JP4255823B2 - Method for producing fatty acid ester - Google Patents

Method for producing fatty acid ester Download PDF

Info

Publication number
JP4255823B2
JP4255823B2 JP2003426523A JP2003426523A JP4255823B2 JP 4255823 B2 JP4255823 B2 JP 4255823B2 JP 2003426523 A JP2003426523 A JP 2003426523A JP 2003426523 A JP2003426523 A JP 2003426523A JP 4255823 B2 JP4255823 B2 JP 4255823B2
Authority
JP
Japan
Prior art keywords
fatty acid
reaction
catalyst
acid ester
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003426523A
Other languages
Japanese (ja)
Other versions
JP2005177722A (en
Inventor
勝敏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003426523A priority Critical patent/JP4255823B2/en
Publication of JP2005177722A publication Critical patent/JP2005177722A/en
Application granted granted Critical
Publication of JP4255823B2 publication Critical patent/JP4255823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明はエステル交換反応用触媒、及びそれを用いる脂肪酸エステルの製造方法に関する。   The present invention relates to a transesterification catalyst and a method for producing a fatty acid ester using the same.

脂肪酸エステルは、高級アルコール及びエステルスルホネート、アルカノールアミド等の油脂化学製品の製造原料として重要な中間体である。長鎖脂肪酸エステルは、繊維油剤や樹脂添加剤等に用いられる。また脂肪酸メチルエステルは、最近バイオディーゼル燃料として需要が高まっている。   Fatty acid esters are important intermediates as raw materials for the production of oleochemical products such as higher alcohols, ester sulfonates, and alkanolamides. Long chain fatty acid esters are used in fiber oils, resin additives, and the like. In addition, fatty acid methyl ester has recently been in demand as a biodiesel fuel.

脂肪酸エステルは、原料脂肪酸エステルとアルコール又は脂肪酸のエステル交換反応によって製造することができる。従来、エステル交換反応に用いられる触媒は、アルカリ金属水酸化物、アルカリ金属アルコキシド、アルカリ土類金属酸化物、あるいは酸化スズといった両性金属酸化物が使用されてきた。しかしながら、これらの触媒は反応系に溶解するために、反応終了後、水洗による除去あるいは吸着除去が必要であり、生成物への残存を防ぐために煩雑な工程を必要としていた。   The fatty acid ester can be produced by a transesterification reaction between the raw fatty acid ester and alcohol or fatty acid. Conventionally, an amphoteric metal oxide such as an alkali metal hydroxide, an alkali metal alkoxide, an alkaline earth metal oxide, or tin oxide has been used as a catalyst used in the transesterification reaction. However, since these catalysts are dissolved in the reaction system, they need to be removed by water washing or adsorption removal after the completion of the reaction, and complicated steps are required to prevent them from remaining in the product.

これに対し、不均一系触媒を使用することで反応後の触媒分離が容易になるという利点が得られる。その例として、アルミノシリケート(ゼオライト)(特許文献1)やリン酸アルミニウム(特許文献2)等の無機固体酸や、イオン交換樹脂を用いてエステル交換を行う方法が知られている。しかしながら、これらの固体酸を用いた場合、原料の一つとして使用されるアルコールが酸点上で脱水縮合を起こし、エーテルを生成するという反応が併発する。また、強酸点を有するイオン交換樹脂もエステル交換反応用触媒として使用しうるが、樹脂であるため使用可能温度に上限があり、反応温度を高めることによる反応速度の増大に制約がある。
特開昭61−200943号公報 特開2000−342973号公報
On the other hand, the advantage that the catalyst separation after the reaction is facilitated by using the heterogeneous catalyst can be obtained. As an example, a method of transesterification using an inorganic solid acid such as aluminosilicate (zeolite) (Patent Document 1) or aluminum phosphate (Patent Document 2) or an ion exchange resin is known. However, when these solid acids are used, the reaction that the alcohol used as one of the raw materials undergoes dehydration condensation on the acid sites to produce ethers is accompanied. An ion exchange resin having a strong acid point can also be used as a catalyst for the transesterification reaction, but since it is a resin, there is an upper limit on the usable temperature, and there is a restriction on the increase in reaction rate by increasing the reaction temperature.
JP 61-200943 A JP 2000-342773 A

本発明の課題は、高活性で選択性が良好である不均一系エステル交換反応用触媒、及びその触媒を用いる脂肪酸エステルの製造法を提供することである。   An object of the present invention is to provide a heterogeneous transesterification catalyst having high activity and good selectivity, and a method for producing a fatty acid ester using the catalyst.

本発明者等は、活性が低く、実用的なエステル交換反応用触媒としては認められていなかった、酸化ジルコニウムや酸化チタンといった酸強度の弱い金属酸化物を用いることにより、上記課題を解決できることを見出した。   The inventors of the present invention are able to solve the above problems by using a metal oxide having low acid strength, such as zirconium oxide and titanium oxide, which has low activity and has not been recognized as a practical catalyst for transesterification. I found it.

即ち、本発明は、酸化ジルコニウム及び酸化チタンを含むエステル交換反応用固体触媒、及びこの触媒の存在下で、原料脂肪酸エステルと、原料アルコールあるいは原料脂肪酸をエステル交換反応させる、脂肪酸エステルの製造方法を提供する。   That is, the present invention provides a solid catalyst for transesterification containing zirconium oxide and titanium oxide, and a method for producing a fatty acid ester, in the presence of this catalyst, by transesterifying a raw fatty acid ester with a raw alcohol or raw fatty acid. provide.

本発明により、エーテルの副生を抑制して脂肪酸エステルを効率的に得ることができる。   According to the present invention, it is possible to efficiently obtain a fatty acid ester by suppressing the by-product of ether.

[エステル交換反応用触媒]
本発明のエステル交換反応用触媒において、エステル交換反応とは、原料エステルと、原料アルコールあるいは原料脂肪酸とのエステル交換反応である。
[Catalyst for transesterification]
In the catalyst for transesterification reaction of the present invention, the transesterification reaction is an ester exchange reaction between a raw material ester and a raw material alcohol or a raw material fatty acid.

本発明のエステル交換反応用触媒は、酸化ジルコニウムと酸化チタンをともに含有する固体触媒である。これらを共に含有することで、酸化ジルコニウム単独、あるいは酸化チタン単独の触媒よりもはるかに活性が向上する。本発明の触媒中のジルコニウムとチタンの原子比は9:1〜1:9であることが好ましく、7:3〜3:7がより好ましく、6:4〜4:6が特に好ましい。   The catalyst for transesterification of the present invention is a solid catalyst containing both zirconium oxide and titanium oxide. By containing these together, the activity is improved far more than the catalyst of zirconium oxide alone or titanium oxide alone. The atomic ratio of zirconium and titanium in the catalyst of the present invention is preferably 9: 1 to 1: 9, more preferably 7: 3 to 3: 7, and particularly preferably 6: 4 to 4: 6.

本発明の固体触媒の製造方法としては、例えば、アルコキシドを加水分解する方法、塩からの沈殿剤による共沈法、それぞれの水酸化物ゲルを混合する方法等が挙げられ、アルコキシドを加水分解する方法、塩からの沈殿剤による共沈法が好ましい。アルコキシドを加水分解する方法は、ジルコニウムn−プロポキシドあるいはジルコニウムn−ブトキシド等のジルコニウムのアルコキシドと、チタンイソプロポキシド等のチタンのアルコキシドを含む溶液を加水分解して酸化ジルコニウムと酸化チタンを含む沈殿を生成させ、濾過、水洗、乾燥、焼成等の処理を行う方法である。また、塩からの沈殿剤による共沈法は、オキシ塩化ジルコニウムあるいはオキシ硝酸ジルコニウム等のジルコニウム塩と、塩化チタンあるいは硫酸チタン等のチタン塩を含む溶液に、沈殿剤としてアンモニア水あるいは炭酸ソーダ等のアルカリを添加することで、沈殿を生成させ、濾過、水洗、乾燥、焼成等の処理を行う方法である。   Examples of the method for producing the solid catalyst of the present invention include a method of hydrolyzing alkoxide, a coprecipitation method using a precipitant from a salt, a method of mixing respective hydroxide gels, etc., and hydrolyzing the alkoxide. A method and a coprecipitation method using a precipitant from a salt are preferred. The method of hydrolyzing an alkoxide is a precipitation containing zirconium oxide and titanium oxide by hydrolyzing a solution containing zirconium alkoxide such as zirconium n-propoxide or zirconium n-butoxide and titanium alkoxide such as titanium isopropoxide. Is generated and subjected to treatment such as filtration, washing with water, drying, and baking. In addition, a coprecipitation method using a precipitating agent from a salt is obtained by adding ammonia water or sodium carbonate as a precipitating agent to a solution containing zirconium salt such as zirconium oxychloride or zirconium oxynitrate and titanium salt such as titanium chloride or titanium sulfate. In this method, a precipitate is generated by adding an alkali, and a treatment such as filtration, washing with water, drying, and baking is performed.

水洗条件については、水への懸濁、濾過を繰り返し行ってもよく、連続的に水を通水してもよい。使用する水の温度は低温でもよく、温水でもよい。焼成温度については110℃〜1200℃が好ましく、200℃〜800℃がより好ましく、300℃〜600℃が特に好ましい。焼成雰囲気は空気、窒素、アルゴン等が例示される。焼成時間は10分から24時間が好ましく、1時間から10時間がより好ましい。   As for the washing conditions, suspension in water and filtration may be repeated, or water may be continuously passed. The temperature of the water used may be low or warm. The firing temperature is preferably 110 ° C to 1200 ° C, more preferably 200 ° C to 800 ° C, and particularly preferably 300 ° C to 600 ° C. Examples of the firing atmosphere include air, nitrogen, and argon. The firing time is preferably 10 minutes to 24 hours, more preferably 1 hour to 10 hours.

本発明の固体触媒は、酸化ジルコニウムと酸化チタンがそれぞれ微細結晶を形成しミクロに混合していてもよく、また一方あるいは両方が非晶質であってもよい。また、酸化ジルコニウムと酸化チタンが複合酸化物を形成していてもよい。   In the solid catalyst of the present invention, zirconium oxide and titanium oxide may form fine crystals and may be mixed microscopically, or one or both may be amorphous. Further, zirconium oxide and titanium oxide may form a composite oxide.

本発明の固体触媒の形態は、粉末でもよく、成形したものでもよい。粉末の場合は、その粒径は0.1μm〜100μmが好ましく、1μm以上の方が濾過時間が速くなるという点で好ましい。また、成形する場合には、円柱状、球状、リング状といった形状が例示される。成形して用いる場合は、強度を向上させるためのバインダー成分、細孔付与剤、成形性向上のための滑沢剤等を含有させることが有利である。   The form of the solid catalyst of the present invention may be powder or molded. In the case of powder, the particle size is preferably 0.1 μm to 100 μm, and more preferably 1 μm or more in terms of faster filtration time. Moreover, when shape | molding, shapes, such as a column shape, spherical shape, and ring shape, are illustrated. When used after molding, it is advantageous to contain a binder component for improving the strength, a pore imparting agent, a lubricant for improving the moldability, and the like.

また、本発明の固体触媒の比表面積は、製造条件によるが、10〜500m2/gが好ましく、50〜200m2/gがより好ましい。また、アンモニアガスを用いた昇温脱離法(TPD:Temperature Programmed Desorption)において、100〜250℃で脱離するアンモニアの量から求められる酸量は、0.05〜5mmol/gが好ましく、0.05〜1mmol/gがより好ましく、0.2〜0.5mmol/gが特に好ましい。 Moreover, although the specific surface area of the solid catalyst of this invention is based on manufacturing conditions, 10-500 m < 2 > / g is preferable and 50-200 m < 2 > / g is more preferable. Moreover, in the temperature programmed desorption (TPD) using ammonia gas, the acid amount determined from the amount of ammonia desorbed at 100 to 250 ° C. is preferably 0.05 to 5 mmol / g, 0 0.05 to 1 mmol / g is more preferable, and 0.2 to 0.5 mmol / g is particularly preferable.

[脂肪酸エステルの製造方法]
本発明の脂肪酸エステルの製造方法は、酸化ジルコニウム及び酸化チタンを含む本発明の固体触媒の存在下で、原料脂肪酸エステルと、原料アルコールあるいは原料脂肪酸をエステル交換反応させる方法であり、原料脂肪酸エステルと原料アルコールとのエステル交換反応が好ましい。
[Method for producing fatty acid ester]
The method for producing a fatty acid ester of the present invention is a method in which a raw fatty acid ester and a raw alcohol or raw fatty acid are transesterified in the presence of the solid catalyst of the present invention containing zirconium oxide and titanium oxide. Transesterification with raw material alcohol is preferred.

原料アルコールとしては、炭素数1〜22の直鎖或いは分岐鎖を持つ1価アルコール或いは多価アルコールが好ましく用いられる。より具体的には、メタノール、エタノール、プロパノール、ブタノール、オクタノール、ステアリルアルコール等の1価脂肪族アルコール、ベンジルアルコール等の1価芳香族アルコール、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、ソルビトール等の多価アルコールを例示することができ、1価脂肪族アルコールが更に好ましい。   As the raw material alcohol, a monohydric alcohol or a polyhydric alcohol having a linear or branched chain having 1 to 22 carbon atoms is preferably used. More specifically, monovalent aliphatic alcohols such as methanol, ethanol, propanol, butanol, octanol and stearyl alcohol, monovalent aromatic alcohols such as benzyl alcohol, ethylene glycol, propylene glycol, glycerin, pentaerythritol, sorbitol, etc. A polyhydric alcohol can be illustrated and monohydric aliphatic alcohol is still more preferable.

原料脂肪酸としては、炭素数1〜22の脂肪酸が好ましく、例えば酢酸、酪酸、カプロン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸、安息香酸等が挙げられる。   The raw fatty acid is preferably a fatty acid having 1 to 22 carbon atoms such as acetic acid, butyric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, benzoic acid and the like.

原料脂肪酸エステルとしては、上記原料アルコールと上記原料脂肪酸からなる脂肪酸エステルが挙げられ、例えば、モノグリセリド、ジグリセリド、トリグリセリド、ヤシ油、パーム油、パーム核油等の天然植物油、牛脂、豚脂等の動物油、脂肪酸メチルエステル等の脂肪酸低級アルキルエステル等が挙げられる。これら原料脂肪酸エステルは、脂肪酸グリセリドが好ましく、天然植物油や動物油が更に好ましい。   Examples of the raw material fatty acid ester include fatty acid esters composed of the above raw material alcohol and the above raw material fatty acid. For example, natural vegetable oils such as monoglyceride, diglyceride, triglyceride, coconut oil, palm oil, and palm kernel oil, animal oils such as beef tallow and lard And fatty acid lower alkyl esters such as fatty acid methyl esters. These raw material fatty acid esters are preferably fatty acid glycerides, and more preferably natural vegetable oils and animal oils.

本発明において、エステル交換反応は、回分式あるいは連続式のいずれも採用することができる。例えば、反応槽に原料と粉末触媒又は成形触媒を仕込み、回分式に反応を行うことも可能であるし、或いは固定化した触媒を充填した反応塔に、原料を連続的に供給してエステル交換を行わせることもできる。また、反応進行によりグリセリン等の分離液が発生する場合には、これを連続的或いは間欠的に反応系から分離除去することもできる。   In the present invention, the transesterification can be carried out either batchwise or continuously. For example, it is possible to charge a raw material and a powder catalyst or a molded catalyst into a reaction tank and carry out the reaction in a batch system, or to supply a raw material continuously to a reaction tower packed with a fixed catalyst to perform transesterification. Can also be performed. Moreover, when separation liquid, such as glycerol, generate | occur | produces by reaction progress, this can also be isolate | separated and removed from a reaction system continuously or intermittently.

原料脂肪酸エステルに対する、原料脂肪酸あるいは原料アルコールのモル比は、反応速度を高め、平衡を十分に移動せしめるという観点より、化学量論的必要量の1.1倍以上、好ましくは1.5倍以上が好ましい。また、余剰脂肪酸あるいはアルコールの回収量を抑制する観点より、100倍以下が好ましく、30倍以下がより好ましく、10倍以下が特に好ましく、5倍以下が最も好ましい。   The molar ratio of the raw fatty acid or raw alcohol to the raw fatty acid ester is 1.1 times or more, preferably 1.5 times or more of the stoichiometric amount from the viewpoint of increasing the reaction rate and sufficiently moving the equilibrium. Is preferred. Further, from the viewpoint of suppressing the amount of excess fatty acid or alcohol recovered, it is preferably 100 times or less, more preferably 30 times or less, particularly preferably 10 times or less, and most preferably 5 times or less.

本発明に係わる触媒は高温においても安定であるため、触媒としては反応温度の制限はない。従って、エステル交換反応を行う温度は反応基質に依存し、反応速度を高めるために120℃以上が好ましく、150℃以上がより好ましく、180℃以上が更に好ましい。また、副反応の抑制及び原料や生成物の分解を抑制するために、250℃以下が好ましく、220℃以下がより好ましい。   Since the catalyst according to the present invention is stable even at high temperatures, there is no limitation on the reaction temperature as a catalyst. Therefore, the temperature at which the transesterification reaction is carried out depends on the reaction substrate, and is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, and still more preferably 180 ° C. or higher in order to increase the reaction rate. Further, in order to suppress side reactions and to suppress decomposition of raw materials and products, 250 ° C. or lower is preferable, and 220 ° C. or lower is more preferable.

反応圧力は、常圧、減圧、加圧のいずれでも行うことができる。常圧の場合は、設備コストを低減することができ、簡便である。減圧の場合は、反応において生成するアルコールあるいは脂肪酸を蒸発により除去できることから、反応平衡上有利となる。加圧の場合、蒸気圧の高い原料を液相で反応せしめることができるため、高濃度反応により反応速度を高めることが可能である。   The reaction pressure can be any of normal pressure, reduced pressure and increased pressure. In the case of normal pressure, the equipment cost can be reduced and it is simple. In the case of reduced pressure, alcohol or fatty acid produced in the reaction can be removed by evaporation, which is advantageous in terms of reaction equilibrium. In the case of pressurization, since a raw material having a high vapor pressure can be reacted in a liquid phase, the reaction rate can be increased by a high concentration reaction.

本発明に係わる触媒の使用量は、反応温度、反応圧力並びに許容される反応時間もしくは滞留時間に依存するため一概に定めることは困難であるが、粉末状触媒の使用においては、原料脂肪酸エステルに対して0.1〜20重量%が好ましく、1〜10重量%がより好ましい。また、該触媒をペレット等の形状に成形した場合には、原料脂肪酸エステルに対して1重量%以上が好ましいが、反応塔に充填するなどの固定床触媒として使用する場合には、触媒量の制限は特にない。   Although the amount of the catalyst according to the present invention depends on the reaction temperature, reaction pressure, and allowable reaction time or residence time, it is difficult to determine it unconditionally. It is preferably 0.1 to 20% by weight, and more preferably 1 to 10% by weight. Further, when the catalyst is formed into a pellet or the like, the amount is preferably 1% by weight or more based on the raw material fatty acid ester, but when used as a fixed bed catalyst such as packed in a reaction tower, the amount of catalyst is There are no particular restrictions.

本発明のエステル交換反応に要する反応時間は、反応温度、反応圧力並びに使用する触媒量に依存するため一概に定めることは困難であるが、経済性や十分な反応の完結を実現するために、回分式では10分間〜10時間が好ましく、1〜6時間がより好ましい。また、連続式では、原料脂肪酸エステル基準の液空間速度(LHSV)が0.02〜5.0/hrが好ましく、0.1〜3.0/hrがより好ましい。   Although the reaction time required for the transesterification reaction of the present invention depends on the reaction temperature, reaction pressure, and the amount of catalyst used, it is difficult to determine unconditionally, but in order to achieve economic efficiency and sufficient completion of the reaction, In the batch system, 10 minutes to 10 hours are preferable, and 1 to 6 hours are more preferable. In the continuous type, the liquid space velocity (LHSV) based on the raw material fatty acid ester is preferably 0.02 to 5.0 / hr, more preferably 0.1 to 3.0 / hr.

例中の%は、特記しない限り重量%である。   In the examples, “%” means “% by weight” unless otherwise specified.

製造例1
塩化ジルコニウム・8水和物38.67gを水1000gに溶解させ、そこへ34.14gの塩化チタン(IV)を500gの氷水に希釈した溶液を加えた。ジルコニウムとチタンの原子比は4:6であった。その混合溶液に10%アンモニア水溶液を156ml加えることで白色の沈殿を得た。この沈殿を濾過し、2リットルのイオン交換水で5回懸濁水洗後、110℃で15時間乾燥した。60メッシュ以下に粉砕し、600℃で空気雰囲気下3時間焼成することによりジルコニア−チタニア複合酸化物触媒(以下触媒A−1という)を得た。アンモニアガスを用いた昇温脱離法(TPD:Temperature Programmed Desorption)において100〜250℃で脱離するアンモニアの量から求められる酸量は、0.35mmol/gであった。
Production Example 1
Zirconium chloride octahydrate (38.67 g) was dissolved in 1000 g of water, and a solution obtained by diluting 34.14 g of titanium (IV) chloride in 500 g of ice water was added thereto. The atomic ratio of zirconium and titanium was 4: 6. A white precipitate was obtained by adding 156 ml of a 10% aqueous ammonia solution to the mixed solution. This precipitate was filtered, washed with suspended water 5 times with 2 liters of ion exchange water, and dried at 110 ° C. for 15 hours. A zirconia-titania composite oxide catalyst (hereinafter referred to as catalyst A-1) was obtained by pulverizing to 60 mesh or less and firing at 600 ° C. in an air atmosphere for 3 hours. In the temperature programmed desorption (TPD) using ammonia gas, the amount of acid obtained from the amount of ammonia desorbed at 100 to 250 ° C. was 0.35 mmol / g.

製造例2及び3
製造例1と同じ方法で、ただしジルコニウムとチタンの原子比をそれぞれ5:5、7:3に変えて調整し、焼成温度を表1に示す温度にすることによりジルコニア−チタニア複合酸化物触媒(以下触媒A−2、A−3という)を得た。これらの触媒の酸量を表1に示した。
Production Examples 2 and 3
In the same manner as in Production Example 1, except that the atomic ratio of zirconium and titanium was adjusted to 5: 5 and 7: 3, respectively, and the calcination temperature was changed to the temperature shown in Table 1, whereby a zirconia-titania composite oxide catalyst ( Hereinafter, catalysts A-2 and A-3) were obtained. The acid amounts of these catalysts are shown in Table 1.

製造例4
チタンテトライソプロポキシド160.65g及びジルコニウムテトラプロポキシド70%n−プロパノール溶液113.35gをn−プロパノール570gに溶解し、1時間加熱還流した。この溶液に90℃で、n−プロパノール123.7g及び水100.3gの混液を1時間かけて滴下し、滴下終了後、1時間加熱還流し、酸化ジルコニウム−酸化チタンの沈殿を得た。ジルコニウムとチタンの原子比は3:7であった。これを濾過、2リットルのイオン交換水で5回懸濁水洗し、110℃で15時間乾燥した。60メッシュ以下に粉砕し、550℃で空気雰囲気下3時間焼成することによりジルコニア−チタニア複合酸化物触媒(以下触媒B−1という)を得た。触媒の酸量を表1に示した。
Production Example 4
160.65 g of titanium tetraisopropoxide and 113.35 g of a 70% zirconium tetrapropoxide n-propanol solution were dissolved in 570 g of n-propanol and heated to reflux for 1 hour. To this solution, a mixed solution of n-propanol 123.7 g and water 100.3 g was added dropwise at 90 ° C. over 1 hour. After completion of the addition, the mixture was heated to reflux for 1 hour to obtain a zirconium oxide-titanium oxide precipitate. The atomic ratio of zirconium and titanium was 3: 7. This was filtered, washed with suspended water 5 times with 2 liters of ion exchange water, and dried at 110 ° C. for 15 hours. The zirconia-titania composite oxide catalyst (hereinafter referred to as catalyst B-1) was obtained by pulverizing to 60 mesh or less and firing at 550 ° C. in an air atmosphere for 3 hours. The acid amount of the catalyst is shown in Table 1.

製造例5〜7
製造例4と同じ方法で、ただしチタンとジルコニウムの原子比をそれぞれ4:6、5:5、7:3に変えて調整し、表1に示す温度で焼成することにより、ジルコニア−チタニア複合酸化物触媒(以下触媒B−2、B−3、B−4という)を得た。これらの触媒の酸量を表1に示した。
Production Examples 5-7
In the same manner as in Production Example 4, except that the atomic ratio of titanium and zirconium was adjusted to 4: 6, 5: 5, and 7: 3, respectively, and calcination was performed at the temperatures shown in Table 1, thereby zirconia-titania composite oxidation. Product catalysts (hereinafter referred to as catalysts B-2, B-3, and B-4) were obtained. The acid amounts of these catalysts are shown in Table 1.

実施例1〜7
パーム核油(トリグリセリド)200gに、メタノール55.8gを加え、製造例1〜7で得られた触媒をそれぞれ10g加えた。これを反応温度200℃で5時間、エステル交換反応を行った。その後、触媒を濾別し、反応終了液を水洗し、油分をガスクロマトグラフ法(検量線法)により分析し、トリグリセリド転化率及びメチルエステルの収率を測定した。また、水洗により得られた水相をガスクロマトグラフ法(検量線法)で分析し、メトキシプロパンジオール(エーテル体)の含有量を測定した。結果を表1に示した。
Examples 1-7
Methanol 55.8g was added to palm kernel oil (triglyceride) 200g, and 10g of the catalyst obtained by manufacture example 1-7 was added, respectively. This was transesterified at a reaction temperature of 200 ° C. for 5 hours. Thereafter, the catalyst was filtered off, the reaction-terminated liquid was washed with water, and the oil was analyzed by gas chromatography (calibration curve method) to measure the triglyceride conversion rate and the yield of methyl ester. Moreover, the water phase obtained by washing with water was analyzed by gas chromatography (calibration curve method), and the content of methoxypropanediol (ether form) was measured. The results are shown in Table 1.

比較例1
パーム核油(トリグリセリド)200gに、メタノール55.8gを加え、触媒として、酸化ジルコニウム(第一稀元素化学工業(株)、R水酸化ジルコニウム600℃、3時間、空気雰囲気下焼成品)10gを加えた。これを実施例1と同様にエステル交換反応及びその後の処理を行い、反応終了液を分析した。結果を表1に示す。
Comparative Example 1
200 g of palm kernel oil (triglyceride) is added with 55.8 g of methanol, and 10 g of zirconium oxide (first rare element chemical industry, R zirconium hydroxide 600 ° C., 3 hours, fired in air atmosphere) as a catalyst. added. This was subjected to a transesterification reaction and subsequent treatment in the same manner as in Example 1 and analyzed for the reaction completion solution. The results are shown in Table 1.

比較例2
酸化チタン(堺化学工業(株)、SSP−20 600℃、3時間、空気雰囲気下焼成品)10gを用いて、比較例1と同じ条件でエステル交換反応及びその後の処理を行い、反応終了液を分析した。結果を表1に示す。
Comparative Example 2
Using 10 g of titanium oxide (Sakai Chemical Industry Co., Ltd., SSP-20 600 ° C., 3 hours, fired product in air atmosphere), the transesterification reaction and the subsequent treatment were performed under the same conditions as in Comparative Example 1, and the reaction finished solution Was analyzed. The results are shown in Table 1.

比較例3
アルミノシリケートであるモンモリロナイト(商品名「シルトン」、水澤化学工業(株)製)10gを用いて、比較例1と同じ条件でエステル交換反応及びその後の処理を行い、反応終了液を分析した。結果を表1に示す。
Comparative Example 3
Using 10 g of montmorillonite (trade name “Silton”, manufactured by Mizusawa Chemical Co., Ltd.) which is an aluminosilicate, the transesterification reaction and the subsequent treatment were performed under the same conditions as in Comparative Example 1, and the reaction finished solution was analyzed. The results are shown in Table 1.

比較例4
リン酸アルミニウム(Al/P=1/1、共沈法により調製(特開2000−342973を参照))を用いて、比較例1と同じ条件でエステル交換反応及びその後の処理を行い、反応終了液を分析した。結果を表1に示す。
Comparative Example 4
Using aluminum phosphate (Al / P = 1/1, prepared by coprecipitation method (see Japanese Patent Laid-Open No. 2000-342773)), a transesterification reaction and subsequent treatment were performed under the same conditions as in Comparative Example 1, and the reaction was completed. The liquid was analyzed. The results are shown in Table 1.

Figure 0004255823
Figure 0004255823

Claims (4)

ジルコニウムのアルコキシドとチタンのアルコキシドをジルコニウムとチタンの原子比Zr/Tiが7/3〜3/7となる割合で含む溶液を加水分解して沈殿を生成させるか、ジルコニウム塩とチタン塩をジルコニウムとチタンの原子比Zr/Tiが7/3〜3/7となる割合で含む溶液に沈殿剤を添加して沈殿を生成させた後、乾燥、焼成することにより得られる、アンモニアガスを用いた昇温脱離法において100〜250℃で脱離するアンモニアの量から求められる酸量が0.05〜1mmol/gであるジルコニア−チタニア複合酸化物からなるエステル交換反応用固体触媒。 A solution containing zirconium alkoxide and titanium alkoxide at a ratio of zirconium to titanium in an atomic ratio Zr / Ti of 7/3 to 3/7 is hydrolyzed to form a precipitate, or zirconium salt and titanium salt are converted to zirconium. A precipitant is added to a solution containing a titanium atomic ratio Zr / Ti in a ratio of 7/3 to 3/7 to form a precipitate, followed by drying and firing. A solid catalyst for transesterification comprising a zirconia-titania composite oxide having an acid amount of 0.05 to 1 mmol / g determined from the amount of ammonia desorbed at 100 to 250 ° C. in a thermal desorption method . 請求項1記載の固体触媒の存在下で、原料脂肪酸エステルと、原料アルコールあるいは原料脂肪酸をエステル交換反応させる、脂肪酸エステルの製造方法。 A method for producing a fatty acid ester, comprising subjecting a raw fatty acid ester to a raw alcohol or raw fatty acid in the presence of the solid catalyst according to claim 1 . エステル交換反応が、原料脂肪酸エステルと原料アルコールとの反応である、請求項2記載の製造方法。   The manufacturing method of Claim 2 whose transesterification reaction is reaction of raw material fatty acid ester and raw material alcohol. 原料脂肪酸エステルが脂肪酸グリセリドである、請求項2又は3記載の製造方法。   The manufacturing method of Claim 2 or 3 whose raw material fatty acid ester is fatty acid glyceride.
JP2003426523A 2003-12-24 2003-12-24 Method for producing fatty acid ester Expired - Fee Related JP4255823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426523A JP4255823B2 (en) 2003-12-24 2003-12-24 Method for producing fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426523A JP4255823B2 (en) 2003-12-24 2003-12-24 Method for producing fatty acid ester

Publications (2)

Publication Number Publication Date
JP2005177722A JP2005177722A (en) 2005-07-07
JP4255823B2 true JP4255823B2 (en) 2009-04-15

Family

ID=34786036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426523A Expired - Fee Related JP4255823B2 (en) 2003-12-24 2003-12-24 Method for producing fatty acid ester

Country Status (1)

Country Link
JP (1) JP4255823B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2535747A1 (en) 2003-08-29 2005-03-10 Nippon Shokubai Co., Ltd. Method of production of fatty acid alkyl esters and/or glycerine and fatty acid alkyl ester-containing composition
JPWO2006070661A1 (en) * 2004-12-28 2008-06-12 株式会社ジャパンエナジー Process for producing ester by transesterification
JP5186083B2 (en) * 2005-12-21 2013-04-17 株式会社日本触媒 Process for producing fatty acid alkyl ester and / or glycerin from fats and oils
CA2596105A1 (en) * 2005-02-21 2006-08-24 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl esters and/or glycerin
AT502218B1 (en) * 2005-07-25 2010-09-15 Bdi Biodiesel Internat Ag PROCESS FOR PREPARING CARBONIC ACID ALKYL ESTERS
US7378540B2 (en) * 2005-10-21 2008-05-27 Catalytic Distillation Technologies Process for producing organic carbonates
JP2007153943A (en) * 2005-12-01 2007-06-21 Japan Energy Corp Method for producing ester by transesterification reaction
JP4976016B2 (en) * 2006-01-17 2012-07-18 Jx日鉱日石エネルギー株式会社 Process for producing ester by transesterification
PL2013319T3 (en) 2006-04-28 2019-07-31 Sk Chemicals Co., Ltd. Method for preparing fatty acid alkyl ester using fatty acid distillate
US8445709B2 (en) 2006-08-04 2013-05-21 Mcneff Research Consultants, Inc. Systems and methods for refining alkyl ester compositions
WO2008019325A2 (en) * 2006-08-04 2008-02-14 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
US7897798B2 (en) 2006-08-04 2011-03-01 Mcneff Research Consultants, Inc. Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same
KR101390754B1 (en) * 2006-11-07 2014-05-02 에스케이케미칼주식회사 Method for preparing fatty acid alkyl ester using fatty acid
US8017796B2 (en) 2007-02-13 2011-09-13 Mcneff Research Consultants, Inc. Systems for selective removal of contaminants from a composition and methods of regenerating the same
CA2678519A1 (en) * 2007-02-13 2008-08-21 Mcneff Research Consultants, Inc. Devices and methods for selective removal of contaminants from a composition
US7943791B2 (en) 2007-09-28 2011-05-17 Mcneff Research Consultants, Inc. Methods and compositions for refining lipid feed stocks
US8039651B2 (en) 2007-10-31 2011-10-18 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl ester and/or glycerin
JP2009155476A (en) 2007-12-26 2009-07-16 Nippon Shokubai Co Ltd Method and apparatus for producing fatty acid alkyl ester and/or glycerin
US8361174B2 (en) 2008-10-07 2013-01-29 Sartec Corporation Catalysts, systems, and methods for producing fuels and fuel additives from polyols
US9102877B2 (en) 2008-11-12 2015-08-11 Sartec Corporation Systems and methods for producing fuels from biomass
US10239812B2 (en) 2017-04-27 2019-03-26 Sartec Corporation Systems and methods for synthesis of phenolics and ketones
US10544381B2 (en) 2018-02-07 2020-01-28 Sartec Corporation Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid
US10696923B2 (en) 2018-02-07 2020-06-30 Sartec Corporation Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids

Also Published As

Publication number Publication date
JP2005177722A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4255823B2 (en) Method for producing fatty acid ester
Chen et al. Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts
JP4976016B2 (en) Process for producing ester by transesterification
Sharma et al. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review
JP5964327B2 (en) Improved process for producing fatty acid alkyl esters (biodiesel) from triglyceride oils by using environmentally friendly solid base catalysts
JPWO2006070661A1 (en) Process for producing ester by transesterification
KR101062146B1 (en) Ceramic catalyst used to prepare fatty acid alkyl ester and method for preparing high purity fatty acid alkyl ester using same
CN106238090A (en) The preparation of a kind of mesoporous solid base catalyst and the method for catalyzed transesterification biodiesel synthesis
Pampararo et al. Sodium aluminate-catalyzed biodiesel synthesis
US9089833B2 (en) Calcium and lanthanum solid base catalysts for transesterification
KR20100138860A (en) Ceramic catalyst used for manufacturing fatty acid alkyl-group ester and method thereof using same
BRPI1003931A2 (en) heterogeneous zinc superstoichiometric zinc spinumin aluminate catalyst and its use in a preparation process for the preparation of alcoholic esters from triglycerides and alcohols
EP3204158B1 (en) A method of preparing a heterogeneous transesterification catalyst
Asri et al. Development of heterogeneous alumina supported base catalyst for biodiesel production.
JP2005119971A (en) Method for producing fatty acid ester
JP4233689B2 (en) Production method of transesterification catalyst
KR101107719B1 (en) Solid-phase basic catalyst for bio-diesel and method for manufacturing the same, and method for manufacturing bio-diesel
US12053759B2 (en) Mixed oxide composite comprising calcium oxide and tricalcium aluminate
EP3225305B1 (en) Process for obtaining heterogeneous acid catalysts based on mixed metal salts and use thereof
KR102118501B1 (en) Method for preparing acrolein from glycerol
Lao-Ubol et al. Preparation, Characterization and Catalytic Performance of ZnO-SBA-15 Catalysts
JP4810243B2 (en) Esterification catalyst
ES2358663A1 (en) Process for preparing esters of alcohols and glycerin from triglycerides and alcohols using a heterogeneous catalyst in the presence of a controlled quantity of water
JP2010069377A (en) Magnesium oxide catalyst, and manufacturing method for fatty acid ester and glycerine using the catalyst
US20210162386A1 (en) Catalyst for the production of carboxylic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees