JP5179107B2 - Catalyst for hydrogenation - Google Patents

Catalyst for hydrogenation Download PDF

Info

Publication number
JP5179107B2
JP5179107B2 JP2007191698A JP2007191698A JP5179107B2 JP 5179107 B2 JP5179107 B2 JP 5179107B2 JP 2007191698 A JP2007191698 A JP 2007191698A JP 2007191698 A JP2007191698 A JP 2007191698A JP 5179107 B2 JP5179107 B2 JP 5179107B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation
fatty acid
ester
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007191698A
Other languages
Japanese (ja)
Other versions
JP2009022938A (en
Inventor
和幸 播磨
秀敏 門脇
拓 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007191698A priority Critical patent/JP5179107B2/en
Publication of JP2009022938A publication Critical patent/JP2009022938A/en
Application granted granted Critical
Publication of JP5179107B2 publication Critical patent/JP5179107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、脂肪酸又はそのエステルの水素添加用触媒及びその製造方法、それを用いたヨウ素価が低減された脂肪酸又はそのエステルの製造方法、並びにこの脂肪酸又はそのエステルを原料とするアルコールの製造方法に関する。   The present invention relates to a catalyst for hydrogenation of a fatty acid or an ester thereof, a method for producing the same, a method for producing a fatty acid or an ester thereof having a reduced iodine value, and a method for producing an alcohol using the fatty acid or the ester as a raw material. About.

脂肪酸又はそのエステルには、オレイン酸、リノール酸等に代表される、不飽和脂肪酸由来の不飽和化合物が含まれている。これら不飽和化合物含量は、脂肪酸又はそのエステルの融点や酸化安定化等の物性に大きく影響するため、適宜水素添加して飽和化合物とすることで、脂肪酸又はそのエステルの物性を制御している。   Fatty acids or esters thereof include unsaturated compounds derived from unsaturated fatty acids such as oleic acid and linoleic acid. Since the content of these unsaturated compounds greatly affects the physical properties of the fatty acid or its ester such as the melting point and oxidation stabilization, the physical properties of the fatty acid or its ester are controlled by appropriately adding hydrogen to form a saturated compound.

脂肪酸又はそのエステルの水素添加に用いる触媒としては、活性の高いものが望まれることは言うまでもない。これまでにも、NiをSiO2に担持した触媒で、Ni表面積が高く、直径3nm未満の細孔の表面積を多くして活性を高くする試みがなされている(特許文献1)。この技術によれば、径の小さい細孔を多く持たせることにより、触媒の水添活性が高くなることが開示されている。
特開平3−207449号公報
It goes without saying that a highly active catalyst is desired as a catalyst used for hydrogenation of fatty acids or esters thereof. Until now, attempts have been made to increase activity by increasing the surface area of pores having a high Ni surface area and a diameter of less than 3 nm with a catalyst in which Ni is supported on SiO 2 (Patent Document 1). According to this technique, it is disclosed that the hydrogenation activity of the catalyst is increased by providing many pores having a small diameter.
Japanese Patent Laid-Open No. 3-207449

脂肪酸又はそのエステルの水素添加を工業的に行う場合、長期的に高い活性が持続することが経済性、操業の利便性を考慮して重要な因子となる。しかしながら、従来の水素添加用触媒では、初期の活性が高いものは見られるものの、触媒活性の持続性に言及したものはなく、かかる耐久性の高い水素添加用触媒が求められていた。
すなわち、本発明の課題は、優れた触媒活性及び耐久性を有する脂肪酸又はそのエステルの水素添加用触媒及びその製造方法、ヨウ素価が低減された脂肪酸又はそのエステルの製造方法、並びにそれを原料とするアルコールの製造方法を提供することである。
When the hydrogenation of a fatty acid or its ester is carried out industrially, it is an important factor that the high activity lasts for a long time in consideration of economy and convenience of operation. However, although conventional hydrogenation catalysts have high initial activity, there is no mention of sustainability of catalyst activity, and such a highly durable hydrogenation catalyst has been demanded.
That is, an object of the present invention is to provide a catalyst for hydrogenation of a fatty acid or ester thereof having excellent catalytic activity and durability, a method for producing the same, a method for producing a fatty acid or ester thereof having a reduced iodine value, and a raw material thereof. It is to provide a method for producing alcohol.

本発明者らは、上記課題を解決するため検討を行った結果、Ni及びCuから選ばれる少なくとも1種の金属を特定量含有し、かつ従来技術よりはるかに大きい径を有する細孔の容量を大きくすることが、脂肪酸又はそのエステルの水素添加用触媒の活性及び耐久性を高め、ヨウ素価が低減された脂肪酸又はそのエステルの製造に有用であることを見出した。   As a result of investigations to solve the above-mentioned problems, the present inventors have determined that the capacity of pores containing a specific amount of at least one metal selected from Ni and Cu and having a diameter much larger than that of the prior art. It has been found that increasing the value increases the activity and durability of the hydrogenation catalyst for fatty acids or esters thereof, and is useful for the production of fatty acids or esters thereof with a reduced iodine value.

すなわち本発明は、Ni及びCuから選ばれる少なくとも1種の金属を10〜85重量%(触媒全量中の金属酸化物としての含有量)含有し、かつ細孔直径20〜200nmの範囲の細孔容量が0.15〜1.0mL/gである、脂肪酸又はそのエステルの水素添加用触媒、その製造方法、この水素添加用触媒の存在下、常圧〜30MPaの圧力下で脂肪酸又はそのエステルの水素添加反応を行う、ヨウ素価が低減された脂肪酸又はそのエステルの製造方法、並びにこの方法で製造した脂肪酸又はそのエステルを原料として用い、還元反応を行うアルコールの製造方法を提供する。   That is, the present invention contains 10 to 85% by weight (content as a metal oxide in the total amount of the catalyst) of at least one metal selected from Ni and Cu and has a pore diameter in the range of 20 to 200 nm. Fatty acid or its ester hydrogenation catalyst having a capacity of 0.15 to 1.0 mL / g, its production method, the presence of this hydrogenation catalyst, and the presence of this fatty acid or its ester under the pressure of normal pressure to 30 MPa. Provided are a method for producing a fatty acid or an ester thereof having a reduced iodine value, which performs a hydrogenation reaction, and a method for producing an alcohol in which a reduction reaction is performed using the fatty acid or the ester produced by this method as a raw material.

本発明の水素添加用触媒を用いることにより、長期間に渡って効率的にヨウ素価の低い脂肪酸又はそのエステルを得ることができ、更に得られた脂肪酸又はそのエステルを原料として、効率的にアルコールを製造することができる。   By using the hydrogenation catalyst of the present invention, it is possible to efficiently obtain a fatty acid having a low iodine value or an ester thereof over a long period of time. Can be manufactured.

[水素添加用触媒及びその製造方法]
本発明の水素添加用触媒は、Ni及びCuから選ばれる少なくとも1種の金属を含有するが、金属としては、活性及び耐久性の観点より、Ni単独、又はNiとCuを併用したものが好ましい。
本発明の水素添加用触媒中のNi及びCuから選ばれる少なくとも1種の金属の含有量は、活性及び耐久性の観点より、10重量%以上であり、55重量%以上が好ましく、60重量%以上がより好ましく、65重量%以上が更に好ましい。また、触媒の強度の観点より、85重量%以下であり、80重量%以下が好ましい。
ここでいう金属の含有量は、担体やバインダーその他の成分を含有した触媒全量中の、金属酸化物としての含有量である。
[Hydrogenation catalyst and production method thereof]
The hydrogenation catalyst of the present invention contains at least one metal selected from Ni and Cu. However, from the viewpoint of activity and durability, the metal is preferably Ni alone or a combination of Ni and Cu. .
The content of at least one metal selected from Ni and Cu in the hydrogenation catalyst of the present invention is 10% by weight or more, preferably 55% by weight or more, preferably 60% by weight from the viewpoints of activity and durability. The above is more preferable, and 65% by weight or more is still more preferable. Further, from the viewpoint of the strength of the catalyst, it is 85% by weight or less, and preferably 80% by weight or less.
The metal content here is the content as a metal oxide in the total amount of the catalyst containing a carrier, a binder and other components.

本発明の水素添加用触媒は、十分な水添活性及び耐久性を発現させる観点から、細孔直径20〜200nmの範囲の細孔容量が0.15mL/g以上であり、0.18mL/g以上が好ましく、0.20mL/g以上がより好ましく、0.25mL/g以上が更に好ましい。また、成形体として用いる場合、反応容器をコンパクトに設計できるという観点から、かさ密度はある程度高いほうが好ましいため、細孔直径20〜200nmの範囲の細孔容量が1.0mL/g以下であり、0.7mL/g以下が好ましい。   The hydrogenation catalyst of the present invention has a pore volume in the range of a pore diameter of 20 to 200 nm of 0.15 mL / g or more and 0.18 mL / g from the viewpoint of developing sufficient hydrogenation activity and durability. The above is preferable, 0.20 mL / g or more is more preferable, and 0.25 mL / g or more is still more preferable. Further, when used as a molded body, from the viewpoint that the reaction vessel can be designed in a compact manner, the bulk density is preferably higher to some extent, so the pore volume in the range of pore diameters of 20 to 200 nm is 1.0 mL / g or less, 0.7 mL / g or less is preferable.

なお、細孔直径は水銀圧入法で測定した直径であり、本発明の水素添加用触媒の水銀圧入法により測定した細孔直径のモード径は、十分な水添活性及び耐久性を発現させる観点から、20nm以上が好ましく、30nm以上がより好ましい。また触媒の強度の観点より、200nm以下が好ましく、100nm以下がより好ましい。
なお、水銀圧入測定装置としては、例えばMicromeritics社製Pore Sizer 9320を使用することができる。水銀圧入の最大圧力は207MPaとし、6nmより大きい細孔を測定する。
Note that the pore diameter is a diameter measured by a mercury intrusion method, and the mode diameter of the pore diameter measured by the mercury intrusion method of the hydrogenation catalyst of the present invention is a viewpoint of developing sufficient hydrogenation activity and durability. Therefore, 20 nm or more is preferable, and 30 nm or more is more preferable. Moreover, from a viewpoint of the intensity | strength of a catalyst, 200 nm or less is preferable and 100 nm or less is more preferable.
As the mercury intrusion measuring apparatus, for example, Pore Sizer 9320 manufactured by Micromeritics can be used. The maximum pressure of mercury intrusion is 207 MPa, and pores larger than 6 nm are measured.

本発明の水素添加用触媒は、直径20〜200nmの範囲にある細孔の容量を上記の範囲内になるように制御することで、良好な水添活性及び耐久性を有することができる。触媒の細孔構造は、沈殿条件、乾燥条件、成形条件、焼成条件等の触媒調製条件を種々変化させることで制御可能である。   The hydrogenation catalyst of the present invention can have good hydrogenation activity and durability by controlling the volume of pores having a diameter in the range of 20 to 200 nm to be in the above range. The pore structure of the catalyst can be controlled by variously changing catalyst preparation conditions such as precipitation conditions, drying conditions, molding conditions, and calcination conditions.

上記のように本発明の水素添加用触媒は、直径20nm〜200nmの細孔が重要であり、これが水添活性及び耐久性を決定する。従って、直径20nm未満の径の小さい細孔の全体に占める割合は少ないほうが良く、特に直径3nm未満の細孔の表面積(BET比表面積)は、全表面積の55%未満が好ましい。
なお、直径3nm未満の細孔の表面積とは、窒素吸着を用いるBET法にて得られる値を指す。BET比表面積の測定は、例えばMicromeritics社製ASAP2020により行うことができる。
As described above, in the hydrogenation catalyst of the present invention, pores having a diameter of 20 nm to 200 nm are important, and this determines the hydrogenation activity and durability. Therefore, it is better that the proportion of the small pores having a diameter of less than 20 nm in the whole is small, and in particular, the surface area (BET specific surface area) of the pores having a diameter of less than 3 nm is preferably less than 55% of the total surface area.
Note that the surface area of pores having a diameter of less than 3 nm refers to a value obtained by the BET method using nitrogen adsorption. The BET specific surface area can be measured by, for example, ASAP2020 manufactured by Micromeritics.

また、本発明の水素添加用触媒は、Ni及びCuから選ばれる少なくとも1種の金属が担体に担持されたものが好ましい。
担体としては、シリカ、アルミナ、シリカアルミナ、ゼオライト、珪藻土、活性白土、チタニア、ジルコニア、活性炭等の公知の担体が使用できるが、シリカ、アルミナ、シリカアルミナ、チタニア、ジルコニアが好ましく、シリカ、アルミナ、シリカアルミナが更に好ましい。
Further, the hydrogenation catalyst of the present invention is preferably one in which at least one metal selected from Ni and Cu is supported on a carrier.
As the carrier, known carriers such as silica, alumina, silica alumina, zeolite, diatomaceous earth, activated clay, titania, zirconia, activated carbon and the like can be used, but silica, alumina, silica alumina, titania, zirconia are preferable, silica, alumina, Silica alumina is more preferred.

担体への、Ni及びCuから選ばれる少なくとも1種の金属の担持方法は特に限定されず、共沈殿法、含浸法、あるいは均一混練法等が適用できる。またこれら調製法を組み合わせて適用することもできる。これらの中では共沈殿法、含浸法が好ましく、共沈殿法がより好ましい。   The method for supporting at least one metal selected from Ni and Cu on the support is not particularly limited, and a coprecipitation method, an impregnation method, a uniform kneading method, or the like can be applied. These preparation methods can also be applied in combination. Among these, the coprecipitation method and the impregnation method are preferable, and the coprecipitation method is more preferable.

共沈殿法の場合、例えば水溶性Ni塩及び水溶性Cu塩から選ばれる少なくとも1種を溶解した水溶液、担体となる物質の水溶液、及びアルカリ金属塩水溶液を混合することで金属と担体を同時に沈殿させ、得られた沈殿を洗浄、乾燥、焼成する方法が利用できる。沈澱の際のpHは、5〜10が好ましい。   In the case of the coprecipitation method, for example, an aqueous solution in which at least one selected from a water-soluble Ni salt and a water-soluble Cu salt is dissolved, an aqueous solution of a substance serving as a carrier, and an aqueous alkali metal salt solution are mixed to simultaneously precipitate a metal and a carrier. The obtained precipitate can be washed, dried and fired. The pH during precipitation is preferably 5-10.

含浸法の場合は、例えば担体粉末に水溶性Ni塩及び水溶性Cu塩から選ばれる少なくとも1種を溶解した水溶液を含浸し、乾燥、焼成する方法が利用できる。   In the case of the impregnation method, for example, a method of impregnating a carrier powder with an aqueous solution in which at least one selected from a water-soluble Ni salt and a water-soluble Cu salt is dissolved, and drying and baking can be used.

本発明の水素添加用触媒の製造方法としては、生産性及び触媒の細孔構造制御の容易性の観点から、Ni塩及びCu塩から選ばれる少なくとも1種の塩の水溶液を、沈殿時の固形分濃度(得られる沈殿を金属酸化物に換算して)が1〜20重量%となる条件で沈殿させることが好ましく、2〜20重量%となる条件がより好ましく、3〜20重量%となる条件が更に好ましい。高濃度で沈澱を行うことにより、径の大きい細孔による容積を大きくすることができる。ここで固形分濃度とは、濾過後に得られる固体を全て金属酸化物として換算した場合のことを指す。   As a method for producing a hydrogenation catalyst of the present invention, an aqueous solution of at least one salt selected from a Ni salt and a Cu salt is used as a solid during precipitation from the viewpoint of productivity and ease of controlling the pore structure of the catalyst. Precipitation is preferably performed under a condition that the partial concentration (the resulting precipitate is converted to a metal oxide) is 1 to 20% by weight, more preferably 2 to 20% by weight, and more preferably 3 to 20% by weight. Conditions are more preferred. By precipitating at a high concentration, the volume of pores having a large diameter can be increased. Here, solid content concentration refers to the case where all the solids obtained after filtration are converted as metal oxides.

沈殿時の温度は、触媒の細孔構造制御の容易性の観点から、55℃以上が好ましく、65℃以上がより好ましく、70℃以上が更に好ましい。また、製造設備負荷及び製造コストの観点から、100℃以下が好ましく、95℃以下がより好ましく、90℃以下が更に好ましい。高い温度で沈澱を行うことにより、径の大きい細孔の容量を大きくすることができる。   The temperature during precipitation is preferably 55 ° C. or higher, more preferably 65 ° C. or higher, and still more preferably 70 ° C. or higher, from the viewpoint of easy control of the pore structure of the catalyst. Moreover, from a viewpoint of manufacturing equipment load and manufacturing cost, 100 degrees C or less is preferable, 95 degrees C or less is more preferable, and 90 degrees C or less is still more preferable. By carrying out the precipitation at a high temperature, the capacity of pores having a large diameter can be increased.

触媒の形状は、反応の方式により、粉末状、粒状、あるいは球状や柱状に成形された形状のものから反応装置形態に応じて適宜選ぶことができる。流体が触媒を通過する際の圧力損失を低減させる観点より、粒状ないし成形された形状が好ましい。   The shape of the catalyst can be appropriately selected according to the reactor configuration from powder, granule, or spherical or columnar shape depending on the reaction system. From the viewpoint of reducing the pressure loss when the fluid passes through the catalyst, a granular or molded shape is preferable.

これら触媒は、通常水素で還元活性化した後に使用する。また、あらかじめ還元活性化及び安定化処理を施した触媒をそのまま、あるいは再度還元活性化した後に使用しても良い。   These catalysts are usually used after reduction activation with hydrogen. Further, a catalyst that has been subjected to reduction activation and stabilization treatment in advance may be used as it is or after reduction activation again.

[脂肪酸又はそのエステルの製造方法]
本発明の脂肪酸又はそのエステルの製造方法は、本発明の水素添加用触媒の存在下、常圧〜30MPaの圧力下で脂肪酸又はそのエステルの水素添加反応を行い、ヨウ素価が低減された脂肪酸又はそのエステルを製造する方法である。
水素添加を行う前、あるいは水素添加を行った後に、不純物除去や精製を目的として、蒸留を行うこともできる。
[Method for producing fatty acid or ester thereof]
The method for producing a fatty acid or an ester thereof according to the present invention includes a fatty acid having a reduced iodine value by performing a hydrogenation reaction of the fatty acid or an ester thereof under normal pressure to 30 MPa in the presence of the hydrogenation catalyst of the present invention. A method for producing the ester.
Distillation can also be performed for the purpose of impurity removal or purification before or after hydrogenation.

原料となる脂肪酸又はそのエステルとしては、トリグリセリド(油脂)、ジグリセリド、モノグリセリド、脂肪酸、脂肪酸と炭素数1〜22のアルコールとのエステル(以下脂肪酸アルコールエステルという)等が挙げられる。これらのうち、グリセリド類としては、牛脂、魚油等の動物性油脂や、パーム核油、ヤシ油、パーム油、大豆油、ナタネ油等の植物性油脂、及びそれらから誘導されるジグリセリド、モノグリセリド等が挙げられる。中でも、構成脂肪酸として炭素数8〜22の脂肪酸を有するものが好ましく、特に植物性グリセリド由来のものが好ましい。
脂肪酸は、油脂の加水分解により得ることができる。加水分解の方法は、高圧連続分解法、中圧法、酵素法等が挙げられる。
Examples of the fatty acid or ester thereof as a raw material include triglyceride (oil and fat), diglyceride, monoglyceride, fatty acid, ester of fatty acid and alcohol having 1 to 22 carbon atoms (hereinafter referred to as fatty acid alcohol ester), and the like. Among these, as glycerides, animal fats such as beef tallow and fish oil, vegetable oils such as palm kernel oil, coconut oil, palm oil, soybean oil, rapeseed oil, and diglycerides and monoglycerides derived therefrom Is mentioned. Among these, those having 8 to 22 carbon atoms as constituent fatty acids are preferred, and those derived from vegetable glycerides are particularly preferred.
Fatty acids can be obtained by hydrolysis of fats and oils. Examples of the hydrolysis method include a high-pressure continuous decomposition method, a medium-pressure method, and an enzyme method.

また、脂肪酸アルコールエステルは、前記グリセリド類と炭素数1〜22のアルコールとのエステル交換反応、あるいは前記グリセリド類より誘導された脂肪酸と炭素数1〜22のアルコールとのエステル化反応により得ることが出来る。ここで用いるアルコールは、炭素数1〜4の低級アルコールが好ましい。   The fatty acid alcohol ester can be obtained by an ester exchange reaction between the glycerides and an alcohol having 1 to 22 carbon atoms, or an esterification reaction between a fatty acid derived from the glycerides and an alcohol having 1 to 22 carbon atoms. I can do it. The alcohol used here is preferably a lower alcohol having 1 to 4 carbon atoms.

エステル交換反応及びエステル化反応は、公知の方法で実施することが可能である。反応は連続方式あるいはバッチ方式のいずれの反応形態も利用できるが、大量にエステルを製造する場合、連続反応が有利である。触媒としては、水酸化ナトリウムや水酸化カリウム、ナトリウムアルコラート等の均一系アルカリ触媒が一般に使用されるが、イオン交換樹脂や含水酸化ジルコニウム、リン酸アルミニウム、硫酸担持ジルコニア、チタノシリケート等の固体触媒も使用することが可能である。均一系アルカリ触媒を用いる場合、一般に以下の条件で反応が行われる。反応温度は30〜90℃、好ましくは40〜80℃、反応圧力は、常圧から0.5MPaの範囲、好ましくは常圧で行われる。またアルコールの使用量は、コスト及び反応性の観点から、グリセリド類に対して、1.5〜10モル倍が好ましい。また、グリセライド類中に遊離脂肪酸が含まれる場合、アルカリ触媒によるエステル交換反応を行う前に、硫酸やパラトルエンスルホン酸等の酸触媒を用いて、予め脂肪酸をエステル化しておくことも有効である。   The transesterification reaction and esterification reaction can be carried out by known methods. The reaction can be performed in either a continuous or batch mode, but a continuous reaction is advantageous when a large amount of ester is produced. As the catalyst, a homogeneous alkaline catalyst such as sodium hydroxide, potassium hydroxide or sodium alcoholate is generally used, but solid catalysts such as ion exchange resin, hydrous zirconium oxide, aluminum phosphate, sulfuric acid-supported zirconia, titanosilicate, etc. Can also be used. When using a homogeneous alkali catalyst, the reaction is generally carried out under the following conditions. The reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction pressure is in the range of normal pressure to 0.5 MPa, preferably normal pressure. Moreover, the usage-amount of alcohol has a preferable 1.5-10 mol times with respect to glycerides from a viewpoint of cost and reactivity. When free fatty acids are contained in the glycerides, it is also effective to esterify the fatty acid in advance using an acid catalyst such as sulfuric acid or paratoluenesulfonic acid before performing the transesterification reaction with an alkali catalyst. .

上記のようにして得られた原料脂肪酸又はそのエステルの水素添加反応の方式としては、バッチ式及び連続式のいずれの方式を使用することもできる。また、粉末触媒を用いた懸濁方式、あるいは成形触媒を用いた固定床方式等、一般に使用される何れの方式も使用することが可能である。大量に処理を行う場合、連続固定床方式が有利である。   As a method of hydrogenation reaction of the raw material fatty acid or its ester obtained as described above, either a batch method or a continuous method can be used. In addition, any commonly used method such as a suspension method using a powder catalyst or a fixed bed method using a molded catalyst can be used. When processing in large quantities, a continuous fixed bed system is advantageous.

水素添加反応の雰囲気ガスは水素が好ましく、不活性ガスを共存させても良い。不活性ガスとしては、窒素、アルゴン、ヘリウム及びメタンが挙げられる。雰囲気ガスの圧力は、常圧〜30MPaであり、0.01〜30MPaが好ましく、0.1〜30MPaがより好ましい。反応を連続式で行う場合には、雰囲気ガスの流量は、処理する原料脂肪酸又はそのエステルのモル数に対する水素のモル比で、0.1〜300倍になるような範囲が好ましい。  The atmosphere gas for the hydrogenation reaction is preferably hydrogen, and an inert gas may coexist. Inert gases include nitrogen, argon, helium and methane. The pressure of the atmospheric gas is normal pressure to 30 MPa, preferably 0.01 to 30 MPa, and more preferably 0.1 to 30 MPa. When the reaction is carried out continuously, the flow rate of the atmospheric gas is preferably in the range of 0.1 to 300 times the molar ratio of hydrogen to the number of moles of raw material fatty acid or ester to be treated.

水素添加反応の温度は、十分な水素添加速度を得る観点から、40℃以上が好ましく、50℃以上が更に好ましい。また、原料脂肪酸又はそのエステルの水素化分解等の副反応を抑制する観点から、200℃以下が好ましく、180℃以下が更に好ましい。   The temperature of the hydrogenation reaction is preferably 40 ° C or higher, more preferably 50 ° C or higher, from the viewpoint of obtaining a sufficient hydrogenation rate. Moreover, from a viewpoint of suppressing side reactions, such as hydrogenolysis of raw material fatty acid or its ester, 200 degrees C or less is preferable and 180 degrees C or less is still more preferable.

水素添加反応を連続式で行う場合には、原料脂肪酸又はそのエステルの流通速度は、生産性、触媒寿命、水素化分解の抑制等の観点から適宜設定されるが、1時間当たりの反応塔容積比(LHSV)で、0.1以上が好ましく、また充分な活性を得る観点から、LHSVで5以下が好ましい。   When the hydrogenation reaction is carried out continuously, the flow rate of the raw fatty acid or ester thereof is appropriately set from the viewpoints of productivity, catalyst life, suppression of hydrocracking, etc., but the reaction tower volume per hour The ratio (LHSV) is preferably 0.1 or more, and LHSV is preferably 5 or less from the viewpoint of obtaining sufficient activity.

上記のような条件での水素添加により、ヨウ素価が低減された脂肪酸又はそのエステルを得ることができる。例えば原料が脂肪酸アルコールエステルの場合、水素添加処理後のヨウ素価を5以下とすることが出来る。   By hydrogenation under the above conditions, a fatty acid or an ester thereof having a reduced iodine value can be obtained. For example, when the raw material is a fatty acid alcohol ester, the iodine value after the hydrogenation treatment can be 5 or less.

[アルコールの製造方法]
本発明のアルコールの製造方法は、上記のような本発明の方法で製造したヨウ素価が低減された脂肪酸又はそのエステルを原料として用い、還元反応を行い、アルコールを得る方法である。
また、上記の水素添加反応によりヨウ素価が低減された脂肪酸又はそのエステル得る方法と、還元反応によりアルコールを得る方法を連続して行っても良い。
[Method for producing alcohol]
The method for producing an alcohol of the present invention is a method for obtaining an alcohol by performing a reduction reaction using a fatty acid or an ester thereof having a reduced iodine value produced by the method of the present invention as described above as a raw material.
Moreover, you may perform continuously the method of obtaining the fatty acid by which iodine value was reduced by said hydrogenation reaction, or its ester, and the method of obtaining alcohol by a reductive reaction.

アルコールの製造に用いられる触媒としては、一般に知られている銅系、あるいはパラジウムや白金等の貴金属系触媒などが用いられる。銅系触媒としては、銅−クロム、銅−亜鉛、銅−鉄−アルミニウム、銅−シリカ等を挙げることができる。これら触媒の存在下、液相懸濁床あるいは固定床方式等、一般に使用される何れの反応方式によっても、還元反応を行うことが可能である。   As a catalyst used for the production of alcohol, generally known copper-based or noble metal-based catalysts such as palladium and platinum are used. Examples of the copper-based catalyst include copper-chromium, copper-zinc, copper-iron-aluminum, and copper-silica. In the presence of these catalysts, the reduction reaction can be carried out by any commonly used reaction method such as a liquid phase suspension bed or a fixed bed method.

液相懸濁床方式で還元反応を行う場合、触媒量は、脂肪酸又はそのエステルに対し0.1〜20重量%が好ましいが、反応温度あるいは反応圧力に応じて、実用的な反応収率が得られる範囲内において任意に選択できる。反応温度は、好ましくは160〜350℃、更に好ましくは200〜280℃である。反応圧力は、好ましくは0.1〜35MPa、更に好ましくは3〜30MPaである。   When the reduction reaction is carried out in the liquid phase suspension bed system, the catalyst amount is preferably 0.1 to 20% by weight based on the fatty acid or its ester, but depending on the reaction temperature or reaction pressure, a practical reaction yield may be obtained. It can be arbitrarily selected within the range obtained. The reaction temperature is preferably 160 to 350 ° C, more preferably 200 to 280 ° C. The reaction pressure is preferably 0.1 to 35 MPa, more preferably 3 to 30 MPa.

固定床方式で連続的に還元反応を行う場合、触媒は、円柱状あるいはペレット状、球状等に成形されたものを使用する。反応温度は、好ましくは130〜300℃、更に好ましくは150〜270℃であり、反応圧力は、好ましくは0.1〜30MPaである。LHSVは、生産性及び反応性を考慮し、反応条件に応じて任意に決定される。   When the reduction reaction is carried out continuously in a fixed bed system, the catalyst used is a cylinder, pellet, or sphere. The reaction temperature is preferably 130 to 300 ° C, more preferably 150 to 270 ° C, and the reaction pressure is preferably 0.1 to 30 MPa. LHSV is arbitrarily determined according to reaction conditions in consideration of productivity and reactivity.

以下の実施例において、触媒の細孔直径20〜200nmの範囲の細孔容量及び細孔直径のモード径の測定は、水銀圧入測定装置であるMicromeritics社製Pore Sizer 9320にて行った。また脂肪酸エステルのヨウ素価は、Wijs法(JIS K0070:1992)により測定した。   In the following examples, the pore volume in the pore diameter range of 20 to 200 nm of the catalyst and the mode diameter of the pore diameter were measured with a pore sizer 9320 manufactured by Micromeritics, which is a mercury intrusion measuring apparatus. The iodine value of the fatty acid ester was measured by the Wijs method (JIS K0070: 1992).

原料脂肪酸エステルの調製例
パーム核油1000gに対して、NaOHを10重量%含有したメタノール溶液30gとメタノール100gを、生成してくるグリセリン層を除去しながら、3回に分けて加え、50℃で3時間反応させた。反応後、油層を水洗し、パーム核油脂肪酸メチルエステルを得た。得られたパーム核油脂肪酸メチルエステルを、更に蒸留することにより、ヨウ素価17.5のパーム核油脂肪酸メチルエステルを得た。以下の実施例においては、本パーム核油脂肪酸メチルエステルを原料として用いた。
Preparation Example of Raw Fatty Acid Ester To 1000 g of palm kernel oil, 30 g of methanol solution containing 10% by weight of NaOH and 100 g of methanol were added in three portions while removing the glycerin layer produced, and at 50 ° C. The reaction was performed for 3 hours. After the reaction, the oil layer was washed with water to obtain palm kernel oil fatty acid methyl ester. The obtained palm kernel oil fatty acid methyl ester was further distilled to obtain a palm kernel oil fatty acid methyl ester having an iodine value of 17.5. In the following examples, this palm kernel oil fatty acid methyl ester was used as a raw material.

触媒の製造例1
2Lセパラブルフラスコに、イオン交換水800g、Ni(NO32・6H2O 232gを仕込み、攪拌しながら80℃に昇温した。ここに、イオン交換水630gにJIS3号水ガラス33g、Na2CO3 113gを溶解して80℃に加熱した溶液を、攪拌しながら投入した。投入後、Mg(NO32・6H2O 24gを加え、生成したスラリーを80℃にて1時間攪拌した後、濾過、水洗を行い、110℃で乾燥して前駆体を得た。沈澱時の固形分濃度(酸化物換算)は、6.1重量%であった。次いで、アルミナをバインダーとして前駆体をヌードル状に成形した後、焼成、還元、安定化を行って、直径1.6mmの触媒Aを得た。この触媒Aの細孔直径20〜200nmの範囲の細孔容量は0.361mL/gであった。
Catalyst production example 1
A 2 L separable flask was charged with 800 g of ion exchanged water and 232 g of Ni (NO 3 ) 2 .6H 2 O, and the temperature was raised to 80 ° C. while stirring. Here, ion-exchanged water 630g in JIS3 water glass 33 g, the solution was heated to 80 ° C. to dissolve the Na 2 CO 3 113 g, it was charged with stirring. After the addition, 24 g of Mg (NO 3 ) 2 .6H 2 O was added, and the resulting slurry was stirred at 80 ° C. for 1 hour, filtered, washed with water, and dried at 110 ° C. to obtain a precursor. The solid content concentration (as oxide) at the time of precipitation was 6.1% by weight. Next, after the precursor was formed into a noodle shape using alumina as a binder, firing, reduction, and stabilization were performed to obtain a catalyst A having a diameter of 1.6 mm. The pore volume of the catalyst A having a pore diameter of 20 to 200 nm was 0.361 mL / g.

触媒の製造例2
2Lセパラブルフラスコに、イオン交換水840g、Ni(NO32・6H2O 180g、Cu(NO32・3H2O 22g、γ-アルミナ4g、60%硝酸4.7gを仕込み、攪拌しながら80℃に昇温した。ここに、イオン交換水570gにJIS3号水ガラス50g、Na2CO3 118gを溶解して80℃に加熱した溶液を、攪拌しながら投入した。生成したスラリーを80℃にて1時間攪拌した後、濾過、水洗を行い、110℃で乾燥して前駆体を得た。沈澱時の固形分濃度(酸化物換算)は、4.1重量%であった。次いで、アルミナをバインダーとして前駆体をヌードル状に成形した後、焼成、還元、安定化を行って、直径1.6mmの触媒Bを得た。この触媒Bの細孔直径20〜200nmの範囲の細孔容量は0.325mL/gであった。
Catalyst production example 2
A 2 L separable flask is charged with 840 g of ion-exchanged water, 180 g of Ni (NO 3 ) 2 .6H 2 O, 22 g of Cu (NO 3 ) 2 .3H 2 O, 4 g of γ-alumina, and 4.7 g of 60% nitric acid. The temperature was raised to 80 ° C. A solution prepared by dissolving 50 g of JIS No. 3 water glass and 118 g of Na 2 CO 3 in 570 g of ion-exchanged water and heating to 80 ° C. was added thereto with stirring. The resulting slurry was stirred at 80 ° C. for 1 hour, filtered, washed with water, and dried at 110 ° C. to obtain a precursor. The solid content concentration (as oxide) at the time of precipitation was 4.1% by weight. Next, the precursor was formed into a noodle shape using alumina as a binder, and then calcined, reduced, and stabilized to obtain a catalyst B having a diameter of 1.6 mm. The pore volume of this catalyst B in the pore diameter range of 20 to 200 nm was 0.325 mL / g.

触媒の製造例3
2Lセパラブルフラスコに、イオン交換水1260g、Ni(NO32・6H2O 108g、Cu(NO32・3H2O 13g、γ-アルミナ2.4g、60%硝酸2.8gを仕込み、攪拌しながら80℃に昇温した。ここに、イオン交換水860gにJIS3号水ガラス30g、Na2CO3 71gを溶解して80℃に加熱した溶液を、攪拌しながら投入した。生成したスラリーを80℃にて1時間攪拌した後、濾過、水洗を行い、110℃で乾燥して前駆体を得た。沈澱時の固形分濃度(酸化物換算)は、1.8重量%であった。次いで、アルミナをバインダーとして前駆体をヌードル状に成形した後、焼成、還元、安定化を行って、直径1.6mmの触媒Cを得た。この触媒Cの細孔直径20〜200nmの範囲の細孔容量は0.182mL/gであった。
Catalyst production example 3
A 2 L separable flask is charged with 1260 g of ion-exchanged water, 108 g of Ni (NO 3 ) 2 .6H 2 O, 13 g of Cu (NO 3 ) 2 .3H 2 O, 2.4 g of γ-alumina, and 2.8 g of 60% nitric acid. The temperature was raised to 80 ° C. with stirring. A solution prepared by dissolving 30 g of JIS No. 3 water glass and 71 g of Na 2 CO 3 in 860 g of ion-exchanged water and heating to 80 ° C. was added thereto with stirring. The resulting slurry was stirred at 80 ° C. for 1 hour, filtered, washed with water, and dried at 110 ° C. to obtain a precursor. The solid content concentration (as oxide) at the time of precipitation was 1.8% by weight. Next, the precursor was formed into a noodle shape using alumina as a binder, and then calcined, reduced, and stabilized to obtain a catalyst C having a diameter of 1.6 mm. The pore volume of the catalyst C having a pore diameter in the range of 20 to 200 nm was 0.182 mL / g.

触媒の比較製造例1
製造例3と同様に調製することで乾燥前駆体を得た後、成形前の混練時間を延長して触媒Dを得た。この触媒Dの細孔直径20〜200nmの範囲の細孔容量は0.095mL/gであった。
Comparative production example 1 of catalyst
After preparing a dry precursor by preparing in the same manner as in Production Example 3, the kneading time before molding was extended to obtain Catalyst D. The pore volume of the catalyst D having a pore diameter in the range of 20 to 200 nm was 0.095 mL / g.

触媒の比較製造例2
原料投入時及びスラリー攪拌時の温度を80℃から50℃に変えた以外、製造例3と同様に調製し、触媒Eを得た。この触媒Eの細孔直径20〜200nmの範囲の細孔容量は0.081mL/gであった。
Comparative production example 2 of catalyst
A catalyst E was prepared in the same manner as in Production Example 3 except that the temperature at the time of charging the raw material and stirring the slurry was changed from 80 ° C. to 50 ° C. The pore volume of the catalyst E having a pore diameter in the range of 20 to 200 nm was 0.081 mL / g.

上記製造例及び比較製造例で得られた触媒A〜Eの金属含有量、細孔直径20〜200nmの範囲の細孔容量及び細孔直径のモード径をまとめて、表1に示す。
また、触媒Aについては、細孔直径3nm未満の範囲のBET比表面積を、Micromeritics社製ASAP2020により測定した。その結果も表1に示す。
Table 1 summarizes the metal contents of the catalysts A to E obtained in the above production examples and comparative production examples, the pore volume in the range of pore diameters of 20 to 200 nm, and the mode diameters of the pore diameters.
For catalyst A, the BET specific surface area within a pore diameter range of less than 3 nm was measured by ASAP2020 manufactured by Micromeritics. The results are also shown in Table 1.

Figure 0005179107
Figure 0005179107

実施例1〜3及び比較例1、2
内容積500mLのオートクレーブに、触媒A〜E2g、前記調製例で得られたパーム核油脂肪酸メチルエステル(ヨウ素価17.5)200gを仕込み、135℃、水素圧力24.5MPa、水素流量5L/分の条件で、135℃到達時点を0分として60分間水素添加反応を行った。反応0分と60分のパーム核油脂肪酸メチルエステルのヨウ素価、及び次式で算出した水添活性1を表2に示す。
Examples 1 to 3 and Comparative Examples 1 and 2
An autoclave with an internal volume of 500 mL was charged with 2 g of catalysts A to E and 200 g of palm kernel oil fatty acid methyl ester (iodine value 17.5) obtained in the above preparation example, 135 ° C., hydrogen pressure 24.5 MPa, hydrogen flow rate 5 L / min. Under these conditions, the hydrogenation reaction was carried out for 60 minutes, assuming that the time when the temperature reached 135 ° C. was 0 minutes. Table 2 shows the iodine value of palm kernel oil fatty acid methyl ester at 0 minutes and 60 minutes and hydrogenation activity 1 calculated by the following formula.

水添活性1=LN(反応0分のヨウ素価/反応60分のヨウ素価)   Hydrogenation activity 1 = LN (iodine number for reaction 0 minutes / iodine number for reaction 60 minutes)

Figure 0005179107
Figure 0005179107

実施例4〜6及び比較例3
触媒A〜D 180mLを固定床反応器に充填し、20MPa、90℃の反応条件にて、前記調製例で得られたパーム核油脂肪酸メチルエステル(ヨウ素価17.5)900mL/時(LHSV=5)、水素1900NL/時を反応器上部より同時に供給し、水素添加反応を行った。パーム核油脂肪酸メチルエステルを通液直後及び1000倍通液した後に採取した、この通液直後及び1000倍通液した後のパーム核油脂肪酸メチルエステルのヨウ素価、次式で算出した水添活性2及び3をそれぞれ表3に示す。
Examples 4 to 6 and Comparative Example 3
The catalyst A to D 180 mL was charged into a fixed bed reactor, and the palm kernel oil fatty acid methyl ester (iodine value 17.5) obtained in the above preparation example was 900 mL / hour (LHSV = 5) Hydrogen 1900 NL / hour was simultaneously supplied from the upper part of the reactor to carry out a hydrogenation reaction. Palm iodine oil fatty acid methyl ester collected immediately after passing through and 1000 times after passing through, iodine value of palm kernel oil fatty acid methyl ester immediately after passing through and after 1000 times passing through, hydrogenation activity calculated by the following formula 2 and 3 are shown in Table 3, respectively.

水添活性2=LN(処理前のヨウ素価*1/通液直後のヨウ素価)
水添活性3=LN(処理前のヨウ素価*1/1000倍通液した後のヨウ素価)
*1:原料ヨウ素価=17.5
Hydrogenation activity 2 = LN (iodine value before treatment * 1 / iodine value immediately after passing through)
Hydrogenation activity 3 = LN (iodine value before treatment * 1 / iodine value after passing 1000 times)
* 1: Raw material iodine value = 17.5

Figure 0005179107
Figure 0005179107

実施例7(アルコールの製造例)
固定床反応装置を用い、前記調製例で得られたパーム核油脂肪酸メチルエステル(ヨウ素価17.5)の水素添加反応及び還元反応を連続的に行った。固定床反応装置は二つの反応器を直列に備えており、第1反応器に360mLの触媒Aを充填し、第2反応器に還元触媒として360mLのチタニア担持銅−亜鉛触媒(組成:Cu=35%、Zn=1.8%、TiO2担体50% 形状:3.2mmφ×3.2mm円柱状)を充填した。第1反応器の水素添加反応条件は、20MPa、90℃とし、パーム核油脂肪酸メチルエステルの流量は260mL/時(LHSV=0.72)とした。第1反応器で処理した後のパーム核油脂肪酸メチルエステルのヨウ素価は、0.01であった。
Example 7 (Example of alcohol production)
Using a fixed bed reactor, a hydrogenation reaction and a reduction reaction of the palm kernel oil fatty acid methyl ester (iodine value 17.5) obtained in the above preparation example were continuously performed. The fixed bed reactor is equipped with two reactors in series. The first reactor is charged with 360 mL of catalyst A, and the second reactor is charged with 360 mL of a titania-supported copper-zinc catalyst (composition: Cu = 35%, Zn = 1.8%, TiO 2 carrier 50%, shape: 3.2 mmφ × 3.2 mm cylindrical shape). The hydrogenation reaction conditions of the first reactor were 20 MPa and 90 ° C., and the flow rate of palm kernel oil fatty acid methyl ester was 260 mL / hour (LHSV = 0.72). The iodine value of palm kernel oil fatty acid methyl ester after being treated in the first reactor was 0.01.

還元触媒を充填した第2反応器の還元反応条件は、圧力20MPa、温度210℃とした。還元反応後、得られた液中のアルコール含量は、ガスクロマトグラフィー上で96.8%であり、鹸化価は4.7mg−KOH/gであった。   The reduction reaction conditions of the second reactor filled with the reduction catalyst were a pressure of 20 MPa and a temperature of 210 ° C. After the reduction reaction, the alcohol content in the obtained liquid was 96.8% on gas chromatography, and the saponification value was 4.7 mg-KOH / g.

Claims (8)

Niを10〜85重量%(触媒全量中の金属酸化物としての含有量)含有し、かつ細孔直径20〜200nmの範囲の細孔容量が0.15〜1.0mL/gであり、細孔直径のモード径が20〜200nmであり、成形された形状を有する、脂肪酸又はそのエステルの水素添加用触媒。   It contains 10 to 85% by weight of Ni (content as a metal oxide in the total amount of the catalyst), and the pore volume in the range of pore diameters of 20 to 200 nm is 0.15 to 1.0 mL / g. A catalyst for hydrogenation of a fatty acid or an ester thereof, having a pore diameter mode diameter of 20 to 200 nm and having a molded shape. 球状又は柱状に成形された形状を有する、請求項1記載の水素添加用触媒。   The hydrogenation catalyst according to claim 1, which has a shape formed into a spherical shape or a column shape. アルミナをバインダーとして成形されたものである請求項1又は2記載の水素添加用触媒。   The hydrogenation catalyst according to claim 1 or 2, wherein the catalyst is formed using alumina as a binder. Ni塩から選ばれる少なくとも1種の塩の水溶液を、沈殿時の固形分濃度(得られる沈殿を金属酸化物に換算して)が1〜20重量%となる条件で沈殿させる、請求項1〜3の何れか1項記載の水素添加用触媒の製造方法。   An aqueous solution of at least one salt selected from Ni salts is precipitated under conditions such that the solid content concentration during precipitation (the obtained precipitate is converted to a metal oxide) is 1 to 20% by weight. 4. The method for producing a hydrogenation catalyst according to any one of 3 above. 55〜100℃の温度で沈殿させる、請求項4記載の水素添加用触媒の製造方法。   The manufacturing method of the catalyst for hydrogenation of Claim 4 which precipitates at the temperature of 55-100 degreeC. 沈殿を成形する工程を有する、請求項4又は5記載の水素添加用触媒の製造方法。   The method for producing a hydrogenation catalyst according to claim 4 or 5, further comprising a step of forming a precipitate. 請求項1〜3の何れか1項記載の水素添加用触媒の存在下、常圧〜30MPaの圧力下で脂肪酸又はそのエステルの水素添加反応を行う、ヨウ素価が低減された脂肪酸又はそのエステルの製造方法。   In the presence of the hydrogenation catalyst according to any one of claims 1 to 3, a hydrogenation reaction of a fatty acid or an ester thereof is performed under a pressure of normal pressure to 30 MPa. Production method. 脂肪酸又はそのエステルが、トリグリセリド、ジグリセリド、モノグリセリド、脂肪酸、及び脂肪酸と炭素数1〜22のアルコールとのエステルから選ばれる少なくとも1種である、請求項7記載の製造方法。 The production method according to claim 7, wherein the fatty acid or an ester thereof is at least one selected from triglycerides, diglycerides, monoglycerides, fatty acids, and esters of fatty acids and alcohols having 1 to 22 carbon atoms.
JP2007191698A 2007-07-24 2007-07-24 Catalyst for hydrogenation Expired - Fee Related JP5179107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191698A JP5179107B2 (en) 2007-07-24 2007-07-24 Catalyst for hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191698A JP5179107B2 (en) 2007-07-24 2007-07-24 Catalyst for hydrogenation

Publications (2)

Publication Number Publication Date
JP2009022938A JP2009022938A (en) 2009-02-05
JP5179107B2 true JP5179107B2 (en) 2013-04-10

Family

ID=40395269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191698A Expired - Fee Related JP5179107B2 (en) 2007-07-24 2007-07-24 Catalyst for hydrogenation

Country Status (1)

Country Link
JP (1) JP5179107B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040969B1 (en) * 2009-03-24 2011-06-16 국방과학연구소 Catalyst for high temperature hydrogenation and its use for improving process for preparing endo-tetrahydrodicyclopentadiene
EP3115439B1 (en) 2014-03-03 2019-02-06 National Institute of Advanced Industrial Science and Technology Biodiesel fuel hydrogenation method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3880113T2 (en) * 1987-12-21 1993-07-15 Unilever Nv NICKEL SILICONE CATALYSTS AND THEIR PREPARATION.
CA2016817C (en) * 1989-05-16 1998-06-23 Cornelis Martinus Lok Nickel/silica catalyst and the preparation and use thereof
DE4005629A1 (en) * 1990-02-22 1991-08-29 Henkel Kgaa METHOD OF HYDRATING
US5243095A (en) * 1992-04-24 1993-09-07 Engelhard Corporation Hydrogenation catalyst, process for preparing and process for using said catalyst
JP2990568B2 (en) * 1993-12-13 1999-12-13 花王株式会社 Method for preparing copper-containing hydrogenation catalyst and method for producing alcohol
PL180955B1 (en) * 1994-07-01 2001-05-31 Haerroed Magnus Method of hydrogenating substrates and substances obtained thereby
WO1997034694A1 (en) * 1996-03-21 1997-09-25 Engelhard Corporation PREPARATION AND USE OF NON-CHROME CATALYSTS FOR Cu/Cr CATALYST APPLICATIONS
DE19719431A1 (en) * 1997-05-12 1998-11-19 Degussa Process for the continuous catalytic conversion of organic compounds
DE10207443A1 (en) * 2002-02-22 2003-09-04 Bayer Ag Process and catalyst for the production of alcohols
WO2004048297A1 (en) * 2002-11-27 2004-06-10 New Japan Chemical Co., Ltd. Method of hydrogenation reaction

Also Published As

Publication number Publication date
JP2009022938A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4278910B2 (en) Esters manufacturing method
JP4976016B2 (en) Process for producing ester by transesterification
CA2608208C (en) Process for the hydrogenation of unsaturated triglycerides
JP4255823B2 (en) Method for producing fatty acid ester
KR930008440B1 (en) Nickel/silica catalyst and the preparation and use thereof
KR20100056129A (en) Ceramic catalyst used for manufacturing fatty acid alkyl-group ester and method thereof using same
KR20130051937A (en) Hydrogenation of fatty acids using a promoted supported nickel catalyst
WO2016059431A1 (en) Catalyst and process
JP5595719B2 (en) Method for producing glycerin
CN107001199B (en) Production of fatty alcohols from fatty acids or fatty acid esters by catalytic hydrogenation
JP5179107B2 (en) Catalyst for hydrogenation
ITNO20130005A1 (en) PROCESS FOR SELECTIVE HYDROGENATION OF VEGETABLE OILS
JPH06205B2 (en) Nickel-silica catalyst and its production method
JP3633612B2 (en) Shell catalyst, its preparation and use
KR20100138860A (en) Ceramic catalyst used for manufacturing fatty acid alkyl-group ester and method thereof using same
JPH0899036A (en) Catalyst for selective hydrogenation and preparation of high purity oleic acid using the same
JP5063988B2 (en) Method for producing fatty acid ester
JP2934073B2 (en) Process for producing desulfurized fat or oil or fatty acid ester
KR101777893B1 (en) Process for the hydrogenation of fatty acids using a promoted supported nickel catalyst
CN106536454B (en) Method for catalytic deoxygenation of natural oils and fats
JP6063722B2 (en) Method for producing alcohol and glycerin
CN110624537B (en) Preparation method of phthalate hydrogenation catalyst
JPH05255156A (en) Manufacture of higher alcohol by catalytic hydrogenation of carboxylic acid alkylester
JP3799791B2 (en) Catalyst for hydrogenation reaction and method for producing the same
WO2010018405A1 (en) Chemical process and catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees