JP5173647B2 - Subcarrier for light receiving element and optical semiconductor device - Google Patents

Subcarrier for light receiving element and optical semiconductor device Download PDF

Info

Publication number
JP5173647B2
JP5173647B2 JP2008194977A JP2008194977A JP5173647B2 JP 5173647 B2 JP5173647 B2 JP 5173647B2 JP 2008194977 A JP2008194977 A JP 2008194977A JP 2008194977 A JP2008194977 A JP 2008194977A JP 5173647 B2 JP5173647 B2 JP 5173647B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
conductor
subcarrier
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008194977A
Other languages
Japanese (ja)
Other versions
JP2010034298A (en
Inventor
猛夫 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008194977A priority Critical patent/JP5173647B2/en
Publication of JP2010034298A publication Critical patent/JP2010034298A/en
Application granted granted Critical
Publication of JP5173647B2 publication Critical patent/JP5173647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、受光素子を搭載するための受光素子用サブキャリアおよびそれを具備した光半導体装置に関する。   The present invention relates to a light receiving element subcarrier for mounting a light receiving element and an optical semiconductor device including the same.

従来の受光素子用サブキャリアは、受光素子を実装するための素子実装面と、受光素子の電極に電気的に接続される電気的パターンとを有しており、この受光素子用サブキャリアの素子実装面に受光素子を実装し、電気的パターンと受光素子とをボンディングワイヤを介して電気的に接続することにより、受光素子を含む電気回路が形成される(例えば、特許文献1参照)。   A conventional subcarrier for a light receiving element has an element mounting surface for mounting the light receiving element and an electrical pattern electrically connected to the electrode of the light receiving element. An electric circuit including the light receiving element is formed by mounting the light receiving element on the mounting surface and electrically connecting the electrical pattern and the light receiving element via a bonding wire (see, for example, Patent Document 1).

受光素子には、光源となる光ファイバが光結合されており、光源から照射される光信号の強度変化に応じて、受光素子から電気信号が出力される。
特開平10−223923号公報
An optical fiber serving as a light source is optically coupled to the light receiving element, and an electric signal is output from the light receiving element in accordance with a change in the intensity of the optical signal emitted from the light source.
Japanese Patent Laid-Open No. 10-223923

しかしながら、従来の受光素子用サブキャリアは、誘電体から形成されるために熱伝導率が低いので、受光素子を実装するための素子実装面付近に受光素子から発生する熱がこもってしまう場合があり、受光素子の作動性が低下してしまうという問題点があった。   However, since the conventional subcarrier for a light receiving element is formed of a dielectric and has low thermal conductivity, heat generated from the light receiving element may be accumulated near the element mounting surface for mounting the light receiving element. There is a problem that the operability of the light receiving element is lowered.

そこで、受光素子の作動性を向上できる受光素子用サブキャリアが望まれていた。   Therefore, a subcarrier for a light receiving element that can improve the operability of the light receiving element has been desired.

本発明の受光素子用サブキャリアは、上面と側面とを有するとともに、該側面に受光素子が搭載されるべき実装面を有し、且つ、上面視して、前記実装面と光ファイバとが所定角度をなして配される基体と、前記実装面に設けられ、前記受光素子を囲うようにコ字状に配された導体と、を具備し、前記基体の一辺側に前記コ字状の前記導体の開口を有していることを特徴とする。   The subcarrier for a light receiving element of the present invention has an upper surface and a side surface, a mounting surface on which the light receiving element is to be mounted on the side surface, and the mounting surface and the optical fiber are predetermined when viewed from above. A base disposed at an angle; and a conductor provided on the mounting surface and disposed in a U-shape so as to surround the light receiving element, and the U-shaped on the one side of the base It has a conductor opening.

上記受光素子用サブキャリアにおいて、前記基体の上面側に、前記コ字状の前記導体の開口を有するのが好ましい。   In the light receiving element subcarrier, the U-shaped opening of the conductor is preferably provided on the upper surface side of the base.

上記受光素子用サブキャリアにおいて、前記導体は、前記基体の上面まで延出されているのが好ましく、さらに、前記受光素子側から外側にかけて順次厚く形成されているのが好ましい。   In the light receiving element subcarrier, the conductor is preferably extended to the upper surface of the base, and is preferably formed to be thicker sequentially from the light receiving element side to the outside.

また、前記導体は、JIS B 0601で規定される算術平均表面粗さRaが0.2以上であるのが好ましく、さらに、その表面に、金被膜を有するのが好ましい。   In addition, the conductor preferably has an arithmetic average surface roughness Ra defined by JIS B 0601 of 0.2 or more, and further preferably has a gold film on its surface.

また、上記受光素子用サブキャリアにおいて、前記基体は、セラミックスから成るのが好ましい。   In the light receiving element subcarrier, the base is preferably made of ceramics.

本発明の光半導体装置は、上記構成の受光素子用サブキャリアと、前記実装面に搭載された受光素子と、を具備したことを特徴とする。   The optical semiconductor device of the present invention includes the light receiving element subcarrier configured as described above and a light receiving element mounted on the mounting surface.

本発明の受光素子用サブキャリアは、上面と側面とを有するとともに、該側面に受光素子が搭載されるべき実装面を有し、且つ、上面視して、前記実装面と光源とが所定角度をなして配される基体と、前記実装面に設けられ、前記受光素子を囲うようにコ字状に配された導体と、を具備し、前記基体の一辺側に前記コ字状の前記導体の開口を有していることから、受光素子から熱が発生したとしても、コ字状の導体で受光素子から発生した熱をコ字状の導体の全面に拡散させることができ、素子実装面周辺に熱がこもるのを防止することができる。それゆえ、受光素子の作動性を向上できる受光素子用サブキャリアとすることができる。   The subcarrier for a light receiving element of the present invention has an upper surface and a side surface, a mounting surface on which the light receiving element is to be mounted on the side surface, and the mounting surface and the light source are at a predetermined angle when viewed from above. And a conductor provided on the mounting surface and disposed in a U shape so as to surround the light receiving element, and the U-shaped conductor on one side of the substrate. Even if heat is generated from the light receiving element, the heat generated from the light receiving element by the U-shaped conductor can be diffused over the entire surface of the U-shaped conductor. It is possible to prevent heat from being accumulated in the vicinity. Therefore, it is possible to provide a light receiving element subcarrier capable of improving the operability of the light receiving element.

上記受光素子用サブキャリアは、前記基体の上面側に、前記コ字状の前記導体の開口を有することから、受光素子の一方の極が接続される配線を開口から上面に引き回すことができる。さらに、コ字状の導体を上面に延出させることができる。それゆえ、上面に配線が形成され、ボンディングワイヤ等により外部との接続が容易な受光素子用サブキャリアとすることができる。   Since the light receiving element subcarrier has an opening of the U-shaped conductor on the upper surface side of the base, wiring to which one pole of the light receiving element is connected can be routed from the opening to the upper surface. Furthermore, the U-shaped conductor can be extended to the upper surface. Therefore, it is possible to obtain a subcarrier for a light receiving element in which wiring is formed on the upper surface and connection to the outside is easy with a bonding wire or the like.

本発明の光半導体装置は、上記構成の受光素子用サブキャリアと、前記実装面に搭載された受光素子と、を具備したことから、受光素子に熱がこもるのを防止して、受光素子の温度上昇を防止でき、正常かつ安定に作動する光半導体装置とすることができる。   Since the optical semiconductor device of the present invention includes the light receiving element subcarrier having the above-described configuration and the light receiving element mounted on the mounting surface, it is possible to prevent heat from being accumulated in the light receiving element. An optical semiconductor device that can prevent a temperature rise and operates normally and stably can be obtained.

以下、本実施形態にかかる受光素子用サブキャリアおよび光半導体装置について詳細に説明する。   Hereinafter, the subcarrier for a light receiving element and the optical semiconductor device according to the present embodiment will be described in detail.

図1は、本実施形態にかかる受光素子用サブキャリアおよび光半導体装置について一実施形態を示す斜視図である。また、図2は本実施形態にかかる受光素子用サブキャリアおよび光半導体装置の実施の形態の他の例を示す斜視図である。図3(a),図3(b)は、それぞれ図1に示す光半導体装置を光半導体素子収納用パッケージ内部に実装した状態の例を示す平面図である。   FIG. 1 is a perspective view showing an embodiment of a subcarrier for a light receiving element and an optical semiconductor device according to this embodiment. FIG. 2 is a perspective view showing another example of the embodiment of the subcarrier for light receiving elements and the optical semiconductor device according to the present embodiment. FIGS. 3A and 3B are plan views showing examples of the state in which the optical semiconductor device shown in FIG. 1 is mounted inside the optical semiconductor element storage package.

図中、1は基体、1aは基体1の上面、1bは基体1の側面、1cは側面1bに設けられた受光素子4が搭載される実装面、2は受光素子4を囲うように配された導体(コ字状の導体)、4は実装面1cに搭載された受光素子を示す。   In the figure, 1 is a base, 1a is an upper surface of the base 1, 1b is a side surface of the base 1, 1c is a mounting surface on which the light receiving element 4 provided on the side 1b is mounted, and 2 is arranged so as to surround the light receiving element 4. The conductors (U-shaped conductors) 4 are light receiving elements mounted on the mounting surface 1c.

本実施形態にかかる受光素子用サブキャリアは、上面1aと側面1bとを有する基体1を備える。基体1の側面1bは受光素子4が搭載されるべき実装面1cを有し、実装面1cの周囲には、受光素子4を囲うようにコ字状に配された導体2が形成されている。また、基体1は、実装面1cと光源7となる光ファイバの延びる方向とが成す角度が所定角度θとなるように配される。光源7は例えば光ファイバから成り、光源7と受光素子4とは光結合するように配置される。   The subcarrier for a light receiving element according to this embodiment includes a base 1 having an upper surface 1a and a side surface 1b. The side surface 1b of the base 1 has a mounting surface 1c on which the light receiving element 4 is to be mounted, and a conductor 2 arranged in a U-shape so as to surround the light receiving element 4 is formed around the mounting surface 1c. . Further, the base body 1 is arranged such that an angle formed by the mounting surface 1c and the direction in which the optical fiber serving as the light source 7 extends is a predetermined angle θ. The light source 7 is made of, for example, an optical fiber, and the light source 7 and the light receiving element 4 are disposed so as to be optically coupled.

この構成により、受光素子4から熱が発生したときに、コ字状の導体2で受光素子4から発生した熱をコ字状の導体2の全面に拡散させることができ、実装面1c周辺にこもる熱を拡散することができる。それゆえ、受光素子4の作動性を向上できる受光素子用サブキャリアとすることができる。   With this configuration, when heat is generated from the light receiving element 4, the heat generated from the light receiving element 4 by the U-shaped conductor 2 can be diffused over the entire surface of the U-shaped conductor 2, and around the mounting surface 1c. It can dissipate the heat that remains. Therefore, the subcarrier for the light receiving element that can improve the operability of the light receiving element 4 can be obtained.

またこの構成により、光源7と受光素子4の位置関係によっては、光源7の先端から放射される光の一部が受光素子4外に拡散されて放射されても、コ字状の導体2で拡散した光信号が反射され効果的に受光素子4へ導くこともできる。   Further, with this configuration, depending on the positional relationship between the light source 7 and the light receiving element 4, even if a part of the light emitted from the tip of the light source 7 is diffused and emitted outside the light receiving element 4, the U-shaped conductor 2 The diffused optical signal is reflected and can be effectively guided to the light receiving element 4.

本実施形態にかかる光装置は、上記構成の受光素子用サブキャリアと、実装面1cに搭載された受光素子4とを備えているので、受光素子4に熱がこもるのを防止して、受光素子4の温度上昇を防止でき、正常かつ安定に作動する光半導体装置とすることができる。   Since the optical device according to the present embodiment includes the light receiving element subcarrier having the above-described configuration and the light receiving element 4 mounted on the mounting surface 1c, the light receiving element 4 can be prevented from trapping heat to receive light. The temperature rise of the element 4 can be prevented, and an optical semiconductor device that operates normally and stably can be obtained.

以下、本実施形態にかかる受光素子用サブキャリアおよび光半導体装置について、各構成要素について詳細に説明する。   Hereinafter, each component of the light receiving element subcarrier and the optical semiconductor device according to the present embodiment will be described in detail.

基体1の、少なくとも導体2,第2導体3等の金属層が配線パターン状に被着形成されている箇所は誘電体が用いられる。基体1を構成する誘電体としては、例えば、アルミナ(Al)質セラミックス,窒化アルミニウム(AlN)質セラミックス,ムライト(3Al・2SiO)質セラミックス等のセラミックスや樹脂やガラス等が用いられる。 A dielectric is used in a portion of the substrate 1 where at least a metal layer such as a conductor 2 and a second conductor 3 is formed in a wiring pattern. Examples of the dielectric constituting the substrate 1 include ceramics such as alumina (Al 2 O 3 ) ceramics, aluminum nitride (AlN) ceramics, mullite (3Al 2 O 3 · 2SiO 2 ) ceramics, resins, glasses, and the like. Is used.

基体1の導体2,第2導体3等の金属層が被着形成されている箇所を除く部位は、金属から成っていてもよい。すなわち、金属の下地に誘電体を介して導体2および第2導体3等の金属層が被着されていてもよい。なお、図1,図2,図3において、導体2および第2導体3等の金属層にはクロスハッチングを付している。   The site | part except the location in which the metal layers, such as the conductor 2 of the base | substrate 1, the 2nd conductor 3, etc. are adhere | attached, may consist of metals. That is, a metal layer such as the conductor 2 and the second conductor 3 may be attached to a metal base via a dielectric. 1, 2, and 3, the metal layers such as the conductor 2 and the second conductor 3 are cross-hatched.

基体1を構成する金属としては、例えば、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金,Fe−Ni合金,銅(Cu)−タングステン(W),Cu−モリブデン(Mo),Cu,アルミニウム(Al),ステンレス鋼(SUS)等である。金属から成る場合、実装面1cに実装される受光素子4から熱が発生する場合であっても効率良く熱放散させることができるという利点がある。   Examples of the metal constituting the substrate 1 include iron (Fe) -nickel (Ni) -cobalt (Co) alloy, Fe-Ni alloy, copper (Cu) -tungsten (W), Cu-molybdenum (Mo), Cu , Aluminum (Al), stainless steel (SUS), and the like. When made of metal, there is an advantage that heat can be efficiently dissipated even when heat is generated from the light receiving element 4 mounted on the mounting surface 1c.

基体1は、側面1bにフォトダイオード(PD)等の受光素子4が搭載されるべき実装面1cを有している。図1,図2に示す例では、実装面1cが、受光素子4の正極または負極のうち一方の極がフリップチップ実装される電極としての機能も兼ね備えており、金属層から成っている。以下、この金属層を第2導体3として説明する。   The base 1 has a mounting surface 1c on which a light receiving element 4 such as a photodiode (PD) is to be mounted on a side surface 1b. In the example shown in FIGS. 1 and 2, the mounting surface 1 c also has a function as an electrode on which one of the positive electrode and the negative electrode of the light receiving element 4 is flip-chip mounted, and is made of a metal layer. Hereinafter, this metal layer will be described as the second conductor 3.

受光素子4は、実装面1cに金(Au)−錫(Sn)半田,Au−ゲルマニウム(Ge)半田,銀(Ag)−Sn半田等の半田やエポキシ樹脂系、アクリル樹脂系、シリコーン樹脂系等の樹脂接着剤を用いて接着固定することで基体1に実装される。   The light receiving element 4 has solder (eg, gold (Au) -tin (Sn) solder, Au-germanium (Ge) solder, silver (Ag) -Sn solder), epoxy resin, acrylic resin, or silicone resin on the mounting surface 1c. It is mounted on the substrate 1 by being bonded and fixed using a resin adhesive such as.

Au−Sn半田,Au−Ge半田,Ag−Sn半田等の半田を用いる場合は、耐熱性に優れるため、光半導体装置を100℃以上の高温雰囲気中で使用する場合においても接着強度を保持することができるという効果を奏する。   When using solder such as Au—Sn solder, Au—Ge solder, Ag—Sn solder, etc., it has excellent heat resistance, so that the adhesive strength is maintained even when the optical semiconductor device is used in a high temperature atmosphere of 100 ° C. or higher. There is an effect that can be.

また、エポキシ樹脂系の樹脂接着剤を用いる場合は、他の樹脂と比較して接着強度の面で有利な効果を奏する。   In addition, when an epoxy resin-based resin adhesive is used, there is an advantageous effect in terms of adhesive strength as compared with other resins.

また、樹脂接着剤がアクリル樹脂系,シリコーン樹脂系の場合は、光による劣化が少ないという点で受光素子4を長期にわたって接着固定できるという効果を有する。   Further, when the resin adhesive is an acrylic resin type or a silicone resin type, there is an effect that the light receiving element 4 can be bonded and fixed over a long period in that the deterioration due to light is small.

また図1,図2に示す例では、受光素子4のもう一方の極はボンディングワイヤ5を介して導体2に電気的に接続されている。   In the example shown in FIGS. 1 and 2, the other pole of the light receiving element 4 is electrically connected to the conductor 2 via a bonding wire 5.

導体2,第2導体3等の金属層は、例えば、基体1がセラミックスから成る場合、W,Mo,Mn,Cu等から成る金属層が、従来周知のメタライズ法によって被着形成される。導体2,第2導体3等の金属層は、薄膜形成法によって形成されていてもよく、その場合、導体2,第2導体3等の金属層は窒化タンタル(TaN)、ニクロム(Ni−Cr合金)、チタン(Ti)、パラジウム(Pd)、白金(Pt)等から形成される。 For example, when the substrate 1 is made of ceramic, the metal layers such as the conductor 2 and the second conductor 3 are formed by depositing a metal layer made of W, Mo, Mn, Cu or the like by a conventionally known metallization method. The metal layers such as the conductor 2 and the second conductor 3 may be formed by a thin film forming method. In this case, the metal layers such as the conductor 2 and the second conductor 3 are formed of tantalum nitride (Ta 2 N), nichrome (Ni -Cr alloy), titanium (Ti), palladium (Pd), platinum (Pt) and the like.

また、基体1が樹脂から成る場合、導体2,第2導体3等の金属層は、Cu等の金属層から成り、従来周知のメッキ法等によって被着形成される。   Further, when the substrate 1 is made of resin, the metal layers such as the conductor 2 and the second conductor 3 are made of a metal layer such as Cu, and are deposited by a conventionally known plating method or the like.

また、基体1の表面に露出する導体2,第2導体3等の金属層にはさらに金(Au)やニッケル(Ni)等の耐腐食性に優れる保護金属層がメッキ法等によって被着されていてもよく、この構成により、導体2,第2導体3等の金属層を腐食しにくいものとすることができる。   Further, a protective metal layer having excellent corrosion resistance, such as gold (Au) or nickel (Ni), is further applied to the metal layers such as the conductor 2 and the second conductor 3 exposed on the surface of the substrate 1 by a plating method or the like. With this configuration, the metal layers such as the conductor 2 and the second conductor 3 can be made difficult to corrode.

次に、導体2について説明する。導体2は直方体の基体1表面にコ字状に三方が閉じられ、一方となる上面1a側の一辺に開かれた開口2aを有する形状に形成されている。以下、コ字状の導体2ともいう。図1,図2に示すように、コ字状の導体2は、基体1の実装面1cの周囲に設けられ、受光素子4を囲うように受光素子4とは絶縁された状態で配される。コ字状の導体2の開口2aは、例えば、図1に示すように上面1a側に位置している。または、図2に示すように、コ字状の導体2の開口2aは側面側に位置している。図2においては、右側面の一辺側に位置している。   Next, the conductor 2 will be described. The conductor 2 is formed in a shape having an opening 2a opened on one side on the upper surface 1a side which is closed on the surface of the rectangular parallelepiped base body 1 in a U-shape. Hereinafter, it is also referred to as a U-shaped conductor 2. As shown in FIGS. 1 and 2, the U-shaped conductor 2 is provided around the mounting surface 1 c of the base 1 and is disposed in an insulated state from the light receiving element 4 so as to surround the light receiving element 4. . The opening 2a of the U-shaped conductor 2 is located, for example, on the upper surface 1a side as shown in FIG. Or as shown in FIG. 2, the opening 2a of the U-shaped conductor 2 is located in the side surface side. In FIG. 2, it is located on one side of the right side surface.

コ字状の導体2の開口2aが、図1に示すように上面1a側に位置していることによって、導体2の先端部を基体1の上面1aに延設し、上面1aの左右2箇所に導体2を設けることができる。上面1aに導体2を設けることにより、上面1aで導体2と外部回路とをボンディングワイヤ6によって電気的接続を行なうことができ、電気的接続の作業性を向上することができる。   Since the opening 2a of the U-shaped conductor 2 is located on the upper surface 1a side as shown in FIG. 1, the tip end portion of the conductor 2 is extended to the upper surface 1a of the base 1, and two left and right portions of the upper surface 1a are provided. A conductor 2 can be provided on the substrate. By providing the conductor 2 on the upper surface 1a, the conductor 2 and the external circuit can be electrically connected by the bonding wire 6 on the upper surface 1a, and workability of the electrical connection can be improved.

また図1に示す場合、第2導体3も基体1の上面1aに延設し、上面1aの左右両端まで引き回すのがよい。すなわち、第2導体3は上面1aに上面視でT字状に形成されているのがよく、導体2および第2導体3を基体1の上面1aの左右両側に設けることができる。そして、基体1の左右のいずれにも外部との接続が可能となる。   Further, in the case shown in FIG. 1, the second conductor 3 is also preferably extended to the upper surface 1a of the base 1 and routed to both left and right ends of the upper surface 1a. That is, the second conductor 3 is preferably formed in a T shape on the upper surface 1 a in a top view, and the conductor 2 and the second conductor 3 can be provided on both the left and right sides of the upper surface 1 a of the base 1. And it becomes possible to connect to the outside of either the left or right side of the base 1.

従って、導体2および第2導体3は、基体1の上面1aまで延出されているのがよい。この構成により、光装置を光半導体素子収納用パッケージ10内に実装したときに、図3(a)に示すように、基体1の上面1aの右側に形成された導体2と、光半導体素子収納用パッケージ10を上面視して右側の入出力端子12の配線導体12aとを、ボンディングワイヤ等の外部接続用導体6にて電気的に接続することができる。また、図3(b)に示すように、基体1の上面1aの左側に形成された導体2と、上面視して左側の光半導体素子収納用パッケージ10の入出力端子12に設けられた配線導体12aとを、ボンディングワイヤ等の外部接続用導体6にて電気的に接続することができる。すなわち、左右どちらにでも電気的接続可能な光半導体装置とすることができる。   Therefore, the conductor 2 and the second conductor 3 are preferably extended to the upper surface 1 a of the base 1. With this configuration, when the optical device is mounted in the optical semiconductor element storage package 10, as shown in FIG. 3A, the conductor 2 formed on the right side of the upper surface 1a of the base 1 and the optical semiconductor element storage When the package 10 is viewed from above, the wiring conductor 12a of the right input / output terminal 12 can be electrically connected by an external connection conductor 6 such as a bonding wire. Further, as shown in FIG. 3B, the conductor 2 formed on the left side of the upper surface 1a of the base 1 and the wiring provided on the input / output terminal 12 of the optical semiconductor element housing package 10 on the left side when viewed from above. The conductor 12a can be electrically connected by an external connection conductor 6 such as a bonding wire. That is, the optical semiconductor device can be electrically connected to either the left or right.

従来、それぞれの光半導体素子収納用パッケージ10の左右それぞれの側に設けられた入出力端子12に合せてそれぞれ別な受光素子用サブキャリアを用意し、光装置を作製する必要があったのに対し、本発明では左右どちらに入出力端子12が設けられていても電気的接続可能な光装置を提供することができる。従って、左右共通の受光素子用サブキャリアを1種類だけ用意すれば、左右共用の光装置を作製することができる。その結果、受光素子用サブキャリアの設計を左右共用とすることができ、コストダウンを図ることが可能となる。   Conventionally, it has been necessary to prepare different light receiving element subcarriers for each input / output terminal 12 provided on each of the left and right sides of each optical semiconductor element storage package 10 to manufacture an optical device. On the other hand, the present invention can provide an optical device that can be electrically connected regardless of whether the input / output terminals 12 are provided on the left and right. Accordingly, if only one type of light receiving element subcarrier common to the left and right is prepared, a left and right shared optical device can be manufactured. As a result, the design of the subcarrier for the light receiving element can be shared between the left and right, and the cost can be reduced.

また、図2に示すように、本実施形態にかかる受光素子用サブキャリアは、側面1bにおいて、側面側にコ字状の導体2の開口2aを配するようにしてもよい。   As shown in FIG. 2, the subcarrier for a light receiving element according to the present embodiment may be provided with an opening 2a of a U-shaped conductor 2 on the side surface side on the side surface 1b.

この場合、第2導体3は側面1bから開口2a側の側面に引き回される。この構成においても、導体2および第2導体3を基体1の上面1aに延設しておくのがよく、ボンディングワイヤ6により光半導体素子収納用パッケージ10内の入出力端子12等に電気的接続することが容易となる。上面1aで導体2にボンディングワイヤ6による電気的接続を行なうことにより、電気的接続の作業性を向上することができる。なお、第2導体3はコ字状の導体2の開口2a側の隣接する側面を介して上面1aに引き回せばよい。   In this case, the second conductor 3 is routed from the side surface 1b to the side surface on the opening 2a side. Also in this configuration, the conductor 2 and the second conductor 3 are preferably extended on the upper surface 1a of the base 1, and are electrically connected to the input / output terminals 12 and the like in the optical semiconductor element housing package 10 by the bonding wires 6. Easy to do. By performing electrical connection to the conductor 2 with the bonding wire 6 on the upper surface 1a, workability of electrical connection can be improved. The second conductor 3 may be routed to the upper surface 1a through the adjacent side surface of the U-shaped conductor 2 on the opening 2a side.

また好ましくは、導体2の形状は、受光素子4側から外側にかけて順次厚くなるように形成するのがよい。この構成により、導体2が厚くなっている導体2の外側、すなわち基体1の外側に熱を広げ易くすることができ、受光素子4の実装面周辺に熱がこもるのを効果的に抑制することができる。   Preferably, the shape of the conductor 2 is formed so as to gradually increase from the light receiving element 4 side to the outside. With this configuration, heat can be easily spread to the outside of the conductor 2 where the conductor 2 is thick, that is, the outside of the base 1, and the heat can be effectively suppressed from being accumulated around the mounting surface of the light receiving element 4. Can do.

また、導体2の表面は受光素子4に向けて傾いた状態となり、導体2の表面での反射によって、光源7からの漏れ光をより効果的に受光素子4へ導くことができる。その結果、受光素子4の受光効率を高めることもできる。   In addition, the surface of the conductor 2 is inclined toward the light receiving element 4, and leakage light from the light source 7 can be more effectively guided to the light receiving element 4 by reflection on the surface of the conductor 2. As a result, the light receiving efficiency of the light receiving element 4 can be increased.

導体2を外側にかけて順次厚くなるように形成するには、例えば、外側にかけて順次厚くなっている金属部材を基体1の表面に接合して導体2とすればよい。   In order to form the conductor 2 so as to be gradually thicker toward the outside, for example, a metal member that is gradually thickened toward the outside may be bonded to the surface of the base 1 to form the conductor 2.

また好ましくは、導体2は、JIS B 0601で規定される算術平均表面粗さRaが0.2以上であるのがよい。この構成により、導体2の表面を粗くして、導体2の表面における熱の放散性を向上させ、受光素子4から発生した熱は、導体2の表面から基体1外部へ効率良く放散させることができる。その結果、受光素子4の作動性をさらに向上させることができる。なお、導体2の表面粗さRaは、例えばZYGO社製New View5032装置を用いて測定することができる。   Preferably, the conductor 2 has an arithmetic average surface roughness Ra defined by JIS B 0601 of 0.2 or more. With this configuration, the surface of the conductor 2 is roughened to improve heat dissipation on the surface of the conductor 2, and the heat generated from the light receiving element 4 can be efficiently dissipated from the surface of the conductor 2 to the outside of the substrate 1. it can. As a result, the operability of the light receiving element 4 can be further improved. The surface roughness Ra of the conductor 2 can be measured using, for example, a New View 5032 apparatus manufactured by ZYGO.

また好ましくは、導体2は、その表面に、金(Au)被膜を施すのがよい。この構成により、導体2の表面に酸化等による腐食が生じ難く、また熱伝導率も優れ、熱伝導率を長期にわたって良好に保持できるようになる。その結果、素子実装面周辺に熱がこもるのを長期にわたって防止することができ、受光素子を長期にわたって良好に作動させることのできる受光素子用サブキャリアとすることができる。   Preferably, the conductor 2 is provided with a gold (Au) coating on the surface thereof. With this configuration, corrosion due to oxidation or the like hardly occurs on the surface of the conductor 2, and the thermal conductivity is excellent, so that the thermal conductivity can be well maintained over a long period of time. As a result, it is possible to prevent heat from being trapped around the element mounting surface for a long period of time, and to provide a light receiving element subcarrier capable of operating the light receiving element satisfactorily for a long period of time.

また好ましくは、基体1は、セラミックスから成るのがよい。この構成により、実装面1cと導体2との間の絶縁性が優れたものとなり、実装面1cと導体2との距離を近づけることができて、受光素子用サブキャリアを小型化することができる。   Preferably, the substrate 1 is made of ceramics. With this configuration, the insulation between the mounting surface 1c and the conductor 2 becomes excellent, the distance between the mounting surface 1c and the conductor 2 can be reduced, and the subcarrier for the light receiving element can be reduced in size. .

以上の構成により、受光素子用サブキャリアを形成することができる。   With the above configuration, a subcarrier for a light receiving element can be formed.

この受光素子用サブキャリアの実装面1cに受光素子4を搭載することで光半導体装置となる。   By mounting the light receiving element 4 on the mounting surface 1c of the subcarrier for the light receiving element, an optical semiconductor device is obtained.

光半導体装置は、例えば、図3(a),(b)に示すような容器体11内に収納され、光信号を受信するための光半導体装置として用いられる。図3に示す容器体11は、中央部に光装置を収納するための凹所が設けられている。凹所の周囲の側壁には、光ファイバ7を容器体11内外に挿通させるための貫通孔11aを有し、この貫通孔11aに光ファイバ7が配置される。また、容器体11の側壁には、容器体11内外を導通するようにして配線導体12aが形成された入出力端子12が設けられている。そして、凹所内に受光素子4を実装した光装置を配置し、光ファイバ7と受光素子4とが光結合するように調整して光装置を固定するとともに、光装置と配線導体12aとを接続し、その後凹所を塞ぐように蓋体を取り付けて、光信号を受信するための光半導体装置が完成する。   For example, the optical semiconductor device is housed in a container 11 as shown in FIGS. 3A and 3B and used as an optical semiconductor device for receiving an optical signal. The container 11 shown in FIG. 3 is provided with a recess for housing the optical device in the center. The side wall around the recess has a through hole 11a for inserting the optical fiber 7 into and out of the container body 11, and the optical fiber 7 is disposed in the through hole 11a. In addition, an input / output terminal 12 having a wiring conductor 12 a formed so as to conduct inside and outside of the container body 11 is provided on the side wall of the container body 11. Then, an optical device in which the light receiving element 4 is mounted is disposed in the recess, and the optical device is fixed by adjusting so that the optical fiber 7 and the light receiving element 4 are optically coupled, and the optical device and the wiring conductor 12a are connected. Then, a lid is attached so as to close the recess, and an optical semiconductor device for receiving an optical signal is completed.

また、この光装置は光信号を送信するための光半導体装置内で用いることもでき、この場合、光装置は光信号の送信状況をモニタするためのモニタ用として用いられる。この場合も、光半導体装置は図3(a),(b)に示すものとほぼ同様な容器体11内に収納され、光信号を送信する素子の後方(光ファイバ7方向とは逆方向)、または光信号を送信する素子の斜め前方(光ファイバ7方向の斜め前方)に配置され、光信号を送信する素子が発する光を受けて光送信素子の送信状況をモニタする。   The optical device can also be used in an optical semiconductor device for transmitting an optical signal. In this case, the optical device is used for monitoring for monitoring the transmission status of the optical signal. Also in this case, the optical semiconductor device is housed in a container body 11 that is substantially the same as that shown in FIGS. 3A and 3B, and behind the element that transmits the optical signal (the direction opposite to the direction of the optical fiber 7). Alternatively, it is arranged obliquely in front of an element that transmits an optical signal (obliquely forward in the direction of the optical fiber 7), receives light emitted from the element that transmits the optical signal, and monitors the transmission status of the optical transmission element.

なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。   Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.

本実施形態にかかる受光素子用サブキャリアおよび光装置について一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment about the subcarrier for light receiving elements and optical apparatus concerning this embodiment. 本実施形態にかかる受光素子用サブキャリアおよび光装置の実施の形態の他の例を示す斜視図である。It is a perspective view which shows the other example of embodiment of the subcarrier for light receiving elements concerning this embodiment, and an optical apparatus. (a),(b)は、それぞれ図1に示す光装置を光半導体素子収納用パッケージ内部に実装した光半導体装置の例を示す平面図である。(A), (b) is a top view which shows the example of the optical semiconductor device which mounted the optical device shown in FIG. 1 inside the package for optical semiconductor element accommodation, respectively.

符号の説明Explanation of symbols

1:基体
1a:上面
1b:側面
1c:実装面
2:導体(コ字状の導体)
4:受光素子
5:樹脂接着剤
7:光源(光ファイバ)
1: Base 1a: Upper surface 1b: Side surface 1c: Mounting surface 2: Conductor (U-shaped conductor)
4: Light receiving element 5: Resin adhesive 7: Light source (optical fiber)

Claims (8)

上面と側面とを有するとともに、該側面に受光素子が搭載されるべき実装面を有し、且つ、上面視して、前記実装面と光ファイバとが所定角度をなして配される基体と、
前記実装面に設けられ、前記受光素子を囲うようにコ字状に配された導体と、
を具備し、
前記基体の一辺側に前記コ字状の前記導体の開口を有していることを特徴とする受光素子用サブキャリア。
A base having a top surface and a side surface, a mounting surface on which the light receiving element is to be mounted on the side surface, and the mounting surface and the optical fiber arranged at a predetermined angle when viewed from above;
A conductor provided on the mounting surface and arranged in a U-shape so as to surround the light receiving element;
Comprising
A subcarrier for a light receiving element, comprising an opening of the U-shaped conductor on one side of the base.
前記基体の上面側に前記コ字状の前記導体の開口を有することを特徴とする請求項1記載の受光素子用サブキャリア。 2. The subcarrier for a light receiving element according to claim 1, wherein an opening of the U-shaped conductor is formed on an upper surface side of the base. 前記導体は、前記基体の上面まで延出されていることを特徴とする請求項1または請求項2に記載の受光素子用サブキャリア。 The light receiving element subcarrier according to claim 1, wherein the conductor extends to an upper surface of the base. 前記導体は、前記受光素子側から外側にかけて順次厚く形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の受光素子用サブキャリア。 4. The subcarrier for a light receiving element according to claim 1, wherein the conductor is formed thicker sequentially from the light receiving element side to the outside. 5. 前記導体は、JIS B 0601で規定される算術平均表面粗さRaが0.2以上であることを特徴とする請求項1乃至請求項4のいずれかに記載の受光素子用サブキャリア。 5. The subcarrier for a light receiving element according to claim 1, wherein the conductor has an arithmetic average surface roughness Ra defined by JIS B 0601 of 0.2 or more. 前記導体は、その表面に、金被膜を有することを特徴とする請求項1乃至請求項5のいずれかに記載の受光素子用サブキャリア。 6. The subcarrier for a light receiving element according to claim 1, wherein the conductor has a gold film on a surface thereof. 前記基体は、セラミックスから成ることを特徴とする請求項1乃至請求項6のいずれかに記載の受光素子用サブキャリア。 The subcarrier for a light receiving element according to claim 1, wherein the base is made of ceramics. 請求項1乃至請求項7のいずれかに記載の受光素子用サブキャリアと、
前記実装面に搭載された受光素子と、
を具備した光半導体装置。
A subcarrier for a light receiving element according to any one of claims 1 to 7,
A light receiving element mounted on the mounting surface;
An optical semiconductor device comprising:
JP2008194977A 2008-07-29 2008-07-29 Subcarrier for light receiving element and optical semiconductor device Expired - Fee Related JP5173647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194977A JP5173647B2 (en) 2008-07-29 2008-07-29 Subcarrier for light receiving element and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194977A JP5173647B2 (en) 2008-07-29 2008-07-29 Subcarrier for light receiving element and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2010034298A JP2010034298A (en) 2010-02-12
JP5173647B2 true JP5173647B2 (en) 2013-04-03

Family

ID=41738433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194977A Expired - Fee Related JP5173647B2 (en) 2008-07-29 2008-07-29 Subcarrier for light receiving element and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP5173647B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2851589B2 (en) * 1996-08-15 1999-01-27 日本レック株式会社 Optoelectronic component manufacturing method
DE19755734A1 (en) * 1997-12-15 1999-06-24 Siemens Ag Method for producing a surface-mountable optoelectronic component
JP2003179294A (en) * 2001-12-12 2003-06-27 Kyocera Corp Package for containing optical semiconductor element and optical semiconductor device
JP2004117902A (en) * 2002-09-26 2004-04-15 Anritsu Corp Optical module
JP4180537B2 (en) * 2003-10-31 2008-11-12 シャープ株式会社 Optical element sealing structure, optical coupler, and optical element sealing method
JP4404649B2 (en) * 2004-01-29 2010-01-27 京セラ株式会社 Subcarrier of optical semiconductor element and optical semiconductor device
JP4743107B2 (en) * 2006-12-18 2011-08-10 日立電線株式会社 Photoelectric wiring member

Also Published As

Publication number Publication date
JP2010034298A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4132038B2 (en) Light emitting device
JP2005191111A (en) Package for storing light emitting element, and light emitting device
WO2010117073A1 (en) Semiconductor device
JP4295525B2 (en) Light emitting element storage package and light emitting device
JP5173647B2 (en) Subcarrier for light receiving element and optical semiconductor device
JP4129169B2 (en) Light emitting element storage package and light emitting device
JP4164006B2 (en) Light emitting element storage package and light emitting device
JP4261925B2 (en) Light emitting element storage package and light emitting device
JP5127594B2 (en) Semiconductor package
JP2004335584A (en) Semiconductor package
JP4129173B2 (en) Light emitting element storage package and light emitting device
JP2007173875A (en) Light emitting device
JP2007012718A (en) Electronic component housing package and electronic device
JP4336153B2 (en) Light emitting element storage package and light emitting device
JP2004207363A (en) Package for housing light emitting element and light emitting device
JP2004356391A (en) Package for encasing semiconductor element and semiconductor device
JP5347877B2 (en) Light emitting device
JP2004343146A (en) Thermoelectric module
JP4000109B2 (en) Light emitting device
JP2002094170A (en) Optical module
JP4081394B2 (en) Light emitting element storage package and light emitting device
JP2003008085A (en) Thermoelectric module
JP2009283898A (en) Electronic part container, package for storing electronic part using the same and electronic device
JP2010010336A (en) Electronic element carrier
JP2581319B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees