JP5168955B2 - Electric motor control device - Google Patents
Electric motor control device Download PDFInfo
- Publication number
- JP5168955B2 JP5168955B2 JP2007064762A JP2007064762A JP5168955B2 JP 5168955 B2 JP5168955 B2 JP 5168955B2 JP 2007064762 A JP2007064762 A JP 2007064762A JP 2007064762 A JP2007064762 A JP 2007064762A JP 5168955 B2 JP5168955 B2 JP 5168955B2
- Authority
- JP
- Japan
- Prior art keywords
- motor
- current
- value
- command
- current value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Description
本発明は、整流回路の出力端子に著しく小容量のコンデンサ、リアクタで構成される平滑回路を接続し出力電圧が交流電源周波数の2倍周波で大きく脈動するような電動機制御装置において、電動機に必要以上の電流が流れることを制限し装置を保護することを目的とする。 The present invention is necessary for a motor in a motor control device in which a smoothing circuit composed of a capacitor and a reactor having a remarkably small capacity is connected to an output terminal of a rectifier circuit, and the output voltage pulsates greatly at twice the frequency of the AC power supply frequency. An object is to protect the device by restricting the flow of the above current.
従来、整流回路の出力端子に著しく小容量のコンデンサ、リアクタで構成される平滑回路を接続し出力電圧が交流電源周波数の2倍周波で大きく脈動するような電動機制御装置では、平滑回路を構成するコンデンサ、リアクタの容量が大きく出力電圧の脈動がほとんどない電動機制御装置と比較して、同一回転数、負荷条件で電動機を駆動させた場合の電動機電流の最大値が高くなる。 Conventionally, a smoothing circuit is configured in an electric motor control device in which a smoothing circuit composed of a capacitor and a reactor having a remarkably small capacity is connected to the output terminal of the rectifier circuit and the output voltage pulsates greatly at twice the frequency of the AC power supply frequency. The maximum value of the motor current when the motor is driven at the same rotation speed and load condition is higher than that of a motor control device having a large capacity of capacitors and reactors and almost no output voltage pulsation.
図13は、特許文献1に記載される電動機制御装置において、平滑回路からの出力電圧波形を示したものであり、電動機を駆動させる直交変換回路への供給電圧が大きく落ち込む期間Tdropが存在する。このため安定した一定の電圧が供給される場合と比較し、電動機の駆動トルクを維持させるためには電圧供給が不足している分、電流の供給量が増加し、電動機電流の最大値は高くなる。
このため前記従来の電動機制御装置による駆動では、電動機の駆動トルクを維持させるために必要以上の電流を供給し、磁石の減磁による電動機性能の悪化や構成装置を破壊させる可能性があるという課題を有していた。 For this reason, in the drive by the conventional motor control device, a current more than necessary for maintaining the drive torque of the motor is supplied, and there is a possibility that the motor performance may be deteriorated due to demagnetization of the magnet or the component device may be destroyed. Had.
本発明は、前記課題を解決するもので電動機電流が所定の電流値以上になると電動機電流を制限し、磁石の減磁による電動機性能の悪化や構成装置の破壊を防ぐ電動機制御装置を提供することを目的とする。 The present invention solves the above problems, and provides an electric motor control device that limits electric motor current when the electric motor current exceeds a predetermined current value and prevents deterioration of electric motor performance and destruction of component devices due to demagnetization of magnets. With the goal.
前記従来の課題を解決するために、本発明の電動機制御装置は、交流電源を整流する整流手段と、整流手段からの出力電圧が交流電源周波数の2倍周波で脈動する平滑手段と、電動機を駆動するために平滑電圧を所望の交流電圧に変換する直交変換手段と、前記電動機の電流を検出する電流検出手段と、前記電流検出手段の検出値に基づき電動機の回転位相を演算する位相演算手段と、電動機の回転数を指示する回転数指令手段と、前記回転数指令手段からの指示回転数と前記位相演算手段から演算される実回転数より電流指令値を演算する電流指令演算手段と、前記電流指令演算手段からの電流指令値に基づき電圧指令値を算出する電圧指令演算手段と、前記電圧指令値から直交変換手段を駆動する信号を生成するPWM信号発生手段と、電動機電流を制限する電流制限手段と、前記電動機の温度を検出する温度検出手段と、前記温度検出手段からの検出値により電動機電流を制限する制限電流値を設定する制限電流値設定手段を具備した電動機制御装置において、前記電動機の駆動回転数によって前記制限電流値設定手段により設定する制限電流値を補正し、前記駆動回転数が高くなったときに前記制限電流値を低く設定する制限電流値補正手段と、前記電動機電流が所定の電流値以上にならないように、先ず電動機電流を制限するために電流指令演算手段からの電動機一回転中の電流指令値の変動量を下げて、所定の変動量未満に到達すると電動機回転数を所定の時間下げる制御を行い、それでも前記電動機電流値が許容最大値以上となる場合は、次に電動機電流を制限するための電動機回転数を下げ、前記電動機回転数が所定の回転数未満に到達する場合は、電動機を停止させる前記電流制限手段とを備えるものである。 In order to solve the above-mentioned conventional problems, an electric motor control apparatus according to the present invention includes a rectifier that rectifies an AC power supply, a smoothing means that pulsates an output voltage from the rectifier at a frequency twice the AC power supply frequency, and an electric motor. Orthogonal transformation means for converting a smooth voltage into a desired AC voltage for driving, current detection means for detecting the current of the motor, and phase calculation means for calculating the rotational phase of the motor based on the detection value of the current detection means A rotation speed command means for instructing the rotation speed of the electric motor, a current command calculation means for calculating a current command value from an instruction rotation speed from the rotation speed command means and an actual rotation speed calculated from the phase calculation means, A voltage command calculation means for calculating a voltage command value based on a current command value from the current command calculation means; a PWM signal generation means for generating a signal for driving an orthogonal transformation means from the voltage command value; Current limiting means for limiting the motive current, temperature detecting means for detecting the temperature of the motor, and limiting current value setting means for setting a limiting current value for limiting the motor current based on a detection value from the temperature detecting means. In the motor control device, the limit current value correction for correcting the limit current value set by the limit current value setting means according to the drive rotation speed of the motor and setting the limit current value low when the drive rotation speed becomes high First, in order to limit the motor current so that the motor current does not exceed a predetermined current value, the fluctuation amount of the current command value during one rotation of the motor from the current command calculation means is decreased to obtain a predetermined fluctuation amount. If the motor current value is less than the maximum allowable value, the motor current is limited next. Lower the motor speed of the eye, when said motor speed has reached below the predetermined rotational speed is provided with the said current limiting means for stopping the motor.
本発明の電動機制御装置によれば、平滑回路からの出力電圧が交流電源周波数の2倍周波で大きく脈動する電動機制御装置において、電動機電流を制限した電動機駆動を実現することが出来る。 According to the motor control device of the present invention, it is possible to realize motor driving in which the motor current is limited in the motor control device in which the output voltage from the smoothing circuit pulsates greatly at twice the frequency of the AC power supply frequency.
第1の発明は、交流電源を整流する整流手段と、整流手段からの出力電圧が交流電源周波数の2倍周波で脈動する平滑手段と、電動機を駆動するために平滑電圧を所望の交流電圧に変換する直交変換手段と、前記電動機の電流を検出する電流検出手段と、前記電流検出手段の検出値に基づき電動機の回転位相を演算する位相演算手段と、電動機の回転数を指示する回転数指令手段と、前記回転数指令手段からの指示回転数と前記位相演算手段から演算される実回転数より電流指令値を演算する電流指令演算手段と、前記電流指令演算手段からの電流指令値に基づき電圧指令値を算出する電圧指令演算手段と、前記電圧指令値から直交変換手段を駆動する信号を生成するPWM信号発生手段と、電動機電流を制限する電流制限手段と、前記電動機の温度を検出する温度検出手段と、前記温度検出手段からの検出値により電動機電流を制限する制限電流値を設定する制限電流値設定手段を具備した電動機制御装置において、前記電動機の駆動回転数によって前記制限電流値設定手段により設定する制限電流値を補正し、前記駆動回転数が高くなったときに前記制限電流値を低く設定する制限電流値補正手段と、前記電動機電流が所定の電流値以上にならないように、先ず電動機電流を制限するために電流指令演算手段からの電動機一回転中の電流指令値の変動量を下げて、所定の変動量未満に到達すると電動機回転数を所定の時間下げる制御を行い、それでも前記電動機電流値が許容最大値以上となる場合は、次に電動機電流を制限するための電動機回転数を下げ、前記電動機回転数が所定の回転数未満に到達する場合は、電動機を停止させる前記電流制限手段とを備えたものである。 The first invention includes a rectifying means for rectifying an AC power supply, a smoothing means in which an output voltage from the rectifying means pulsates at a frequency twice the AC power supply frequency, and a smoothing voltage to a desired AC voltage for driving an electric motor. Orthogonal transformation means for converting, current detection means for detecting the current of the motor, phase calculation means for calculating the rotational phase of the motor based on the detection value of the current detection means, and a rotational speed command for instructing the rotational speed of the motor Based on the current command value from the current command calculation means, the current command calculation means for calculating the current command value from the command rotation speed from the rotation speed command means and the actual rotation speed calculated from the phase calculation means A voltage command calculating means for calculating a voltage command value; a PWM signal generating means for generating a signal for driving an orthogonal transformation means from the voltage command value; a current limiting means for limiting a motor current; and the electric motor In the motor control device comprising temperature detection means for detecting the temperature of the motor and limit current value setting means for setting a limit current value for limiting the motor current based on a detection value from the temperature detection means, the limit current value set by the limit current value setting means corrects I'm a limit current value correcting means for setting low said limit current value when the drive speed becomes higher, the motor current is given First, in order to limit the motor current so as not to exceed the current value, the fluctuation amount of the current command value during one rotation of the motor from the current command calculation means is lowered, and when the motor rotation speed reaches less than the predetermined fluctuation amount, the motor rotation speed is set to a predetermined value. If the motor current value still exceeds the allowable maximum value, the motor speed for limiting the motor current is then lowered, and the motor speed is When reaching the constant less than the rotational speed is obtained by a said current limiting means for stopping the motor.
これにより、電動機電流の周波数成分が高くなることで前記電流検出手段による電流検出精度が低下しても、必要以上の電流が電動機に流れることを抑制した電動機駆動を実現させることが出来る。また電動機の駆動状態に即した電流制限を行い、許容以上の電流が電動機に流れることによる電動機性能の悪化や構成装置の破壊を抑制した電動機駆動を実現させることが出来る。また、電動機電流を制限しながら電動機の駆動が保証された回転数領域以外での電動機駆動を行わない電動機駆動を実現させることが出来る。 As a result, even if the current detection accuracy by the current detection means decreases due to the increase in the frequency component of the motor current, it is possible to realize motor driving that suppresses the flow of more current than necessary to the motor. In addition, the current can be limited in accordance with the driving state of the motor, and the motor driving can be realized while suppressing the deterioration of the motor performance and the destruction of the constituent devices due to the current exceeding the allowable amount flowing in the motor. In addition, it is possible to realize motor driving that does not perform motor driving in a region other than the rotation speed range in which motor driving is guaranteed while limiting the motor current.
第2の発明は、第1の電動機制御装置において、前記平滑手段は、コンデンサおよびリアクタで構成され、該コンデンサおよびリアクタより求められる共振周波数を交流電源周波数の40倍以上になるよう設定するものである。これにより、整流手段への入力電流の電源高調波特性の高性能化を実現させることが出来る。 According to a second invention, in the first motor control device, the smoothing means includes a capacitor and a reactor, and sets a resonance frequency obtained from the capacitor and the reactor to be 40 times or more of an AC power supply frequency. is there. Thereby, high performance of the power supply harmonic characteristic of the input current to the rectifying means can be realized.
第3の発明は、第1または第2の電動機制御装置において、前記平滑手段を構成するコンデンサにフィルムコンデンサを用いるものである。これにより、温度による寿命特性への影響を気にせず使用環境を選択することが出来る。 According to a third aspect of the present invention, in the first or second motor control device, a film capacitor is used as a capacitor constituting the smoothing means. As a result, the use environment can be selected without worrying about the influence of the temperature on the life characteristics.
第4の発明は、第1から第3のいずれか1つの電動機制御装置において、前記電動機に永久磁石(フェライト磁石)を用いた直流モータを具備した1ピストンロータリコンプレッサを適用するものである。 According to a fourth aspect of the invention, in any one of the first to third electric motor control devices, a one-piston rotary compressor having a DC motor using a permanent magnet (ferrite magnet) is applied to the electric motor.
これにより、グローバル市場で広く使用される安価なスタンダードコンプレッサの駆動において、低回転数域から高回転域まで駆動回転数によらず電動機電流を制限し、低温時(−20℃)の減磁電流値が常温(+20℃)よりも低くなるフェライト磁石の減磁による電動機性能の低下を抑制した安全な駆動を実現することが出来る。 As a result, when driving inexpensive standard compressors that are widely used in the global market, the motor current is limited regardless of the drive speed from low to high, and the demagnetizing current at low temperature (-20 ° C). It is possible to realize a safe drive that suppresses a decrease in motor performance due to demagnetization of the ferrite magnet whose value is lower than normal temperature (+ 20 ° C.).
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の実施の形態1における電動機制御装置のブロック構成図である。
(Embodiment 1)
FIG. 1 is a block configuration diagram of an electric motor control device according to Embodiment 1 of the present invention.
該電動機制御装置において、整流回路2は、ダイオードブリッジで構成され、単相交流電源である商用電源などの交流電源1より供給される交流電源を全波整流する。平滑回路3は、整流回路2で整流された電圧を平滑する平滑回路であり、その出力電圧は交流電圧の2倍周波数で大きく脈動する。 In the motor control device, the rectifier circuit 2 is configured by a diode bridge, and full-wave rectifies the AC power supplied from the AC power source 1 such as a commercial power source that is a single-phase AC power source. The smoothing circuit 3 is a smoothing circuit that smoothes the voltage rectified by the rectifying circuit 2, and its output voltage pulsates greatly at a frequency twice that of the AC voltage.
直交変換回路(直流−交流変換回路)4は、半導体スイッチング素子により構成され、平滑回路3からの出力電圧を電動機駆動のために所望の交流電圧に変換する。電流検出回路6は、電動機5に流れる電流を検出する。位相演算回路7は、電流検出回路6からの検出値に基づき電動機5の回転位相を演算する。回転数指令回路8は、電動機回転数の指令値を与える。 The orthogonal transformation circuit (DC-AC conversion circuit) 4 is constituted by a semiconductor switching element, and converts the output voltage from the smoothing circuit 3 into a desired AC voltage for driving the motor. The current detection circuit 6 detects a current flowing through the electric motor 5. The phase calculation circuit 7 calculates the rotational phase of the electric motor 5 based on the detection value from the current detection circuit 6. The rotation speed command circuit 8 gives a command value for the motor rotation speed.
電流指令演算回路9は、回転数指令回路8からの回転数指令値と位相演算回路で演算される実回転数とにより電動機5を駆動するための電流指令値を演算する。電圧指令演算回路10は、電流指令演算回路9で演算された電流指令値に基づき電圧指令値を算出する。PWM信号発生回路11は、電圧指令演算回路10で演算された電圧指令値から直交変換回路4を駆動する信号を生成する。 The current command calculation circuit 9 calculates a current command value for driving the electric motor 5 based on the rotation speed command value from the rotation speed command circuit 8 and the actual rotation speed calculated by the phase calculation circuit. The voltage command calculation circuit 10 calculates a voltage command value based on the current command value calculated by the current command calculation circuit 9. The PWM signal generation circuit 11 generates a signal for driving the orthogonal transformation circuit 4 from the voltage command value calculated by the voltage command calculation circuit 10.
電流制限回路12は、所定値以上の電動機電流が電流検出回路6で検出されると、電動機5を停止させる、電動機回転数を所定の時間下げる、電流指令演算回路9からの電動機一回転中の電流指令値の変動量を下げる方法のうち少なくとも1つの方法により電動機電流を制限する。 The current limiting circuit 12 stops the motor 5 when the current detection circuit 6 detects a motor current equal to or greater than a predetermined value, lowers the motor rotation speed for a predetermined time, and performs a single rotation of the motor from the current command calculation circuit 9. The motor current is limited by at least one of the methods for reducing the fluctuation amount of the current command value.
温度検出回路13は、電動機5の温度を検出する。制限電流値設定回路14は、温度検出回路13からの検出値により電動機電流を制限する制限電流値を設定する。制限電流値補正回路15は、電動機5の駆動回転数により制限電流値設定回路14により設定する制限電流値を補正する。 The temperature detection circuit 13 detects the temperature of the electric motor 5. The limit current value setting circuit 14 sets a limit current value that limits the motor current based on the detection value from the temperature detection circuit 13. The limit current value correction circuit 15 corrects the limit current value set by the limit current value setting circuit 14 according to the drive rotation speed of the electric motor 5.
ここで、電流検出回路6は電動機5の相電流を直接電流センサなどで検出することに限らず、直交変換回路4の母線電流からの推定検出を含む。 Here, the current detection circuit 6 is not limited to directly detecting the phase current of the electric motor 5 with a current sensor or the like, but includes estimation detection from the bus current of the orthogonal transformation circuit 4.
更に、平滑回路3は共振周波数が交流電源周波数の40倍以上になるように設定された小容量のコンデンサと該コンデンサへの突入充放電電流のピーク値を下げるためのリアクタを有している。 Further, the smoothing circuit 3 has a small-capacitance capacitor set so that the resonance frequency is 40 times or more of the AC power supply frequency and a reactor for lowering the peak value of the inrush charging / discharging current to the capacitor.
なお、平滑回路3を構成するリアクタは交流電源1と平滑回路3を構成するコンデンサの間に挿入するため、整流回路2の前後どちらでも構わない。 Note that the reactor constituting the smoothing circuit 3 is inserted between the AC power supply 1 and the capacitor constituting the smoothing circuit 3, so that it may be either before or after the rectifier circuit 2.
更に、電動機5に温度により減磁電流が異なるフェライト磁石を用いた直流モータを有している。 Furthermore, the electric motor 5 has a DC motor using a ferrite magnet having a demagnetizing current that varies depending on the temperature.
以上のように構成された電動機制御装置について、以下にその動作、作用を説明する。 About the motor control apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
まず、交流電源1に交流電源周波数50Hzの商用電源を用いた場合、平滑回路3を構成するリアクタとコンデンサの値は、その共振周波数fc=1/(2π×√(L1×C1))が交流電源周波数の40倍以上、すなわち2000Hz以上になるように設定する。このためリアクタンス値0.5mH、キャパシタンス値10μFのリアクタとコンデンサを用いることでfc(=2250Hz)>40×交流電源周波数(50Hz)とする。 First, when a commercial power supply with an AC power supply frequency of 50 Hz is used for the AC power supply 1, the values of the reactor and the capacitor constituting the smoothing circuit 3 are such that the resonance frequency fc = 1 / (2π × √ (L1 × C1)) is AC. The power supply frequency is set to 40 times or more, that is, 2000 Hz or more. For this reason, by using a reactor and a capacitor having a reactance value of 0.5 mH and a capacitance value of 10 μF, fc (= 2250 Hz)> 40 × AC power supply frequency (50 Hz).
このように平滑回路3のコンデンサ容量を著しく小さくすることで交流電源周波数の2倍周波で大きく脈動(リップル率80%以上)する。このように平滑回路3からの出力電圧が大きく脈動する場合、平滑回路3を構成するコンデンサ容量が十分大きく(例えば数百μF以上)出力電圧の脈動がほとんどない安定した直流電圧となる場合と比較し、同一電動機回転数・出力トルクでは電動機電流のピーク電流値は大きくなる。 In this way, the capacitor capacity of the smoothing circuit 3 is remarkably reduced to cause a large pulsation (ripple ratio of 80% or more) at twice the AC power supply frequency. In this way, when the output voltage from the smoothing circuit 3 pulsates greatly, the capacitance of the capacitor constituting the smoothing circuit 3 is sufficiently large (for example, several hundred μF or more), compared with the case where the output voltage becomes a stable DC voltage with almost no pulsation. However, the peak current value of the motor current becomes large at the same motor speed and output torque.
このため所定の電流値以上で減磁による性能低下を招く永久磁石や半導体素子を用いた電動機駆動では、電動機に流れる電流最大値を制限した駆動制御が必要になる。 For this reason, in motor driving using a permanent magnet or a semiconductor element that causes performance degradation due to demagnetization at a predetermined current value or more, drive control that limits the maximum current value flowing through the motor is required.
次に実際の駆動指令と電流制限方法について説明する。図2から図4は電動機一回転中のトルク脈動の有無による指令回転数と指令電流値、実回転数の関係を示す図である。 Next, an actual drive command and a current limiting method will be described. 2 to 4 are diagrams showing the relationship between the command rotational speed, the command current value, and the actual rotational speed depending on the presence or absence of torque pulsation during one rotation of the electric motor.
スクロールコンプレッサのように低速から高速回転数域まで一回転中のトルク脈動が少ない電動機では、図2に示すように指令回転数F_tgtに対し、一回転中の変動がほとんどない指令電流値I_tgt_mを与えることで、脈動のない安定した回転数Vmでの電動機駆動を実現できる。 In an electric motor with a small torque pulsation during one rotation from a low speed to a high-speed rotation speed region such as a scroll compressor, a command current value I_tgt_m with almost no fluctuation during one rotation is given to the command rotation speed F_tgt as shown in FIG. Thus, it is possible to realize motor driving at a stable rotational speed Vm without pulsation.
それに対し、1ピストンロータリコンプレッサのように低速回転で一回転中のトルク脈動が大きくなる電動機では、低速で回転駆動させる場合、図3に示すように指令回転数F_tgtに対し、一回転中の変動がほとんどない指令電流値I_tgt_mを与えると、実回転数が一回転中で大きく脈動(Vm±ΔV)し、それが振動となって装置の揺れにつながる。 On the other hand, in the case of an electric motor having a large torque pulsation during one rotation at a low speed, such as a one-piston rotary compressor, when it is driven to rotate at a low speed, the fluctuation during one rotation with respect to the command rotational speed F_tgt as shown in FIG. When the command current value I_tgt_m having almost no is given, the actual rotation speed pulsates greatly (Vm ± ΔV) during one rotation, which becomes vibration and leads to shaking of the apparatus.
この振動を抑制するために図4に示すように指令回転数F_tgtに対し、実回転数の脈動を抑制するために、トルクが不足して実回転数が低下する区間では指令電流値I_tgt_mよりI_tgt_up増加させ、逆にトルク過多により実回転数が上昇する区間では指令電流値I_tgt_mよりI_tgt_down減少させることで実回転数の脈動を抑制しVmでの安定駆動を実現させる。 In order to suppress this vibration, as shown in FIG. 4, in order to suppress the pulsation of the actual rotational speed with respect to the command rotational speed F_tgt, I_tgt_up from the command current value I_tgt_m in the section where the actual rotational speed decreases due to insufficient torque. On the contrary, in a section where the actual rotational speed increases due to excessive torque, the pulsation of the actual rotational speed is suppressed by reducing I_tgt_down from the command current value I_tgt_m, and stable driving at Vm is realized.
次に電動機電流を制限する方法について図5から図12を用いて説明する。 Next, a method for limiting the motor current will be described with reference to FIGS.
まず、電動機電流の検出精度について説明する。電動機電流をデジタルサンプリングにより検出する場合、例えばこの種の電動機制御装置において一般的な直交変換回路を駆動させるPWM信号のキャリア周期で電流検出を行う場合、電動機駆動回転数に検出精度は依存し、駆動回転数が高くなるほど検出精度が低下する。 First, the detection accuracy of the motor current will be described. When the motor current is detected by digital sampling, for example, when current detection is performed in the carrier cycle of a PWM signal that drives a general orthogonal transformation circuit in this type of motor control device, the detection accuracy depends on the motor drive rotation speed, The detection accuracy decreases as the drive rotational speed increases.
図5は6極モータをキャリア周波数7kHzで駆動させ、キャリア周期で電動機電流をサンプリングした場合のサンプリングポイントを電動機回転数50rpsと100rpsのそれぞれについてプロットした図である。また、図6は、駆動回転数による制限電流値補正の関係を示す図である。 FIG. 5 is a diagram in which sampling points when a 6-pole motor is driven at a carrier frequency of 7 kHz and the motor current is sampled at the carrier cycle are plotted for each of the motor rotation speeds of 50 rps and 100 rps. FIG. 6 is a diagram showing a relationship of limiting current value correction based on the driving rotational speed.
図5に示されるように、50rps駆動時に対し100rps駆動時では電動機電流一周期中の電流サンプリング回数が半減するため特に電動機電流の最大値を検出しようとする場合、検出精度が低下する。そのため、図6に示すように、駆動回転数による検出精度を考慮し電流制限開始電流を回転数により補正することで回転数によらず実際の電流制限開始電流をほぼ一定にすることが出来る。 As shown in FIG. 5, when 100 rps drive is performed with respect to 50 rps drive, the number of times of current sampling in one cycle of the motor current is halved, so that detection accuracy is lowered particularly when trying to detect the maximum value of the motor current. Therefore, as shown in FIG. 6, the current limit start current can be made substantially constant regardless of the rotation speed by correcting the current limit start current with the rotation speed in consideration of the detection accuracy based on the drive rotation speed.
次に、図7は電動機5に具備される永久磁石(フェライト磁石)の温度による減磁電流値の変化を示す図である。図7に示すようにフェライト磁石は例えば常温時(+20℃)と比較し、低温時(−20℃)の減磁電流レベルは低くなるため、温度Ta時の減磁電流レベルをIaとすると、それよりも温度の高い温度Tb(>Ta)での減磁電流レベルはIb(>Ia)となる。 Next, FIG. 7 is a diagram showing a change in the demagnetization current value depending on the temperature of the permanent magnet (ferrite magnet) provided in the electric motor 5. As shown in FIG. 7, the ferrite magnet has a lower demagnetizing current level at a low temperature (−20 ° C.) than that at room temperature (+ 20 ° C.), for example. The demagnetization current level at a temperature Tb (> Ta) higher than that is Ib (> Ia).
そこで、温度検出回路13による検出値により電動機電流の制限を開始する電流値を、図8に示すような制限電流値の切替動作例を用いて切替えることで電動機温度の低い駆動直後から、電動機温度が十分上昇した後の駆動まで電動機5が保証する電流値内での駆動を実現する。 Therefore, by switching the current value for starting the limitation of the motor current based on the detection value by the temperature detection circuit 13 using a switching operation example of the limiting current value as shown in FIG. The driving within the current value guaranteed by the electric motor 5 is realized until the driving after sufficiently rising.
例えば電動機温度Tc℃未満では電流制限を開始する電流値をIA、Tc℃以上ではIBとし、制限値を切替えた後は一定時間切替を行わない、あるいは図9の制限電流値の切替動作例に示されるように、切替温度にヒステリシス幅ΔTを設けることで不要なハンチング動作を防ぐようにする。 For example, if the motor temperature is lower than Tc ° C., the current value for starting the current limit is IA, and if it is Tc ° C. or higher, the current value is IB. After the limit value is switched, switching is not performed for a certain period of time. As shown, an unnecessary hunting operation is prevented by providing a hysteresis width ΔT to the switching temperature.
ここでは簡単のため制限電流値のレベルを2段階にしたものについて説明したが、それ以上の切替段を有しても構わない。あるいは温度により線形的に制限電流値を変化させても構わない。 Here, for the sake of simplicity, the case where the limit current value has two levels has been described, but it may have more switching stages. Alternatively, the limit current value may be changed linearly with temperature.
次に図10は回転数制御により電流制限を行う場合の指令回転数の時間変化を示す図である。ここで、検出される電動機電流値をI、回転数制御による電流制限を開始する電流値をIlim(f)(電動機温度Tc℃未満ではIlim=IA、Tc℃以上ではIlim=IB、更に電動機駆動回転数fによる補正済み)、電動機5が許容できる電動機電流の最大値をImax(Imax>Ilim)とする。 Next, FIG. 10 is a diagram showing the change over time in the commanded rotational speed when the current is limited by the rotational speed control. Here, the detected motor current value is I, the current value for starting current limitation by the rotational speed control is Ilim (f) (Ilim = IA when the motor temperature is lower than Tc ° C., Ilim = IB when Tc ° C. or higher, and the motor is driven. The maximum value of the motor current that can be allowed by the motor 5 is Imax (Imax> Ilim).
まず、スクロールコンプレッサのように一回転中のトルク脈動が少なく指令回転数に対し、ほぼ一定の指令電流値を与える電動機駆動では、電動機電流値Iがt1でI>Ilimとなると、図10に示すように所定の時間電動機回転数を下げる、つまり電動機回転数をΔF_tgt下げることで電動機電流の最大値を抑制する。 First, in a motor drive that gives a substantially constant command current value with respect to the command rotational speed with a small torque pulsation during one rotation like a scroll compressor, when the motor current value I satisfies I> Ilim at t1, FIG. Thus, the maximum value of the motor current is suppressed by lowering the motor rotation speed for a predetermined time, that is, by lowering the motor rotation speed by ΔF_tgt.
電動機回転数を下げた後、t2でI<Ilimであれば電動機回転数を元の指令回転数F_tgtに復帰させる。その後、t3で再びI>Ilimとなると電動機回転数をΔF_tgt下げる。 After lowering the motor speed, if I <Ilim at t2, the motor speed is returned to the original command speed F_tgt. Thereafter, when I> Ilim again at t3, the motor rotational speed is decreased by ΔF_tgt.
電動機回転数をΔF_tgt下げたt4においてI>Ilimの場合、更に電動機回転数をΔF_tgt下げて電動機電流の最大値を抑制する。その後、t5でI<Ilimであれば電動機回転数を元の指令回転数F_tgtに復帰させるために指令回転数を上げる。 When I> Ilim at t4 when the motor rotation speed is lowered by ΔF_tgt, the motor rotation speed is further lowered by ΔF_tgt to suppress the maximum value of the motor current. Thereafter, if I <Ilim at t5, the command rotational speed is increased to restore the motor rotational speed to the original command rotational speed F_tgt.
指令回転数上昇中のt6においてI>Ilimとなると電動機回転数をΔF_tgt下げ電動機電流の最大値を抑制する。電動機回転数を下げた後、t7でI<Ilimであれば電動機回転数を元の指令回転数F_tgtに復帰させるために指令回転数を上げる。 If I> Ilim at t6 while the command rotational speed is increasing, the motor rotational speed is decreased by ΔF_tgt and the maximum value of the motor current is suppressed. After decreasing the motor speed, if I <Ilim at t7, the command speed is increased to restore the motor speed to the original command speed F_tgt.
以上のように電流検出回路により検出される電動機電流値Iと電流値Ilimとの比較結果により電動機回転数を増減させる回転数制御を行うことで電動機電流値の最大値をIlim付近で制限する電動機駆動を行う。 As described above, a motor that limits the maximum value of the motor current value in the vicinity of Ilim by performing the rotation speed control that increases or decreases the motor rotation speed based on the comparison result between the motor current value I detected by the current detection circuit and the current value Ilim. Drive.
ただし、電動機電流値IがI>Imaxとなるような場合、および回転数制御による電動機回転数が電動機駆動を保証する最低回転数F_tgt_min未満になるような場合は電動機を停止させて電動機電流を制限する。 However, when the motor current value I satisfies I> Imax, and when the motor rotation speed by the rotation speed control is less than the minimum rotation speed F_tgt_min that guarantees motor driving, the motor is stopped and the motor current is limited. To do.
次に、低速回転域での1ピストンロータリコンプレッサのように一回転中でのトルク脈動が大きく、このトルク脈動による振動を抑制するために指令電流値をトルク脈動に合わせて脈動させ、振動抑制を行っている電動機駆動における電流制限方法について説明する。 Next, the torque pulsation during one rotation is large like a one-piston rotary compressor in the low-speed rotation region, and in order to suppress the vibration due to this torque pulsation, the command current value is pulsated according to the torque pulsation to suppress the vibration. The current limiting method in the electric motor drive currently performed is demonstrated.
このようにトルク脈動による振動を抑制した電動機駆動では、電動機電流の最大値を制限する方法として回転数を増減させる回転数制御より、指令電流値の変動量を増減することにより効果的に電動機電流の最大値を制限できる。 Thus, in the motor drive that suppresses vibration due to torque pulsation, the motor current is effectively increased by increasing / decreasing the amount of fluctuation of the command current value from the rotation speed control that increases / decreases the rotation speed as a method of limiting the maximum value of the motor current. The maximum value of can be limited.
図11は指令電流値の変動量の増減調整を示す図である。図11(a)に示すように、指令電流値I_tgt_mよりトルク脈動に合わせてトルクが不足する区間で指令電流値をI_tgt_up1増加させ、トルク過多となる区間で指令電流値をI_tgt_down1減少させることで実回転数を安定させ電動機駆動による振動を抑制した駆動状態の指令電流値となる。 FIG. 11 is a diagram showing an increase / decrease adjustment of the fluctuation amount of the command current value. As shown in FIG. 11A, the command current value is increased by I_tgt_up1 in a section where the torque is insufficient from the command current value I_tgt_m in accordance with the torque pulsation, and the command current value is decreased by I_tgt_down1 in the section where the torque is excessive. It becomes a command current value in a driving state in which the rotation speed is stabilized and vibration due to electric motor driving is suppressed.
このような電動機駆動においてI>Ilimとなった場合、図11(b)に示すようにトルク不足区間で増加させる指令電流値の増加分をI_tgt_up2(<I_tgt_up1)、トルク過多区間で減少させる指令電流値の減少分をI_tgt_down2(<I_tgt_down1)となるよう変動量を減少させることで電動機電流の最大値を制限する。 When I> Ilim in such an electric motor drive, as shown in FIG. 11B, the increment of the command current value to be increased in the torque deficient section is I_tgt_up2 (<I_tgt_up1), and the command current is decreased in the excessive torque section. The maximum value of the motor current is limited by reducing the amount of fluctuation so that the decrease in value becomes I_tgt_down2 (<I_tgt_down1).
図12は指令電流値の変動量を制御することで電流制限を行う場合の指令電流値の変動量の時間変化を示す図である。ここでは簡単のため指令電流値の変動量は増加分I_tgt_upと減少分I_tgt_downを同じ値のI_tgt_updownとする。 FIG. 12 is a diagram illustrating a change over time in the variation amount of the command current value when the current limit is performed by controlling the variation amount of the command current value. Here, for the sake of simplicity, the amount of change in the command current value is such that the increment I_tgt_up and the decrease I_tgt_down are the same value I_tgt_updown.
電動機駆動中に電動機電流Iがt1でI>Ilimとなると指令電流値の変動量をΔI_tgt_updown下げることで電動機電流の最大値を抑制する。指令電流値の変動量を下げた後、t2でI<Ilimであれば指令電流値の変動量を元の変動量I_tgt_updownに復帰させる。 When the motor current I becomes I> Ilim at t1 while the motor is being driven, the maximum value of the motor current is suppressed by lowering the fluctuation amount of the command current value by ΔI_tgt_updown. After reducing the fluctuation amount of the command current value, if I <Ilim at t2, the fluctuation amount of the command current value is returned to the original fluctuation amount I_tgt_updown.
その後、t3で再びI>Ilimとなると指令電流値の変動量をΔI_tgt_updown下げる。指令電流値の変動量をΔI_tgt_updown下げたt4においてI>Ilimの場合、更に指令電流値の変動量をΔI_tgt_updown下げる。そしてt5において、I>Ilimの場合、更に指令電流値の変動量をΔI_tgt_updown下げる。 Thereafter, when I> Ilim again at t3, the fluctuation amount of the command current value is decreased by ΔI_tgt_updown. When I> Ilim at t4 where the fluctuation amount of the command current value is lowered by ΔI_tgt_updown, the fluctuation amount of the command current value is further lowered by ΔI_tgt_updown. At t5, if I> Ilim, the fluctuation amount of the command current value is further decreased by ΔI_tgt_updown.
電動機電流により調整した指令電流値の変動量がほぼゼロに近いI_tgt_updown_minに到達したt6において、なおI>Ilimの場合、先に説明した回転数制御による電流制御を行う。 At t6 when the fluctuation amount of the command current value adjusted by the motor current reaches I_tgt_updown_min that is almost zero, if I> Ilim, current control based on the rotation speed control described above is performed.
その後、元の回転数に復帰した後、t7でI<Ilimとなると指令電流値の変動量をΔI_tgt_updown上げ、t8でI<Ilimであれば更に指令電流値の変動量
をΔI_tgt_updown上げ、t9でI>Ilimあれば指令電流値の変動量をΔI_tgt_updown下げて電動機電流の最大値を抑制する。
Thereafter, after returning to the original rotational speed, when I <Ilim at t7, the fluctuation amount of the command current value is increased by ΔI_tgt_updown. When I <Ilim at t8, the fluctuation amount of the command current value is further increased by ΔI_tgt_updown. If> Ilim, the fluctuation amount of the command current value is decreased by ΔI_tgt_updown to suppress the maximum value of the motor current.
その後I<Ilimであればt10より指令電流値の変動量を上げて元のI_tgt_updownに復帰させる。このように検出される電動機電流値Iと電流値Ilimとの比較結果により指令電流値の変動量を増減させ電動機電流値の最大値をIlim付近で制限する電動機駆動を行う。 Thereafter, if I <Ilim, the fluctuation amount of the command current value is increased from t10 to return to the original I_tgt_updown. Based on the comparison result between the detected motor current value I and the current value Ilim, the amount of change in the command current value is increased or decreased, and the motor drive is performed to limit the maximum value of the motor current value in the vicinity of Ilim.
ただし、電動機電流値IがI>Imaxとなるような場合、および指令電流値の変動量がI_tgt_updown_min未満に到達して回転数制御による電流制限へ移行した後、電動機回転数が電動機駆動を保証する最低回転数F_tgt_min未満になるような場合は電動機を停止させて電動機電流を制限する。 However, when the motor current value I satisfies I> Imax, and after the fluctuation amount of the command current value reaches less than I_tgt_updown_min and shifts to the current limit by the rotation speed control, the motor rotation speed ensures the motor drive. When it becomes less than the minimum rotation speed F_tgt_min, the motor is stopped to limit the motor current.
以上のように本実施の形態においては、電動機5の駆動回転数により電動機電流に制限制御を開始する制限電流値を補正する制限電流値補正回路15を備えることで、平滑回路3からの出力電圧が交流電源周波数の2倍周波で大きく脈動するような電動機制御装置において電動機5の駆動回転数、駆動状態に即して電動機に保証された電流値以上の電流を流すことのない電動機駆動を実現させることが出来る。 As described above, in the present embodiment, the output voltage from the smoothing circuit 3 is provided by including the limiting current value correction circuit 15 that corrects the limiting current value for starting the limiting control on the motor current according to the driving rotational speed of the motor 5. Realizes motor drive that does not flow more than the current value guaranteed to the motor in accordance with the drive rotation speed and drive state of the motor 5 in the motor control device in which the motor pulsates at a frequency twice the AC power supply frequency. It can be made.
以上のように、本発明にかかる電動機制御装置は、電動機電流を保証された電流値内に駆動状態に合わせて効果的に制限することが出来る上、装置の低コスト化・小型化が可能であるため、装置の低コスト化・小型化が求められるあらゆる電動機制御装置に適用できる。 As described above, the motor control device according to the present invention can effectively limit the motor current within the guaranteed current value according to the driving state, and can reduce the cost and size of the device. Therefore, the present invention can be applied to any motor control device that requires cost reduction and downsizing of the device.
1 交流電源
2 整流回路
3 平滑回路
4 直交変換回路
5 電動機
6 電流検出回路
7 位相演算回路
8 回転数指令回路
9 電流指令演算回路
10 電圧指令演算回路
11 PWM信号発生回路
12 電流制限回路
13 温度検出回路
14 制限電流値設定回路
15 制限電流値補正回路
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Rectification circuit 3 Smoothing circuit 4 Orthogonal transformation circuit 5 Electric motor 6 Current detection circuit 7 Phase calculation circuit 8 Rotation speed command circuit 9 Current command calculation circuit 10 Voltage command calculation circuit 11 PWM signal generation circuit 12 Current limit circuit 13 Temperature detection Circuit 14 Limiting current value setting circuit 15 Limiting current value correction circuit
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064762A JP5168955B2 (en) | 2007-03-14 | 2007-03-14 | Electric motor control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064762A JP5168955B2 (en) | 2007-03-14 | 2007-03-14 | Electric motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008228477A JP2008228477A (en) | 2008-09-25 |
JP5168955B2 true JP5168955B2 (en) | 2013-03-27 |
Family
ID=39846431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007064762A Expired - Fee Related JP5168955B2 (en) | 2007-03-14 | 2007-03-14 | Electric motor control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5168955B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5166112B2 (en) * | 2008-05-15 | 2013-03-21 | パナソニック株式会社 | Inverter controller for motor drive |
JP5249066B2 (en) * | 2009-02-02 | 2013-07-31 | 三菱電機株式会社 | Control device for two-phase AC rotating machine |
JP5836859B2 (en) * | 2012-03-19 | 2015-12-24 | 日立アプライアンス株式会社 | MOTOR CONTROL DEVICE, MOTOR DRIVE DEVICE USING THE SAME, COMPRESSOR, REFRIGERATOR, AIR CONDITIONER, AND MOTOR CONTROL METHOD |
WO2014122878A1 (en) * | 2013-02-05 | 2014-08-14 | パナソニック株式会社 | Motor drive device and electrical device provided with same |
JP2015104235A (en) * | 2013-11-26 | 2015-06-04 | 三菱電機株式会社 | Drive control device for polyphase motor |
JP2018093727A (en) * | 2018-03-05 | 2018-06-14 | パナソニックIpマネジメント株式会社 | Motor drive device and electrical apparatus using the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3476067B2 (en) * | 1999-08-09 | 2003-12-10 | シャープ株式会社 | Motor control device |
JP2001136771A (en) * | 1999-11-05 | 2001-05-18 | Nippon Densan Corp | Drive device for motor |
JP2001286179A (en) * | 2000-03-31 | 2001-10-12 | Daikin Ind Ltd | Fan motor control method and its unit |
JP2006271146A (en) * | 2005-03-25 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Inverter device |
JP4817745B2 (en) * | 2005-07-27 | 2011-11-16 | 株式会社東芝 | Vector control inverter device |
-
2007
- 2007-03-14 JP JP2007064762A patent/JP5168955B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008228477A (en) | 2008-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3955286B2 (en) | Inverter control device for motor drive and air conditioner | |
JP5047021B2 (en) | Electric motor drive device and air conditioner | |
EP2309635B1 (en) | Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device | |
JP4693904B2 (en) | Electric motor drive device and compressor drive device | |
JP6067105B2 (en) | Power conversion apparatus, motor drive apparatus including the same, blower including the same, compressor, air conditioner including them, refrigerator, and refrigerator | |
JP5168955B2 (en) | Electric motor control device | |
JP5624873B2 (en) | Air conditioner | |
KR101973925B1 (en) | Motor driving device | |
US9716460B2 (en) | Method and apparatus for speed reversal control of motor drive | |
WO2013105173A1 (en) | Inverter control device | |
JP4892920B2 (en) | Inverter device | |
JP6345135B2 (en) | Motor drive device | |
JP5729597B2 (en) | Electric tool | |
JP5168931B2 (en) | Electric motor control device | |
JP5168925B2 (en) | Electric motor control device | |
JP7490089B2 (en) | Air conditioners | |
JP6301270B2 (en) | Motor drive device | |
JP6044854B2 (en) | Electric tool | |
JP5166112B2 (en) | Inverter controller for motor drive | |
JP2010124585A (en) | Motor-driving inverter control device and air-conditioner having the same | |
KR20210011272A (en) | Motor driving apparatus and controlling method thereof | |
JP2018130030A (en) | Motor drive device unit | |
JP2012151967A (en) | Power conversion device | |
WO2019244228A1 (en) | Electric power converter, motor drive device and refrigeration device | |
JP2005333767A (en) | Power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091002 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121217 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160111 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |