JP5166011B2 - Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element - Google Patents

Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element Download PDF

Info

Publication number
JP5166011B2
JP5166011B2 JP2007318359A JP2007318359A JP5166011B2 JP 5166011 B2 JP5166011 B2 JP 5166011B2 JP 2007318359 A JP2007318359 A JP 2007318359A JP 2007318359 A JP2007318359 A JP 2007318359A JP 5166011 B2 JP5166011 B2 JP 5166011B2
Authority
JP
Japan
Prior art keywords
press
molding
molten glass
glass lump
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007318359A
Other languages
Japanese (ja)
Other versions
JP2009137816A (en
Inventor
克己 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2007318359A priority Critical patent/JP5166011B2/en
Publication of JP2009137816A publication Critical patent/JP2009137816A/en
Application granted granted Critical
Publication of JP5166011B2 publication Critical patent/JP5166011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、熱間プレス成形品の製造方法、精密プレス成形用プリフォームの製造方法、及び光学素子の製造方法に関する。   The present invention relates to a method for manufacturing a hot press-formed product, a method for manufacturing a precision press-molding preform, and a method for manufacturing an optical element.

ガラス製非球面レンズなど、光学機能面を研削、研磨によって形成する方法では量産性に乏しいガラス製光学素子を量産する方法として精密プレス成形法が知られている。この方法では、プリフォームと呼ばれる精密プレス成形に適した形状に加工したガラスをプレス成形する。プリフォームの作製法としては、いくつかの方法が知られているが、中でも流出する熔融ガラスから適量を分離して熔融ガラス塊とし、このガラス塊が冷えて固化する前にプリフォームに成形する方法が高い生産性を誇る。この方法はプリフォームの熱間成形法と呼ばれるが、熱間成形法でプリフォームに近似する形状のガラス成形体を作り、このガラス成形体を研磨を含む工程によりプリフォームにする方法も上記方法に比べれば生産性に劣るが、その他の方法に比べると生産性の観点から優れていると言える。熱間成形法では、ガラス表面にシワやカン、割れが生じないよう、成形型上でガラス塊にガスを噴出して上向きの風圧を加えて浮上させながら成形する。(特許文献1〜5参照)
特開2003-95670号公報 特開2004-300020号公報 特開2004-284847号公報 特開2005-272194号公報 特開2007-119335号公報
A precision press molding method is known as a method of mass-producing glass optical elements having poor mass productivity in the method of grinding and polishing an optical functional surface such as a glass aspheric lens. In this method, glass processed into a shape suitable for precision press molding called a preform is press-molded. Several methods are known for producing preforms. Among them, an appropriate amount is separated from the molten glass flowing out to form a molten glass lump, which is then formed into a preform before the glass lump is cooled and solidified. The method boasts high productivity. This method is called a hot forming method of a preform. A method of forming a glass molded body having a shape similar to a preform by the hot forming method, and converting the glass molded body into a preform by a process including polishing is also described above. Although it is inferior in productivity compared to, it can be said that it is superior in terms of productivity compared to other methods. In the hot forming method, molding is performed while jetting gas to the glass lump on the mold and applying upward wind pressure so that the glass surface is not wrinkled, deformed or broken. (See Patent Documents 1 to 5)
JP 2003-95670 A Japanese Patent Laid-Open No. 2004-300020 Japanese Patent Laid-Open No. 2004-284847 JP 2005-272194 A JP 2007-119335 A

熱間成形法では熔融ガラスを連続して流出し、熔融ガラス塊を次々に分離して、複数の成形型で順次成形する。特許文献1〜4に記載の方法では、熔融ガラス塊を成形型でプレスすることなく成形する。ここで使用する成形型は下型だけである。それに対して、特許文献5に記載の方法では、熔融ガラス塊を成形型でプレス成形する。ここで使用する成形型は下型に加えて上型である。   In the hot forming method, the molten glass is continuously discharged, the molten glass lump is separated one after another, and is sequentially formed with a plurality of forming dies. In the methods described in Patent Documents 1 to 4, a molten glass lump is formed without pressing with a forming die. The lower mold is the only mold used here. On the other hand, in the method described in Patent Document 5, a molten glass lump is press-molded with a molding die. The mold used here is the upper mold in addition to the lower mold.

上記方法では、空の成形型(下型)を、熔融ガラス塊を受け取る位置に搬入、停留させて、その位置で熔融ガラス塊を供給する。熔融ガラス塊が供給された成形型は上記位置から搬出され、その後に別の空の成形型が搬入、停留する。熔融ガラス塊は移動する成形型上で成形された後、成形型から取り出される。但し、特許文献5に記載の方法では、移動の途中で上型によりプレス成形され、その後、成形型から取り出される。このようにして空になった成形型(下型)は再び熔融ガラス塊を受け取る位置に搬入され、上記工程が繰り返される。   In the above method, an empty mold (lower mold) is carried into a position where the molten glass lump is received and stopped, and the molten glass lump is supplied at that position. The mold to which the molten glass block has been supplied is unloaded from the above position, and then another empty mold is carried in and stopped. The molten glass gob is formed on a moving mold and then removed from the mold. However, in the method described in Patent Document 5, it is press-molded by the upper mold in the middle of movement, and then removed from the mold. The molding die (lower die) emptied in this way is again carried into the position for receiving the molten glass lump, and the above steps are repeated.

こうした工程を円滑に行うため、例えば、ターンテーブル上に複数の成形型(下型)を配置して該テーブルをインデックス回転して、各成形型を定められた停留位置に順次移送する方法がある。この方法では、成形型の移動、停止に伴い、成形型上のガラス塊に加速度が加わる。この加速度は水平方向成分を有するので、成形型上でガラス塊が揺れる。ターンテーブルのインデックス回転のように成形型の移送、停留を一定周期で行う方法の場合、上記加速度が一定周期でガラス塊に加わり、ガラス塊の揺れが大きくなる。また、生産性向上のため、成形型の移送スピードを増加させても、加速度が大きくなって、ガラス塊の揺れが助長される。   In order to perform such a process smoothly, for example, there is a method in which a plurality of molds (lower molds) are arranged on a turntable, the table is index-rotated, and each mold is sequentially transferred to a predetermined stopping position. . In this method, acceleration is applied to the glass block on the mold as the mold is moved and stopped. Since this acceleration has a horizontal component, the glass lump is shaken on the mold. In the case of a method in which the mold is transferred and stopped at a constant cycle like index rotation of a turntable, the acceleration is applied to the glass block at a constant cycle, and the glass block shakes greatly. Further, even if the transfer speed of the mold is increased to improve productivity, the acceleration increases and the shaking of the glass lump is promoted.

特許文献1〜4に記載の熔融ガラス塊を成形型でプレスすることなく成形する方法では、ガラス塊に揺れがあっても、成形に対して直接的な影響は少ない。しかし、特許文献5に記載の熔融ガラス塊を成形型(上型および下型)でプレス成形する方法では、所望の形状のプレス成形品を得るためには、下型および上型で熔融ガラス塊をプレス成形時には、熔融ガラス塊は成形型の成形面の中心に位置する必要がある。   In the method of forming the molten glass ingot described in Patent Documents 1 to 4 without pressing with a forming die, even if the glass ingot shakes, there is little direct influence on the forming. However, in the method of press-molding the molten glass ingot described in Patent Document 5 with a forming die (upper die and lower die), in order to obtain a press-molded product of a desired shape, the molten glass ingot with the lower die and the upper die At the time of press molding, the molten glass lump needs to be positioned at the center of the molding surface of the mold.

そこで、特許文献5では、例えば、請求項2に記載のように溶融ガラス塊の連続的な揺動が開始する前に初回のプレス成形をする。また、プレス成形のための溶融ガラス塊の中心出しも、溶融ガラス塊の揺動開始前に行うことが記載されている(段落0018)。しかし、連続的な揺動が開始する前とは、溶融ガラス塊が形成された直後であり、プレス成形時のガラスの粘度は低い(温度が高い)。こうした状態のガラス塊を成形型の成形面の中心に位置合せするには、特許文献5のようにガラス塊に融着しない温度に保たれた位置合せ具を直接接触させて力を加えるようにする。ガラスの粘度が低すぎるため、非接触方式で力を加えてもガラス塊の形状が変形するだけで、ガラス塊の位置合せは困難である。上記位置合せ直後、ガラス塊の位置が再びずれる前にプレス成形を行うが、高温、低粘度のガラス塊をプレス成形するために、成形後のガラス表面にはシワやうねりが生じる。しかし、プレス成形時にガラス表面にシワが形成されても、プレス後もガラス塊は相当の熱量を持つため、その熱によってプレス成形時にガラス表面に形成されるシワが伸ばされる。シワ以外に、うねりが生成しても修復でき、平滑な自由表面に回復できる(請求項1)。しかし、一方で、高温のガラス塊をプレス成形するため、プレス成形したガラス塊の形状は表面張力によって自由液滴形状に僅かに戻ってしまい、所望の形状を維持することができない、という問題があった。   Therefore, in Patent Document 5, for example, as described in claim 2, the first press molding is performed before the continuous oscillation of the molten glass lump starts. In addition, it is described that the centering of the molten glass lump for press molding is performed before the start of rocking of the molten glass lump (paragraph 0018). However, before the start of continuous rocking is immediately after the molten glass lump is formed, the viscosity of the glass during press molding is low (temperature is high). In order to align the glass lump in such a state with the center of the molding surface of the mold, as in Patent Document 5, a force is applied by directly contacting an alignment tool maintained at a temperature that does not melt to the glass lump. To do. Since the viscosity of the glass is too low, even if a force is applied in a non-contact manner, only the shape of the glass block is deformed and it is difficult to align the glass block. Immediately after the alignment, press molding is performed before the position of the glass lump is shifted again. However, since the glass lump having a high temperature and low viscosity is press molded, wrinkles and undulations occur on the glass surface after molding. However, even if wrinkles are formed on the glass surface during press molding, the glass lump has a considerable amount of heat even after pressing, and the wrinkles formed on the glass surface during press molding are stretched by the heat. In addition to wrinkles, even if waviness is generated, it can be repaired and recovered to a smooth free surface (claim 1). However, on the other hand, since the hot glass lump is press-molded, the shape of the press-molded glass lump slightly returns to the free droplet shape due to surface tension, and the desired shape cannot be maintained. there were.

さらに特許文献5に記載の方法では、プレス成形のための中心出しは、上型を直接接触させて行う(段落0018)が、プレス直前のガラス塊は相当の熱量をもち、低粘度のため、温度分布の非対称化によってガラス塊の形状が悪化しにくい。一般に、ガラスと上型が部分的に接触することによりガラス塊に温度分布が生じる。ガラスが高粘度の場合には接触により局所的に冷却された箇所は他の高温の箇所よりも早く固化する。これによりガラス塊の形状が悪化する。こうしたガラス塊を上方から見ると、早く固化した部分は外側に出っ張り、それ以外の部分は凹んだ歪な形となる。即ち、温度分布の非対称化によってガラス塊の形状が悪化する。早く固化した部分は、その時点で表面形状が定まるが、遅れて固化する部分については、ガラスの表面張力により、表面積が減少するように形状が決まるため、早く固化した部分に比べて凹みが生じることになる。しかし、特許文献5に記載の方法におけるプレス直前のガラス塊は、相当の熱量をもち、低粘度のため温度分布の非対称化によるガラス塊形状の悪化はしにくい。   Further, in the method described in Patent Document 5, centering for press molding is performed by directly contacting the upper die (paragraph 0018), but the glass lump immediately before pressing has a considerable amount of heat and has a low viscosity. The shape of the glass lump is less likely to deteriorate due to the asymmetry of the temperature distribution. Generally, a temperature distribution is generated in the glass lump when the glass and the upper mold are in partial contact. When the glass has a high viscosity, the portion locally cooled by contact solidifies faster than other high-temperature portions. Thereby, the shape of a glass lump deteriorates. When such a glass lump is viewed from above, the rapidly solidified portion protrudes outward, and the other portions have a concave and distorted shape. That is, the shape of the glass block deteriorates due to the asymmetry of the temperature distribution. The surface shape of the part that solidifies quickly is determined at that point, but the part that solidifies late is determined by the surface tension of the glass so that the surface area is reduced, so a dent is generated compared to the part that solidifies quickly. It will be. However, the glass lump just before pressing in the method described in Patent Document 5 has a considerable amount of heat, and because of low viscosity, it is difficult for the glass lump shape to deteriorate due to asymmetric temperature distribution.

しかし、反対に、高温のガラス塊に上型を直接接触させるため、上型の寿命を短くするという課題はある。   However, on the contrary, since the upper mold is brought into direct contact with the high-temperature glass block, there is a problem of shortening the life of the upper mold.

そこで本発明は、熔融ガラス塊をプレス成形時に成形型の成形面の中心に位置させ、次いで熔融ガラス塊を下型および上型を含む成形型でプレス成形することで、所望の形状の精密プレス成形用プリフォームとしても使用可能な熱間プレス成形品(熔融ガラス塊)を得る方法であって、上型をガラス塊に直接接触させることなしに中心出しができ、上型の寿命を延ばすことが可能であり、かつプレス後にプレス成形したガラス塊の形状は自由液滴形状に戻ることなく、所望の形状を維持できる方法を提供することにある。   Accordingly, the present invention provides a precision press of a desired shape by positioning the molten glass lump at the center of the molding surface of the mold during press molding, and then press-molding the molten glass lump with a mold including a lower mold and an upper mold. This is a method to obtain hot press-molded products (molten glass lump) that can be used as molding preforms, and can be centered without bringing the upper mold into direct contact with the glass lump, thereby extending the life of the upper mold. The object of the present invention is to provide a method capable of maintaining the desired shape without returning the shape of the glass lump press-molded after pressing to a free droplet shape.

さらに本発明は、上記方法で得た熱間プレス成形品を加工して精密プレス成形用プリフォームを製造する方法、ならびに前記各方法で得たプリフォームを精密プレス成形して光学素子を製造する方法を提供することを目的とする。   Furthermore, the present invention provides a method for producing a precision press-molding preform by processing the hot press-molded product obtained by the above method, and an optical element by precision press-molding the preform obtained by each of the above methods. It aims to provide a method.

本発明は以下の通りである。
[1] 連続的または断続的に循環移動する複数の下型を用い、
連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、上記複数の下型に定位置で受け取り、
下型に受け取られた溶融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却して所定粘度に調整し、
所定粘度に調整した下型上のガラス塊を、定位置で上型を用いてプレス成形し、
プレス成形品を定位置で下型から取り出すことを含む、熱間プレス成形品の製造方法であって、
前記複数の下型の連続的または断続的な循環移動は、複数の下型を配置したターンテーブルをインデックス回転させて前記複数の下型を同期して各停留位置に次々と一括して移動させることで行い、
プレス成形前にプレス成形用の定位置で、所定粘度に調整した熔融ガラス塊を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に上型を用いてプレス成形し、
前記位置合せには、多孔質体である位置矯正部材を用い、前記非接触で位置合わせは、前記位置矯正部材の、プレス成形前のガラス塊上面の形状を反転した形状に近似した形状を有する位置矯正面からガスを噴出させ、かつ位置矯正面をガラス塊上面に近づけて前記噴出ガスによりガラス塊に風圧を加えることで行うことを特徴とする熱間プレス成形品の製造方法。
[2] 熔融ガラス塊の前記所定粘度は103ポアズから104.4ポアズの範囲である[1]に記載の製造方法。
[3] 熱間プレス成形品が、精密プレス成形用プリフォームまたは、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材である[1]または[2]に記載の製造方法。
[4] [3]に記載の方法により作製したガラス母材を少なくとも研磨を含む工程により精密プレス成形用プリフォームに加工する精密プレス成形用プリフォームの製造方法。
[5] [3]〜[4]のいずれかに記載の方法により作製したプリフォームを精密プレス成形する光学素子の製造方法。
The present invention is as follows.
[1] Using multiple lower molds that circulate continuously or intermittently,
The molten glass lump is sequentially separated from the molten glass flowing out continuously, and the separated molten glass lump is received at a fixed position by the plurality of lower molds,
While the molten glass lump received by the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold and adjusted to a predetermined viscosity,
A glass lump on the lower mold adjusted to a predetermined viscosity is press-molded using the upper mold at a fixed position,
A method for producing a hot press-formed product, including taking out the press-formed product from a lower mold at a fixed position,
In the continuous or intermittent circulation movement of the plurality of lower molds, the turntable on which the plurality of lower molds are arranged is index-rotated so that the plurality of lower molds are synchronized and moved to the respective stop positions in a lump. To do
Prior to press molding, a molten glass lump adjusted to a predetermined viscosity is positioned at a predetermined position on the molding surface of the lower mold in a non-contact manner at a predetermined position for press molding, and after the alignment, press molding is performed using the upper mold. ,
Wherein the alignment uses the position correction member is a porous body, the alignment of the non-contact, the position correction member, a shape similar to the inverted shape the shape of the glass gob upper surface before press-forming A method for producing a hot press-molded product, characterized in that gas is ejected from a position correction surface, and the position correction surface is brought close to the upper surface of the glass lump and wind pressure is applied to the glass lump with the jet gas.
[2] The manufacturing method according to [1], wherein the predetermined viscosity of the molten glass gob is in the range of 10 3 poise to 10 4.4 poise.
[3] The manufacturing method according to [1] or [2], wherein the hot press-molded product is a precision press-molding preform or a glass base material processed into a precision press-molding preform by a method including polishing. .
[4] A method for producing a precision press-molding preform, wherein the glass base material produced by the method according to [3] is processed into a precision press-molding preform by a process including at least polishing.
[5] A method for producing an optical element, in which a preform produced by the method according to any one of [3] to [4] is precision press-molded.

本発明によれば、上型をガラス塊に直接接触させることなしに上型成形面に対する中心出し(上型成形面の中心とガラス塊の中心を合わせること)ができ、上型の寿命を延ばすことが可能であり、かつプレス後にプレス成形したガラス塊の形状は自由液滴形状に戻ることなく、所望の形状を維持できる、熱間プレス成形品を製造する方法を提供できる。   According to the present invention, the upper mold can be centered with respect to the upper mold molding surface without bringing the upper mold into direct contact with the glass lump (the center of the upper mold molding surface and the center of the glass lump can be aligned), thereby extending the life of the upper mold. It is possible to provide a method for producing a hot press-formed product that can maintain the desired shape without returning the shape of the glass lump that has been press-formed after pressing to a free droplet shape.

さらに本発明によれば、上記製造方法により、精密プレス成形用プリフォームとしても使用可能な熱間プレス成形品が得られ、あるいは上記製造方法により得た熱間プレス成形品を加工して精密プレス成形用プリフォームを製造することもできる。さらに、前記各方法で得たプリフォームを精密プレス成形して光学素子を製造することができる。   Furthermore, according to the present invention, a hot press-molded product that can be used as a precision press-molding preform is obtained by the above production method, or a hot press-molded product obtained by the above production method is processed to obtain a precision press. A molding preform can also be produced. Furthermore, the optical element can be manufactured by precision press molding the preform obtained by each of the above methods.

本発明は、熱間プレス成形品の製造方法であって、
連続的または断続的に循環移動する複数の下型を用い、
連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、上記複数の下型に定位置で受け取り、
下型に受け取られた溶融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却して所定粘度に調整し、
所定粘度に調整した下型上のガラス塊を、定位置で上型を用いてプレス成形し、
プレス成形品を定位置で下型から取り出すことを含む。
さらに、本発明は、上記熱間プレス成形品の製造方法であって、
プレス成形前にプレス成形用の定位置で、所定粘度に調整した熔融ガラス塊を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に上型を用いてプレス成形する
ことを特徴とする。
The present invention is a method for producing a hot press-formed product,
Use multiple lower molds that circulate continuously or intermittently,
The molten glass lump is sequentially separated from the molten glass flowing out continuously, and the separated molten glass lump is received at a fixed position by the plurality of lower molds,
While the molten glass lump received by the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold and adjusted to a predetermined viscosity,
A glass lump on the lower mold adjusted to a predetermined viscosity is press-molded using the upper mold at a fixed position,
Including removing the press-molded product from the lower mold at a fixed position.
Furthermore, the present invention is a method for producing the hot press-formed product,
Prior to press molding, a molten glass lump adjusted to a predetermined viscosity is aligned with a predetermined position on the molding surface of the lower mold in a non-contact manner at a predetermined position for press molding, and after the alignment, press molding is performed using the upper mold. It is characterized by that.

本発明は、連続的または断続的に循環移動する複数の下型を用いる。具体的には、複数の下型をターンテーブル上に配置し、ターンテーブルをインデックス回転して上記複数の下型を同期して各停留位置に次々と一括して移動させることで、下型を循環移動することができる。停留位置は、定位置であって、少なくとも(1)分離した熔融ガラス塊を受け取る位置、(2)上型を用いてプレス成形する位置、(3)プレス成形品を下型から取り出す位置である。但し、ターンテーブル上に設けられる下型の数によっては、特別な動作あるいは操作がない停留位置もありえる。   The present invention uses a plurality of lower molds that circulate continuously or intermittently. Specifically, a plurality of lower molds are arranged on a turntable, and the turntable is index-rotated to synchronize the plurality of lower molds and move them one after another to each stop position. It can move cyclically. The stop position is a fixed position, at least (1) a position for receiving the separated molten glass block, (2) a position for press molding using the upper mold, and (3) a position for taking out the press molded product from the lower mold. . However, depending on the number of lower molds provided on the turntable, there may be a stopping position without any special operation or operation.

連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、複数の下型に定位置で受け取る。これにより、連続して流出する熔融ガラスから次々に熱間プレス成形品を成形するための熔融ガラス塊を形成する。熔融ガラスは、例えば、ガラス原料を加熱、熔融し、脱泡、均質化して得られたものであり、この熔融ガラスを一定の流出速度で連続してパイプから流出し、流出する熔融ガラス流の下端部をパイプ下方に置いた下型上で受け、さらに、下型を鉛直下方に急降下して、熔融ガラス流から下型上の熔融ガラス流下端部を分離し、上記下型の成形面上に分離した熔融ガラス塊を受ける。   The molten glass lump is sequentially separated from the molten glass flowing out continuously, and the separated molten glass lump is received at a fixed position by a plurality of lower molds. Thereby, the molten glass lump for shape | molding a hot press molded product one after another from the molten glass which flows out continuously is formed. The molten glass is obtained, for example, by heating, melting, defoaming, and homogenizing a glass raw material. The molten glass continuously flows out of the pipe at a constant flow rate, and flows out of the molten glass flow. Receiving the lower end on the lower mold placed below the pipe, and further lowering the lower mold vertically downward to separate the lower end of the molten glass flow on the lower mold from the molten glass flow, on the molding surface of the lower mold The separated molten glass lump is received.

この方法の代わりに、流出する熔融ガラス流の下端部をパイプ下方に置いた支持体で受け、支持体を鉛直下方に急降下して、熔融ガラス流から支持体上の熔融ガラス流下端部を分離し、上記分離した熔融ガラス塊を下型の成形面上に供給する方法、または、流出する熔融ガラス流の下端部をパイプ下方に置いた支持体で受け、支持体による支持を急速に取り除いて、熔融ガラス流から支持体で支持していた熔融ガラス流下端部を分離し、上記分離した熔融ガラス塊を下型の成形面上に供給する方法などを用いて、下型の成形面に熔融ガラス塊を得ることもできる。   Instead of this method, the lower end of the flowing molten glass flow is received by a support placed below the pipe, and the support is rapidly lowered vertically to separate the lower end of the molten glass flow on the support from the molten glass flow. The method of supplying the separated molten glass ingot on the molding surface of the lower mold, or receiving the lower end portion of the flowing molten glass flow under the pipe, and removing the support by the support rapidly. Using the method of separating the lower end of the molten glass flow supported by the support from the molten glass flow and supplying the separated molten glass lump onto the lower mold forming surface, etc. A glass lump can also be obtained.

下型に受け取られた溶融ガラス塊は、下型上で風圧を加えて浮上させながら、下型の移動中に冷却して所定粘度に調整する。下型の成形面はプレスによってガラスに当該表面の形状を転写する成形面となっており、平滑な面であり、さらに、溶融ガラス塊に風圧を加えて浮上させるためのガスを噴出する複数のガス噴出口が設けられている。   The molten glass lump received in the lower mold is cooled during the movement of the lower mold and adjusted to a predetermined viscosity while being floated by applying wind pressure on the lower mold. The molding surface of the lower mold is a molding surface that transfers the shape of the surface to the glass by pressing, is a smooth surface, and moreover, a plurality of gas jets for injecting the molten glass lump by applying wind pressure A gas outlet is provided.

一般に、溶融ガラス塊から熱間プレス成形品を製造するに際して、成形型の温度を熔融ガラス塊との融着を防止できる温度に保つと、熔融ガラス塊と成形型の温度差は極めて大きくなる。このように熔融ガラス塊に比べて低温に保たれている成形型に熔融ガラス塊が直接触れると、接触部分においてガラスが局部的に冷却され、収縮するため、ガラス表面にシワが生じて滑らかな表面をもつ熱間プレス成形品を得ることができなくなるおそれがある。さらに温度が低下したガラスが成形型に直接触れると、カン割れと呼ばれる現象によりガラスが破損してしまうこともある。それに対し、本発明では浮上成形をするため、ガラスと下型との接触は低減されるため、上記のような問題を回避することができる。   Generally, when manufacturing a hot press-molded product from a molten glass lump, if the temperature of the mold is kept at a temperature that can prevent fusion with the molten glass lump, the temperature difference between the molten glass lump and the mold becomes extremely large. When the molten glass lump directly touches the mold that is kept at a lower temperature than the molten glass lump in this way, the glass is locally cooled and contracted at the contact portion, so that the glass surface is wrinkled and smooth. There is a possibility that a hot press-formed product having a surface cannot be obtained. Further, when the glass whose temperature has been lowered directly touches the mold, the glass may be broken by a phenomenon called can cracking. On the other hand, in the present invention, since the floating molding is performed, the contact between the glass and the lower mold is reduced, so that the above-described problems can be avoided.

上記ガス噴出口から噴射するガスとしては、ガラスと反応しないガスを用いることが好ましく、具体的には、空気、窒素、不活性ガスなどを挙げることができる。また、当該ガスの量、圧力は、熔融ガラス塊を浮上成形することができ、かつ成形面で熔融ガラス塊が下型との融着を生じないように安定した状態を保つことができるように定めることが好ましい。成形するガラス塊の容量により噴出させるガスの圧力、流量は適宜調整することが出来る。具体的には、例えば、前記圧力は0.3〜0.5MPaの範囲、前記ガスの流量は毎分0.25〜0.45リットルの範囲とすることが好ましい。   As the gas ejected from the gas ejection port, a gas that does not react with glass is preferably used, and specific examples include air, nitrogen, inert gas, and the like. The amount and pressure of the gas can float the molten glass lump and maintain a stable state so that the molten glass lump does not cause fusion with the lower mold on the molding surface. It is preferable to define. The pressure and flow rate of the gas to be ejected can be appropriately adjusted depending on the volume of the glass block to be molded. Specifically, for example, the pressure is preferably in the range of 0.3 to 0.5 MPa, and the gas flow rate is preferably in the range of 0.25 to 0.45 liters per minute.

以下、成形面上の熔融ガラス塊の上方に面した表面を上面、成形面に対向する面を下面と定義する。   Hereinafter, the upper surface of the molten glass block on the molding surface is defined as the upper surface, and the surface facing the molding surface is defined as the lower surface.

下型の成形面に供給されたガラス塊は浮上状態にて冷却され、プレス成形に適した所定粘度になるよう粘度調整がなされる。分離した熔融ガラス塊の粘度(所定粘度)は、103ポアズから104.4ポアズになるように冷却調整することが、所望の形状にプレス成形が比較的容易にできるという観点から好ましい。 The glass lump supplied to the molding surface of the lower mold is cooled in a floating state, and the viscosity is adjusted so as to have a predetermined viscosity suitable for press molding. The viscosity (predetermined viscosity) of the separated molten glass lump is preferably adjusted by cooling so as to be from 10 3 poise to 10 4.4 poise from the viewpoint that press molding can be relatively easily performed to a desired shape.

所定粘度に調整した熔融ガラス塊は、プレス成形前にプレス成形用の定位置で、下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に上型を用いてプレス成形する。熔融ガラス塊と非接触での位置合せは、熔融ガラス塊に上側(もしくは位置矯正部材)から風圧を加えることにより行うことができる。このときの噴出ガス圧力は、例えば、0.15〜0.5MPaの範囲とし、噴出ガス流量は、例えば、毎分0.15〜0.45リットルの範囲とすることが好ましい。   The molten glass lump adjusted to the specified viscosity is positioned in a fixed position for press molding before press molding, aligned in a non-contact position on the molding surface of the lower mold, and press-molded using the upper mold after alignment. To do. Positioning without contact with the molten glass lump can be performed by applying wind pressure to the molten glass lump from the upper side (or position correcting member). At this time, the jet gas pressure is preferably in the range of 0.15 to 0.5 MPa, for example, and the jet gas flow rate is preferably in the range of 0.15 to 0.45 liters per minute, for example.

以下、上記ガラス塊の位置合せについて図面を参照して説明する。
図1のように位置合わせ装置の回転アーム10の先端に多孔質体で構成した位置矯正部材11を設ける。成形面21と対向する位置矯正部材11の位置矯正面11aは、成形面21上のガラス塊Gの上面(プレス成形前の上面)の形状を反転した形状に近似した形状に予め加工してある。位置矯正部材11の背面11b(位置矯正面11aの裏面)には回転アーム内に設けたガス流路15を通して空気、窒素、不活性ガスなどが供給される。空気、窒素、不活性ガスなどは多孔質体である位置矯正部材11を通って位置矯正面11aから均等に噴出している。位置矯正はこの位置において位置矯正部材11から回転アームの軸12までの部分を昇降装置13で下降させることにより行なう。
Hereinafter, the alignment of the glass block will be described with reference to the drawings.
As shown in FIG. 1, a position correcting member 11 made of a porous body is provided at the tip of the rotary arm 10 of the alignment apparatus. The position correction surface 11a of the position correction member 11 facing the molding surface 21 has been processed in advance into a shape that approximates a shape obtained by inverting the shape of the upper surface (the upper surface before press molding) of the glass block G on the molding surface 21. . Air, nitrogen, an inert gas, or the like is supplied to the back surface 11b of the position correction member 11 (the back surface of the position correction surface 11a) through a gas flow path 15 provided in the rotary arm. Air, nitrogen, inert gas, and the like are uniformly ejected from the position correction surface 11a through the position correction member 11 which is a porous body. Position correction is performed by lowering the portion from the position correction member 11 to the shaft 12 of the rotary arm by the lifting device 13 at this position.

図2に、位置合わせ装置の動作説明図を示す。(A)では、下型20の成形面21の中心の真上に位置矯正面11aの中心が位置するように位置合せをする。(B)では、この状態で置合わせ装置の昇降装置13を作動させて位置矯正部材11を鉛直下方に移動して位置矯正面11aを成形面のガラス塊Gの上面に近づける。この操作によってガラス塊Gが成形面21の中央からずれていると、ずれている側で、その反対側よりガラス塊Gの上面と位置矯正面11aの距離が近くなる。そうすると、位置矯正面11aから噴出するガスから受ける風圧が、ガラス塊Gのずれている側で大きくなり、ガラス塊Gが成形面21中心に戻されてガラス塊Gの中心が成形面21の中心に一致するようになる。このようにして下型20の成形面21上でのガラス塊Gの位置を矯正した後、位置合わせ装置の昇降装置13を作動させて位置矯正部材11を上昇させ、回転アーム10を回転して下型上方から位置矯正部材11を退避させる。この一連の操作によって浮上中に揺れていたガラス塊の揺れを抑えることもできる。 FIG. 2 shows an operation explanatory diagram of the alignment apparatus. In (A), alignment is performed so that the center of the position correction surface 11a is positioned directly above the center of the molding surface 21 of the lower mold 20. In (B), closer to the position correcting surface 11a by moving the position correction member 11 is actuated vertically downward the elevating device 13 of the position alignment device in this state to the upper surface of the glass gob G of the molding surface. When the glass lump G is displaced from the center of the molding surface 21 by this operation, the distance between the upper surface of the glass lump G and the position correction surface 11a is closer to the opposite side on the displaced side. Then, the wind pressure received from the gas ejected from the position correction surface 11a is increased on the side where the glass lump G is displaced, the glass lump G is returned to the center of the molding surface 21, and the center of the glass lump G is the center of the molding surface 21. To match. After correcting the position of the glass lump G on the molding surface 21 of the lower mold 20 in this way, the positioning device 11 is raised by operating the lifting device 13 of the positioning device, and the rotating arm 10 is rotated. The position correcting member 11 is retracted from above the lower mold. This series of operations can also suppress the shaking of the glass lump that has been swaying during the ascent.

続いて、(C)では、下型の上方で待機する上型30を下降して下型とともに成形面上のガラス塊Gをプレスする。プレスによりガラス塊全体が成形されるとともに、ガラス塊上面に上型の成形面が転写され、下型の成形面表面がガラス塊下面に転写される。下型上面の外周と上型下面の外周とは、例えば、嵌合する構造になっており、プレス成形に先立ち下型と上型を嵌合して下型成形面の中心と上型成形面の中心を位置合せするとともに、下型成形面と上型成形面とが正対するようにしてからガラス塊をプレスする。このとき、下型のガス噴出口に供給されるガスの圧力は、ガラスがガス噴出口に進入しない程度の圧力にしてガラスにガス圧による窪みが生じないようにする。   Subsequently, in (C), the upper die 30 waiting above the lower die is lowered and the glass lump G on the molding surface is pressed together with the lower die. The entire glass lump is molded by pressing, the molding surface of the upper mold is transferred to the upper surface of the glass lump, and the molding surface of the lower mold is transferred to the lower surface of the glass lump. The outer periphery of the upper surface of the lower mold and the outer periphery of the lower surface of the upper mold are, for example, a structure to be fitted, and the center of the lower mold molding surface and the upper mold molding surface by fitting the lower mold and the upper mold prior to press molding. The glass lump is pressed after aligning the centers of the molds so that the lower mold surface and the upper mold surface face each other. At this time, the pressure of the gas supplied to the lower gas jet port is set to a pressure that does not allow the glass to enter the gas jet port so that the glass is not depressed by the gas pressure.

図示されていないが、プレス成形後、上型からガラスを離型し、上型を上方に退避する。その後、成形したガラス塊を下型成形面上で浮上した状態で更に冷却し、下型成形面から取り出し、アニールすることができる。   Although not shown, after press molding, the glass is released from the upper mold, and the upper mold is retracted upward. Thereafter, the molded glass lump can be further cooled in the state of being floated on the lower mold forming surface, taken out from the lower mold forming surface, and annealed.

このようにして、回転対称形状の熱間プレス成形品を次々に成形することができる。熱間プレス成形品の形状には特に制限はないが、例えば、下面が凸面、上面が平面の熱間プレス成形品、下面が凸面、上面が凹面の回転対称形状の熱間プレス成形品、下面が凸面、上面が平面で中央に凹部がある回転対称形状の熱間プレス成形品など各種熱間プレス成形品を成形することができる。これらの形状は、下型成形面の形状、および上型の成形面の形状を適宜選択することにより、形成できる。各熱間プレス成形品ともカン、割れなどの破損はなく、高品質の成形品である。   In this manner, rotationally symmetric hot press-formed products can be formed one after another. The shape of the hot press-formed product is not particularly limited. For example, a hot press-formed product having a convex surface on the lower surface and a flat surface on the upper surface, a convex surface on the lower surface, and a rotationally symmetric hot press-formed product having a concave surface on the upper surface. Various hot press-molded products such as a rotationally symmetric hot press-molded product having a convex surface, a flat upper surface and a concave portion at the center can be formed. These shapes can be formed by appropriately selecting the shape of the lower mold surface and the shape of the upper mold surface. Each hot press-molded product is a high-quality molded product with no damage such as cans and cracks.

熱間プレス成形品は、精密プレス成形用プリフォームまたは、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材であることができる。熱間プレス成形品が、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材である場合、作製したガラス母材は、少なくとも研磨を含む工程により精密プレス成形用プリフォームに加工して、精密プレス成形用プリフォームを製造することかできる。熱間プレス成形品をアニールした後に、表面を研磨してプリフォームに仕上げることができる。熱間プレス成形品の形状が回転対称形状になっているため、回転対称形状のプリフォームを研磨で容易に作ることができる。   The hot press-formed product can be a precision press-molding preform or a glass base material processed into a precision press-molding preform by a method including polishing. When the hot press-molded product is a glass base material processed into a precision press-molding preform by a method including polishing, the produced glass base material is processed into a precision press-molding preform by a process including at least polishing. Thus, a precision press-molding preform can be manufactured. After annealing the hot press molded product, the surface can be polished and finished into a preform. Since the shape of the hot press-formed product is rotationally symmetric, a rotationally symmetric preform can be easily made by polishing.

さらに、本発明の方法により作製したプリフォームを精密プレス成形することで、光学素子を製造することもできる。精密プレス成形による光学素子の製造は、公知の方法により実施することができる。プリフォームを精密プレス成形して、凹メニスカスレンズ、凸メニスカスレンズ、両凹レンズなどの各種非球面レンズを作製することができる。このようにして得られるレンズは、優れた面精度を備え、偏肉などの不具合は見られないものである。   Furthermore, an optical element can also be manufactured by carrying out precision press molding of the preform produced by the method of the present invention. Production of an optical element by precision press molding can be performed by a known method. Various preforms such as a concave meniscus lens, a convex meniscus lens, and a biconcave lens can be produced by precision press molding the preform. The lens thus obtained has excellent surface accuracy and does not show defects such as uneven thickness.

以下、本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例
図3を参照しながら実施例について説明する。インデックス回転するターンテーブルの回転軸を中心とする円周上に等間隔に12個の下型を配置した成形機を使用する。
Example An example will be described with reference to FIG. A molding machine is used in which twelve lower molds are arranged at equal intervals on the circumference around the rotation axis of the turntable that rotates with the index.

図3は熔融ガラスからプリフォームを成形する成形装置の動作をタイムチャートとして示したものである。上記装置の動作を説明する都合上、下型を上下動して熔融ガラスを分離する機構(装置名称「熔融ガラス分離」)、下型を搬送するターンテーブルをインデックス回転させる機構(装置名称「成形機インデックス」)、ガラス塊をプレス成形する際に使用する上型を下降する機構(装置名称「上プレス装置」)、上記プレス成形に際して下型を上昇させる機構(装置名称「下プレス装置」)、熔融ガラス塊を下型の成形面上の所定位置に非接触で位置合せするために使用するガスを噴出する多孔質体を下型停留位置の真上から退避させる機構(装置名称「位置矯正装置90度旋回アーム」)、上記多孔質体を上下方向に移動する機構(装置名称「位置矯正装置下降用シリンダ」)に分ける。   FIG. 3 is a time chart showing the operation of a molding apparatus for molding a preform from molten glass. For the purpose of explaining the operation of the above device, a mechanism for moving the lower mold up and down to separate the molten glass (device name “melted glass separation”) and a mechanism for rotating the turntable carrying the lower mold (device name “molding”). Machine index "), a mechanism for lowering the upper die used for press molding of glass lumps (device name" upper press device "), a mechanism for raising the lower die during the press molding (device name" lower press device ") , A mechanism (device name “Position Correction”) that retreats the porous body that ejects the gas used for non-contact alignment of the molten glass lump to a predetermined position on the molding surface of the lower mold from directly above the lower mold stop position The device 90-degree swivel arm "), and the porous body is divided into a mechanism (device name" position correction device lowering cylinder ") that moves in the vertical direction.

タイムチャート最上段の装置名称「成形機起動」は、成形装置全体のメインスイッチのON・OFFを示すものである。最初に装置名称「成形機起動」をOFFからONにして成形装置を起動する。   The apparatus name “start molding machine” at the top of the time chart indicates ON / OFF of the main switch of the entire molding apparatus. First, start the molding device by turning the device name “Start molding machine” from OFF to ON.

図4に示すターンテーブルをインデックス回転してテーブルが停止したタイミングを起点とし、前記テーブルの次のインデックス回転を行い、テーブルが停止するまでの時間を1タクトと定義し、hと表す。すなわち、1タクトとは、下型が停留位置に停止してから、次の停留位置に移送されて停止するまでの時間に相当する。本実施例では、1タクトを6920ミリ・秒に設定している。   Starting from the timing when the table is stopped by index rotation of the turntable shown in FIG. 4, the next index rotation of the table is performed, and the time until the table stops is defined as one tact, which is represented as h. That is, one tact corresponds to the time from when the lower mold stops at the stop position until it is transferred to the next stop position and stopped. In this embodiment, one tact is set to 6920 milliseconds.

下型が流出する熔融ガラスの下方に停留位置1(定位置)に停止してから、装置名称「熔融ガラス分離」をOFFからONにし、下型を上昇し、上昇位置で保持して熔融ガラスの下端を受ける。連続して流出する熔融ガラスが下型上に溜まり、熔融ガラスのガラス流出口と下型の間には表面張力によるくびれが生じる。   After stopping at the stopping position 1 (fixed position) below the molten glass from which the lower mold flows out, turn the device name “molten glass separation” from OFF to ON, raise the lower mold, and hold the molten glass at the raised position. Receive the bottom edge. The molten glass that continuously flows out accumulates on the lower mold, and constriction due to surface tension occurs between the glass outlet of the molten glass and the lower mold.

上記テーブルが停止してから6120ミリ・秒経過した時点で「熔融ガラス分離」をONからOFFにし、下型を急降下させると、上記くびれ部分より下の熔融ガラスが分離して下型上に熔融ガラス塊を得ることができる。次に「成形機インデックス」をOFFからONにしてターンテーブルを回転軸のまわりに30°回転し、停止させる。   When 6120 milliseconds · second have passed since the table stopped, turning “melting glass separation” from ON to OFF and dropping the lower mold rapidly, the molten glass below the constricted part separates and melts onto the lower mold. A glass lump can be obtained. Next, the “molding machine index” is turned from OFF to ON, and the turntable is rotated 30 ° around the rotation axis and stopped.

本実施例では、熔融ガラス塊を受け取った次の停留位置2(プレス位置と呼ぶ。)でガラス塊の位置合わせおよびプレス成形を行う。装置名称「位置矯正装置90度旋回アーム」は、図1の10で示される回転アームである。このアームがOFFの場合、位置矯正部材(多孔質体)11はプレス位置上方にある。図2の(A)に示す状態である。この状態で「位置矯正装置下降用シリンダ」をONにし下降させると、ガスを噴出する位置矯正部材が下降し、下型上のガラス塊に接近してガラス塊を非接触で位置合せする。図2の(B)に示す状態である。「位置矯正装置下降用シリンダ」をONにするタイミングは、下型がプレス位置に停止してから30m秒(ミリ・秒)後である。下型がプレス位置に停止してから30+480=510m秒(ミリ・秒)後、「位置矯正装置下降用シリンダ」をOFFにして位置矯正部材を元の高さまで上昇させ、下型がプレス位置に停止してから530m秒経過後、「位置矯正装置90度旋回アーム」をONにして、位置矯正部材を保持するアーム10を90°旋回させて位置矯正部材をプレス位置上方から水平方向に移動、退避させる。このようにして位置矯正部材とその保持、移動機構がプレス成形に邪魔にならないようにした上で、下型がプレス位置に停止してから550m秒後に上プレス装置および下プレス装置をONにしてプレス位置上方に待機する上型を下降、プレス位置に停留する下型を上昇させてガラス塊を上下型でプレスする。図2の(C)に示す状態である。   In this embodiment, the glass block is aligned and press-molded at the next stop position 2 (referred to as a press position) after receiving the molten glass block. The device name “position correcting device 90-degree turning arm” is a rotating arm indicated by 10 in FIG. When this arm is OFF, the position correction member (porous body) 11 is above the press position. This is the state shown in FIG. In this state, when the “position correction device lowering cylinder” is turned on and lowered, the position correction member that ejects gas descends, approaches the glass block on the lower mold, and aligns the glass block without contact. This is the state shown in FIG. The timing for turning on the “position correction device lowering cylinder” is 30 msec (milliseconds) after the lower die stops at the press position. 30 + 480 = 510 msec (milliseconds) after the lower die stops at the press position, turn off the “position correction device lowering cylinder” and raise the position correction member to its original height, the lower die presses 530 msec after stopping at the position, the “position correction device 90 degree turning arm” is turned on, and the arm 10 holding the position correction member is turned 90 ° to move the position correction member horizontally from above the press position. Move and evacuate. In this way, the position correcting member and its holding and moving mechanism are made not to interfere with the press molding, and the upper press device and the lower press device are turned on 550 msec after the lower die stops at the press position. The upper die waiting above the pressing position is lowered, the lower die staying at the pressing position is raised, and the glass block is pressed with the upper and lower dies. This is the state shown in FIG.

下型がプレス位置に停止してから3350ミリ秒(550ミリ秒+2800ミリ秒)後に上プレス装置および下プレス装置をOFFにして上型、下型をそれぞれ元の高さに上昇、下降させ、プレス成形を終了する。次に下型がプレス位置に停止してから3430ミリ秒(530ミリ秒+2900ミリ秒)後に「位置矯正装置90度旋回アーム」をOFFにして多孔質体を元のプレス位置上方に戻す。その後、「成形機インデックス」をONにしてターンテーブルを30°回転させて各下型を次の停留位置に移動させる。   After 3350 milliseconds (550 milliseconds + 2800 milliseconds) after the lower die stops at the press position, the upper press device and the lower press device are turned off, and the upper die and the lower die are raised and lowered to their original heights. End press forming. Next, 3430 milliseconds (530 milliseconds + 2900 milliseconds) after the lower die stops at the press position, the “position correction device 90 degree turning arm” is turned off to return the porous body to the upper side of the original press position. Thereafter, the “molding machine index” is turned ON, the turntable is rotated by 30 °, and each lower mold is moved to the next stopping position.

このような動作を繰り返し行い、熔融ガラスを次々にプレス成形して所望形状に成形する。下型が熔融ガラス供給位置1に戻る三つ前(図4の10の位置、あるいは、ガラスの冷却が完了した位置)の停留位置に停留中に得られたガラス成形品を下型から取り出す。取り出しは、成形品上面を吸着して上方に持ち上げて徐冷装置に移動し、徐冷する。成形品を取り出して空になった下型に再び熔融ガラス塊を供給して成形する。   Such an operation is repeated, and the molten glass is press-formed one after another to form a desired shape. The glass molded product obtained while the lower mold is stopped at the stop position three times before returning to the molten glass supply position 1 (position 10 in FIG. 4 or the position where the cooling of the glass is completed) is taken out from the lower mold. For removal, the upper surface of the molded product is adsorbed, lifted upward, moved to a slow cooling device, and slowly cooled. The molded product is taken out and the molten glass lump is supplied again to the empty lower mold and molded.

このようにして上面が扁平、下面が凸面の回転体形状のプリフォームを成形した。実施例で得たプリフォームを真上から撮影した写真を図5の左に示す。プリフォーム表面は滑らかであり、回転対称軸方向から見て外径(長径と短径の相加平均)は15.0mm、長径と短径の差は0.2mm未満であった。   Thus, a rotating body-shaped preform having a flat upper surface and a convex lower surface was formed. A photograph of the preform obtained in the example taken from directly above is shown on the left of FIG. The preform surface was smooth, the outer diameter (arithmetic mean of the major axis and the minor axis) was 15.0 mm, and the difference between the major axis and the minor axis was less than 0.2 mm when viewed from the rotationally symmetric axis direction.

このようにして得たプリフォームを公知の方法で精密プレス成形して偏肉のない凸メニスカス形状の非球面レンズを作製した。   The preform thus obtained was precision press-molded by a known method to produce a convex meniscus aspherical lens without uneven thickness.

(比較例)
「位置矯正装置90度旋回アーム」を常時ONにして、多孔質体をプレス位置上方から退避させた状態とした以外は、上記実施例と同じ条件で上面が扁平、下面が凸面のプリフォームを成形した。比較例で得たプリフォームを真上から撮影した写真を図5の右に示す。外径15.0mm、長径と短径の差が0.9mmと真円度が低下した。
(Comparative example)
A preform with a flat top surface and a convex bottom surface under the same conditions as in the above example, except that the “position correction device 90-degree swivel arm” is always ON and the porous body is retracted from above the press position. Molded. A photograph taken from directly above the preform obtained in the comparative example is shown on the right side of FIG. The outer diameter was 15.0 mm, the difference between the major axis and the minor axis was 0.9 mm, and the roundness decreased.

このプリフォームを使用して上記実施例と同様にして凸メニスカス形状の非球面レンズを精密プレス成形したところ、偏肉の大きい、面精度の低いレンズであった。   Using this preform, a convex meniscus aspherical lens was precision press-molded in the same manner as in the above example. As a result, the lens had a large thickness deviation and a low surface accuracy.

ガラスレンズ等の光学素子の製造分野に有用である。   This is useful in the field of manufacturing optical elements such as glass lenses.

本発明に使用する位置合わせ装置の一例。An example of the alignment apparatus used for this invention. 位置合わせ装置の動作説明。Explanation of the operation of the alignment device. 熔融ガラスからプリフォームを成形する成形装置の動作をタイムチャートとして示す。The operation | movement of the shaping | molding apparatus which shape | molds a preform from a molten glass is shown as a time chart. ターンテーブルの一例を示す説明図。Explanatory drawing which shows an example of a turntable. 実施例(左)、比較例(右)で得たプリフォームを真上から撮影した写真。The photograph which image | photographed the preform obtained in the Example (left) and the comparative example (right) from right above.

Claims (5)

連続的または断続的に循環移動する複数の下型を用い、
連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、上記複数の下型に定位置で受け取り、
下型に受け取られた溶融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却して所定粘度に調整し、
所定粘度に調整した下型上のガラス塊を、定位置で上型を用いてプレス成形し、
プレス成形品を定位置で下型から取り出すことを含む、熱間プレス成形品の製造方法であって、
前記複数の下型の連続的または断続的な循環移動は、複数の下型を配置したターンテーブルをインデックス回転させて前記複数の下型を同期して各停留位置に次々と一括して移動させることで行い、
プレス成形前にプレス成形用の定位置で、所定粘度に調整した熔融ガラス塊を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に上型を用いてプレス成形し、
前記位置合せには、多孔質体である位置矯正部材を用い、前記非接触で位置合わせは、前記位置矯正部材の、プレス成形前のガラス塊上面の形状を反転した形状に近似した形状を有する位置矯正面からガスを噴出させ、かつ位置矯正面をガラス塊上面に近づけて前記噴出ガスによりガラス塊に風圧を加えることで行うことを特徴とする熱間プレス成形品の製造方法。
Use multiple lower molds that circulate continuously or intermittently,
The molten glass lump is sequentially separated from the molten glass flowing out continuously, and the separated molten glass lump is received at a fixed position by the plurality of lower molds,
While the molten glass lump received by the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold and adjusted to a predetermined viscosity,
A glass lump on the lower mold adjusted to a predetermined viscosity is press-molded using the upper mold at a fixed position,
A method for producing a hot press-formed product, including taking out the press-formed product from a lower mold at a fixed position,
In the continuous or intermittent circulation movement of the plurality of lower molds, the turntable on which the plurality of lower molds are arranged is index-rotated so that the plurality of lower molds are synchronized and moved to the respective stop positions in a lump. To do
Prior to press molding, a molten glass lump adjusted to a predetermined viscosity is positioned at a predetermined position on the molding surface of the lower mold in a non-contact manner at a predetermined position for press molding, and after the alignment, press molding is performed using the upper mold. ,
Wherein the alignment uses the position correction member is a porous body, the alignment of the non-contact, the position correction member, a shape similar to the inverted shape the shape of the glass gob upper surface before press-forming A method for producing a hot press-molded product, characterized in that gas is ejected from a position correction surface, and the position correction surface is brought close to the upper surface of the glass lump and wind pressure is applied to the glass lump with the jet gas.
熔融ガラス塊の前記所定粘度は103ポアズから104.4ポアズの範囲である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the predetermined viscosity of the molten glass gob is in the range of 10 3 poise to 10 4.4 poise. 熱間プレス成形品が、精密プレス成形用プリフォームまたは、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材である請求項1または2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the hot press-molded product is a precision press-molding preform or a glass base material processed into a precision press-molding preform by a method including polishing. 請求項3に記載の方法により作製したガラス母材を少なくとも研磨を含む工程により精密プレス成形用プリフォームに加工する精密プレス成形用プリフォームの製造方法。   A method for producing a precision press-molding preform, wherein the glass base material produced by the method according to claim 3 is processed into a precision press-molding preform by a process including at least polishing. 請求項3〜4のいずれかに記載の方法により作製したプリフォームを精密プレス成形する光学素子の製造方法。 The manufacturing method of the optical element which carries out precision press molding of the preform produced by the method in any one of Claims 3-4 .
JP2007318359A 2007-12-10 2007-12-10 Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element Expired - Fee Related JP5166011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318359A JP5166011B2 (en) 2007-12-10 2007-12-10 Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318359A JP5166011B2 (en) 2007-12-10 2007-12-10 Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element

Publications (2)

Publication Number Publication Date
JP2009137816A JP2009137816A (en) 2009-06-25
JP5166011B2 true JP5166011B2 (en) 2013-03-21

Family

ID=40868843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318359A Expired - Fee Related JP5166011B2 (en) 2007-12-10 2007-12-10 Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element

Country Status (1)

Country Link
JP (1) JP5166011B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171555A (en) * 1997-12-04 1999-06-29 Canon Inc Production of blank for forming optical element
JP3592058B2 (en) * 1997-12-22 2004-11-24 キヤノン株式会社 Method for producing optical glass molded article
JP2000001320A (en) * 1998-06-15 2000-01-07 Canon Inc Method for forming glass gob as optical element or blank for producing the same
JP2000001321A (en) * 1998-06-15 2000-01-07 Canon Inc Method for forming glass gob as glass optical element or blank for producing the same
JP4269411B2 (en) * 1999-06-22 2009-05-27 ソニー株式会社 Lens molding method
JP3712575B2 (en) * 1999-12-10 2005-11-02 Hoya株式会社 Glass gob manufacturing method and manufacturing apparatus
JP2002137925A (en) * 2000-10-24 2002-05-14 Canon Inc Forming method for glass element

Also Published As

Publication number Publication date
JP2009137816A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JP3929237B2 (en) Glass lump manufacturing method and manufacturing apparatus, glass molded product manufacturing method, and optical element manufacturing method
JP4918182B2 (en) Manufacturing method and manufacturing apparatus for glass molded body, and manufacturing method for optical element
JP2009179486A (en) Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element
JP4368368B2 (en) Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element
JP3974376B2 (en) Method for producing glass lump, method for producing glass molded product, and method for producing optical element
JP5166011B2 (en) Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element
JPH0912317A (en) Production of glass optical element
JP5654383B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP3712575B2 (en) Glass gob manufacturing method and manufacturing apparatus
JP5828915B2 (en) Method for producing glass preform for mold press molding and method for producing optical element
JP5566432B2 (en) Method for producing hot-formed product, method for producing precision press-molding preform, and method for producing optical element
JP5345228B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP5081717B2 (en) Mold, method for manufacturing precision press-molding preform, method for manufacturing optical element
JP3630829B2 (en) Manufacturing method of optical element molding material
JP2000001321A (en) Method for forming glass gob as glass optical element or blank for producing the same
JP3592058B2 (en) Method for producing optical glass molded article
JP4076251B2 (en) Glass gob for optical element molding, molding apparatus therefor, molding method therefor, and optical element forming method using glass gob
JP2746454B2 (en) Optical element molding method
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JP6080394B2 (en) Method for producing glass molded body and mold for molding
JP2014001086A (en) Glass gob molding device, method of manufacturing glass gob and method of manufacturing glass optical element
JP2000302461A (en) Molding for glass element
JPH11322348A (en) Molding of optical element
JP4666679B2 (en) Mold press molding apparatus and method for manufacturing molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees