JP5170725B2 - Method for producing water-soluble saccharide - Google Patents

Method for producing water-soluble saccharide Download PDF

Info

Publication number
JP5170725B2
JP5170725B2 JP2003192087A JP2003192087A JP5170725B2 JP 5170725 B2 JP5170725 B2 JP 5170725B2 JP 2003192087 A JP2003192087 A JP 2003192087A JP 2003192087 A JP2003192087 A JP 2003192087A JP 5170725 B2 JP5170725 B2 JP 5170725B2
Authority
JP
Japan
Prior art keywords
water
soluble
hot water
plant
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003192087A
Other languages
Japanese (ja)
Other versions
JP2005023041A5 (en
JP2005023041A (en
Inventor
信行 林
剛 坂木
研一 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University
National Institute of Advanced Industrial Science and Technology AIST
Mizota Co Ltd
Original Assignee
Saga University
National Institute of Advanced Industrial Science and Technology AIST
Mizota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University, National Institute of Advanced Industrial Science and Technology AIST, Mizota Co Ltd filed Critical Saga University
Priority to JP2003192087A priority Critical patent/JP5170725B2/en
Publication of JP2005023041A publication Critical patent/JP2005023041A/en
Publication of JP2005023041A5 publication Critical patent/JP2005023041A5/ja
Application granted granted Critical
Publication of JP5170725B2 publication Critical patent/JP5170725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、植物の細胞壁を構成するヘミセルロースを加水分解し、健康食品として有用な水溶性糖類の製造法に関する。更に詳しくは、腸内ビフィズス菌増殖活性が高く整腸作用を有するオリゴ糖や、コレステロールや胆汁酸あるいは大腸癌の原因物質とされるフカペンテン等の有害物質と結合する作用を有する食物繊維をバランス良く含む水溶性糖類を、効率良くかつ安全に製造する水溶性糖類の飲食物の製造法に関する。
【0002】
【従来の技術】
オリゴ糖は単糖が複数個、一般には2〜6個結合したものを言い、それ以上、頻繁には10個以上結合した多糖類を食物繊維と言う。オリゴ糖には、それを構成する単糖の種類によりガラクトオリゴ糖、フラクトオリゴ糖、キシロオリゴ糖、マルトオリゴ糖、大豆オリゴ糖など種々のオリゴ糖があり、ビフィズス菌増殖作用を有する特定保健用食品として市販されている。しかしこれらオリゴ糖には食物繊維としての生理活性作用はない。他方、単糖の結合数が多く、特に10分子以上になると、血清コレステロールの上昇抑制作用、肝障害軽減作用、大腸癌発生抑制作用などの食物繊維としての生理活性を発現する。
【0003】
オリゴ糖類の製造法としては、大豆オリゴ糖製造の際の抽出法以外は、デンプンやヘミセルロース等の多糖原料に酵素を作用させて作る方法が一般的であり、また蒸煮・爆砕法と酵素分解法を組み合わせた方法も提案されている(特許文献1等)。他方食物繊維は、野菜、果実、糖類、芋類、海草類など多くの食品に含まれる多糖類であるが、高度に枝分かれした構造を持つ一部の多糖類以外は大部分非水溶性であり、このままでは腸内での有害物質との結合効率が低い。
【0004】
この非水溶性多糖類を水溶性とするためには、酸、アルカリ、触媒あるいは酵素を利用して各種糖原料を加水分解する方法があるが、酸やアルカリを用いた場合、その触媒の除去や反応器の腐食の問題、また酵素を用いた場合は、酵素が高価な事や反応速度が遅い事など問題が多い。更に加水分解反応の制御自体も困難で、分子量分布的には大部分がオリゴ糖(二〜六糖類)となることが多く、食物繊維の含量は少なくなる。
【0005】
本発明者等は、加圧熱水のみでバイオマスからヘミセルロース等を分解する技術を提案した(特許文献2)が、この提案はこれらの分解物を丸ごと飲食物として利用するものではなかった。
【0006】
【特許文献1】
特開平9−248153号公報
【特許文献2】
特開2002−59118号公報
【0007】
【発明が解決しようとする課題】
本発明は上述のような技術背景のもとになされたものであり、下記目的を達成する。
【0008】
本発明の目的は、ヘミセルロースを含む植物から、健康食品として有用な食物繊維からオリゴ糖、単糖までをバランス良く含む水溶性糖類を、水のみを使用して安全かつ効率良く製造する水溶性糖類の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、前記目的を達成するため、次の手段を採る。
【0011】
本発明の水溶性糖類の製造方法は、
ヘミセルロースを含む植物から製造された水溶性糖類の製造方法において、
前記植物に、温度が常温〜140℃未満で、圧力が3MPaの加圧熱水により20分間前記植物中の糖以外の可溶性物質を流去し、
前記植物中の糖以外の可溶性物質を流去した前記植物に、温度が140〜230℃、圧力が3MPaの加圧熱水を25分間接触させ、前記ヘミセルロースを含む前記植物を加水分解することにより、ラジカル消去能を備えた水溶性リグニン、単糖からオリゴ糖、及び食物繊維の範疇である多糖類を含む水溶性糖類が抽出されたものであることを特徴とする。
【0016】
植物
本発明でいう植物とは、針葉樹や広葉樹などの木質、もみ殻や麦わらなどの農産廃棄物、又はケナフ、茶葉(引用緑茶の抽出後の茶葉も含む。)等の草木類を意味する。加圧熱水は、植物からラジカル消去活性を有する水溶性糖類を抽出するための加水分解のための反応場(液)として用いるものである。従って、加水分解反応速度は水分子との接触頻度に直接関係するので、12メッシュ程度に粉砕した粒子が好ましい。ただし、籾殻、茶葉等のように粉砕せずにそのまま加圧熱水で加水分解しても良い。
【0017】
加圧熱水
本発明の加圧熱水は、植物からラジカル消去活性を有する水溶性糖類を加水分解により抽出するための反応場として用いるものである。従って、この前後の処理で酸、アルカリ、酵素等による前処理、後処理を否定するものではない。また、前記加圧熱水の140〜230℃の意味は、温度が140℃より低いとヘミセルロースの分解が起こらず、また230℃より高いとセルロースの分解が始まり、かつ得られた糖類の二次分解も起こるため好ましくないめにこの範囲に限定した。140℃付近は、ヘミセルロースの加水分解の遷移領域で、分解しても少量であり、非常に時間がかかる曖昧な温度領域である。
【0018】
厳密な分解の開始温度は、その植物に由来するヘミセルロースの構成糖や立体構造によって異なる。前記加圧熱水の圧力は、その温度での飽和蒸気圧の1.0〜3.0に限定されるものではなく、それ以上の圧力でも製造可能であるが、製造装置の耐圧強度、ポンプの加圧能力で決まる実用的な数値である。
【0019】
処理時間
前記加圧熱水による前記植物の可溶性物質の流去する時間は、前記常温〜140℃未満では10〜30分間であり、前記140〜230℃では0.5〜30分であるとした。この時間は、一般的な目安である。例えば常温の場合は、生産効率は低くなるが30分以上であっても良い。また、前記140〜230℃での抽出の場合は、分解物の濃度はピーク値がありそれを過ぎると濃度が急速に低下する。従って、前記植物の可溶性物質の流去する時間は、システムの形状、構造、容量等によって最適な数値は決められるべき性質のものである。
【0020】
【発明の実施の形態】
以下、本発明の水溶性糖類の製造に用いる製造装置の実施の形態を説明する。図1は水溶性糖類の製造装置の概要を示すものであり、熱水の流れを示すフロー図である。加圧熱水を作る水は、水道水等が水供給パイプ1から供給される。供給された水は、イオン交換器、フィルター等からなりカートリッジタイプの純水器2に通水される。
【0021】
純水器2で濾過された純水は、純水タンク3に供給され貯蔵される。ポリエチレン製の純水タンク3に貯蔵された純水は、ステンレス製のポンプ4で吸引されステンレス製の容器であるバッファタンク5に送られる。ポンプ4の能力は、本例では6.5Mpaまで加圧可能である。バッファタンク5は、反応器10に供給する純水の圧力と流量を安定化するためのものである。バッファタンク5には、3.0Mpaで作動する安全弁6、及び窒素ボンベ7が接続されている。
【0022】
系内の空気を置換し、リークがないかをチェックする目的のものである。バッファタンク5からの水は、パイプ8から熱交換器9に供給される。熱交換器9には、加熱した熱媒体油が供給されているのでこの熱媒体油の熱により水が加熱され加圧熱水となる。加圧熱水は、バルブ等を通り反応器10に供給される。反応器10は、本発明の水溶性糖類を抽出するための一種の圧力釜である。反応器10は、ステンレス製であり内部が空洞の円筒型であり、本例では縦方向に設置されている。
【0023】
反応器10の上下端面には、ステンレス製の焼結フィルタ14が固定配置されている。焼結フィルタ14は平均20μmの孔が開いている。この孔径は特定のでなくても良いが、平均5〜30ミクロンが好ましい。平均30ミクロン以上では微細試料の流出が起こり、また平均5ミクロン未満では熱水を供給する際の抵抗が大きくなる。
【0024】
反応器10に投入された原料植物は、この孔径以上のものは流出することはない。反応器10の外周には、反応器10を加熱するための熱媒体油を循環するための加熱回路11が管接続されている。加熱回路11は、本実施の形態では300℃又は230℃で加熱するものである。即ち、熱交換器9で純水を加熱した後、反応器10の外周面に配置された外部ジャケット13に送られる。
【0025】
外部ジャケット13は、反応器10を外部から熱媒体油で加熱するための熱交換器である。熱交換器9に熱媒体油を送る熱媒体油加熱器15には電熱ヒーター16が設置されている。熱媒体油加熱器15には熱媒体油を循環させるためのポンプ(図示せず)が接続されている。ポンプは、熱媒体油を熱交換器9、反応器10及び熱媒体油加熱器15の間を循環させる。
【0026】
反応器10から出た熱水は、吐出管20から出て冷却器21で冷却されて、その後に平均5μのステンレス製の焼結フィルタであるラインフィルタ22を通り、更に保圧弁23を通り排出され回収される。ラインフィルタ22、及び反応器10の焼結フィルタ14は、目詰まりを起こす場合があるために熱交換器9から出た加圧熱水を、逆流洗浄ライン24を通してラインフィルター22側から流すことにより目詰まりを解消する配管が配置したものである。
【0027】
[水溶性糖類の製造方法]
以下、前述した製造装置を用いたて水溶性糖類を製造する製造方法の好適な例について説明する。本発明方法において用いられる原料としては、ヘミセルロースを含む植物、例えば針葉樹や広葉樹などの木質、もみ殻や麦わらなどの農産廃棄物、あるいはケナフ、茶葉(茶を抽出した抽出残渣を含む。)などの草木類が利用できる。これら原料の形状は特に限定しないが、抽出を効率よく行うためには、12メッシュ篩通過程度にまでは粉砕することが好ましい。これらの原料は乾燥する必要がなく、粉砕後そのままあるいは水とのスラリーとして反応器10に投入する。反応器10は試料が流出しないように入口と出口を前述した焼結フィルタ14でキャップされている。
【0028】
試料の充填された反応器10に加圧熱水を通水して糖類の分解抽出を行うが、その際の温度は140〜230℃の範囲であり、またその時の圧力は、その時の温度の飽和水蒸気圧以上、すなわち0.4〜2.8MPa以上に加圧されて熱水が液体状態で試料と接触する必要がある。加圧熱水温度が140℃より低いとヘミセルロースの分解が起こらず、また230℃より高いとセルロースの分解が始まり、かつ得られた糖類の二次分解も起こるため好ましくない。
【0029】
圧力がその時の飽和水蒸気圧以下であると、熱水は蒸気状態で試料と接触するため、加水分解反応より熱分解反応が優勢となり、生成物は糖以外のガスあるいは芳香族系の成分となるので好ましくない。圧力は極度に高くする必要はなく、熱水を安定に液体状態に保つためには飽和水蒸気圧の1.0〜3.0倍、好ましくは1.1〜1.5倍の圧力を維持するのが好ましい。
【0030】
上記加圧熱水の流速は、熱水の反応器10内での通過時間が通常30秒以上15分以内、好ましくは2分以上8分以内となるように設定する。30秒未満では低分子糖の含量が少なく、15分を超えると生成した糖の二次分解が進む。熱水処理時間は流出液中の溶質がほとんど認められなくなるまで続ける方が収率は向上するが、運転効率を考慮して実用上は通常15〜30分である。
【0031】
反応器10から流出した熱水は、その中に含まれる水溶性糖類の二次分解を抑制するために直ちに冷却するのが望ましい。また運転開始時の加圧熱水温度が140℃に達するまでに得られる流出液は、糖以外の水溶性成分を含んでいるため、除去するのが好ましい。またこうした糖以外の細胞内含有成分を予め除去する方法として、常温〜140℃未満、好ましくは110〜130℃の加圧熱水を10〜30分間、好ましくは15〜20分間流通しておく事も純度の高い水溶性糖類を得るために有効である。
【0032】
上記の方法で得られた水溶液は、必要があれば活性炭やイオン交換樹脂による通常の脱色や脱塩処理を行えば、精製した水溶性糖液として用いることもできる。また更に乾燥して、易水溶性粉末糖としても用いる事ができる。
【0033】
【実施例1】
次に、前述した製造装置を用いた本発明の実施例を詳細に具体的に説明する。本発明は、これらの実施例によってなんら限定されるものではない。容積1.2Lのステンレス製反応容器10にケナフ芯部の粉砕物約100gを仕込み、孔径20ミクロンのステンレス製焼結フィルターでキャップした後、反応器10下部より温度制御された加圧熱水を高圧ポンプを用いて、圧力3MPa、流量300cc/minで通水した。反応器10より流出した水溶液は冷却器21で40℃以下まで冷却された後、保圧弁16を通って大気圧下の受器に導かれた。
【0034】
120℃の熱水を20分間流して糖以外の成分(第1画分)を除去した後、200℃の熱水を25分間流して得たヘミセルロース分解物(第2画分)のダイオネクス社(米国)製の糖分析装置を用いて得られたイオンクロマトグラムを解析した。また同様に、180℃の熱水で25分間処理して得た第2画分のイオンクロマトグラムを解析した。いずれの温度で得た分解抽出物も、そのピークはキシロース、及びキシロースが2−10個結合したオリゴ糖のピーク、更に長時間側で見られる一団のピークより成る事が示された。
【0035】
この45分ないし50分付近のピークの成分は、硫酸加水分解法により、キシロースを単位とする多糖である事が確認された。これによりケナフ芯部の第2画分中の水溶性糖は、単糖のキシロース、及びキシロースが複数個結合したキシロオリゴ糖、及びキシロ多糖であることが確認された。
【0036】
【実施例2】
実施例1と同様にケナフ芯部の粉砕物を試料とし、操作圧力3.0MPaにて、120℃の熱水で20分間第1画分を抽出除去した後、167℃、185℃、193℃、204℃、でそれぞれ25分間の分解抽出を行った時の第2画分の収率、及び第2画分の組成を表1に示す。
【0037】
【表1】

Figure 0005170725
ここで単糖から5糖までの量は、標準物質を用いた検量線法によるイオンクロマトグラフ分析法より求め、リグニン量は第2画分の3%硫酸不溶分量として求めた。また、多糖量は第2画分量から単糖から5糖までの量、及びリグニン量を差し引いた値として求めた。加圧熱水温度が低いほど高分子多糖の割合が多くなるが、混入リグニン量の割合は低下することが示された。このように水溶性食物繊維に相当する成分の割合が多いのが本法の特徴である。また熱水温度が高いほど第2画分収率は高くなるが、これはリグニンの分解も進み、その結果、低分子化されたリグニンが糖類と共に流出してくるためである。
【0038】
【実施例3】
試料として、ケナフ、イナワラ、麦ワラ、もみ殻を用い、操作圧力3.0MPaにて120℃で20分間第1画分を抽出除去した後、198℃付近で25分間第2画分の分解抽出を行った。その時の第2画分の収率、及び第2画分中における単糖から5糖(単−5糖)のそれぞれの濃度を表2に示す。
【0039】
【表2】
Figure 0005170725
イナワラ、麦ワラ、もみ殻の場合、糖成分としてアラビノースも得られた。ケナフやワラ類の場合、第2画分収率は40%台と高いが、単糖−5糖の割合が10−15%と比較的低いのに対し、もみ殻では第2画分収率は32%と低いが、単糖−5糖の割合は約25%と非常に高いことが特徴的であった。
【0040】
【発明の効果】
本発明の水溶性糖類の製造方法は、ヘミセルロースを含む植物から、健康食品として有用な食物繊維からオリゴ糖、単糖までをバランス良く含む水溶性糖類を加圧熱水のみを使用して安全かつ効率良く製造することができる。
【図面の簡単な説明】
【図1】図1は、水溶性糖類の製造装置の概要を示すものであり、熱水のフロー図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a water-soluble saccharide useful as a health food by hydrolyzing hemicellulose constituting a cell wall of a plant. More specifically, a well-balanced dietary fiber that has an action to bind to harmful substances such as oligosaccharides with high intestinal bifidobacteria growth activity and intestinal regulation, cholesterol, bile acids, or causative agents of colon cancer. The present invention relates to a method for producing foods and drinks of water-soluble saccharides that efficiently and safely produce the water-soluble saccharides contained therein.
[0002]
[Prior art]
An oligosaccharide refers to a combination of a plurality of monosaccharides, generally 2 to 6, and a polysaccharide having more, more often 10 or more bonds, is referred to as dietary fiber. Oligosaccharides include various oligosaccharides such as galactooligosaccharides, fructooligosaccharides, xylo-oligosaccharides, malto-oligosaccharides, and soybean oligosaccharides, depending on the type of monosaccharides that compose them. ing. However, these oligosaccharides have no physiological activity as dietary fiber. On the other hand, when the number of monosaccharide bonds is large, particularly 10 molecules or more, physiological activities as dietary fibers such as an inhibitory effect on serum cholesterol elevation, an effect of reducing liver damage, and an inhibitory effect on the occurrence of colon cancer are expressed.
[0003]
As a method for producing oligosaccharides, other than the extraction method in the production of soybean oligosaccharides, a method of making an enzyme act on a polysaccharide raw material such as starch or hemicellulose is generally used, and a steaming / explosion method and an enzymatic decomposition method are also used. A method combining the above has also been proposed (Patent Document 1, etc.). On the other hand, dietary fiber is a polysaccharide contained in many foods such as vegetables, fruits, sugars, moss, seaweeds, but is mostly water-insoluble except for some polysaccharides with a highly branched structure, In this state, the binding efficiency with harmful substances in the intestine is low.
[0004]
In order to make this water-insoluble polysaccharide water-soluble, there is a method of hydrolyzing various sugar raw materials using acid, alkali, catalyst or enzyme, but when acid or alkali is used, removal of the catalyst When using enzymes, there are many problems such as expensive enzymes and slow reaction rates. Furthermore, the hydrolysis reaction itself is difficult to control, and most of the molecular weight distribution is oligosaccharide (di-hexasaccharide), and the dietary fiber content is reduced.
[0005]
The inventors of the present invention have proposed a technique for decomposing hemicellulose and the like from biomass using only pressurized hot water (Patent Document 2), but this proposal did not use these decomposed products as a whole for food and drink.
[0006]
[Patent Document 1]
JP-A-9-248153 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-59118
[Problems to be solved by the invention]
The present invention has been made based on the technical background as described above, and achieves the following object.
[0008]
It is an object of the present invention to produce a water-soluble saccharide containing a hemicellulose-containing water-soluble saccharide in a well-balanced manner from a dietary fiber useful as a health food to an oligosaccharide or a monosaccharide, using water alone, safely and efficiently. It is in providing the manufacturing method of.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following means.
[0011]
The method for producing the water-soluble saccharide of the present invention comprises:
In the method for producing a water-soluble saccharide produced from a plant containing hemicellulose,
To the plant, a soluble substance other than sugar in the plant is washed away with pressurized hot water having a temperature of room temperature to less than 140 ° C. and a pressure of 3 MPa for 20 minutes,
By contacting the plant from which soluble substances other than sugar in the plant have been washed away with pressurized hot water at a temperature of 140 to 230 ° C. and a pressure of 3 MPa for 25 minutes to hydrolyze the plant containing the hemicellulose. Water-soluble lignin with radical scavenging ability , oligosaccharides from monosaccharides, and water-soluble saccharides including polysaccharides in the category of dietary fiber are extracted.
[0016]
Plants Plants referred to in the present invention are woods such as conifers and broadleaf trees, agricultural waste such as rice husks and straws, or vegetation such as kenaf and tea leaves (including tea leaves after extraction of cited green tea). Means. Pressurized hot water is used as a reaction field (liquid) for hydrolysis to extract water-soluble saccharides having radical scavenging activity from plants. Therefore, since the hydrolysis reaction rate is directly related to the contact frequency with water molecules, particles pulverized to about 12 mesh are preferred. However, it may be hydrolyzed with pressurized hot water as it is without being pulverized, such as rice husk and tea leaves.
[0017]
Pressurized hot water The pressurized hot water of the present invention is used as a reaction field for extracting a water-soluble saccharide having radical scavenging activity from a plant by hydrolysis. Therefore, the pre-treatment and post-treatment with acid, alkali, enzyme, etc. are not denied in the treatment before and after this. Further, the meaning of the pressurized hot water 140 to 230 ° C. means that when the temperature is lower than 140 ° C., the decomposition of hemicellulose does not occur, and when the temperature is higher than 230 ° C., the decomposition of the cellulose starts, and the secondary sugar of the obtained saccharide. Since decomposition also occurs, it is limited to this range because it is not preferable. The vicinity of 140 ° C. is a transition region for the hydrolysis of hemicellulose, and is an ambiguous temperature region that takes a very long time even if it decomposes in a small amount.
[0018]
The exact decomposition starting temperature varies depending on the constituent sugar and the three-dimensional structure of hemicellulose derived from the plant. The pressure of the pressurized hot water is not limited to the saturated vapor pressure at that temperature of 1.0 to 3.0, and can be produced at a pressure higher than that, but the pressure resistance strength of the production apparatus, the pump This is a practical value determined by the pressure capacity of
[0019]
Treatment time The time for the soluble substance of the plant to be washed away by the pressurized hot water is 10 to 30 minutes at the room temperature to less than 140C, and 0.5 to 30 minutes at 140 to 230C. It was said that. This time is a general guide. For example, at room temperature, the production efficiency is low, but it may be 30 minutes or longer. In addition, in the case of extraction at 140 to 230 ° C., the concentration of the decomposed product has a peak value, and the concentration rapidly decreases after that. Therefore, the time for the soluble substance to flow out of the plant has a property that the optimum numerical value should be determined according to the shape, structure, capacity, etc. of the system.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a manufacturing apparatus used for manufacturing the water-soluble saccharide of the present invention will be described. FIG. 1 shows an outline of an apparatus for producing a water-soluble saccharide and is a flow diagram showing a flow of hot water. As water for producing the pressurized hot water, tap water or the like is supplied from the water supply pipe 1. The supplied water is made up of an ion exchanger, a filter, and the like, and is passed through a cartridge-type deionizer 2.
[0021]
The pure water filtered by the pure water device 2 is supplied to the pure water tank 3 and stored. Pure water stored in the pure water tank 3 made of polyethylene is sucked by a stainless steel pump 4 and sent to a buffer tank 5 which is a stainless steel container. The capacity of the pump 4 can be pressurized up to 6.5 Mpa in this example. The buffer tank 5 is for stabilizing the pressure and flow rate of pure water supplied to the reactor 10. A safety valve 6 that operates at 3.0 MPa and a nitrogen cylinder 7 are connected to the buffer tank 5.
[0022]
It is intended to replace air in the system and check for leaks. Water from the buffer tank 5 is supplied from the pipe 8 to the heat exchanger 9. Since the heated heat medium oil is supplied to the heat exchanger 9, water is heated by the heat of the heat medium oil to become pressurized hot water. The pressurized hot water is supplied to the reactor 10 through a valve or the like. The reactor 10 is a kind of pressure cooker for extracting the water-soluble saccharide of the present invention. The reactor 10 is made of stainless steel and has a hollow cylindrical shape, and is installed in the vertical direction in this example.
[0023]
Stainless sintered filters 14 are fixedly disposed on the upper and lower end surfaces of the reactor 10. The sintered filter 14 has holes with an average of 20 μm. The pore size need not be specific, but is preferably 5 to 30 microns on average. When the average is 30 microns or more, a fine sample flows out, and when the average is less than 5 microns, resistance when supplying hot water increases.
[0024]
As for the raw material plant charged into the reactor 10, those having a pore size larger than this will not flow out. A heating circuit 11 for circulating heat medium oil for heating the reactor 10 is connected to the outer periphery of the reactor 10 by a pipe. The heating circuit 11 is heated at 300 ° C. or 230 ° C. in the present embodiment. That is, after pure water is heated by the heat exchanger 9, it is sent to the outer jacket 13 disposed on the outer peripheral surface of the reactor 10.
[0025]
The outer jacket 13 is a heat exchanger for heating the reactor 10 with heat medium oil from the outside. An electric heater 16 is installed in the heat medium oil heater 15 that sends the heat medium oil to the heat exchanger 9. The heat medium oil heater 15 is connected to a pump (not shown) for circulating the heat medium oil. The pump circulates the heat medium oil between the heat exchanger 9, the reactor 10 and the heat medium oil heater 15.
[0026]
The hot water discharged from the reactor 10 is discharged from the discharge pipe 20 and cooled by the cooler 21, and then passes through the line filter 22, which is an average 5 μm stainless sintered filter, and is further discharged through the pressure holding valve 23. And recovered. Since the line filter 22 and the sintered filter 14 of the reactor 10 may cause clogging, pressurized hot water discharged from the heat exchanger 9 is allowed to flow from the line filter 22 side through the backflow cleaning line 24. Piping that eliminates clogging is placed.
[0027]
[Method for producing water-soluble saccharide]
Hereinafter, a preferred example of a production method for producing a water-soluble saccharide using the above-described production apparatus will be described. The raw material used in the method of the present invention includes plants containing hemicellulose, such as woody products such as conifers and hardwoods, agricultural waste such as rice husks and straws, kenaf and tea leaves (including extraction residues from which tea is extracted). Plants can be used. Although the shape of these raw materials is not particularly limited, it is preferably pulverized to the extent of passing through a 12-mesh sieve for efficient extraction. These raw materials do not need to be dried, and are put into the reactor 10 as they are after pulverization or as a slurry with water. The reactor 10 is capped at the inlet and outlet with the above-described sintered filter 14 so that the sample does not flow out.
[0028]
The saccharide is decomposed and extracted by passing pressurized hot water through the reactor 10 filled with the sample. The temperature at that time is in the range of 140 to 230 ° C., and the pressure at that time is the temperature at that time. It is necessary to contact the sample in a liquid state by being pressurized to a saturated water vapor pressure or higher, that is, 0.4 to 2.8 MPa or higher. If the pressurized hot water temperature is lower than 140 ° C., the decomposition of hemicellulose does not occur, and if it is higher than 230 ° C., the decomposition of cellulose begins and secondary decomposition of the obtained saccharide also occurs.
[0029]
If the pressure is equal to or lower than the saturated water vapor pressure at that time, the hot water comes into contact with the sample in the vapor state, so the thermal decomposition reaction is dominant over the hydrolysis reaction, and the product becomes a gas other than sugar or an aromatic component. Therefore, it is not preferable. The pressure does not need to be extremely high. In order to keep hot water in a stable liquid state, the pressure is maintained at 1.0 to 3.0 times, preferably 1.1 to 1.5 times the saturated water vapor pressure. Is preferred.
[0030]
The flow rate of the pressurized hot water is set so that the passage time in the hot water reactor 10 is usually 30 seconds or more and 15 minutes or less, preferably 2 minutes or more and 8 minutes or less. If it is less than 30 seconds, the content of low molecular sugar is small, and if it exceeds 15 minutes, secondary decomposition of the produced sugar proceeds. If the hydrothermal treatment time is continued until almost no solute in the effluent is observed, the yield is improved, but it is usually 15 to 30 minutes in practice considering the operation efficiency.
[0031]
It is desirable that the hot water flowing out of the reactor 10 is immediately cooled in order to suppress secondary decomposition of the water-soluble saccharide contained therein. Moreover, since the effluent obtained until the pressurized hot water temperature at the start of operation reaches 140 ° C. contains water-soluble components other than sugar, it is preferably removed. In addition, as a method for previously removing intracellular components other than sugars, pressurized hot water at normal temperature to less than 140 ° C, preferably 110 to 130 ° C, is circulated for 10 to 30 minutes, preferably 15 to 20 minutes. Is also effective for obtaining a highly pure water-soluble saccharide.
[0032]
If necessary, the aqueous solution obtained by the above method can be used as a purified water-soluble sugar solution by subjecting it to normal decolorization or desalting treatment with activated carbon or ion exchange resin. Further, it can be dried and used as a readily water-soluble powdered sugar.
[0033]
[Example 1]
Next, an embodiment of the present invention using the manufacturing apparatus described above will be specifically described in detail. The present invention is not limited in any way by these examples. About 100 g of pulverized kenaf core is charged into a 1.2 L stainless steel reaction vessel 10 and capped with a stainless sintered filter having a pore size of 20 microns, and then hot water whose temperature is controlled from the bottom of the reactor 10 is added. Water was passed at a pressure of 3 MPa and a flow rate of 300 cc / min using a high-pressure pump. The aqueous solution flowing out of the reactor 10 was cooled to 40 ° C. or lower by the cooler 21, and then led to the receiver under atmospheric pressure through the pressure holding valve 16.
[0034]
Flowing hot water at 120 ° C. for 20 minutes to remove components other than sugar (first fraction) and then flowing hot water at 200 ° C. for 25 minutes to obtain a hemicellulose degradation product (second fraction) from Dionex ( An ion chromatogram obtained using a sugar analyzer manufactured by USA was analyzed. Similarly, the ion chromatogram of the second fraction obtained by treatment with hot water at 180 ° C. for 25 minutes was analyzed . It was shown that the degradation extract obtained at any temperature consisted of a peak of xylose, a peak of 2-10 oligosaccharides bound to xylose, and a group of peaks observed on the longer side.
[0035]
The peak component around 45 to 50 minutes was confirmed to be a polysaccharide having xylose as a unit by sulfuric acid hydrolysis. As a result, it was confirmed that the water-soluble sugar in the second fraction of the kenaf core was a monosaccharide xylose, a xylooligosaccharide in which a plurality of xyloses were bonded, and a xylopolysaccharide.
[0036]
[Example 2]
As in Example 1, the pulverized kenaf core was used as a sample, and the first fraction was extracted and removed with hot water at 120 ° C. for 20 minutes at an operating pressure of 3.0 MPa, and then 167 ° C., 185 ° C., 193 ° C. Table 1 shows the yield of the second fraction and the composition of the second fraction when subjected to decomposition and extraction at 204 ° C. for 25 minutes.
[0037]
[Table 1]
Figure 0005170725
Here, the amount from monosaccharide to pentasaccharide was determined by ion chromatographic analysis by a calibration curve method using a standard substance, and the amount of lignin was determined as the amount of 3% sulfuric acid insoluble in the second fraction. The amount of polysaccharide was determined as a value obtained by subtracting the amount from monosaccharide to pentasaccharide and the amount of lignin from the second fraction amount. It was shown that the ratio of the high molecular weight polysaccharide increases as the pressurized hot water temperature decreases, but the ratio of the mixed lignin decreases. As described above, this method has a high ratio of components corresponding to water-soluble dietary fiber. The higher the hot water temperature is, the higher the yield of the second fraction is. This is because lignin is further decomposed, and as a result, the low molecular weight lignin flows out together with the saccharide.
[0038]
[Example 3]
Using kenaf, rice straw, wheat straw, and rice husk as samples, the first fraction was extracted and removed at 120 ° C for 20 minutes at an operating pressure of 3.0 MPa, and then the second fraction was decomposed and extracted for 25 minutes at around 198 ° C. went. Table 2 shows the yield of the second fraction and the concentrations of monosaccharide to pentasaccharide (mono-5 sugar) in the second fraction.
[0039]
[Table 2]
Figure 0005170725
In the case of rice straw, wheat straw and rice husk, arabinose was also obtained as a sugar component. In the case of kenaf and straw, the yield of the second fraction is as high as 40%, but the ratio of monosaccharide-5 sugar is relatively low at 10-15%, whereas in rice husk, the second fraction yield is high. Was as low as 32%, but the ratio of monosaccharide-5 sugar was about 25%, which was very high.
[0040]
【Effect of the invention】
The method for producing a water-soluble saccharide according to the present invention is a method using a water-soluble saccharide containing a hemicellulose, a dietary fiber useful as a health food, an oligosaccharide, and a monosaccharide in a well-balanced manner using only pressurized hot water. It can be manufactured efficiently.
[Brief description of the drawings]
FIG. 1 shows an outline of a water-soluble saccharide production apparatus and is a flow diagram of hot water.

Claims (1)

ヘミセルロースを含む植物から製造された水溶性糖類の製造方法において、
前記植物に、温度が常温〜140℃未満で、圧力が3MPaの加圧熱水により20分間前記植物中の糖以外の可溶性物質を流去し、
前記植物中の糖以外の可溶性物質を流去した前記植物に、温度が140〜230℃、圧力が3MPaの加圧熱水を25分間接触させ、前記ヘミセルロースを含む前記植物を加水分解することにより、ラジカル消去能を備えた水溶性リグニン、単糖からオリゴ糖、及び食物繊維の範疇である多糖類を含む水溶性糖類が抽出されたものである
ことを特徴とする水溶性糖類の製造方法。
In the method for producing a water-soluble saccharide produced from a plant containing hemicellulose,
To the plant, a soluble substance other than sugar in the plant is washed away with pressurized hot water having a temperature of room temperature to less than 140 ° C. and a pressure of 3 MPa for 20 minutes,
By contacting the plant from which soluble substances other than sugar in the plant have been washed away with pressurized hot water at a temperature of 140 to 230 ° C. and a pressure of 3 MPa for 25 minutes to hydrolyze the plant containing the hemicellulose. A method for producing a water-soluble saccharide, wherein a water-soluble lignin having radical scavenging ability, a water-soluble saccharide comprising a monosaccharide and an oligosaccharide and a polysaccharide which is a category of dietary fiber are extracted.
JP2003192087A 2003-07-04 2003-07-04 Method for producing water-soluble saccharide Expired - Lifetime JP5170725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192087A JP5170725B2 (en) 2003-07-04 2003-07-04 Method for producing water-soluble saccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192087A JP5170725B2 (en) 2003-07-04 2003-07-04 Method for producing water-soluble saccharide

Publications (3)

Publication Number Publication Date
JP2005023041A JP2005023041A (en) 2005-01-27
JP2005023041A5 JP2005023041A5 (en) 2006-06-22
JP5170725B2 true JP5170725B2 (en) 2013-03-27

Family

ID=34189483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192087A Expired - Lifetime JP5170725B2 (en) 2003-07-04 2003-07-04 Method for producing water-soluble saccharide

Country Status (1)

Country Link
JP (1) JP5170725B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057639B2 (en) * 2008-02-28 2011-11-15 Andritz Inc. System and method for preextraction of hemicellulose through using a continuous prehydrolysis and steam explosion pretreatment process
JP5320636B2 (en) * 2008-03-27 2013-10-23 国立大学法人静岡大学 Paper sludge-derived water-soluble saccharide production apparatus and paper sludge-derived water-soluble saccharide production method
KR101020565B1 (en) 2009-06-16 2011-03-09 에스피엘 주식회사 Manufacturing apparatus of syrup
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
US20130172546A1 (en) 2011-12-30 2013-07-04 Renmatix, Inc. Compositions comprising c5 and c6 oligosaccharides
JP6017896B2 (en) * 2012-09-06 2016-11-02 日本製紙株式会社 Method for producing arabinose
JP2015071544A (en) * 2013-10-01 2015-04-16 王子ホールディングス株式会社 Method of producing furfural from biomass
CN112226466A (en) 2015-01-07 2021-01-15 威尔迪亚公司 Method for extracting and converting hemicellulose sugars
CA2985478A1 (en) 2015-05-27 2016-12-01 Virdia, Inc. Integrated methods for treating lignocellulosic material
CN114907575B (en) * 2022-04-14 2023-02-28 南京林业大学 Water-soluble lignin and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755957B2 (en) * 1986-05-29 1995-06-14 農林水産省森林総合研究所長 Method for producing xylose and xylooligosaccharide
JPH064663B2 (en) * 1988-03-01 1994-01-19 順一 東 Method for producing xylooligosaccharides by microwave irradiation
JPH10117800A (en) * 1996-08-30 1998-05-12 Akita Pref Gov Production of monosaccharide, oligosaccharide and solubilized polysaccharide
JP3229944B2 (en) * 1996-09-18 2001-11-19 林野庁森林総合研究所長 Manufacturing method of favorite food
JP4223579B2 (en) * 1996-11-18 2009-02-12 三菱商事フードテック株式会社 Method for producing xylose and xylitol
JP3041380B2 (en) * 1997-06-02 2000-05-15 工業技術院長 Process for producing water-soluble oligosaccharides and monosaccharides
JP3128575B2 (en) * 1998-12-22 2001-01-29 工業技術院長 Method for producing water-insoluble polysaccharide
JP2002030192A (en) * 2000-02-09 2002-01-31 Sekisui Chem Co Ltd Manufacturing method of resin composition for toner
JP3802325B2 (en) * 2000-08-23 2006-07-26 信行 林 Pressurized hydrothermal decomposition method and system for plant biomass

Also Published As

Publication number Publication date
JP2005023041A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP5170725B2 (en) Method for producing water-soluble saccharide
CN1032290C (en) Process for hydrolyzing partially extracted roasted and ground coffee
JP6626209B2 (en) Soluble dietary fiber and method for preparing the same
CN100507009C (en) Process for producing oligofructose of garlic
WO2018043666A1 (en) Production method for acidic xylooligosaccharide
Jacquemin et al. Performance evaluation of a semi-industrial production process of arabinoxylans from wheat bran
EP3094734A1 (en) Process for fractionation of oligosaccharides from agri-waste
CN102492054B (en) Preparation method of soybean episperm pectin gel polysaccharide
Wang et al. Dietary fiber extraction from defatted corn hull by hot-compressed water
Jacquemin et al. Comparison of different twin-screw extraction conditions for the production of arabinoxylans
CN109535278A (en) A method of pectin is extracted from passion fruit pericarp
TW201919491A (en) Integrated fruit infusion, extraction, and acid removal
JP2544634B2 (en) How to extract hemicellulose
Chetrariu et al. Pre-treatments used for the recovery of brewer’s spent grain—A minireview
JP2012100546A (en) Method for producing xylooligosaccharide and acidic xylooligosaccharide
CN103834710A (en) Extraction method of agave sisalana pectin
CN101731509A (en) Method for extracting inulin from Canada potato
CN105463040A (en) Method for raising yield of xylooligosaccharide
JP5861413B2 (en) Continuous production method of furfural from biomass
JP4206000B2 (en) Sugar-based food having radical scavenging activity and method for producing the same
RU2354140C1 (en) Method of processing plant raw materials to produce pectin and food products containing pectin and line for this implementation
RU2143823C1 (en) Method for obtaining food product based on jerusalem artichoke
JP5900792B2 (en) Method for producing ferulic acid-bonded carbohydrate
JP5093472B2 (en) Method for producing oligosaccharide
EP3438269A1 (en) Method for producing sugar liquor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100804

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

R150 Certificate of patent or registration of utility model

Ref document number: 5170725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term