JP5179562B2 - Insulating spacer - Google Patents

Insulating spacer Download PDF

Info

Publication number
JP5179562B2
JP5179562B2 JP2010282548A JP2010282548A JP5179562B2 JP 5179562 B2 JP5179562 B2 JP 5179562B2 JP 2010282548 A JP2010282548 A JP 2010282548A JP 2010282548 A JP2010282548 A JP 2010282548A JP 5179562 B2 JP5179562 B2 JP 5179562B2
Authority
JP
Japan
Prior art keywords
insulating spacer
interface
conductor
insulator
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010282548A
Other languages
Japanese (ja)
Other versions
JP2011055708A (en
Inventor
裕子 久世
幸夫 尾崎
仁志 貞國
治 木佐貫
満 佐藤
洋平 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010282548A priority Critical patent/JP5179562B2/en
Publication of JP2011055708A publication Critical patent/JP2011055708A/en
Application granted granted Critical
Publication of JP5179562B2 publication Critical patent/JP5179562B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Description

この発明は、絶縁スペーサ、特に、樹脂中に埋め込まれた導体支持用の埋込電極を有する絶縁スペーサに関するものである。   The present invention relates to an insulating spacer, and more particularly to an insulating spacer having an embedded electrode for supporting a conductor embedded in a resin.

中心部導体支持用の埋込電極を有する絶縁スペーサは、通常エポキシ樹脂などの注型により製作され埋込電極と樹脂との界面は、それぞれの材料の物性値が異なるために曲げや熱荷重が作用するとこの界面に高い引張りの応力が発生し、強度低下をもたらすことがある。この強度低下をもたらさない応力状態とするために界面の中心部導体支持用埋め込み電極形状を考慮することにより低応力状態とすることができる。以下、中心部導体支持用埋込電極を「埋め金」と表現する。   Insulating spacers with an embedded electrode for supporting the central conductor are usually manufactured by casting such as epoxy resin, and the interface between the embedded electrode and the resin is subject to bending and thermal loads due to the different physical properties of each material. When acting, a high tensile stress is generated at this interface, which may lead to a decrease in strength. In order to obtain a stress state that does not cause this strength reduction, the low stress state can be achieved by considering the shape of the buried electrode for supporting the central conductor at the interface. Hereinafter, the buried electrode for supporting the central conductor is expressed as “filling”.

従来技術では、埋め金の樹脂界面近傍の外表面にU型の溝を設けることにより界面近傍の樹脂に働く応力を低減する機能を持たせている(例えば、特許文献1参照)。
しかし、このような埋め金構造では、U型溝を設ける必要があり機械加工が必要であること、また、溝先端を適切なR形状としないとこの部位に応力が集中し強度低下が発生すること、溝部に金属異物が入り込む等の品質保証上の問題や加工上の複雑さが存在することによるコスト増等の問題があった。
In the prior art, a U-shaped groove is provided on the outer surface in the vicinity of the resin interface of the buried metal to provide a function of reducing stress acting on the resin in the vicinity of the interface (see, for example, Patent Document 1).
However, in such a buried structure, it is necessary to provide a U-shaped groove and machining is required, and unless the groove tip has an appropriate R shape, stress concentrates on this part and the strength is reduced. In addition, there are problems in quality assurance such as metal foreign matter entering the groove, and problems such as increased costs due to the complexity of processing.

特公平6−9415号公報Japanese Patent Publication No. 6-9415

この発明は、簡潔な構成により導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を適正に保持できる絶縁スペーサを得ようとするものである。   An object of the present invention is to obtain an insulating spacer capable of appropriately maintaining the stress state at the interface between the conductor supporting embedded electrode and the insulating spacer body with a simple configuration.

この発明に係る絶縁スペーサでは、前記盤状絶縁スペーサ本体と一体に形成された導体支持用埋込電極を備え、前記導体支持用埋込電極の前記絶縁スペーサ本体との界面部分に、前記盤状絶縁スペーサ本体へ突出し、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面の垂直方向に作用する引き剥がし力を低減する環状突出部を設けたものであって、前記導体支持用埋込電極における前記環状突出部の突出先端部分を前記絶縁スペーサ本体に接着して接着強度を確保するとともに、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面前記絶縁スペーサ本体より低い弾性率を有する変形吸収部材を設け、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面において前記絶縁スペーサ本体の外表面部から延在して前記導体支持用埋込電極における前記環状突出部に接するように前記変形吸収部材を配設したものである。 The insulating spacer according to the present invention includes an embedded electrode for supporting a conductor formed integrally with the disk-shaped insulating spacer main body, and the disk-shaped in the interface portion of the embedded electrode for conductor supporting with the insulating spacer main body. Protruding to the insulating spacer main body and provided with an annular protrusion for reducing the peeling force acting in the direction perpendicular to the interface between the conductor supporting embedded electrode and the insulating spacer main body, the conductor supporting embedded together by bonding a projecting distal end portion of the annular projection of the electrode on the insulating spacer body to secure the bonding strength, lower modulus than that of the insulating spacer body at the interface between the insulating spacer body and the conductor supporting buried electrode the deformation absorbing member having provided, the conductor supporting extends from the outer surface of the insulating spacer body at the interface with the insulating spacer body and the conductor supporting buried electrode The deformation absorbing member in contact with the annular projection in use buried electrodes is obtained by arranging the.

この発明によれば、簡潔な構成により導体支持用埋込電極と絶縁スペーサ本体との接着強度を確保できるとともに、導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を導体支持用埋込電極と絶縁スペーサ本体との界面において絶縁スペーサ本体の外表面部から延在して導体支持用埋込電極における環状突出部に接する変形吸収部材によって適正に保持できる絶縁スペーサを得ることができる。
According to the invention, by a simple configuration with a bonding strength between the insulating spacer main body conductor supporting buried electrode can be secured, the stress state at the interface between the insulating spacer main body conductor supporting buried electrode buried conductor support An insulating spacer that can be appropriately held by the deformation absorbing member that extends from the outer surface portion of the insulating spacer body at the interface between the embedded electrode and the insulating spacer body and contacts the annular protrusion of the embedded electrode for conductor support can be obtained.

この発明による実施の形態1における絶縁スペーサが電気機器に組み込まれるときの構成を示す縦断面図および横断面図である。It is the longitudinal cross-sectional view and cross-sectional view which show a structure when the insulating spacer in Embodiment 1 by this invention is integrated in an electric equipment. この発明による実施の形態1における絶縁スペーサの構成を示す断面図である。It is sectional drawing which shows the structure of the insulating spacer in Embodiment 1 by this invention. この発明による実施の形態2における絶縁スペーサの構成を示す断面図である。It is sectional drawing which shows the structure of the insulating spacer in Embodiment 2 by this invention. この発明による実施の形態3における絶縁スペーサの構成を示す断面図である。It is sectional drawing which shows the structure of the insulating spacer in Embodiment 3 by this invention. この発明による実施の形態4における絶縁スペーサの構成を示す断面図である。It is sectional drawing which shows the structure of the insulating spacer in Embodiment 4 by this invention. この発明による実施の形態5における絶縁スペーサの構成を示す断面図である。It is sectional drawing which shows the structure of the insulating spacer in Embodiment 5 by this invention. この発明による実施の形態6における絶縁スペーサの構成を示す断面図である。It is sectional drawing which shows the structure of the insulating spacer in Embodiment 6 by this invention.

実施の形態1.
この発明による実施の形態1を図1および図2について説明する。図1は実施の形態1における絶縁スペーサが電気機器に組み込まれるときの構成を示す縦断面図および横断面図である。図1(a)は絶縁スペーサが電気機器に組み込まれるときの構成を示す縦断面図である。図1(b)は絶縁スペーサが電気機器に組み込まれるときの構成を模式的に示す縦断面図である。図2は実施の形態1における絶縁スペーサの構成を示す断面図である。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view and a transverse sectional view showing a configuration when the insulating spacer according to the first embodiment is incorporated in an electric device. FIG. 1A is a longitudinal sectional view showing a configuration when an insulating spacer is incorporated in an electric device. FIG.1 (b) is a longitudinal cross-sectional view which shows typically a structure when an insulating spacer is integrated in an electric equipment. FIG. 2 is a cross-sectional view showing the configuration of the insulating spacer in the first embodiment.

この発明による実施の形態1における絶縁スペーサが電気機器に組み込まれるときの構成を示す図1において、絶縁スペーサ2は絶縁スペーサ2を挟み込む形態で配置された円筒容器1の金属フランジ8により挟持されボルト7で固定される。
また、この絶縁スペーサ2には円筒容器1の中心部に配設される中心部導体5を支える固定金具4がボルト6で固定されている。この例では、中心部導体5が3本あり3相構造の例である。
絶縁スペーサ2はエポキシ樹脂のような絶縁物からなる絶縁スペーサ本体9と埋め金3から構成される円盤状の形状をしたものである。以下の実施形態では、3本の中心部導体5のうち1本の導体固定部に限定し記述する。
In FIG. 1 showing the configuration when the insulating spacer according to the first embodiment of the present invention is incorporated in an electrical device, the insulating spacer 2 is clamped by the metal flange 8 of the cylindrical container 1 arranged so as to sandwich the insulating spacer 2. 7 is fixed.
In addition, a fixing bracket 4 that supports a central conductor 5 disposed at the central portion of the cylindrical container 1 is fixed to the insulating spacer 2 with bolts 6. In this example, there are three central conductors 5 and this is an example of a three-phase structure.
The insulating spacer 2 has a disk-like shape composed of an insulating spacer main body 9 made of an insulating material such as an epoxy resin and a padding 3. In the following embodiments, description is limited to one conductor fixing portion among the three central conductors 5.

この発明による実施の形態1を図2について説明する。
図2に示すように、絶縁物9内に埋め込まれる埋め金3の形状を中心部導体5を支える固定金具4(図1参照)との接触面の周辺に薄いリング形状の薄肉突出部3cを設けた構造とした。
この構造によれば、埋め金3の外表面外周に設けられたリング形状の薄肉突出部3cが、他の部位に比べ肉厚が薄いリング形状としているため、図中に示すように圧力や熱荷重により曲げモーメントMが作用すると、この埋め金3の外表面外周に設けられたリング形状の薄肉突出部3cが弾性変形をすることにより、この部位に作用する界面に垂直に作用する界面における引き剥がし力Pを低減させることができる。
また、この埋め金3には中心部導体5が固定されるが、リング形状内径部により導体端部の位置決め精度を上げることも可能となる。
A first embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 2, a thin ring-shaped thin protrusion 3 c is formed around the contact surface with the fixing metal 4 (see FIG. 1) that supports the central conductor 5 in the shape of the buried metal 3 embedded in the insulator 9. The structure was provided.
According to this structure, the ring-shaped thin protrusion 3c provided on the outer periphery of the outer surface of the metal pad 3 has a ring shape that is thinner than other portions. Therefore, as shown in FIG. When a bending moment M is applied by the load, the ring-shaped thin protrusion 3c provided on the outer periphery of the outer surface of the metal pad 3 is elastically deformed, so that the pulling at the interface acting perpendicularly to the interface acting on this portion is performed. The peeling force P can be reduced.
Further, although the central conductor 5 is fixed to the buried metal 3, the positioning accuracy of the conductor end can be improved by the ring-shaped inner diameter portion.

埋め金3は円盤状の絶縁スペーサ本体9の中心部に一体に埋込み形成された小さな円盤状構成体を形成し、その端面に円盤状の絶縁スペーサ本体9の対をなす端面を形成する平面9a,9bと同一面レベルにおいて形成される平面3a,3bを有している。埋め金3の平面3a,3bは、絶縁スペーサ本体9の対をなす端面を形成する平面9a,9bの延在方向と同一方向に延在する。
埋め金3の外表面外周に設けられたリング形状の薄肉突出部3cは、埋め金3の平面3a,3bから平面3a,3bの延在方向と垂直方向に突出する。絶縁スペーサ本体9にも埋め金3の薄肉突出部3cに対応して突部9cが一体に設けられている。埋め金3の薄肉突出部3cと絶縁スペーサ本体9の突部9cとの間にも当然ながら界面が形成され、埋め金3と絶縁スペーサ本体9との間には内部から埋め金3の薄肉突出部3cと絶縁スペーサ本体9の突部9cが設けられた外表面部に至る界面が形成されている。
埋め金3に設けられたリング形状の薄肉突出部3cにより、前述の通り、埋め金3と絶縁スペーサ本体9との界面における引き剥がし力Pを低減させることができるものである。
The buried metal 3 forms a small disk-like structure integrally embedded in the center of the disk-shaped insulating spacer main body 9, and a flat surface 9 a forming an end surface forming a pair of disk-shaped insulating spacer main bodies 9 on the end surface. , 9b have planes 3a, 3b formed at the same plane level. The flat surfaces 3 a and 3 b of the metal pad 3 extend in the same direction as the extending direction of the flat surfaces 9 a and 9 b that form the end surfaces forming a pair of the insulating spacer main bodies 9.
The ring-shaped thin protrusion 3c provided on the outer surface outer periphery of the metal pad 3 protrudes from the flat surfaces 3a and 3b of the metal pad 3 in a direction perpendicular to the extending direction of the flat surfaces 3a and 3b. The insulating spacer main body 9 is also integrally provided with a protrusion 9 c corresponding to the thin protrusion 3 c of the buried metal 3. Of course, an interface is also formed between the thin protrusion 3c of the metal pad 3 and the protrusion 9c of the insulating spacer body 9, and between the metal pad 3 and the insulating spacer body 9, the thin wall protrusion 3 An interface is formed to reach the outer surface portion where the portion 3c and the protrusion 9c of the insulating spacer body 9 are provided.
As described above, the peeling force P at the interface between the buried metal 3 and the insulating spacer body 9 can be reduced by the ring-shaped thin protrusion 3 c provided on the buried metal 3.

この実施の形態1では、絶縁スペーサ本体9の対をなす端面を形成する面9a,9bを平面としたが、平面でなくても同様の効果が得られる。また、面9a,9bと平面3a,3bは同一レベルでなくても同様な効果が得られる。   In the first embodiment, the surfaces 9a and 9b forming the end surfaces forming a pair of the insulating spacer main body 9 are flat, but the same effect can be obtained even if they are not flat. Further, the same effect can be obtained even if the surfaces 9a and 9b and the planes 3a and 3b are not at the same level.

この発明による実施の形態1によれば、エポキシ樹脂のような絶縁物9からなる盤状絶縁スペーサ本体、前記絶縁物9からなる盤状絶縁スペーサ本体の対をなす端面を形成する面9a,9bの延在方向に延在する電極平面3a,3bが設けられ前記絶縁物9からなる盤状絶縁スペーサ本体9と一体に形成された導体支持用埋込電極3を備え、前記埋め金3からなる導体支持用埋込電極の前記絶縁物9からなる絶縁スペーサ本体との界面部分に、前記電極平面3a,3bから突出し、前記導体支持用埋込電極3と前記絶縁物9からなる絶縁スペーサ本体との界面の垂直方向に作用する引き剥がし力Pを低減する弾性変形可能な薄肉突出部3cを設けたので、導体支持用埋込電極の絶縁スペーサ本体との界面部分に弾性変形可能な突出部を設けた簡潔な構成により、導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を適正に保持できる絶縁スペーサを得ることができる。   According to the first embodiment of the present invention, the surface 9a, 9b that forms the pair of end surfaces of the disk-shaped insulating spacer body made of an insulator 9 such as an epoxy resin and the disk-shaped insulating spacer body made of the insulator 9. And a conductive support embedded electrode 3 formed integrally with a disk-shaped insulating spacer body 9 made of the insulator 9 and provided with electrode planes 3a and 3b extending in the extending direction of A conductor supporting embedded electrode protrudes from the electrode planes 3a and 3b at an interface portion with the insulating spacer body made of the insulator 9, and an insulating spacer body made of the conductor supporting embedded electrode 3 and the insulator 9. Since the elastically deformable thin protruding portion 3c for reducing the peeling force P acting in the vertical direction of the interface of the conductor is provided, the elastically deformable protruding portion is provided at the interface portion with the insulating spacer body of the embedded electrode for conductor support. Provided The Do Kiyoshi configuration, it is possible to obtain an insulating spacer to hold properly the stress state at the interface between the insulating spacer main body conductor supporting buried electrode.

実施の形態2.
この発明による実施の形態2を図3について説明する。図3は実施の形態2における絶縁スペーサの構成を示す断面図である。
この実施の形態2において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1における構成と同一の構成を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the configuration of the insulating spacer in the second embodiment.
In the second embodiment, the configuration other than the specific configuration described here has the same configuration as the configuration in the first embodiment described above and exhibits the same function. In the drawings, the same reference numerals indicate the same or corresponding parts.

上記実施の形態1では、埋め金3の接触面外周をリング形状の突出部とした構成であるが、図3から図5までに示す実施の形態2〜4でも、実施の形態1の構成による効果とと同様の効果を得ることができる。以下、他の実施の形態について説明する。   In the first embodiment, the outer periphery of the contact surface of the metal pad 3 is a ring-shaped protrusion, but the second to fourth embodiments shown in FIGS. 3 to 5 also have the same configuration as the first embodiment. The same effect as the effect can be obtained. Hereinafter, other embodiments will be described.

実施の形態2における絶縁スペーサの構成を示す図3は、埋め金3のエポキシ樹脂のような絶縁物9と接触する界面を絶縁物9側に大きく膨らませた構造である。
すなわち、埋め金3の絶縁物9と接触する界面に断面が半円形状を有する突出部3dを絶縁物9の内部へ半円凸部側を先端にして図示水平方向に突出させて設けたものである。この突出部3dは円盤状の埋め金3の周面の全周にわたり突出して設けられているものであり、環状を形成する。
FIG. 3 showing the configuration of the insulating spacer in the second embodiment has a structure in which the interface that contacts the insulator 9 such as the epoxy resin of the buried metal 3 is greatly expanded toward the insulator 9 side.
That is, a protrusion 3d having a semicircular cross section at the interface contacting the insulator 9 of the buried metal 3 is provided in the insulator 9 so as to protrude in the horizontal direction in the figure with the semicircular protrusion side as a tip. It is. This projecting portion 3d is provided so as to project over the entire circumference of the peripheral surface of the disk-shaped padding 3, and forms an annular shape.

この実施の形態2においては、埋め金3の絶縁物9と接触する界面を絶縁物9側に大きく膨らませ断面が半円形状を有する環状突出部3dを設けた構造としたことで埋め金3と絶縁物9の界面の接着面積が増えることにより接着強度を増加させることができる。
また、圧力や熱荷重が作用したとき界面に生じる引き剥がし力とせん断力のうち、この構造では膨らませた部分のせん断力が支配的で引っ張り力が小さくなる効果を有する。また、この膨らませたことで外表面に近い絶縁物9部分の肉厚が薄くなり変形がしやすくなることからも界面に作用する引き剥がし力を低減させることができる。従い、界面剥離に対して有利な構造となる。
In the second embodiment, the buried metal 3 has a structure in which the interface of the buried metal 3 that contacts the insulator 9 is greatly expanded toward the insulator 9 and the annular protrusion 3d having a semicircular cross section is provided. The adhesion strength can be increased by increasing the adhesion area of the interface of the insulator 9.
Further, among the peeling force and shearing force generated at the interface when pressure or thermal load is applied, this structure has the effect that the shearing force of the inflated portion is dominant and the pulling force is reduced. Moreover, since the wall thickness of the insulator 9 part close to the outer surface is reduced by this swelling, the peeling force acting on the interface can be reduced. Therefore, it becomes a structure advantageous with respect to interface peeling.

この発明による実施の形態2によれば、エポキシ樹脂のような絶縁物9からなる盤状絶縁スペーサ本体、前記絶縁物9からなる盤状絶縁スペーサ本体と一体に形成された導体支持用埋込電極3を備え、前記導体支持用埋込電極3の前記絶縁物9からなる絶縁スペーサ本体との界面部分に、前記絶縁物9からなる盤状絶縁スペーサ本体の内部へ凸部を先端として突出し、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面の垂直方向に作用する引き剥がし力Pを低減する断面が半長円形状を有する環状突出部3dを設けたので、導体支持用埋込電極の前記絶縁スペーサ本体との界面部分に断面が半円形状を有する環状突出部を設けた簡潔な構成により、導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を適正に保持できる絶縁スペーサを得ることができる。   According to Embodiment 2 of the present invention, a disk-shaped insulating spacer body made of an insulator 9 such as an epoxy resin, and a conductor supporting embedded electrode formed integrally with the disk-shaped insulating spacer body made of the insulator 9 3 and projecting at the interface portion between the embedded electrode 3 for supporting the conductor and the insulating spacer body made of the insulator 9 with a convex portion as a tip to the inside of the disk-shaped insulating spacer body made of the insulator 9, The conductor supporting embedded electrode is provided with the annular projecting portion 3d having a semi-elliptical cross section for reducing the peeling force P acting in the direction perpendicular to the interface between the conductor supporting embedded electrode and the insulating spacer body. With a simple configuration in which an annular protrusion having a semicircular cross section is provided at the interface with the insulating spacer body, the stress state at the interface between the conductor supporting embedded electrode and the insulating spacer body can be properly maintained. It is possible to obtain an insulating spacer.

実施の形態3.
この発明による実施の形態3を図4について説明する。図4は実施の形態3における絶縁スペーサの構成を示す縦断面図である。
この実施の形態3において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1および実施の形態2における構成と同一の構成を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a longitudinal sectional view showing the configuration of the insulating spacer in the third embodiment.
In the third embodiment, the configuration other than the specific configuration described here has the same configuration as that in the first and second embodiments described above, and has the same function. is there. In the drawings, the same reference numerals indicate the same or corresponding parts.

この発明による実施の形態3における絶縁スペーサの構成を示す図4は、図3の実施の形態と同様に樹脂9内部に埋め金3を大きく膨らませた構造であるが、この実施の形態3の例では、導体支持用埋込電極と前記絶縁スペーサ本体との界面の垂直方向に作用する引き剥がし力を低減する断面がV形状を有する環状突出部3eを埋め金3に設けたものであって、このV状突出部3eは埋め金3の外表面から任意の角度を有したV型断面形状であり、先端部は応力の集中や電界の集中を避けるために所定の断面曲率半径を持つR形状とさせる。   FIG. 4 showing the configuration of the insulating spacer according to the third embodiment of the present invention has a structure in which the buried metal 3 is greatly expanded in the resin 9 as in the embodiment of FIG. Then, an annular protrusion 3e having a V-shaped cross section for reducing the peeling force acting in the direction perpendicular to the interface between the conductor supporting embedded electrode and the insulating spacer body is provided in the filling 3, The V-shaped projecting portion 3e has a V-shaped cross-sectional shape having an arbitrary angle from the outer surface of the metal pad 3. The tip portion has an R shape having a predetermined cross-sectional curvature radius in order to avoid stress concentration and electric field concentration. Let me.

この構造においても、図3に示す実施の形態2と同様に、接着面積が増えることにより接着強度を増加させることができ、また、圧力や熱荷重が作用した時界面に生じる引き剥がし力とせん断力のうち、この構造では膨らませたV形状部分のせん断力が支配的で引き剥がし力が小さくなる効果を有する。従い、界面剥離に対して有利な構造となる。   In this structure, as in the second embodiment shown in FIG. 3, the adhesive strength can be increased by increasing the adhesive area, and the peeling force and shear generated at the interface when pressure or thermal load is applied. Among the forces, this structure has an effect that the shearing force of the inflated V-shaped portion is dominant and the peeling force is reduced. Therefore, it becomes a structure advantageous with respect to interface peeling.

この発明による実施の形態3によれば、エポキシ樹脂のような絶縁物9からなる盤状絶縁スペーサ本体、前記絶縁物9からなる盤状絶縁スペーサ本体と一体に形成された導体支持用埋込電極3を備え、前記導体支持用埋込電極3の前記絶縁物9からなる絶縁スペーサ本体との界面部分に、前記絶縁物9からなる盤状絶縁スペーサ本体の内部へ先端を突出し、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面の垂直方向に作用する引き剥がし力Pを低減する断面がV形状を有し先端部に所定の断面曲率半径を持つ環状突出部3eを設けたので、導体支持用埋込電極の前記絶縁スペーサ本体との界面部分に断面がV形状を有するV状突出部を設けた簡潔な構成により、導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を適正に保持できる絶縁スペーサを得ることができる。   According to Embodiment 3 of the present invention, a disk-shaped insulating spacer body made of an insulator 9 such as an epoxy resin, and a conductor supporting embedded electrode formed integrally with the disk-shaped insulating spacer body made of the insulator 9 3 at the interface between the embedded electrode 3 for supporting the conductor and the insulating spacer body made of the insulator 9, and the tip of the embedded electrode 3 for supporting the conductor is projected into the inside of the disk-shaped insulating spacer body made of the insulator 9. Since the cross section for reducing the peeling force P acting in the vertical direction of the interface between the embedded electrode and the insulating spacer body has a V shape and the annular protrusion 3e having a predetermined cross section radius of curvature is provided at the tip, The stress state at the interface between the embedded electrode for supporting the conductor and the insulating spacer body is achieved by a simple configuration in which a V-shaped protrusion having a V-shaped cross section is provided at the interface between the embedded electrode for supporting the conductor and the insulating spacer body. The It is possible to obtain a positively holding it insulating spacer.

実施の形態4.
この発明による実施の形態4を図5について説明する。図5は実施の形態4における絶縁スペーサの構成を示す縦断面図である。
この実施の形態4において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1から実施の形態3までにおける構成と同一の構成を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 4 FIG.
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a longitudinal sectional view showing a configuration of the insulating spacer in the fourth embodiment.
In the fourth embodiment, the configuration other than the specific configuration described here has the same configuration as the configurations in the first to third embodiments described above and has the same function. It is. In the drawings, the same reference numerals indicate the same or corresponding parts.

この発明による実施の形態4における絶縁スペーサの構成を示す図5は、埋め金3のエポキシ樹脂のような絶縁物9との界面形状を波打ち形状としたものである。
すなわち、埋め金3の絶縁物9との界面には、断面円弧状の輪郭をなす複数の環状突出部3fが設けられ、埋め金3の絶縁物9との界面は波打ち形状に形成されている。
FIG. 5 which shows the structure of the insulating spacer in the fourth embodiment according to the present invention is such that the interface shape with the insulator 9 such as the epoxy resin of the buried metal 3 is a corrugated shape.
That is, a plurality of annular protrusions 3f having an arcuate cross section are provided at the interface between the buried metal 3 and the insulator 9, and the interface between the buried metal 3 and the insulator 9 is formed in a wavy shape. .

このように、埋め金3のエポキシ樹脂のような絶縁物9との界面における断面形状を複数の突出部3fを設けた波打ち形状とすることにより圧力や熱荷重が作用し曲げモーメントMが作用すると、これにより引き起こされる引き剥がし力Pは、界面では界面に垂直な成分P1と界面に沿った成分P2になる。このうち引き剥がし力P1の方向は各位置ですべて異なった方向を向く。従い、引き剥がし力は厚さ方向で同一方向に現れるのではなく複数の方向に現れ、内部で力がキャンセルされる効果が期待できること、また、分力として現れるため引き剥がし力低減につながる。   In this manner, when the cross-sectional shape of the buried metal 3 at the interface with the insulator 9 such as an epoxy resin is a corrugated shape provided with a plurality of projecting portions 3f, pressure and thermal load act and a bending moment M acts. The peeling force P caused by this becomes a component P1 perpendicular to the interface and a component P2 along the interface at the interface. Of these, the direction of the peeling force P1 is all different in each position. Accordingly, the peeling force does not appear in the same direction in the thickness direction, but appears in a plurality of directions, so that an effect of canceling the force inside can be expected, and since it appears as a component force, the peeling force is reduced.

この実施の形態では、絶縁物9側に埋め金3の突出部3fによる山が二つ形成されているが、三つ以上でも同様の効果が期待できる。   In this embodiment, two peaks are formed by the protruding portion 3f of the buried metal 3 on the insulator 9 side, but the same effect can be expected with three or more.

この発明による実施の形態4によれば、エポキシ樹脂のような絶縁物9からなる盤状絶縁スペーサ本体、前記絶縁物9からなる盤状絶縁スペーサ本体と一体に形成された導体支持用埋込電極3を備え、前記導体支持用埋込電極3の前記絶縁物9からなる絶縁スペーサ本体との界面部分の形状を断面波打ち形状として複数の環状突出部分を形成し、前記導体支持用埋込電極3と前記絶縁物9からなる絶縁スペーサ本体との界面の垂直方向に作用する引き剥がし力Pを低減する断面が波打ち形状を有する複数の環状突出部3fを設けたので、導体支持用埋込電極の前記絶縁スペーサ本体との界面部分に断面が波打ち形状を有する波打ち突出部を設けた簡潔な構成により、導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を適正に保持できる絶縁スペーサを得ることができる。   According to Embodiment 4 of the present invention, a disk-shaped insulating spacer body made of an insulator 9 such as an epoxy resin, and a conductor supporting embedded electrode formed integrally with the disk-shaped insulating spacer body made of the insulator 9 3 to form a plurality of annular projecting portions with the shape of the interface between the conductor supporting embedded electrode 3 and the insulating spacer body made of the insulator 9 as a cross-sectional corrugated shape, and the conductor supporting embedded electrode 3 And a plurality of annular protrusions 3f having a wavy cross section for reducing the peeling force P acting in the direction perpendicular to the interface between the insulating spacer main body made of the insulator 9 and the conductor supporting embedded electrode. A simple configuration in which a corrugated protrusion having a corrugated cross section is provided at the interface portion with the insulating spacer main body, the stress state at the interface between the embedded electrode for conductor support and the insulating spacer main body is appropriately adjusted. Can be obtained lifting may insulating spacer.

実施の形態5.
この発明による実施の形態5を図6について説明する。図6は実施の形態5における絶縁スペーサの構成を示す縦断面図である。
この実施の形態5において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1から実施の形態4までにおける構成と同一の構成を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 5 FIG.
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a longitudinal sectional view showing the configuration of the insulating spacer in the fifth embodiment.
In the fifth embodiment, the configuration other than the specific configuration described here has the same configuration as the configurations in the first to fourth embodiments described above and exhibits the same operation. It is. In the drawings, the same reference numerals indicate the same or corresponding parts.

この発明による実施の形態5における絶縁スペーサの構成を示す図6は、図3に示す実施の形態2における構成において、埋め金3とエポキシ樹脂のような絶縁物9の外表面側に絶縁物9を構成する樹脂よりも小さい弾性定数を有する弾性部材11からなる変形吸収部材を挟み込んだ構造としたものである。
すなわち、埋め金3の絶縁物9と接触する界面に断面が半円形状を有する環状突出部3dを絶縁物9の内部へ半円凸部側を先端にして図示水平方向に突出させて設けるとともに、埋め金3と絶縁物9の外表面側に絶縁物9を構成する樹脂よりも小さい弾性定数を有する弾性部材11からなる変形吸収部材が挟み込まれている。
FIG. 6 showing the configuration of the insulating spacer in the fifth embodiment according to the present invention is the same as that in the second embodiment shown in FIG. 3, but the insulator 9 is formed on the outer surface side of the insulator 9 such as the buried metal 3 and epoxy resin. This is a structure in which a deformation absorbing member made of an elastic member 11 having an elastic constant smaller than that of the resin constituting the resin is sandwiched.
That is, an annular protrusion 3d having a semicircular cross section is provided at the interface of the buried metal 3 in contact with the insulator 9 so as to protrude into the insulator 9 in the horizontal direction shown in the drawing with the semicircular protrusion side as a tip. A deformation absorbing member made of an elastic member 11 having an elastic constant smaller than that of the resin constituting the insulator 9 is sandwiched between the outer surface side of the metal pad 3 and the insulator 9.

この構成において曲げモーメントMが作用するとこの弾性部材11が絶縁物9の変形を吸収し、埋め金3と絶縁物9の界面に垂直に作用する引き剥がし力Pを低減させる効果が期待できる。   In this configuration, when the bending moment M acts, the elastic member 11 absorbs the deformation of the insulator 9, and an effect of reducing the peeling force P acting perpendicularly to the interface between the buried metal 3 and the insulator 9 can be expected.

なお、ここでは、実施の形態2における構成に適用するものについて説明したが、この実施の形態5は、実施の形態1ならびに実施の形態3および実施の形態4における構成のいずれかに適用することもできる。   In addition, although what was applied to the structure in Embodiment 2 was demonstrated here, this Embodiment 5 is applied to either the structure in Embodiment 1, Embodiment 3, and Embodiment 4. You can also.

この発明による実施の形態5によれば、実施の形態2から実施の形態4までの構成におけるいずれかの構成において、前記導体支持用埋込電極3と前記エポキシ樹脂のような絶縁物9からなる絶縁スペーサ本体との界面の外表面部に前記絶縁物9からなる絶縁スペーサ本体よりも小さい弾性率を有する弾性部材11からなる変形吸収部材を設けたので、導体支持用埋込電極の前記絶縁スペーサ本体との界面部分に突出部を設け、導体支持用埋込電極と絶縁スペーサ本体との界面の外表面部に変形吸収部材を設けた簡潔な構成により、導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を適正に保持できる絶縁スペーサを得ることができる。   According to Embodiment 5 of the present invention, in any one of the configurations from Embodiment 2 to Embodiment 4, the conductor supporting embedded electrode 3 and the insulator 9 such as the epoxy resin are used. Since the deformation absorbing member made of the elastic member 11 having an elastic modulus smaller than that of the insulating spacer main body made of the insulator 9 is provided on the outer surface portion of the interface with the insulating spacer main body, the insulating spacer of the embedded electrode for conductor support The conductor support embedded electrode and the insulating spacer main body have a simple structure in which a protrusion is provided at the interface with the main body and a deformation absorbing member is provided on the outer surface of the interface between the conductor supporting embedded electrode and the insulating spacer main body. It is possible to obtain an insulating spacer that can properly maintain the stress state at the interface with the.

実施の形態6.
この発明による実施の形態6を図7について説明する。図7は実施の形態6における絶縁スペーサの構成を示す縦断面図である。
この実施の形態6において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1における構成と同一の構成を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 6 FIG.
A sixth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view showing the structure of the insulating spacer in the sixth embodiment.
In the sixth embodiment, the configuration other than the specific configuration described here has the same configuration as the configuration in the first embodiment described above, and has the same function. In the drawings, the same reference numerals indicate the same or corresponding parts.

この発明による実施の形態6における絶縁スペーサの構成を示す図7は、実施の形態1と同じ埋め金3の形状とし、埋め金3とエポキシ樹脂のような絶縁物9との界面の外表面に近い部分を接着部材12で接着し、内部に導電性部材13を挿入した界面構造の例である。
すなわち、絶縁物9内に埋め込まれる埋め金3の形状を薄いリング形状の薄肉突出部3cを設けた構造とするとともに、埋め金3と絶縁物9との界面の外表面に近い部分を接着部材12で接着し、絶縁物9の内部における埋め金3と絶縁物9との界面に導電性部材13を挿入した界面構造としたものである。
FIG. 7 showing the configuration of the insulating spacer according to the sixth embodiment of the present invention has the same shape of the buried metal 3 as that of the first embodiment, and is formed on the outer surface of the interface between the buried metal 3 and the insulator 9 such as an epoxy resin. This is an example of an interface structure in which a close portion is bonded with an adhesive member 12 and a conductive member 13 is inserted therein.
That is, the shape of the buried metal 3 embedded in the insulator 9 is a structure provided with a thin ring-shaped thin protrusion 3c, and a portion close to the outer surface of the interface between the buried metal 3 and the insulator 9 is an adhesive member. 12 and an interface structure in which a conductive member 13 is inserted into the interface between the buried metal 3 and the insulator 9 inside the insulator 9.

この構造においても、実施の形態1と同様に、圧力や熱荷重が作用したとき埋め金3と絶縁物9の界面に垂直に作用する引き剥がし力を低減させる効果があるとともに、埋金3と絶縁物9の間に導電性ゴムなどの導電性部材13を塗布することで、剥離が発生した場合においても絶縁物9部に導電性部材13が付着し、剥離による導体と樹脂の隙間からの放電を抑制し、絶縁スペーサの絶縁劣化特性を向上させる効果が期待できる。   This structure also has an effect of reducing the peeling force acting perpendicularly to the interface between the buried metal 3 and the insulator 9 when pressure or thermal load is applied, as in the first embodiment. By applying a conductive member 13 such as conductive rubber between the insulators 9, even when peeling occurs, the conductive members 13 adhere to the insulator 9, and the gap between the conductor and the resin due to the peeling is applied. The effect of suppressing discharge and improving the insulation deterioration characteristics of the insulating spacer can be expected.

この発明による実施の形態6によれば、実施の形態1における構成において、前記導体支持用埋込電極3と前記エポキシ樹脂のような絶縁物9からなる絶縁スペーサ本体との界面の外表面に近い部分を接着部材12で接着し、内部に向かい導電性ゴムなどの導電性部材13を挿入して、複合界面構造としたので、導体支持用埋込電極と前記絶縁スペーサ本体との界面の外表面に近い部分を絶縁接着部材で接着し、内部に向かい導電性部材を挿入した簡潔な構成により、導体支持用埋込電極と絶縁スペーサ本体との界面における応力状態を適正に保持できる絶縁スペーサを得ることができる。   According to Embodiment 6 of the present invention, in the configuration in Embodiment 1, it is close to the outer surface of the interface between the conductor supporting embedded electrode 3 and the insulating spacer body made of the insulator 9 such as the epoxy resin. Since the portion is bonded with the adhesive member 12 and the conductive member 13 such as conductive rubber is inserted into the interior to form a composite interface structure, the outer surface of the interface between the conductor supporting embedded electrode and the insulating spacer body An insulating spacer that can properly maintain the stress state at the interface between the conductor supporting embedded electrode and the insulating spacer body is obtained by a simple configuration in which the portion close to the surface is bonded with an insulating adhesive member and a conductive member is inserted into the inside. be able to.

この発明による実施の形態では、次の(A1)から(A5)項までに示す構成が提案されている。   In the embodiment according to the present invention, configurations shown in the following items (A1) to (A5) are proposed.

(A1)埋め金3の導体5との接触面の周辺に薄いリング形状の突出部3cを構成し、導体5の位置決め精度を上げることができること、絶縁スペーサ2に圧力や熱荷重が作用した時に、この埋め金3の円筒部突出部3cと接着されている樹脂9との界面に垂直に作用する引き剥がし力Pを埋め金3外周部の円筒部薄板構造突出部3cによる弾性効果で低減させることができる。 (A1) A thin ring-shaped protrusion 3c can be formed around the contact surface of the buried metal 3 with the conductor 5 to increase the positioning accuracy of the conductor 5, and when pressure or thermal load is applied to the insulating spacer 2. The peeling force P acting perpendicularly to the interface between the cylindrical protrusion 3c of the buried metal 3 and the resin 9 bonded thereto is reduced by the elastic effect of the cylindrical thin plate structure protruding part 3c on the outer periphery of the buried metal 3. be able to.

(A2)埋め金3の樹脂9と接する内部の形状を樹脂9側に半長円形状に大きく膨らませた埋め金3と樹脂9構造の構成とすることにより、接着面積を増やすことができ接着強度のアップにつながること、絶縁スペーサ2に圧力や熱荷重が作用した時に界面の半長円形状部3dには引き剥がし力Pより界面に沿ったせん断力が卓越し、引き剥がし力P成分を小さくすることができる。 (A2) Adhesive strength can be increased by using the structure of the resin 3 and the metal 3 in which the inner shape of the metal pad 3 in contact with the resin 9 is greatly expanded in a semi-oval shape on the resin 9 side. When the pressure or thermal load is applied to the insulating spacer 2, the shearing force along the interface is superior to the peeling force P in the semi-elliptical part 3d at the interface, and the peeling force P component is reduced. can do.

(A3)埋め金3の樹脂9と接する形状を外表面から伸びる樹脂側にV形状に大きく膨らませた埋め金3と樹脂9構造の構成とすることにより、接着界面の外表面から内部に向かいすべての界面で引き剥がし力Pを低減させることができることと、接着面積を増やすことができ接着強度のアップにつながる。 (A3) The shape of the buried metal 3 in contact with the resin 9 has a structure of the buried metal 3 and the resin 9 which are expanded in a V shape on the resin side extending from the outer surface, so that all of the adhesive interface from the outer surface to the inside is formed. It is possible to reduce the peeling force P at the interface and to increase the adhesion area, leading to an increase in adhesion strength.

(A4)埋め金3の樹脂9と接する形状を波打ち形状とすることにより、接着面積を増やすことができ接着強度のアップにつながること、絶縁スペーサ2に圧力や熱荷重が作用した時に界面に作用する引き剥がし力Pは常に同一方向ではなく作用する方向が異なる分布をすること、界面引き剥がし力Pは界面の傾き角度に対応した分力成分となるために引き剥がし力Pを低減させることができる。 (A4) By making the shape of the buried metal 3 in contact with the resin 9 corrugated, it is possible to increase the adhesion area and increase the adhesion strength, and to act on the interface when pressure or thermal load is applied to the insulating spacer 2. The peeling force P is not always in the same direction but has a different distribution in the acting direction, and the interface peeling force P is a component component corresponding to the inclination angle of the interface, so that the peeling force P can be reduced. it can.

(A5)埋め金3と樹脂Pとが接する界面の外表面部に樹脂よりも小さい弾性率を有する弾性部材11を挟み込んだ構成とすることにより、絶縁スペーサ2に圧力や熱荷重が作用した時に、この部位の樹脂界面に作用する引き剥がし力Pを低減させることができる。 (A5) When the elastic member 11 having an elastic modulus smaller than that of the resin is sandwiched between the outer surface portion of the interface where the buried metal 3 and the resin P are in contact with each other, when pressure or thermal load is applied to the insulating spacer 2 The peeling force P acting on the resin interface of this part can be reduced.

(A5)前記(A1)項の埋め金3形状で外表面に近い部分を接着部材12で接着、内部に向かい導電性部材13を挿入した複合界面構造としても引き剥がし力P低減の効果を有することができる。 (A5) Even in the composite interface structure in which the portion close to the outer surface in the shape of the filling 3 in the item (A1) is bonded with the adhesive member 12 and the conductive member 13 is inserted toward the inside, the peeling force P is reduced. be able to.

1 円筒容器、2 絶縁スペーサ、3 埋め金、4 固定金具、5 導体、6,7 ボルト、8 金属フランジ、9 絶縁スペーサ本体。   DESCRIPTION OF SYMBOLS 1 Cylindrical container, 2 Insulating spacer, 3 Filling metal, 4 Fixing metal fitting, 5 Conductor, 6, 7 Bolt, 8 Metal flange, 9 Insulating spacer body.

Claims (2)

盤状絶縁スペーサ本体、前記盤状絶縁スペーサ本体と一体に形成された導体支持用埋込電極を備え、前記導体支持用埋込電極の前記絶縁スペーサ本体との界面部分に、前記盤状絶縁スペーサ本体へ突出し、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面の垂直方向に作用する引き剥がし力を低減する環状突出部を設けたものであって、前記導体支持用埋込電極における前記環状突出部の突出先端部分を前記絶縁スペーサ本体に接着して接着強度を確保するとともに、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面前記絶縁スペーサ本体より低い弾性率を有する変形吸収部材を設け、前記導体支持用埋込電極と前記絶縁スペーサ本体との界面において前記絶縁スペーサ本体の外表面部から延在して前記導体支持用埋込電極における前記環状突出部に接するように前記変形吸収部材を配設したことを特徴とする絶縁スペーサ。 A disk-shaped insulating spacer body, and a conductor-supporting embedded electrode formed integrally with the disk-shaped insulating spacer body, and the disk-shaped insulating spacer at an interface portion of the conductor-supporting embedded electrode with the insulating spacer body Protruding to the main body and provided with an annular protrusion for reducing the peeling force acting in the direction perpendicular to the interface between the conductor supporting embedded electrode and the insulating spacer main body, in the conductor supporting embedded electrode while securing the bonding strength by bonding the projecting distal end portion of the annular projection in the insulating spacer body, it has the insulating spacer lower modulus than the body at the interface between the insulating spacer body and the conductor supporting buried electrode the deformation absorbing member is provided, wherein the conductor supporting buried collector extending from the outer surface of the insulating spacer body at the interface with the insulating spacer body and the conductor supporting buried electrode Insulating spacer, characterized in that arranged the deformation absorbing member in contact with the annular projection of the. 前記導体支持用埋込電極における前記環状突出部の断面を半円形状としたことを特徴とする請求項1に記載の絶縁スペーサ。 The insulating spacer according to claim 1, wherein a cross section of the annular projecting portion of the embedded electrode for supporting a conductor is a semicircular shape.
JP2010282548A 2010-12-20 2010-12-20 Insulating spacer Expired - Fee Related JP5179562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010282548A JP5179562B2 (en) 2010-12-20 2010-12-20 Insulating spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282548A JP5179562B2 (en) 2010-12-20 2010-12-20 Insulating spacer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005255975A Division JP4721832B2 (en) 2005-09-05 2005-09-05 Insulating spacer

Publications (2)

Publication Number Publication Date
JP2011055708A JP2011055708A (en) 2011-03-17
JP5179562B2 true JP5179562B2 (en) 2013-04-10

Family

ID=43944116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282548A Expired - Fee Related JP5179562B2 (en) 2010-12-20 2010-12-20 Insulating spacer

Country Status (1)

Country Link
JP (1) JP5179562B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105513723A (en) * 2016-01-29 2016-04-20 麦克奥迪(厦门)电气股份有限公司 Basin-type insulator and manufacturing process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621762B1 (en) 2014-03-31 2016-05-17 일진전기 주식회사 Insulating spacer and gas-insulated electrical device having the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543281A (en) * 1977-06-08 1979-01-11 Mitsubishi Electric Corp Manufacture of embedded conductor for high-tension electric machine
JPS54113895A (en) * 1978-02-25 1979-09-05 Fuji Electric Co Ltd Insulator supported with resin mold
JPS59139814A (en) * 1983-01-07 1984-08-10 三菱電機株式会社 Electric device
JPS60160024U (en) * 1984-03-30 1985-10-24 日東電工株式会社 Resin mold insulation spacer
JPS6162526U (en) * 1984-09-25 1986-04-26
JPS63242113A (en) * 1987-03-30 1988-10-07 株式会社東芝 Insulating spacer
JP3121718B2 (en) * 1993-11-15 2001-01-09 東海旅客鉄道株式会社 Ground coil device and manufacturing method thereof
DE4344043A1 (en) * 1993-12-23 1995-06-29 Abb Research Ltd Post insulator
JPH0963384A (en) * 1995-08-18 1997-03-07 Nissin Electric Co Ltd Insulating spacer and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105513723A (en) * 2016-01-29 2016-04-20 麦克奥迪(厦门)电气股份有限公司 Basin-type insulator and manufacturing process thereof

Also Published As

Publication number Publication date
JP2011055708A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5945904B2 (en) Method for manufacturing power storage element
CN103460574A (en) Vibration power generator
JP5179562B2 (en) Insulating spacer
JP2013235722A (en) Power cable
CN108701981B (en) Cable spacer clamp arm pad
JP4721832B2 (en) Insulating spacer
JP2010225502A (en) Polymer lightening arrestor
JP5804252B2 (en) Grommet
US20170008365A1 (en) Stabilizer bushing
US10050566B2 (en) Generator for automobile using flexible piezoelectric device
US20180159099A1 (en) Battery module
WO2020095737A1 (en) Dielectric elastomer transducer
US20170117517A1 (en) Battery cell assembly
JP2007281353A (en) Arrester
US20190036311A1 (en) Protector-equipped electric wire and protector-equipped wire arrangement structure
WO2018002966A1 (en) Polymer lightning arrester and method for manufacturing same
JP6372704B2 (en) Battery module
US8818014B2 (en) Sound production component
JP6055269B2 (en) Electrical equipment connection device
JP6650834B2 (en) Mounting structure of functional parts and tire
JP2013239651A (en) Arrester
JP6108997B2 (en) Wiring cover
EP3480038A1 (en) Stabilizer bushing
JP6414361B1 (en) Connection module
CN215268176U (en) Photovoltaic junction box, photovoltaic module and photovoltaic system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees