JP5178044B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5178044B2
JP5178044B2 JP2007117289A JP2007117289A JP5178044B2 JP 5178044 B2 JP5178044 B2 JP 5178044B2 JP 2007117289 A JP2007117289 A JP 2007117289A JP 2007117289 A JP2007117289 A JP 2007117289A JP 5178044 B2 JP5178044 B2 JP 5178044B2
Authority
JP
Japan
Prior art keywords
fuel
cell
gas
flow path
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007117289A
Other languages
Japanese (ja)
Other versions
JP2008277046A (en
Inventor
博見 床井
高橋  心
章 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007117289A priority Critical patent/JP5178044B2/en
Publication of JP2008277046A publication Critical patent/JP2008277046A/en
Application granted granted Critical
Publication of JP5178044B2 publication Critical patent/JP5178044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は円筒形状、扁平円筒形状、あるいは楕円形状等の形をした円筒形燃料電池に関する。本発明は、固体酸化物の電解質を有する固体酸化物形燃料電池(SOFC)或いは固体高分子の電解質を有する固体高分子形燃料電池(PEFC)に好適である。   The present invention relates to a cylindrical fuel cell having a cylindrical shape, a flat cylindrical shape, an elliptical shape, or the like. The present invention is suitable for a solid oxide fuel cell (SOFC) having a solid oxide electrolyte or a solid polymer fuel cell (PEFC) having a solid polymer electrolyte.

燃料電池は、アノード(燃料極)、電解質、カソード(空気極)からなるセルを備え、セルのアノード側に燃料ガスを供給し、カソード側に酸化剤ガスを供給し、電解質を介して燃料と酸化剤を電気化学的に反応させることにより発電する発電装置である。   The fuel cell includes a cell composed of an anode (fuel electrode), an electrolyte, and a cathode (air electrode), supplies fuel gas to the anode side of the cell, supplies oxidant gas to the cathode side, and supplies fuel via the electrolyte. It is a power generator that generates electricity by electrochemically reacting an oxidant.

燃料電池の種類の一つである固体酸化物形燃料電池(SOFC)は、発電効率が高い上に、600〜1000℃の高温で運転されるため、電池内で燃料の改質反応を行える。このため、燃料の多様化が図れると共に電池システム構造がシンプルになり、他の燃料電池に比べ、コスト低減のポテンシャルを持つ。当然、排熱も高温となるために利用しやすく、熱・電気併用システムばかりでなく、ガスタービンなどの他のシステムとのハイブリッドシステムを形成し易い特徴を持つ。   A solid oxide fuel cell (SOFC), which is one type of fuel cell, has high power generation efficiency and is operated at a high temperature of 600 to 1000 ° C., so that a fuel reforming reaction can be performed in the cell. For this reason, the diversification of fuel can be achieved, the battery system structure is simplified, and there is a potential for cost reduction compared to other fuel cells. Naturally, the exhaust heat is also high in temperature, so that it is easy to use, and not only a combined heat / electric system but also a hybrid system with other systems such as a gas turbine can be easily formed.

SOFCは固体電解質の形状により、円筒形と平板形に大別される。円筒形は、平板形に比べて熱応力に強く、高温で運転するSOFCにとっては大きな利点である。   SOFCs are roughly divided into cylindrical and flat plate shapes depending on the shape of the solid electrolyte. The cylindrical shape is more resistant to thermal stress than the flat plate shape, and is a great advantage for SOFCs operating at high temperatures.

円筒形SOFCの一例として、特許文献1には、筒形で多孔質の基体管の外壁に燃料極、電解質、空気極の順に積層されたセルを備え、基体管の内壁に螺旋状の溝を形成して燃料ガスの流れを乱し、基体管の内表面から水蒸気を効率的に除去して、燃料電池の効率を向上させたものが記載されている。   As an example of a cylindrical SOFC, Patent Document 1 includes a cell in which a fuel electrode, an electrolyte, and an air electrode are stacked in this order on the outer wall of a cylindrical porous substrate tube, and a spiral groove is formed on the inner wall of the substrate tube. It is described that the flow of fuel gas is disturbed to efficiently remove water vapor from the inner surface of the base tube, thereby improving the efficiency of the fuel cell.

特開2006−100212号公報(要約)JP 2006-100212 A (summary)

ところで、円筒形SOFCでは、燃料流れの上流側に位置する燃料極の発電性能に比べて、下流側に位置する燃料極の発電性能が低くなる傾向がある。前述の特許文献1は、この問題に対応するものではなく、この問題を解決するためのントを与えるものでもない。 By the way, in the cylindrical SOFC, the power generation performance of the fuel electrode located on the downstream side tends to be lower than the power generation performance of the fuel electrode located on the upstream side of the fuel flow. Patent Document 1 described above is not intended to address this problem, nor gives a hint to solve this problem.

本発明の目的は、燃料流れの下流側に位置する燃料極の発電性能を高めることができるようにした円筒形燃料電池を提供することにある。   An object of the present invention is to provide a cylindrical fuel cell in which the power generation performance of a fuel electrode located on the downstream side of the fuel flow can be enhanced.

本発明は、電解質の外側にアノードと集電極を有し内側にカソードを有する円筒形のセルを備え、アノードに沿って燃料流路を備え、カソードに沿って酸化剤流路を備えた円筒形燃料電池の複数個を直列又は並列に接続した燃料電池において、燃料流路を流れる全ガス量に対する燃料ガスの濃度比を燃料流路のアノードの側において高めるように、燃料流路を流れるガスを旋回させるガス旋回手段を備え、円筒形燃料電池それぞれがセルを収納するセル容器を更に備え、セル容器とアノードとの間の空間が燃料流路であることを特徴とする。 The present invention comprises a cylindrical cell having a cathode inside having anode and the collector electrode to the outside of the electrolyte, with the fuel flow path along the anode, cylindrical with an oxidizing agent passage along the cathode in fuel fuel cell a plurality are connected in series or parallel cell, the concentration ratio of the fuel gas to the fuel flow path to the total gas amount Ru flow to enhance the side of the anode of the fuel flow path, flowing through the fuel flow path Gas swirling means for swirling gas is provided , each cylindrical fuel cell further includes a cell container for storing the cell, and a space between the cell container and the anode is a fuel flow path .

本発明によれば、燃料流路の下流側においても電池反応が活発となり、発電性能を高めることができる。   According to the present invention, the cell reaction becomes active even on the downstream side of the fuel flow path, and the power generation performance can be improved.

本発明では、燃料流路の下流側において電池反応を活発にするために、アノード近傍の燃料濃度を高めることを提案する。また、燃料流路に選択的燃料透過膜を設置して下流側の燃料濃度を高めることを提案する。さらに、燃料リサイクルラインを設置すると共に、そのラインに選択的燃料透過膜を設けることを提案する。   The present invention proposes to increase the fuel concentration in the vicinity of the anode in order to activate the cell reaction downstream of the fuel flow path. It is also proposed to install a selective fuel permeable membrane in the fuel flow path to increase the downstream fuel concentration. Furthermore, it is proposed to install a fuel recycle line and to provide a selective fuel permeable membrane in the line.

アノード近傍の燃料濃度を高める手段としては、燃料流路を流れるガスに旋回力を与える方法が有効であり、電解質の外側にアノードを有する円筒形燃料電池に対し適用可能である。   As a means for increasing the fuel concentration in the vicinity of the anode, a method of applying a turning force to the gas flowing through the fuel flow path is effective, and can be applied to a cylindrical fuel cell having an anode outside the electrolyte.

燃料流れに旋回力を与えることにより、ガスに遠心力が働き、燃料である水素に比べて質量数の大きい水蒸気や二酸化炭素は遠心力で半径の大きな外周へと向かうようになる。これにより、電池反応の起こる内周側の燃料濃度を高くすることができる。ガスの旋回によるアノード近傍の燃料高濃度化は、燃料流路の下流側でより強く現れ、燃料ガス流れの下流側の電池反応を活発にすることができる。   By applying a swirling force to the fuel flow, a centrifugal force acts on the gas, and water vapor or carbon dioxide having a larger mass number than hydrogen, which is a fuel, is directed toward the outer periphery having a large radius by the centrifugal force. Thereby, the fuel concentration on the inner peripheral side where the cell reaction occurs can be increased. The increase in fuel concentration in the vicinity of the anode due to gas swirling appears more strongly on the downstream side of the fuel flow path, and can activate the cell reaction on the downstream side of the fuel gas flow.

ガスに旋回力を与える手段としては、燃料流路のガス入口部分に、斜め上向きにノズルを取り付けた整流板を設置することが有効である。このノズルを通して燃料ガスを燃料流路に供給することにより、燃料ガスに旋回力を与えることができる。また、集電極を複数に分割して、それらを斜め上向きに配置することも有効である。分割された集電極間をガスが通過する際にガスに旋回力が与えられる。ノズル付き整流板と集電極の分割化を組み合わせることが好ましい。   As a means for giving a turning force to the gas, it is effective to install a rectifying plate having a nozzle attached obliquely upward at the gas inlet portion of the fuel flow path. By supplying the fuel gas to the fuel flow path through the nozzle, a turning force can be applied to the fuel gas. It is also effective to divide the collector electrode into a plurality and arrange them obliquely upward. A swirl force is applied to the gas when the gas passes between the divided collector electrodes. It is preferable to combine the rectifying plate with nozzle and the division of the collector electrode.

このほかに、ガス旋回手段としては、セル容器の内面に螺旋溝を設けること、或いはセル容器の内面またはアノードの外表面に螺旋状のフィラーを設けること等が有効である。   In addition, as the gas swirling means, it is effective to provide a spiral groove on the inner surface of the cell container, or to provide a spiral filler on the inner surface of the cell container or the outer surface of the anode.

燃料流路或いは燃料リサイクルラインに選択的燃料透過手段を設ける方法は、電解質の外側にアノードを有するセル、或いは電解質の外側にカソードを有するセルのどちらに対しても適用可能である。SOFCやPEFCの燃料ガスには一般に水素ガスが使用され、水素透過膜は良く知られている。したがって、実施容易である。   The method of providing the selective fuel permeation means in the fuel flow path or the fuel recycle line can be applied to either a cell having an anode outside the electrolyte or a cell having a cathode outside the electrolyte. Hydrogen gas is generally used as the fuel gas for SOFC and PEFC, and hydrogen permeable membranes are well known. Therefore, implementation is easy.

以上述べた円筒形燃料電池の複数個を、直列又は並列に接続して燃料電池システムが構築される。   A fuel cell system is constructed by connecting a plurality of cylindrical fuel cells described above in series or in parallel.

本発明の円筒形燃料電池には、円筒形、扁平円筒形、あるいは楕円形等の形をしたセルが含まれる。これらを含めて、本発明では円筒形燃料電池と称している。   The cylindrical fuel cell of the present invention includes a cell having a cylindrical shape, a flat cylindrical shape, an elliptical shape, or the like. Including these, the present invention is referred to as a cylindrical fuel cell.

以下、円筒形セルの外側をアノードとし、内側をカソードとしたものを例にとって本発明の実施形態を説明するが、これに限定されるものではない。   Hereinafter, embodiments of the present invention will be described by taking an example in which the outside of the cylindrical cell is an anode and the inside is a cathode, but the present invention is not limited to this.

図1に本発明の実施例に係る円筒形セルの立体図と縦断面図を示す。(a)は立体図であり、(b)は縦断面図である。セルは固体電解質1の外周にアノード2(燃料極)を形成し、内周にカソード3(空気極)を形成し、アノード2の外表面に電流を取り出すための集電極5を複数個に分割して形成したものからなる。全体の形状は袋管状である。これらはセル容器15に収納され、セル容器15の内面とアノード2の外面をそれぞれ流路壁とする燃料流路6が形成される。また、セルの中心には酸化剤として空気を供給する空気導入管4が設けられ、空気流路7が形成される。図1では図示していないが、燃料はノズル付きの整流板等を用いて斜め上向きに供給され、旋回流が形成される。   FIG. 1 shows a three-dimensional view and a longitudinal sectional view of a cylindrical cell according to an embodiment of the present invention. (A) is a three-dimensional view, (b) is a longitudinal sectional view. In the cell, an anode 2 (fuel electrode) is formed on the outer periphery of the solid electrolyte 1, a cathode 3 (air electrode) is formed on the inner periphery, and a collecting electrode 5 for taking out current is divided into a plurality of parts on the outer surface of the anode 2 It consists of what was formed. The overall shape is bag-shaped. These are accommodated in the cell container 15, and the fuel flow path 6 is formed with the inner surface of the cell container 15 and the outer surface of the anode 2 as flow path walls. An air introduction pipe 4 for supplying air as an oxidant is provided at the center of the cell, and an air flow path 7 is formed. Although not shown in FIG. 1, the fuel is supplied obliquely upward using a rectifying plate with a nozzle or the like to form a swirling flow.

セルの電流は集電極5からアノード2および固体電解質1を経て、カソード3へと流れ込む。燃料は燃料流路6を周方向に旋回しながら矢印で示した燃料流れ8のように流れる。   The cell current flows from the collector electrode 5 through the anode 2 and the solid electrolyte 1 to the cathode 3. The fuel flows like a fuel flow 8 indicated by an arrow while turning in the circumferential direction of the fuel flow path 6.

固体電解質1は、円筒袋管状で、材質としてはイットリウム安定化ジルコニア(YSZ)などが用いられる。アノード2の材質にはニッケルとYSZからなる多孔質のサーメットなどが用いられる。ニッケルは改質触媒として働く。カソード3の材質にはランタンマンガネイトなどが用いられる。   The solid electrolyte 1 has a cylindrical bag shape, and yttrium-stabilized zirconia (YSZ) or the like is used as a material. The anode 2 is made of a porous cermet made of nickel and YSZ. Nickel acts as a reforming catalyst. As the material of the cathode 3, lanthanum manganate or the like is used.

ここで、電池反応を示しておく。先ず、炭化水素系燃料を改質して水素を含む改質ガスを生成する方法について、炭化水素系燃料としてメタンを例にとって説明する。改質触媒上で主に(1)式の反応によりメタンと水蒸気が反応(改質反応)して水素が生成する。なお、改質触媒としてはニッケル系のほかに、ルテニウム系なども使用できる。   Here, the battery reaction is shown. First, a method for reforming a hydrocarbon fuel to generate a reformed gas containing hydrogen will be described taking methane as an example of the hydrocarbon fuel. On the reforming catalyst, methane and steam react (reformation reaction) mainly by the reaction of the formula (1) to generate hydrogen. In addition to the nickel-based reforming catalyst, a ruthenium-based catalyst can also be used.

CH + HO = CO + 3H …(1)式
同時に、(1)式により反応したCOは、下記の(2)式で表されるHOとの反応(CO転化反応)により、さらに水素に変換され燃料となる。
CH 4 + H 2 O = CO + 3H 2 (1) Formula At the same time, CO reacted by the formula (1) is reacted with H 2 O represented by the following formula (2) (CO conversion reaction). Furthermore, it is converted to hydrogen and used as fuel.

CO + HO = CO + H …(2)式
炭化水素系燃料から水素を生成する反応は吸熱反応であり、この反応を継続するためには熱を供給する必要があり、一般には改質触媒を400〜800℃程度に維持する必要がある。
CO + H 2 O = CO 2 + H 2 (2) Formula The reaction for generating hydrogen from a hydrocarbon-based fuel is an endothermic reaction, and heat must be supplied to continue this reaction. It is necessary to maintain the reforming catalyst at about 400 to 800 ° C.

電池反応(発電反応)は、アノード2で生起し、下記の(3)式、(4)式で表され、発熱反応である。   The battery reaction (power generation reaction) occurs at the anode 2 and is expressed by the following formulas (3) and (4) and is an exothermic reaction.

+ 1/2O = HO …(3)式
CO + 1/2O = CO …(4)式
従って、電池反応が進むと水蒸気と二酸化炭素が生成され、燃料流路6中には水蒸気と二酸化炭素の濃度が高まることになる。一方、燃料となる水素と一酸化炭素は電池反応で消費され、下流に行くほど燃料濃度が希薄になっていく。結果として燃料流路中の全ガス量(燃料ガス量+電池反応生成物量)に占める燃料ガスの濃度は下流に行くほど低下することになる。
H 2 + 1 / 2O 2 = H 2 O (3) Formula CO + 1 / 2O 2 = CO 2 (4) Accordingly, when the cell reaction proceeds, water vapor and carbon dioxide are generated, and in the fuel flow path 6 Will increase the concentration of water vapor and carbon dioxide. On the other hand, hydrogen and carbon monoxide, which are fuels, are consumed in the cell reaction, and the concentration of fuel decreases as it goes downstream. As a result, the concentration of the fuel gas in the total gas amount (fuel gas amount + cell reaction product amount) in the fuel flow path decreases as it goes downstream.

そこで、本発明では燃料流れ8に旋回力を与える。これにより、ガスに遠心力が働き、水素に比べ質量数の大きい水蒸気や二酸化炭素は遠心力で半径の大きな外周へと向かい、電池反応の起こる小半径側のアノードでは全ガス量に対する燃料濃度の比が高くなる。従って、アノードの下流で発電性能が低下するのを防止できる。   Therefore, in the present invention, a turning force is applied to the fuel flow 8. As a result, centrifugal force acts on the gas, and water vapor or carbon dioxide with a mass number larger than that of hydrogen moves toward the outer periphery with a large radius due to the centrifugal force. At the anode on the small radius side where the cell reaction occurs, the fuel concentration with respect to the total gas amount The ratio becomes high. Therefore, it is possible to prevent the power generation performance from being lowered downstream of the anode.

ここで、遠心力による濃縮係数(α―1)は下記の(5)式で表せる。   Here, the concentration factor (α-1) by centrifugal force can be expressed by the following equation (5).

α−1=(Ma−Mb)V/2RT …(5)式
ここで、αは分離係数、Ma、Mbは質量数、Vは回転速度、Rはガス定数、Tは温度である。
α-1 = (Ma−Mb) V 2 / 2RT (5) where α is a separation factor, Ma and Mb are mass numbers, V is a rotation speed, R is a gas constant, and T is a temperature.

仮に回転速度Vを300m/sとすれば、水素は二酸化炭素に比べ約21%、水に比べ約8%濃縮されることになる。   If the rotation speed V is set to 300 m / s, hydrogen is concentrated by about 21% compared to carbon dioxide and about 8% compared with water.

図2は本実施例における燃料流路の横断面図であり、水素濃度の高低の様子を模式的に示したものである。燃料流路6を流れるガスには遠心力が働くため、H濃度やCO濃度が高い燃料リッチ領域11はアノード2に近い内周側に形成され、電池反応生成物であるHOやCOを多く含む電池反応生成物リッチ領域12はアノード2より遠い外周側に形成される。従って、燃料ガス流れの下流にあってもアノード2の表面では全流量に対する燃料の比率を高めることができる。 FIG. 2 is a cross-sectional view of the fuel flow path in the present embodiment, and schematically shows how the hydrogen concentration is high and low. Since a centrifugal force acts on the gas flowing through the fuel flow path 6, the fuel rich region 11 having a high H 2 concentration or CO concentration is formed on the inner peripheral side near the anode 2, and H 2 O or CO that is a cell reaction product. The battery reaction product rich region 12 containing a large amount of 2 is formed on the outer peripheral side far from the anode 2. Therefore, the ratio of the fuel to the total flow rate can be increased on the surface of the anode 2 even downstream of the fuel gas flow.

図3の(a)と(b)に燃料ガスに旋回力を与える手段を備えた円筒形セルの立体図と縦断面図を示す。本実施例は、円筒形セルの底部および燃料流路6の底部に整流板9を設けている。整流板9には流れを整流するための整流ノズル10を設けた。整流ノズル10は燃料に旋回流を与えるために斜め上方向きに設置されている。燃料流れ8は旋回流となってセル上方へと流出する。この時、図2に示したような濃度勾配が形成される。   FIGS. 3A and 3B show a three-dimensional view and a longitudinal sectional view of a cylindrical cell provided with means for applying a turning force to the fuel gas. In this embodiment, a rectifying plate 9 is provided at the bottom of the cylindrical cell and the bottom of the fuel flow path 6. The rectifying plate 9 is provided with a rectifying nozzle 10 for rectifying the flow. The rectifying nozzle 10 is installed obliquely upward to give a swirl flow to the fuel. The fuel flow 8 becomes a swirling flow and flows out upward of the cell. At this time, a concentration gradient as shown in FIG. 2 is formed.

図4の(a)と(b)に、集電極5を斜め上向きになるように傾斜をつけて配置し、さらに整流板9を備えた円筒形セルの立体図と縦断面図を示す。このように集電極5を螺旋状に設けることにより、旋回力をより一層強めることができる。   4A and 4B show a three-dimensional view and a longitudinal sectional view of a cylindrical cell in which the collector electrode 5 is disposed so as to be inclined upward and further includes a current plate 9. Thus, by providing the collector electrode 5 in a spiral shape, the turning force can be further increased.

なお、ガス旋回手段としては、セル容器の内周或いはアノードの外周に螺旋状にフィラーを設ける方法や、セル容器15の内周に螺旋溝を設ける方法などもある。これらの手段は、図4のように整流ノズル10と併用することが好ましい。   As the gas swirling means, there are a method of providing a filler spirally on the inner periphery of the cell container or the outer periphery of the anode, and a method of providing a spiral groove on the inner periphery of the cell container 15. These means are preferably used together with the rectifying nozzle 10 as shown in FIG.

比較のために、図7の(a)と(b)にガス旋回手段を有しない円筒形セルの立面図と縦断面図を示す。燃料流れ8は直進流であり、旋回流とならないためにアノード近傍の水素濃度を高めることができない。このため、燃料流れの下流での電池反応を高めることができず、高い発電性能が得られない For comparison, FIGS. 7A and 7B show an elevation view and a longitudinal sectional view of a cylindrical cell having no gas swirling means. Since the fuel flow 8 is a straight flow and does not become a swirl flow, the hydrogen concentration in the vicinity of the anode cannot be increased. For this reason, the cell reaction downstream of the fuel flow cannot be enhanced, and high power generation performance cannot be obtained .

[参考例1]
ここでは、燃料流路6の途中に水素透過膜を設けて、燃料流れの下流側の水素ガス濃度を高めた参考例について説明する。
[Reference Example 1]
Here, a reference example in which a hydrogen permeable membrane is provided in the middle of the fuel flow path 6 to increase the hydrogen gas concentration on the downstream side of the fuel flow will be described.

図5の(a)と(b)に本参考例である円筒形セルの立体図と縦断面図を示す。燃料流路6の途中には水素透過膜13が設けられている。水素透過膜13には燃料ガス中の水素だけが透過するため、下流に向かう水素濃度が高められ、発電性能が向上する。なお、水素透過量Qは下記の(6)式で表記できる。 FIGS. 5A and 5B show a three-dimensional view and a longitudinal sectional view of a cylindrical cell according to this reference example. A hydrogen permeable membrane 13 is provided in the middle of the fuel flow path 6. Since only the hydrogen in the fuel gas permeates through the hydrogen permeable membrane 13, the hydrogen concentration toward the downstream is increased and the power generation performance is improved. The hydrogen permeation amount Q can be expressed by the following equation (6).

Q=ΦS(√P1−√P2)/d …(6)式
ここで、Φは透過係数、Sは透過面積、P1、P2は上流側及び下流側のガス圧力、dは膜厚さである。
Q = ΦS (√P1−√P2) / d (6) where Φ is a transmission coefficient, S is a transmission area, P1 and P2 are upstream and downstream gas pressures, and d is a film thickness. .

例えば、透過係数Φを10−6とすると透過面積Sが1cmで厚さ2μmの時、100Pa程度の圧力差で電流10A分の水素を流すことが可能である。図5の水素透過膜13の設置位置はセルの軸方向最上端から1/3ないし1/2程度の位置が好ましい。すなわち、燃料ガス中の水素濃度が低くなる領域及び改質が終了する領域に水素透過膜を設置することが好ましい For example, when the transmission coefficient Φ is 10 −6 , when the transmission area S is 1 cm 2 and the thickness is 2 μm, it is possible to flow hydrogen for a current of 10 A with a pressure difference of about 100 Pa. The installation position of the hydrogen permeable membrane 13 in FIG. 5 is preferably about 1/3 to 1/2 from the uppermost end in the axial direction of the cell. That is, it is preferable to install a hydrogen permeable membrane in a region where the hydrogen concentration in the fuel gas is low and a region where the reforming is completed .

[参考例2]
参考例では、燃料リサイクルラインを設けて、そのラインの途中に水素透過膜を設けた例を説明する。
[Reference Example 2]
In this reference example, an example in which a fuel recycling line is provided and a hydrogen permeable membrane is provided in the middle of the line will be described.

図6に本発明の参考例である円筒形セル装置の縦断面図を示す。セルの上端部で残った燃料をセル底部に戻し、リサイクル運転をする場合である。水素透過膜13をリサイクルライン14の途中に設置している。これにより、不要な電池反応生成物等はリサイクルライン14から分離でき、水素を選択的に燃料流路の入口部分に戻すことができる。
FIG. 6 shows a longitudinal sectional view of a cylindrical cell device which is a reference example of the present invention. This is a case where the fuel remaining at the upper end of the cell is returned to the cell bottom and the recycling operation is performed. A hydrogen permeable membrane 13 is installed in the middle of the recycle line 14. Thereby, unnecessary battery reaction products and the like can be separated from the recycle line 14, and hydrogen can be selectively returned to the inlet portion of the fuel flow path.

なお、以上の実施形態では円筒形状として袋管に例をとって説明したが、底のない開放された円筒形状でも一向にその効果を損なうものでない。   In the above embodiment, the bag tube is described as an example of a cylindrical shape, but an open cylindrical shape without a bottom does not impair the effect at all.

また、セル形状は円筒形状に限るものではなく、扁平円筒形状や楕円形状等のセルにも適用でき、同様の効果が得られる。   Further, the cell shape is not limited to the cylindrical shape, but can be applied to cells such as a flat cylindrical shape and an elliptical shape, and the same effect can be obtained.

本実施形態の燃料電池では、円筒形セルのほぼ全領域が電池反応に寄与するので、発電面積を増大でき、発電量が増大し、かつ、過電圧が減少して内部抵抗が低減できるのでエネルギー効率を高めることができる。   In the fuel cell of this embodiment, since almost the entire area of the cylindrical cell contributes to the battery reaction, the power generation area can be increased, the power generation amount can be increased, and the overvoltage can be reduced to reduce the internal resistance, so that the energy efficiency Can be increased.

ガス旋回手段を省略した状態での円筒形セルの立体図と縦断面図を示す。The solid view and longitudinal cross-sectional view of a cylindrical cell in the state which abbreviate | omitted the gas swirling means are shown. 円筒形セルの燃料流路の横断面図を示す。A cross-sectional view of a fuel flow path of a cylindrical cell is shown. 本発明の実施例である円筒形セルの立体図と縦断面図を示す。The solid view and longitudinal cross-sectional view of the cylindrical cell which is an Example of this invention are shown. 本発明の他の実施例である円筒形セルの立体図と縦断面図を示す。The solid view and longitudinal cross-sectional view of the cylindrical cell which are other Examples of this invention are shown. 燃料流路に水素透過膜を設けた円筒形セルの立体図と縦断面図を示す。The solid figure and longitudinal cross-sectional view of the cylindrical cell which provided the hydrogen permeable membrane in the fuel flow path are shown. 燃料リサイクルラインに水素透過膜を設けた円筒形セルの縦断面図を示す。The longitudinal cross-sectional view of the cylindrical cell which provided the hydrogen permeable membrane in the fuel recycle line is shown. ガス旋回手段および水素透過膜を有しない従来の円筒形セルの燃料流れを示した立体図と縦断面図を示す。A three-dimensional view and a longitudinal sectional view showing a fuel flow of a conventional cylindrical cell having no gas swirling means and a hydrogen permeable membrane are shown.

符号の説明Explanation of symbols

1…固体電解質、2…アノード(燃料極)、3…カソード(空気極)、4…空気導入管、5…集電極、6…燃料流路、7…空気流路、8…燃料流れ、9…整流板、10…整流ノズル、11…燃料リッチ領域、12…電池反応生成物リッチ領域、13…水素透過膜、14…リサイクルライン、15…セル容器。   DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte, 2 ... Anode (fuel electrode), 3 ... Cathode (air electrode), 4 ... Air introduction pipe, 5 ... Collector electrode, 6 ... Fuel flow path, 7 ... Air flow path, 8 ... Fuel flow, 9 DESCRIPTION OF SYMBOLS ... Rectification plate, 10 ... Rectification nozzle, 11 ... Fuel rich area | region, 12 ... Battery reaction product rich area | region, 13 ... Hydrogen permeable membrane, 14 ... Recycle line, 15 ... Cell container.

Claims (6)

電解質の外側にアノードと集電極を有し内側にカソードを有する円筒形のセルを備え、前記アノードに沿って燃料流路を備え、前記カソードに沿って酸化剤流路を備えた円筒形燃料電池の複数個を直列又は並列に接続した燃料電池において、
前記燃料流路を流れる全ガス量に対する燃料ガスの濃度比を前記燃料流路の前記アノードの側において高めるように、前記燃料流路を流れるガスを旋回させるガス旋回手段を備え
前記円筒形燃料電池それぞれが前記セルを収納するセル容器を更に備え、
前記セル容器と前記アノードとの間の空間が前記燃料流路であることを特徴とする燃料電池。
A cylindrical fuel cell comprising a cylindrical cell having an anode and a collecting electrode outside the electrolyte and having a cathode inside, a fuel flow path along the anode, and an oxidant flow path along the cathode In a fuel cell in which a plurality of are connected in series or in parallel,
Gas swirling means for swirling the gas flowing in the fuel flow path so as to increase the concentration ratio of the fuel gas to the total gas amount flowing in the fuel flow path on the anode side of the fuel flow path ;
Each of the cylindrical fuel cells further comprises a cell container that houses the cell,
A fuel cell , wherein a space between the cell container and the anode is the fuel flow path .
前記燃料ガスが水素ガスであることを特徴とする請求項に記載の燃料電池。 The fuel cell according to claim 1 , wherein the fuel gas is hydrogen gas. 前記ガス旋回手段として、前記円筒形燃料電池それぞれの前記燃料流路のガス入口部分に、斜め上向きにノズルを有する整流板を備えたことを特徴とする請求項に記載の燃料電池。 2. The fuel cell according to claim 1 , wherein the gas swirling means includes a rectifying plate having a nozzle obliquely upward at a gas inlet portion of the fuel flow path of each of the cylindrical fuel cells. 前記ガス旋回手段として、前記円筒形燃料電池それぞれの前記集電極を複数に分割して、当該分割された集電極をそれぞれ斜め上向きに設置したことを特徴とする請求項に記載の燃料電池。 2. The fuel cell according to claim 1 , wherein the collecting electrode of each of the cylindrical fuel cells is divided into a plurality of gas swirling means, and the divided collecting electrodes are installed obliquely upward. 前記ガス旋回手段として、前記円筒形燃料電池それぞれの前記燃料流路のガス入口部分に斜め上向きにノズルを有する整流板を備え、さらに前記円筒形燃料電池それぞれの前記集電極を複数に分割して、当該分割された集電極をそれぞれ斜め上向きに設置したことを特徴とする請求項に記載の燃料電池。 As the gas swirling means, a rectifying plate having a nozzle obliquely upward is provided at a gas inlet portion of the fuel flow path of each cylindrical fuel cell, and the collector electrode of each cylindrical fuel cell is divided into a plurality of parts. the fuel cell according to claim 1, characterized in that the divided collecting electrode was placed diagonally upward, respectively. 前記ガス旋回手段として、前記円筒形燃料電池それぞれの前記セル容器の内面に螺旋溝を設けたことを特徴とする請求項に記載の燃料電池。 2. The fuel cell according to claim 1 , wherein a spiral groove is provided on an inner surface of the cell container of each of the cylindrical fuel cells as the gas swirling means.
JP2007117289A 2007-04-26 2007-04-26 Fuel cell Expired - Fee Related JP5178044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117289A JP5178044B2 (en) 2007-04-26 2007-04-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117289A JP5178044B2 (en) 2007-04-26 2007-04-26 Fuel cell

Publications (2)

Publication Number Publication Date
JP2008277046A JP2008277046A (en) 2008-11-13
JP5178044B2 true JP5178044B2 (en) 2013-04-10

Family

ID=40054777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117289A Expired - Fee Related JP5178044B2 (en) 2007-04-26 2007-04-26 Fuel cell

Country Status (1)

Country Link
JP (1) JP5178044B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698482B2 (en) * 1991-03-22 1998-01-19 日本碍子株式会社 Power generator
US7229712B2 (en) * 2003-03-07 2007-06-12 Microcell Corporation Fuel cell structures and assemblies
JP4761104B2 (en) * 2004-05-13 2011-08-31 独立行政法人産業技術総合研究所 Cylindrical fuel cell
JP4802458B2 (en) * 2004-06-11 2011-10-26 トヨタ自動車株式会社 Fuel cell
JP2006066186A (en) * 2004-08-26 2006-03-09 Toyota Motor Corp Membrane electrode assembly for tube type fuel cell
JP4981247B2 (en) * 2004-09-30 2012-07-18 三菱重工業株式会社 Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2006216406A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Cell module assembly and fuel cell
JP2006216470A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Cell module for fuel cell and fuel cell equipped with this
JP4687406B2 (en) * 2005-11-10 2011-05-25 トヨタ自動車株式会社 Fuel cell
JP2006216402A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Manufacturing method of cell module for fuel cell
JP2008140658A (en) * 2006-12-01 2008-06-19 Toyota Motor Corp Fuel cell
JP2008218228A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Tube type fuel cell
JP2008251286A (en) * 2007-03-29 2008-10-16 Toyota Motor Corp Tubular fuel battery cell, and tubular fuel battery module

Also Published As

Publication number Publication date
JP2008277046A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5248729B2 (en) Fuel cell system
JP5061450B2 (en) Fuel cell
US7846594B2 (en) Reformer and fuel cell system having the same
US11616249B2 (en) Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor
JP4956946B2 (en) Fuel cell
JP4537292B2 (en) Cylindrical fuel cell
JP4897273B2 (en) Fuel cell
JP6532668B2 (en) Fuel cell system
JP5176294B2 (en) Fuel cell
CN102237540B (en) Fuel cell system having a reformer
JP2007270256A (en) Apparatus for producing hydrogen, method for producing hydrogen and fuel cell power generator
JP5178044B2 (en) Fuel cell
JP2006294596A (en) Fuel cell stack
WO2021205758A1 (en) Fuel cell electricity generating system
JP2007128786A (en) Fuel cell system
JP6993488B1 (en) Fuel cell power generation system and control method of fuel cell power generation system
KR20070037204A (en) Rotatable water recycle apparatus and fuel cell using the same
JP6556440B2 (en) Fuel cell system
KR101782677B1 (en) Internal reforming- fuel cell system
EP1959515B1 (en) Fuel cartridge and fuel cell using the same
KR20090068703A (en) Reactor for fuel cell and fuel cell comprising the same
KR100560442B1 (en) Fuel cell system
KR20070099355A (en) Fuel cell system
WO2004054027A1 (en) Fuel cell
JPH06314570A (en) Manifold structure of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

LAPS Cancellation because of no payment of annual fees