可視光応答型酸化チタン光触媒を原料としても良い。可視光領域での光触媒性能がさらに増強される。   Commercially available titanium oxide photocatalyst particles can be used. The crystal form may be anatase or rutile. Further, a visible light responsive titanium oxide photocatalyst doped with nitrogen or a transition metal known so far may be used as a raw material. The photocatalytic performance in the visible light region is further enhanced.

実施例1
水100mlへヨウ化ナトリウム1gを溶解させ、これに市販のルチル形酸化チタン光触媒(MT-150A、テイカ株式会社)10gを添加し、攪拌したのち、120℃で乾燥することによって、可視光応答型光触媒(試料1)を得た。
Example 1
Dissolve 1 g of sodium iodide in 100 ml of water, add 10 g of a commercially available rutile titanium oxide photocatalyst (MT-150A, Teika Co., Ltd.), stir, and then dry at 120 ° C. A photocatalyst (sample 1) was obtained.

実施例2
ヨウ化ナトリウム1gに替えて、ヨウ化カリウム2gを使用する以外は、実施例1と同様にして、可視光応答型光触媒(試料2)を得た。
Example 2
A visible light responsive photocatalyst (sample 2) was obtained in the same manner as in Example 1 except that 2 g of potassium iodide was used instead of 1 g of sodium iodide.

実施例3
ヨウ化ナトリウム1gに替えて、ヨウ化アンモニウム2gを使用する以外は、実施例1と同様にして、可視光応答型光触媒(試料3)を得た。
Example 3
A visible light responsive photocatalyst (sample 3) was obtained in the same manner as in Example 1 except that 2 g of ammonium iodide was used instead of 1 g of sodium iodide.

実施例4
ヨウ化ナトリウム1gに替えて、ヨウ素酸カリウム0.5gを使用する以外は、実施例1と同様にして、可視光応答型光触媒(試料4)を得た。
Example 4
A visible light responsive photocatalyst (sample 4) was obtained in the same manner as in Example 1 except that 0.5 g of potassium iodate was used instead of 1 g of sodium iodide.

実施例5
ヨウ化ナトリウム1gに替えて、過ヨウ素酸ナトリウム0.5gを使用する以外は、実施例1と同様にして、可視光応答型光触媒(試料5)を得た。
Example 5
A visible light responsive photocatalyst (sample 5) was obtained in the same manner as in Example 1 except that 0.5 g of sodium periodate was used instead of 1 g of sodium iodide.

実施例6
ヨウ化ナトリウム1gに替えて、過ヨウ素酸カリウム0.5gを使用する以外は、実施例1と同様にして、可視光応答型光触媒(試料6)を得た。
Example 6
A visible light responsive photocatalyst (sample 6) was obtained in the same manner as in Example 1 except that 0.5 g of potassium periodate was used instead of 1 g of sodium iodide.

実施例7
25%硫酸チタン水溶液400mlへアンモニア水を添加し、pH9.0に調整することにより、白色析出物を含むスラリーを得た。得られた白色析出物を濾取し、空気中、120℃で乾燥したのち、空気中、400℃で焼成することにより、窒素ドープ酸化チタンを得た。次いで、水100mlへヨウ化ナトリウム1gを溶解させ、これに上記窒素ドープ酸化チタン10gを添加し、攪拌したのち、120℃で乾燥することによって、可視光応答型光触媒(試料7)を得た。
Example 7
Ammonia water was added to 400 ml of a 25% titanium sulfate aqueous solution and adjusted to pH 9.0 to obtain a slurry containing white precipitates. The obtained white precipitate was collected by filtration, dried in air at 120 ° C., and then baked in air at 400 ° C. to obtain nitrogen-doped titanium oxide. Next, 1 g of sodium iodide was dissolved in 100 ml of water, 10 g of the above nitrogen-doped titanium oxide was added thereto, stirred, and then dried at 120 ° C. to obtain a visible light responsive photocatalyst (sample 7).

比較例1
市販のアナタース形酸化チタン光触媒(AMT-100、テイカ株式会社)を、紫外光応答型光触媒(試料8)として光触媒活性の評価に用いた。
Comparative Example 1
A commercially available anatase-type titanium oxide photocatalyst (AMT-100, Teika Co., Ltd.) was used as an ultraviolet light-responsive photocatalyst (sample 8) for evaluation of photocatalytic activity.

可視光下における光触媒活性評価:
光触媒粉末0.5gを、800ppmアセトアルデヒドガス3000mlが封入されたガスバックへ入れ、暗所で15時間保持静置し、吸着飽和状態とした。その後、蛍光灯を用いて光照射し、任意の時間毎にアセトアルデヒド濃度を測定した。アセトアルデヒド濃度は、光音響マルチガスモニタ(1312型、INNOVA)を用いて測定した。評価結果を表1に示す。
なお、光触媒活性の高低を示す指標として、ガス減少速度定数を以下の式より算出した。
Photocatalytic activity evaluation under visible light:
0.5 g of photocatalyst powder was put into a gas bag filled with 3000 ml of 800 ppm acetaldehyde gas, and kept in a dark place for 15 hours to be in an adsorption saturated state. Thereafter, light was irradiated using a fluorescent lamp, and the acetaldehyde concentration was measured every arbitrary time. The acetaldehyde concentration was measured using a photoacoustic multi-gas monitor (type 1312, INNOVA). The evaluation results are shown in Table 1.
The gas reduction rate constant was calculated from the following equation as an index indicating the photocatalytic activity level.

光照射条件は、試料を40ワット蛍光灯2本の直下25cmの距離に置いた。この時の照度は8000ルクスである。   As for the light irradiation conditions, the sample was placed at a distance of 25 cm immediately below two 40-watt fluorescent lamps. The illuminance at this time is 8000 lux.

ガス減少速度定数k(h-1) : kt=ln(C0/Cx
tx:光照射時間(h)、 C0:暗所吸着後のガス濃度(ppm)、
Cx:所定光照射時間後のガス濃度(ppm)
Gas decrease rate constant k (h −1 ): kt x = ln (C 0 / C x )
t x : Light irradiation time (h), C 0 : Gas concentration (ppm) after adsorption in the dark,
Cx: Gas concentration (ppm) after a predetermined light irradiation time

Figure 0005180745
Figure 0005180745

Claims (4)

酸化チタン光触媒粒子の表面に、ヨウ化物イオン、ヨウ素酸イオンおよび過ヨウ素酸イオンから選ばれた少なくとも1種の陰イオンが担持され、該陰イオンの担持により可視光応答性能が賦与されていることを特徴とする酸化チタン光触媒(ただし、前記陰イオンの源は無機ヨウ素化合物であり、かつ、非白金化合物に限る。)。At least one anion selected from iodide ion, iodate ion and periodate ion is supported on the surface of the titanium oxide photocatalyst particles, and the visible light response performance is imparted by the support of the anion. (However, the source of the anion is an inorganic iodine compound and is limited to a non-platinum compound). 前記ヨウ化物イオン、ヨウ素酸イオンおよび過ヨウ素酸イオンの源は、ナトリウム、カリウムおよびアンモニウムのヨウ化物またはヨウ素酸塩と、ナトリウムおよびカリウムの過ヨウ素酸塩よりなる群から選ばれる請求項1の可視光応答型酸化チタン光触媒。 The visible source of claim 1, wherein the source of iodide, iodate and periodate ions is selected from the group consisting of sodium, potassium and ammonium iodide or iodate and sodium and potassium periodate. Photoresponsive titanium oxide photocatalyst. (a)酸化チタン光触媒粒子を、ヨウ化物イオン、ヨウ素酸イオンおよび過ヨウ素酸イオンから選ばれた少なくとも1種の陰イオンを含む水溶液に均一に分散させ、スラリーを得る工程、
(b)得られたスラリーから水分を蒸発乾固する工程、および
(c)生成物を粉砕する工程
を含むことを特徴とする請求項1の可視光応答型酸化チタン光触媒の製造法(ただし、前記陰イオンの源は無機ヨウ素化合物であり、かつ、非白金化合物に限る。)
(A) A step of uniformly dispersing titanium oxide photocatalyst particles in an aqueous solution containing at least one anion selected from iodide ion, iodate ion and periodate ion to obtain a slurry;
The method for producing a visible light responsive titanium oxide photocatalyst according to claim 1 , comprising: (b) a step of evaporating and drying water from the obtained slurry; and (c) a step of pulverizing the product . (The source of the anion is an inorganic iodine compound and is limited to a non-platinum compound) .
前記ヨウ化物イオン、ヨウ素酸イオンおよび過ヨウ素酸イオンの源は、ナトリウム、カリウムおよびアンモニウムのヨウ化物またはヨウ素酸塩と、ナトリウムおよびカリウムの過ヨウ素酸塩よりなる群から選ばれる請求項3の方法。 4. The method of claim 3, wherein the source of iodide, iodate and periodate ions is selected from the group consisting of sodium, potassium and ammonium iodide or iodate and sodium and potassium periodate. .
JP2008226198A 2008-09-03 2008-09-03 Visible light responsive photocatalyst and method for producing the same Active JP5180745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226198A JP5180745B2 (en) 2008-09-03 2008-09-03 Visible light responsive photocatalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226198A JP5180745B2 (en) 2008-09-03 2008-09-03 Visible light responsive photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010058047A JP2010058047A (en) 2010-03-18
JP5180745B2 true JP5180745B2 (en) 2013-04-10

Family

ID=42185463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226198A Active JP5180745B2 (en) 2008-09-03 2008-09-03 Visible light responsive photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP5180745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140152B1 (en) 2011-09-02 2012-05-02 주식회사 이에스티 Manufacturing method of ultraviolet ozone catalyst for removal of odor of food waste and ultraviolet ozone catalyst for removal of odor of food waste manufactured by the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028998A (en) * 2000-07-13 2002-01-29 Toyota Central Res & Dev Lab Inc Anti-fouling material and touch panel
JP4626099B2 (en) * 2000-07-17 2011-02-02 株式会社豊田中央研究所 Photocatalyst
JP3987289B2 (en) * 2001-02-15 2007-10-03 石原産業株式会社 Photocatalyst, method for producing the same, and photocatalyst using the same
JP3894144B2 (en) * 2002-03-25 2007-03-14 住友金属工業株式会社 Titanium oxide photocatalyst and its production method and application
JP3987395B2 (en) * 2002-08-09 2007-10-10 石原産業株式会社 Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP2006142209A (en) * 2004-11-19 2006-06-08 Ishihara Sangyo Kaisha Ltd Method for preparing visible light response type photocatalyst

Also Published As

Publication number Publication date
JP2010058047A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
CN103228358B (en) Be supported with titania photocatalyst and its manufacture method of copper compound
JP4878141B2 (en) Composite photocatalyst
Hou et al. Preparation of carbon-sensitized and Fe–Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation
JP5854465B2 (en) Method for inactivating virus and antiviral property-imparting article
CN101678345A (en) Titanium oxide photocatalyst and method for producing the same
Rostamzadeh et al. Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment
JP2006232729A (en) Phage/virus inactivator and water-soluble paint
JP2011200857A (en) Optically regenerable adsorbing material and utilization thereof
CN104667860A (en) Adsorbent and preparation method thereof
JP4842607B2 (en) Visible light responsive photocatalyst, visible light responsive photocatalyst composition, and method for producing the same
JP4783315B2 (en) Photocatalyst dispersion
JP2009178636A (en) Titanium oxide photocatalyst showing high photocatalytic activity under visible light, and its manufacturing method
JP2008245784A (en) Plasma electrode having photocatalytic activity, photocatalytic apatite activating method and method and device for gas purification
JP5180745B2 (en) Visible light responsive photocatalyst and method for producing the same
JP5129894B2 (en) Tungsten oxide photocatalyst modified with copper ion and method for producing the same
WO2007105705A1 (en) Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
JP4296529B2 (en) Titanium oxide photocatalyst for basic gas removal
JP2008280184A (en) Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol
JP4763492B2 (en) Photocatalyst dispersion and method for producing the same
JPWO2007097220A1 (en) Visible light responsive photocatalyst
JP4619075B2 (en) Method for producing antibacterial and deodorant titanium oxide colloidal solution
KR20220095952A (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
JP6512855B2 (en) Composition for supporting iodine, deodorant prepared using the composition, method for producing the same, and method for deodorizing using the same
JP2010222266A (en) Antibacterial agent composition
WO2013094574A1 (en) Mixed valence copper compound-loaded tungsten oxide and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250