JP2009179486A - Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element - Google Patents

Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element Download PDF

Info

Publication number
JP2009179486A
JP2009179486A JP2008017136A JP2008017136A JP2009179486A JP 2009179486 A JP2009179486 A JP 2009179486A JP 2008017136 A JP2008017136 A JP 2008017136A JP 2008017136 A JP2008017136 A JP 2008017136A JP 2009179486 A JP2009179486 A JP 2009179486A
Authority
JP
Japan
Prior art keywords
lower mold
molding
mold
press
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017136A
Other languages
Japanese (ja)
Inventor
Katsumi Utsuki
克己 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008017136A priority Critical patent/JP2009179486A/en
Priority to CN200910008442XA priority patent/CN101497491B/en
Publication of JP2009179486A publication Critical patent/JP2009179486A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hot-molded article (molten glass gob) in such a manner as to ensure the retention of a glass gob by suction at the front end of a suction nozzle and not to scratch the glass gob, to provide a method for producing a preform for precision molding by processing the hot-molded article obtained thereby, and to provide a method for producing an optical element by precision-press-molding the preform obtained thereby. <P>SOLUTION: A method for producing a hot-molded article is provided which comprises floating a molten glass gob received by a bottom mold by applying wind pressure thereto on the bottom mold, meanwhile cooling it in the course of transfer of the bottom mold to adjust its viscosity to a specified value, press-molding the glass gob with the specifically adjusted viscosity on the bottom mold by using a top mold at a specified position, thereafter cooling the press-molded article on the bottom mold in the course of transfer of the bottom mold, and withdrawing the press-molded article from the bottom mold. Before being withdrawn from the bottom mold, the molded article is positioned in a noncontact manner at a specified position on the molding surface of the bottom mold. It is then withdrawn therefrom. A method for producing an optical element comprising precision-press-molding a preform made thereby is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱間成形品の製造方法、精密プレス成形用プリフォームの製造方法、及び光学素子の製造方法に関する。   The present invention relates to a method for producing a hot-formed product, a method for producing a precision press-molding preform, and a method for producing an optical element.

ガラス製非球面レンズなど、光学機能面を研削、研磨によって形成する方法では量産性に乏しいガラス製光学素子を量産する方法として精密プレス成形法が知られている。この方法では、プリフォームと呼ばれる精密プレス成形に適した形状に加工したガラスをプレス成形する。プリフォームの作製法としては、いくつかの方法が知られているが、中でも流出する熔融ガラスから適量を分離して熔融ガラス塊とし、このガラス塊が冷えて固化する前にプリフォームに成形する方法が高い生産性を誇る。この方法はプリフォームの熱間成形法と呼ばれるが、熱間成形法でプリフォームに近似する形状のガラス成形体を作り、このガラス成形体を研磨を含む工程によりプリフォームにする方法も上記方法に比べれば生産性に劣るが、その他の方法に比べると生産性の観点から優れていると言える。熱間成形法では、ガラス表面にシワやカン、割れが生じないよう、成形型上でガラス塊にガスを噴出して上向きの風圧を加えて浮上させながら成形する。(特許文献1〜5参照)
特開2003-95670号公報 特開2004-300020号公報 特開2004-284847号公報 特開2005-272194号公報 特開2007-119335号公報
A precision press molding method is known as a method of mass-producing glass optical elements having poor mass productivity in the method of grinding and polishing an optical functional surface such as a glass aspheric lens. In this method, glass processed into a shape suitable for precision press molding called a preform is press-molded. Several methods are known for producing preforms. Among them, an appropriate amount is separated from the molten glass flowing out to form a molten glass lump, which is then formed into a preform before the glass lump is cooled and solidified. The method boasts high productivity. This method is called a hot forming method of a preform. A method of forming a glass molded body having a shape similar to a preform by the hot forming method, and converting the glass molded body into a preform by a process including polishing is also described above. Although it is inferior in productivity compared to, it can be said that it is superior in terms of productivity compared to other methods. In the hot forming method, molding is performed while jetting gas to the glass lump on the mold and applying upward wind pressure so that the glass surface is not wrinkled, deformed or broken. (See Patent Documents 1 to 5)
JP 2003-95670 A Japanese Patent Laid-Open No. 2004-300020 Japanese Patent Laid-Open No. 2004-284847 JP 2005-272194 A JP 2007-119335 A

熱間成形法では熔融ガラスを連続して流出し、熔融ガラス塊を次々に分離して、複数の成形型で順次成形する。特許文献1〜4に記載の方法では、熔融ガラス塊を成形型でプレスすることなく成形する。ここで使用する成形型は下型だけである。それに対して、特許文献5に記載の方法では、熔融ガラス塊を成形型でプレス成形する。ここで使用する成形型は下型に加えて上型である。   In the hot forming method, the molten glass is continuously discharged, the molten glass lump is separated one after another, and is sequentially formed with a plurality of forming dies. In the methods described in Patent Documents 1 to 4, a molten glass lump is formed without pressing with a forming die. The lower mold is the only mold used here. On the other hand, in the method described in Patent Document 5, a molten glass lump is press-molded with a molding die. The mold used here is the upper mold in addition to the lower mold.

上記方法では、空の成形型(下型)を、熔融ガラス塊を受け取る位置に搬入、停留させて、その位置で熔融ガラス塊を供給する。熔融ガラス塊が供給された成形型は上記位置から搬出され、その後に別の空の成形型が搬入、停留する。熔融ガラス塊は移動する成形型上で成形された後、成形型から取り出される。但し、特許文献5に記載の方法では、移動の途中で上型によりプレス成形され、その後、成形型から取り出される。このようにして空になった成形型(下型)は再び熔融ガラス塊を受け取る位置に搬入され、上記工程が繰り返される。   In the above method, an empty mold (lower mold) is carried into a position where the molten glass lump is received and stopped, and the molten glass lump is supplied at that position. The mold to which the molten glass block has been supplied is unloaded from the above position, and then another empty mold is carried in and stopped. The molten glass gob is formed on a moving mold and then removed from the mold. However, in the method described in Patent Document 5, it is press-molded by the upper mold in the middle of movement, and then removed from the mold. The molding die (lower die) emptied in this way is again carried into the position for receiving the molten glass lump, and the above steps are repeated.

こうした工程を円滑に行うため、例えば、ターンテーブル上に複数の成形型(下型)を配置して該テーブルをインデックス回転して、各成形型を定められた停留位置に順次移送する方法がある。この方法では、成形型の移動、停止に伴い、成形型上のガラス塊に加速度が加わる。この加速度は水平方向成分を有するので、成形型上でガラス塊が揺れる。ターンテーブルのインデックス回転のように成形型の移送、停留を一定周期で行う方法の場合、上記加速度が一定周期でガラス塊に加わり、ガラス塊の揺れが大きくなる。また、生産性向上のため、成形型の移送スピードを増加させても、加速度が大きくなって、ガラス塊の揺れが助長される。   In order to perform such a process smoothly, for example, there is a method in which a plurality of molds (lower molds) are arranged on a turntable, the table is index-rotated, and each mold is sequentially transferred to a predetermined stopping position. . In this method, acceleration is applied to the glass block on the mold as the mold is moved and stopped. Since this acceleration has a horizontal component, the glass lump is shaken on the mold. In the case of a method in which the mold is transferred and stopped at a constant cycle like index rotation of a turntable, the acceleration is applied to the glass block at a constant cycle, and the glass block shakes greatly. Further, even if the transfer speed of the mold is increased to improve productivity, the acceleration increases and the shaking of the glass lump is promoted.

特許文献1〜5に記載のいずれの熔融ガラス塊の成形方法でも、成形品であるガラス塊を成形型から取り出す際には、ガラス塊を吸着ノズルの先端で吸引保持して、成形型から取り出される。連続生産を維持するために、ガラス塊の吸着ノズル先端での吸引保持は、確実に行う必要があり、かつ歩留りを上げるために傷を付けることなく行う必要がある。しかし、上記のようにガラス塊は、成形型上で揺れており、成形型の成形面上でのガラス塊の姿勢は一定していない。   In any method for forming a molten glass lump described in Patent Documents 1 to 5, when the glass lump which is a molded product is taken out from the mold, the glass lump is sucked and held at the tip of the suction nozzle and taken out from the mold. It is. In order to maintain the continuous production, it is necessary to suck and hold the glass block at the tip of the suction nozzle without fail, and it is necessary to perform without sucking in order to increase the yield. However, as described above, the glass block is shaken on the mold, and the posture of the glass block on the molding surface of the mold is not constant.

そこで本発明は、熔融ガラス塊を成形することで、所望の形状の精密プレス成形用プリフォームとしても使用可能な熱間成形品(熔融ガラス塊)を得る方法であって、ガラス塊の吸着ノズル先端での吸引保持を確実に、かつガラス塊に傷を付けることなく行うことができる方法を提供することにある。   Therefore, the present invention is a method for obtaining a hot-molded product (molten glass lump) that can be used as a precision press-molding preform having a desired shape by molding a molten glass lump. An object of the present invention is to provide a method capable of reliably performing suction and holding at the tip without damaging the glass lump.

さらに本発明は、上記方法で得た熱間成形品を加工して精密プレス成形用プリフォームを製造する方法、ならびに前記各方法で得たプリフォームを精密プレス成形して光学素子を製造する方法を提供することを目的とする。   Furthermore, the present invention relates to a method for manufacturing a hot press-formed product obtained by the above method to produce a precision press-molding preform, and a method for producing an optical element by precision press-molding the preform obtained by each of the above methods. The purpose is to provide.

本発明は以下の通である。
[1]連続的または断続的に循環移動する複数の下型を用い、
(1)連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、上記複数の下型に定位置で受け取り、
(2-1)下型に受け取られた熔融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却して所定粘度に調整し、
(3)所定粘度に調整した下型上のガラス塊を、定位置で上型を用いてプレス成形し、その後、さらにプレス成形品を下型上で、下型の移動中に冷却するか、または、
(2-2)下型に受け取られた熔融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却し、かつプレスすることなく前記風圧による浮上により所定の形状に成形し、
(4)(3)のプレス成形品または(2-2)の成形品を定位置で下型から取り出すことを含む、熱間成形品の製造方法であって、
前記下型からの取り出しの前に、前記成形品を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に取り出しを行う
ことを特徴とする熱間成形品の製造方法。
[2]前記非接触の位置合せは、前記成形品に上型から風圧を加えることにより行う[1]に記載の製造方法。
[3](3)におけるプレス成形前にプレス成形用の定位置で、所定粘度に調整した熔融ガラス塊を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に上型を用いてプレス成形する[1]または[2]に記載の製造方法。
[4](2-1)における熔融ガラス塊の前記所定粘度は103ポアズから104.4ポアズの範囲である[1]〜[3]のいずれかに記載の製造方法。
[5]熱間成形品が、精密プレス成形用プリフォームまたは、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材である[1]〜[4]のいずれかに記載の製造方法。
[6][5]に記載の方法により作製したガラス母材を少なくとも研磨を含む工程により精密プレス成形用プリフォームに加工する精密プレス成形用プリフォームの製造方法。
[7][1]〜[6]のいずれかに記載の方法により作製したプリフォームを精密プレス成形する光学素子の製造方法。
The present invention is as follows.
[1] Using a plurality of lower molds that circulate continuously or intermittently,
(1) The molten glass lump is sequentially separated from the molten glass that continuously flows out, and the separated molten glass lump is received at a fixed position by the plurality of lower molds,
(2-1) While the molten glass block received in the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold and adjusted to a predetermined viscosity,
(3) The glass lump on the lower mold adjusted to a predetermined viscosity is press-molded using the upper mold at a fixed position, and then the press-molded product is further cooled on the lower mold while moving the lower mold, Or
(2-2) While the molten glass block received by the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold, and is brought into a predetermined shape by floating by the wind pressure without pressing. Molded,
(4) A method for producing a hot-formed product, comprising removing the press-formed product of (3) or the molded product of (2-2) from the lower mold at a fixed position,
Prior to taking out from the lower mold, the molded product is aligned in a non-contact manner at a predetermined position on the molding surface of the lower mold, and the hot mold product is taken out after being aligned. .
[2] The manufacturing method according to [1], wherein the non-contact alignment is performed by applying wind pressure from an upper mold to the molded product.
[3] Prior to press forming in (3), the molten glass lump adjusted to a predetermined viscosity is positioned in a predetermined position on the molding surface of the lower mold at a predetermined position for press forming, and after the alignment The production method according to [1] or [2], wherein press molding is performed using a mold.
[4] The method according to any one of [1] to [3], wherein the predetermined viscosity of the molten glass gob in (2-1) is in the range of 10 3 poise to 10 4.4 poise.
[5] The hot-formed product is a precision press-molding preform or a glass base material processed into a precision press-molding preform by a method including polishing, according to any one of [1] to [4] Production method.
[6] A method for producing a precision press-molding preform, wherein the glass base material produced by the method according to [5] is processed into a precision press-molding preform by a process including at least polishing.
[7] A method for producing an optical element, in which a preform produced by the method according to any one of [1] to [6] is precision press-molded.

本発明によれば、上型をガラス塊に直接接触させることなしに成形型(下型)成形面に対する中心出し(成形面の中心とガラス塊の中心を合わせること)ができ、その結果、ガラス塊の吸着ノズル先端での吸引保持を確実に、かつガラス塊に傷を付けることなく行うことができる、熱間成形品を製造する方法を提供できる。   According to the present invention, it is possible to center the molding die (lower die) with respect to the molding surface without bringing the upper die into direct contact with the glass lump (to align the center of the molding surface with the center of the glass lump). It is possible to provide a method for producing a hot-formed product that can reliably hold the lump at the tip of the suction nozzle without damaging the glass lump.

さらに本発明によれば、上記製造方法により、精密プレス成形用プリフォームとしても使用可能な熱間成形品が得られ、あるいは上記製造方法により得た熱間プレス成形品を加工して精密プレス成形用プリフォームを製造することもできる。さらに、前記各方法で得たプリフォームを精密プレス成形して光学素子を製造することができる。   Furthermore, according to the present invention, a hot-formed product that can also be used as a precision press-molding preform is obtained by the above manufacturing method, or a hot press-molded product obtained by the above-described manufacturing method is processed to perform precision press molding. Preforms can also be manufactured. Furthermore, the optical element can be manufactured by precision press molding the preform obtained by each of the above methods.

本発明は、熱間成形品の製造方法であって、
連続的または断続的に循環移動する複数の下型を用い、
(1)連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、上記複数の下型に定位置で受け取り、
(2-1)下型に受け取られた熔融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却して所定粘度に調整し、
(3)所定粘度に調整した下型上のガラス塊を、定位置で上型を用いてプレス成形し、その後、さらにプレス成形品を下型上で、下型の移動中に冷却するか、または、
(2-2)下型に受け取られた熔融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却し、かつプレスすることなく前記風圧による浮上により所定の形状に成形し、
(4)(3)のプレス成形品または(2-2)の成形品を定位置で下型から取り出すことを含む、熱間成形品の製造方法であって、
前記下型からの取り出しの前に、前記成形品を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に取り出しを行う
ことを特徴とする。
The present invention is a method for producing a hot-formed product,
Use multiple lower molds that circulate continuously or intermittently,
(1) The molten glass lump is sequentially separated from the molten glass that continuously flows out, and the separated molten glass lump is received at a fixed position by the plurality of lower molds,
(2-1) While the molten glass block received in the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold and adjusted to a predetermined viscosity,
(3) The glass lump on the lower mold adjusted to a predetermined viscosity is press-molded using the upper mold at a fixed position, and then the press-molded product is further cooled on the lower mold while moving the lower mold, Or
(2-2) While the molten glass block received by the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold, and is brought into a predetermined shape by floating by the wind pressure without pressing. Molded,
(4) A method for producing a hot-formed product, comprising removing the press-formed product of (3) or the molded product of (2-2) from the lower mold at a fixed position,
Before taking out from the lower mold, the molded product is non-contact aligned with a predetermined position on the molding surface of the lower mold, and taken out after the alignment.

本発明は、連続的または断続的に循環移動する複数の下型を用いる。具体的には、複数の下型をターンテーブル上に配置し、ターンテーブルをインデックス回転して上記複数の下型を同期して各停留位置に次々と一括して移動させることで、下型を循環移動することができる。停留位置は、定位置であって、少なくとも(1)分離した熔融ガラス塊を受け取る位置、(2)成形品を下型から取り出す位置である。但し、ターンテーブル上に設けられる下型の数によっては、特別な動作あるいは操作がない停留位置もありえる。さらに、上型を用いてプレス成形する場合には、停留位置として、上型を用いてプレス成形する位置もある。   The present invention uses a plurality of lower molds that circulate continuously or intermittently. Specifically, a plurality of lower molds are arranged on a turntable, and the turntable is index-rotated to synchronize the plurality of lower molds and move them one after another to each stop position. It can move cyclically. The stop position is a fixed position, at least (1) a position for receiving the separated molten glass block, and (2) a position for taking out the molded product from the lower mold. However, depending on the number of lower molds provided on the turntable, there may be a stopping position without any special operation or operation. Furthermore, when press-molding using the upper mold, there is also a position for press-molding using the upper mold as the stop position.

連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、複数の下型に定位置で受け取る。これにより、連続して流出する熔融ガラスから次々に熱間プレス成形品を成形するための熔融ガラス塊を形成する。熔融ガラスは、例えば、ガラス原料を加熱、熔融し、脱泡、均質化して得られたものであり、この熔融ガラスを一定の流出速度で連続してパイプから流出し、流出する熔融ガラス流の下端部をパイプ下方に置いた下型上で受け、さらに、下型を鉛直下方に急降下して、熔融ガラス流から下型上の熔融ガラス流下端部を分離し、上記下型の成形面上に分離した熔融ガラス塊を受ける。   The molten glass lump is sequentially separated from the molten glass flowing out continuously, and the separated molten glass lump is received at a fixed position by a plurality of lower molds. Thereby, the molten glass lump for shape | molding a hot press molded product one after another from the molten glass which flows out continuously is formed. The molten glass is obtained, for example, by heating, melting, defoaming, and homogenizing a glass raw material. The molten glass continuously flows out of the pipe at a constant flow rate, and flows out of the molten glass flow. Receiving the lower end on the lower mold placed below the pipe, and further lowering the lower mold vertically downward to separate the lower end of the molten glass flow on the lower mold from the molten glass flow, on the molding surface of the lower mold The separated molten glass lump is received.

この方法の代わりに、流出する熔融ガラス流の下端部をパイプ下方に置いた支持体で受け、支持体を鉛直下方に急降下して、熔融ガラス流から支持体上の熔融ガラス流下端部を分離し、上記分離した熔融ガラス塊を下型の成形面上に供給する方法、または、流出する熔融ガラス流の下端部をパイプ下方に置いた支持体で受け、支持体による支持を急速に取り除いて、熔融ガラス流から支持体で支持していた熔融ガラス流下端部を分離し、上記分離した熔融ガラス塊を下型の成形面上に供給する方法などを用いて、下型の成形面に熔融ガラス塊を得ることもできる。   Instead of this method, the lower end of the flowing molten glass flow is received by a support placed below the pipe, and the support is rapidly lowered vertically to separate the lower end of the molten glass flow on the support from the molten glass flow. The method of supplying the separated molten glass ingot on the molding surface of the lower mold, or receiving the lower end portion of the flowing molten glass flow under the pipe, and removing the support by the support rapidly. Using the method of separating the lower end of the molten glass flow supported by the support from the molten glass flow and supplying the separated molten glass lump onto the lower mold forming surface, etc. A glass lump can also be obtained.

下型に受け取られた熔融ガラス塊は、下型上で風圧を加えて浮上させながら、下型の移動中に冷却する。工程(2-1)および(3)を経てプレス成形品を調製する場合には、下型の移動中に冷却して所定粘度に調整する。この場合、下型の成形面はプレスによってガラスに当該表面の形状を転写する成形面となっており、平滑な面であり、さらに、熔融ガラス塊に風圧を加えて浮上させるためのガスを噴出する複数のガス噴出口が設けられている。また、工程(2-2)を経てプレスすることなく成形品を調製する場合には、下型に受け取られた熔融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却し、かつプレスすることなく前記風圧による浮上により所定の形状に成形する。この場合、下型の成形面は、プレスすることがないのでガラスに当該表面の形状を転写する成形面となっている必要はないが、ガラス塊が一時的または瞬間的に接触することがあり得るので、平滑な面であり、さらに、熔融ガラス塊に風圧を加えて浮上させるためのガスを噴出する複数のガス噴出口が設けられている。   The molten glass block received in the lower mold is cooled during the movement of the lower mold while being floated by applying wind pressure on the lower mold. When preparing a press-molded product through steps (2-1) and (3), it is cooled to a predetermined viscosity by cooling during the movement of the lower mold. In this case, the molding surface of the lower mold is a molding surface that transfers the shape of the surface to the glass by pressing, and is a smooth surface. Further, a gas for blowing up the molten glass lump by applying wind pressure is blown out. A plurality of gas outlets are provided. In addition, when preparing a molded product without pressing through the step (2-2), while the lower mold is moving, the molten glass lump received in the lower mold is floated by applying wind pressure on the lower mold. Then, it is molded into a predetermined shape by floating with the wind pressure without pressing. In this case, the molding surface of the lower mold does not need to be pressed, so it does not have to be a molding surface that transfers the shape of the surface to the glass, but the glass lump may contact temporarily or momentarily. Therefore, it has a smooth surface, and is further provided with a plurality of gas jets for jetting gas for applying a wind pressure to the molten glass lump to float.

一般に、熔融ガラス塊から熱間成形品を製造するに際して、成形型の温度を熔融ガラス塊との融着を防止できる温度に保つと、熔融ガラス塊と成形型の温度差は極めて大きくなる。このように熔融ガラス塊に比べて低温に保たれている成形型に熔融ガラス塊が直接触れると、接触部分においてガラスが局部的に冷却され、収縮するため、ガラス表面にシワが生じて滑らかな表面をもつ熱間成形品を得ることができなくなるおそれがある。さらに温度が低下したガラスが成形型に直接触れると、カン割れと呼ばれる現象によりガラスが破損してしまうこともある。それに対し、本発明では浮上成形をするため、ガラスと下型との接触は低減されるため、上記のような問題を回避することができる。   Generally, when producing a hot-formed product from a molten glass lump, if the temperature of the mold is kept at a temperature that can prevent fusion with the molten glass lump, the temperature difference between the molten glass lump and the mold becomes extremely large. When the molten glass lump directly touches the mold that is kept at a lower temperature than the molten glass lump in this way, the glass is locally cooled and contracted at the contact portion, so that the glass surface is wrinkled and smooth. There is a possibility that a hot-formed product having a surface cannot be obtained. Further, when the glass whose temperature has been lowered directly touches the mold, the glass may be broken by a phenomenon called can cracking. On the other hand, in the present invention, since the floating molding is performed, the contact between the glass and the lower mold is reduced, so that the above-described problems can be avoided.

上記ガス噴出口から噴射するガスとしては、ガラスと反応しないガスを用いることが好ましく、具体的には、空気、窒素、不活性ガスなどを挙げることができる。また、当該ガスの量、圧力は、熔融ガラス塊を浮上成形することができ、かつ成形面で熔融ガラス塊が下型との融着を生じないように安定した状態を保つことができるように定めることが好ましい。成形するガラス塊の容量により噴出させるガスの圧力、流量は適宜調整することが出来る。具体的には、例えば、前記圧力は0.3〜0.5MPaの範囲、前記ガスの流量は毎分0.25〜0.45リットルの範囲とすることが好ましい。   As the gas ejected from the gas ejection port, a gas that does not react with glass is preferably used, and specific examples include air, nitrogen, inert gas, and the like. The amount and pressure of the gas can float the molten glass lump and maintain a stable state so that the molten glass lump does not cause fusion with the lower mold on the molding surface. It is preferable to define. The pressure and flow rate of the gas to be ejected can be appropriately adjusted depending on the volume of the glass block to be molded. Specifically, for example, the pressure is preferably in the range of 0.3 to 0.5 MPa, and the gas flow rate is preferably in the range of 0.25 to 0.45 liters per minute.

以下、成形面上の熔融ガラス塊の上方に面した表面を上面、成形面に対向する面を下面と定義する。   Hereinafter, the upper surface of the molten glass block on the molding surface is defined as the upper surface, and the surface facing the molding surface is defined as the lower surface.

下型の成形面に供給されたガラス塊は浮上状態にて冷却され、工程(2-1)では、プレス成形に適した所定粘度になるよう粘度調整がなされる。分離した熔融ガラス塊の粘度(所定粘度)は、103ポアズから104.4ポアズになるように冷却調整することが、所望の形状にプレス成形が比較的容易にできるという観点から好ましい。 The glass lump supplied to the molding surface of the lower mold is cooled in a floating state, and in step (2-1), the viscosity is adjusted so as to have a predetermined viscosity suitable for press molding. The viscosity (predetermined viscosity) of the separated molten glass lump is preferably adjusted by cooling so as to be from 10 3 poise to 10 4.4 poise from the viewpoint that press molding can be relatively easily performed to a desired shape.

工程(2-1)で所定粘度に調整した熔融ガラス塊は、工程(3)で上型を用いてプレス成形する。   The molten glass block adjusted to a predetermined viscosity in step (2-1) is press-molded using the upper mold in step (3).

プレス成形は、下型の上方で待機する上型を下降して下型とともに成形面上のガラス塊をプレスすることで行う。プレスによりガラス塊全体が成形されるとともに、ガラス塊上面に上型の成形面が転写され、下型の成形面表面がガラス塊下面に転写される。下型上面の外周と上型下面の外周とは、例えば、嵌合する構造になっており、プレス成形に先立ち下型と上型を嵌合して下型成形面の中心と上型成形面の中心を位置合せするとともに、下型成形面と上型成形面とが正対するようにしてからガラス塊をプレスする。このとき、下型のガス噴出口に供給されるガスの圧力は、ガラスがガス噴出口に進入しない程度の圧力にしてガラスにガス圧による窪みが生じないようにする。プレス成形後、上型からガラスを離型し、上型を上方に退避する。その後、成形したガラス塊を下型成形面上で浮上した状態で更に冷却する。   The press molding is performed by lowering the upper mold waiting above the lower mold and pressing the glass lump on the molding surface together with the lower mold. The entire glass lump is molded by pressing, the molding surface of the upper mold is transferred to the upper surface of the glass lump, and the molding surface of the lower mold is transferred to the lower surface of the glass lump. The outer periphery of the upper surface of the lower mold and the outer periphery of the lower surface of the upper mold are, for example, a structure to be fitted, and the center of the lower mold molding surface and the upper mold molding surface by fitting the lower mold and the upper mold prior to press molding. The glass lump is pressed after aligning the centers of the molds so that the lower mold surface and the upper mold surface face each other. At this time, the pressure of the gas supplied to the lower gas jet port is set to a pressure that does not allow the glass to enter the gas jet port so that the glass is not depressed by the gas pressure. After press molding, the glass is released from the upper die, and the upper die is retracted upward. Thereafter, the molded glass lump is further cooled in a state where it floats on the lower mold forming surface.

上記のように、工程(3)で上型を用いてプレス成形するが、プレス成形前にプレス成形用の定位置で、下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に上型を用いてプレス成形することが好ましい。熔融ガラス塊と非接触での位置合せは、熔融ガラス塊に上側(もしくは位置矯正部材)から風圧を加えることにより行うことができる。このときの噴出ガス圧力は、例えば、0.15〜0.5MPaの範囲とし、噴出ガス流量は、例えば、毎分0.15〜0.45リットルの範囲とすることが好ましい。   As described above, press molding is performed using the upper die in the step (3), but it is positioned at a fixed position for press molding before press molding, and aligned with a predetermined position on the molding surface of the lower die, and positioned. After combining, it is preferable to press-mold using the upper die. Positioning without contact with the molten glass lump can be performed by applying wind pressure to the molten glass lump from the upper side (or position correcting member). At this time, the jet gas pressure is preferably in the range of 0.15 to 0.5 MPa, for example, and the jet gas flow rate is preferably in the range of 0.15 to 0.45 liters per minute, for example.

工程(2-2)における下型の移動中の、熔融ガラス塊の風圧による浮上させながらの冷却と、プレスすることなく風圧による浮上による所定形状への成形は、以下のようにして行うことができる。
例えば、下型として、多孔質材でガラス塊を載せる凹部を形成し、多孔質材を通してガスを噴出する成形型を使用し、前記ガスの噴出により凹部上のガラス塊に風圧を加えて浮上させる方法、あるいはガラス塊を載せる凹部に複数の細孔からなるガス噴出口を有する成形型を使用し、前記細孔からのガス噴出により凹部上のガラス塊に風圧を加えて浮上させる方法などの方法がある。
During the movement of the lower mold in the step (2-2), the molten glass lump is cooled while being floated by the wind pressure, and is formed into a predetermined shape by being lifted by the wind pressure without pressing as follows. it can.
For example, as a lower mold, a concave part for placing a glass lump with a porous material is formed, and a molding die that ejects gas through the porous material is used, and by blowing the gas, wind pressure is applied to the glass lump on the concave part to float. A method such as a method, or a method in which a molding die having a gas ejection port composed of a plurality of pores is used in a concave portion on which a glass lump is placed, and the glass mass on the concave portion is floated by blowing air from the pores. There is.

浮上のためのガス噴出口から上方に向けて噴出されるガスは、清浄な窒素ガス、空気あるいは不活性ガスであることができる。噴出ガスの流量は、例えば、成形型の凹部内でガラス塊が安定した浮上状態が維持されるのに十分な値に設定すればよい。成形型の凹部上では軟化状態のガラス塊が冷却、固化する過程で所望形状のガラス塊に成形される。   The gas ejected upward from the gas outlet for levitation can be clean nitrogen gas, air, or an inert gas. The flow rate of the ejection gas may be set to a value sufficient to maintain a stable floating state of the glass lump in the concave portion of the mold, for example. On the concave portion of the mold, the softened glass lump is formed into a glass lump of a desired shape in the process of cooling and solidifying.

さらに、ガス噴出口へ供給するガスの温度は、次の点に留意して調整する。まず、熔融ガラスが成形型の凹部に融着しないよう、噴出ガスによって成形型が加熱されない温度とする。そのため、供給ガスの温度を300℃以下とすることが好ましい。成形対象のガラスの性質、プリフォームの重量などによって−50〜300℃の範囲でガスの温度を調整することが好ましい。   Furthermore, the temperature of the gas supplied to the gas outlet is adjusted in consideration of the following points. First, the temperature at which the mold is not heated by the jet gas is set so that the molten glass is not fused to the recess of the mold. Therefore, it is preferable that the temperature of the supply gas is 300 ° C. or less. It is preferable to adjust the gas temperature in the range of −50 to 300 ° C. depending on the properties of the glass to be molded, the weight of the preform, and the like.

なお、成形型は循環使用するので、ガラスからの熱伝導によって成形型の温度が上昇するのを防止するため、成形型を冷却する機構を設けるようにしてもよい。   Since the mold is circulated, a mechanism for cooling the mold may be provided in order to prevent the temperature of the mold from rising due to heat conduction from the glass.

このようにして、工程(3)または工程(2-2)にて、回転対称形状の熱間成形品を次々に成形することができる。工程(3)または工程(2-2)において、所定温度に冷却された成形品は、下型成形面から取り出され、さらにアニール工程に付すこともできる。   In this way, in the step (3) or the step (2-2), a rotationally symmetric hot-formed product can be formed one after another. In step (3) or step (2-2), the molded product cooled to a predetermined temperature can be taken out from the lower mold surface and further subjected to an annealing step.

本発明においては、下型成形面から取り出す前に、成形品を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に取り出しを行う。成形品と非接触での位置合せは、成形品に上側(もしくは位置矯正部材)から風圧を加えることにより行うことができる。このときの噴出ガス圧力は、例えば、0.15〜0.5MPaの範囲とし、噴出ガス流量は、例えば、毎分0.15〜0.45リットルの範囲とすることが好ましい。   In the present invention, before removing from the molding surface of the lower mold, the molded product is positioned in a non-contact manner at a predetermined position on the molding surface of the lower mold. Non-contact alignment with the molded product can be performed by applying wind pressure to the molded product from the upper side (or position correcting member). At this time, the jet gas pressure is preferably in the range of 0.15 to 0.5 MPa, for example, and the jet gas flow rate is preferably in the range of 0.15 to 0.45 liters per minute, for example.

以下、上記成形品の位置合せについて図面を参照して説明する。
図1のように位置合わせ装置の回転アーム10の先端に多孔質体で構成した位置矯正部材11を設ける。成形面21と対向する位置矯正部材11の位置矯正面11aは、凹面とし、成形品Gの上面よりも大きくし、成形面Gの上面全域を覆うことができる大きさにしてある。位置矯正部材11の背面11b(位置矯正面11aの裏面)には回転アーム内に設けたガス流路15を通して空気、窒素、不活性ガスなどが供給される。空気、窒素、不活性ガスなどは多孔質体である位置矯正部材11を通って位置矯正面11aから均等に噴出している。位置矯正はこの位置において位置矯正部材11から回転アームの軸12までの部分を昇降装置13で下降させることにより行なう。
Hereinafter, the alignment of the molded product will be described with reference to the drawings.
As shown in FIG. 1, a position correcting member 11 made of a porous body is provided at the tip of the rotary arm 10 of the alignment apparatus. The position correction surface 11a of the position correction member 11 facing the molding surface 21 is a concave surface that is larger than the upper surface of the molded product G and is large enough to cover the entire upper surface of the molding surface G. Air, nitrogen, an inert gas, or the like is supplied to the back surface 11b of the position correction member 11 (the back surface of the position correction surface 11a) through a gas flow path 15 provided in the rotary arm. Air, nitrogen, inert gas, and the like are uniformly ejected from the position correction surface 11a through the position correction member 11 which is a porous body. Position correction is performed by lowering the portion from the position correction member 11 to the shaft 12 of the rotary arm by the lifting device 13 at this position.

図2に、位置合わせ装置の動作説明図を示す。(A)では、下型20の成形面21の中心の真上に位置矯正面11aの中心が位置するように位置合せをする。(B)では、この状態で置合わせ装置の昇降装置13を作動させて位置矯正部材11を鉛直下方に移動して位置矯正面11aを成形面の成形品Gの上面に近づける。   FIG. 2 shows an operation explanatory diagram of the alignment apparatus. In (A), alignment is performed so that the center of the position correction surface 11a is positioned directly above the center of the molding surface 21 of the lower mold 20. In (B), in this state, the lifting device 13 of the aligning device is operated to move the position correction member 11 vertically downward to bring the position correction surface 11a closer to the upper surface of the molded product G on the molding surface.

この操作によって、図3の(A)に示されるように、成形品Gが成形面21の中央からずれていると、ずれている側で、その反対側より成形品Gの上面と位置矯正面11aの距離が近くなる。そうすると、位置矯正面11aから噴出するガスから受ける風圧が、成形品Gのずれている側で大きくなり、成形品Gが成形面21中心に戻されて成形品Gの中心が成形面21の中心に一致するようになる。このようにして下型20の成形面21上での成形品Gの位置を矯正した後、位置合わせ装置の昇降装置13を作動させて位置矯正部材11を上昇させ、回転アーム10を回転して下型上方から位置矯正部材11を退避させる。この一連の操作によって浮上中に揺れていた成形品の揺れを抑えることもできる。   By this operation, as shown in FIG. 3 (A), when the molded product G is displaced from the center of the molding surface 21, the upper surface and the position correction surface of the molded product G from the opposite side on the shifted side. 11a is closer. Then, the wind pressure received from the gas ejected from the position correction surface 11a increases on the side where the molded product G is displaced, the molded product G is returned to the center of the molded surface 21, and the center of the molded product G is the center of the molded surface 21. To match. After correcting the position of the molded product G on the molding surface 21 of the lower mold 20 in this way, the positioning device 11 is moved up by operating the lifting device 13 of the alignment device, and the rotary arm 10 is rotated. The position correcting member 11 is retracted from above the lower mold. By this series of operations, it is possible to suppress the shaking of the molded product that has been shaking during the ascent.

引き続いて、(C)に示すように、成形型20の上方で待機する搬送ロボット30の先端に設けた吸引ノズル31の先端を成形品Gの上面に近づけ、吸引ノズル31の先端に成形品Gを吸引保持し、成形型20から取り出す。取り出した成形品Gは、適宜、アニールすることができる。   Subsequently, as shown in (C), the tip of the suction nozzle 31 provided at the tip of the transfer robot 30 waiting above the mold 20 is brought close to the upper surface of the molded product G, and the molded product G is placed at the tip of the suction nozzle 31. Is sucked out and removed from the mold 20. The removed molded product G can be appropriately annealed.

位置矯正操作は取り出し位置に停留中のガラス塊に対して行なうことが好ましい。こうすることにより、位置矯正がなされ、揺れも収まったガラス塊の上面に吸着ノズルが密着させ、ガラス塊を成形型からより確実に取り出すことができる。   It is preferable to perform the position correction operation on the glass block that is stopped at the take-out position. By doing so, the suction nozzle is brought into close contact with the upper surface of the glass lump which has been corrected for position and the shaking is settled, and the glass lump can be taken out from the mold more reliably.

図3に例示した熱間成形品の形状は、下面および上面がともに凸面のもの(プレスすることなしに成形することもできる。)である。成形型上の熱間成形品を平面視したときの外周部は、非浮上状態でも成形型に接していない。こうした形状の成形品は、外周部が成形型により規制されていないため、成形型移送時にガラス塊が揺れやすく、成形型の凹部上の適正な位置からずれ易い。このように、非浮上状態で下面は成形型と接するが、外周部は成形型と接しない形状を有する熱間成形品の製造に本発明は特に好適である。   The shape of the hot-formed product illustrated in FIG. 3 is one having a convex bottom surface and top surface (can be molded without pressing). The outer peripheral portion when the hot molded product on the mold is viewed in plan is not in contact with the mold even in a non-floating state. Since the outer peripheral portion of the molded product having such a shape is not regulated by the molding die, the glass lump is easily shaken when the molding die is transferred, and is easily displaced from an appropriate position on the concave portion of the molding die. As described above, the present invention is particularly suitable for manufacturing a hot-formed product having a shape in which the lower surface is in contact with the molding die in a non-floating state but the outer peripheral portion is not in contact with the molding die.

熱間成形品のその他の形状としては、下面が凸面、上面が平面の回転対称形状の熱間プレス成形品、下面が凸面、上面が凹面の回転対称形状の熱間プレス成形品、下面が凸面、上面が平面で中央に凹部がある回転対称形状の熱間プレス成形品など各種形状を例示することができるが、これら形状の熱間プレス成形品の位置矯正に用いる位置強制部材の位置矯正面も、凹面とし、ガラス塊上面の全域を覆うことができる大きさにすることが好ましい。各熱間成形品ともカン、割れなどの破損はなく、高品質の成形品を得ることができる。   Other shapes of the hot-formed product include a hot press-formed product having a rotationally symmetric shape with a convex bottom surface and a flat top surface, a hot press-molded product having a rotationally symmetrical shape with a convex bottom surface and a concave top surface, and a convex bottom surface. Examples of various shapes such as a rotationally symmetric hot press-molded product having a flat upper surface and a concave portion in the center can be exemplified, but the position correction surface of the position forcing member used for correcting the position of the hot press-formed product of these shapes Also, it is preferable to make it a concave surface so as to cover the entire upper surface of the glass lump. Each hot-formed product has no damage such as cans and cracks, and a high-quality molded product can be obtained.

熱間成形品は、精密プレス成形用プリフォームまたは、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材であることができる。熱間成形品が、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材である場合、作製したガラス母材は、少なくとも研磨を含む工程により精密プレス成形用プリフォームに加工して、精密プレス成形用プリフォームを製造することかできる。熱間成形品をアニールした後に、表面を研磨してプリフォームに仕上げることができる。熱間プレス成形品の形状が回転対称形状になっているため、回転対称形状のプリフォームを研磨で容易に作ることができる。   The hot-formed product can be a precision press-molding preform or a glass base material processed into a precision press-molding preform by a method including polishing. When the hot-formed product is a glass base material processed into a precision press-molding preform by a method including polishing, the produced glass base material is processed into a precision press-molding preform by a process including at least polishing. Thus, a precision press-molding preform can be manufactured. After annealing the hot formed product, the surface can be polished to finish into a preform. Since the shape of the hot press-formed product is rotationally symmetric, a rotationally symmetric preform can be easily made by polishing.

さらに、本発明の方法により作製したプリフォームを精密プレス成形することで、光学素子を製造することもできる。精密プレス成形による光学素子の製造は、公知の方法により実施することができる。プリフォームを精密プレス成形して、凹メニスカスレンズ、凸メニスカスレンズ、両凹レンズなどの各種非球面レンズを作製することができる。このようにして得られるレンズは、優れた面精度を備え、偏肉などの不具合は見られないものである。   Furthermore, an optical element can also be manufactured by carrying out precision press molding of the preform produced by the method of the present invention. Production of an optical element by precision press molding can be performed by a known method. Various preforms such as a concave meniscus lens, a convex meniscus lens, and a biconcave lens can be produced by precision press molding the preform. The lens thus obtained has excellent surface accuracy and does not show defects such as uneven thickness.

以下、本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例
図3を参照しながら実施例について説明する。インデックス回転するターンテーブルの回転軸を中心とする円周上に等間隔に12個の下型を配置した成形機を使用する。
Example An example will be described with reference to FIG. A molding machine is used in which twelve lower molds are arranged at equal intervals on the circumference around the rotation axis of the turntable that rotates with the index.

図4は熔融ガラスからプリフォームを成形する成形装置の動作をタイムチャートとして示したものである。
上記装置の動作を説明する都合上、下型を上下動して熔融ガラスを分離する機構(装置名称「熔融ガラス分離」)、下型を搬送するターンテーブルをインデックス回転させる機構(装置名称「成形機インデックス」)、固化したガラス塊を負圧により吸着する機構(装置名称「吸着ノズル」)、固化したガラス塊を成形型より取り出し、アニール工程へ搬送する負圧機構付吸着ノズルを備えた機構(装置名称「搬送装置」)、固化したガラス塊を下型の成形面上の所定位置に非接触で位置合せするために多孔質よりガスを噴出する機構(装置名称「位置矯正部材」)、下型停留位置の真上から退避させる機構(装置名称「位置矯正装置90度旋回アーム」)、上記多孔質体を上下方向に移動する機構(装置名称「位置矯正装置下降用シリンダ」)に分ける。
FIG. 4 is a time chart showing the operation of a molding apparatus for molding a preform from molten glass.
For the purpose of explaining the operation of the above device, a mechanism for moving the lower mold up and down to separate the molten glass (device name “melted glass separation”) and a mechanism for rotating the turntable carrying the lower mold (device name “molding”). Machine index ”), a mechanism that adsorbs the solidified glass lump by negative pressure (device name“ adsorption nozzle ”), a mechanism equipped with a suction nozzle with a negative pressure mechanism that takes out the solidified glass lump from the mold and transports it to the annealing process (Device name “transport device”), a mechanism (device name “position correction member”) for ejecting gas from the porous body in order to align the solidified glass lump with a predetermined position on the molding surface of the lower mold in a non-contact manner, A mechanism for retracting from directly above the lower mold stop position (device name “position correction device 90-degree swivel arm”), a mechanism for moving the porous body in the vertical direction (device name “position correction device lowering cylinder”) Divided into).

タイムチャート最上段の装置名称「成形機起動」は、成形装置全体のメインスイッチのON・OFFを示すものである。最初に装置名称「成形機起動」をOFFからONにして成形装置を起動する。   The apparatus name “start molding machine” at the top of the time chart indicates ON / OFF of the main switch of the entire molding apparatus. First, start the molding device by turning the device name “Start molding machine” from OFF to ON.

図5に示すターンテーブルをインデックス回転してテーブルが停止したタイミングを起点とし、前記テーブルの次のインデックス回転を行い、テーブルが停止するまでの時間を1タクトと定義し、hと表す。すなわち、1タクトとは、下型が停留位置に停止してから、次の停留位置に移送されて停止するまでの時間に相当する。本実施例では、1タクトを6920ミリ・秒に設定している。   Starting from the timing when the table is stopped by index rotation of the turntable shown in FIG. 5, the next index rotation of the table is performed, and the time until the table stops is defined as one tact, which is represented as h. That is, one tact corresponds to the time from when the lower mold stops at the stop position until it is transferred to the next stop position and stopped. In this embodiment, one tact is set to 6920 milliseconds.

下型が流出する熔融ガラスの下方に停留位置1(定位置)に停止してから、装置名称「熔融ガラス分離」をOFFからONにし、下型を上昇し、上昇位置で保持して熔融ガラスの下端を受ける。連続して流出する熔融ガラスが下型上に溜まり、熔融ガラスのガラス流出口と下型の間には表面張力によるくびれが生じる。   After stopping at the stopping position 1 (fixed position) below the molten glass from which the lower mold flows out, turn the device name “molten glass separation” from OFF to ON, raise the lower mold, and hold the molten glass at the raised position. Receive the bottom edge. The molten glass that continuously flows out accumulates on the lower mold, and constriction due to surface tension occurs between the glass outlet of the molten glass and the lower mold.

上記テーブルが停止してから6120ミリ・秒経過した時点で「熔融ガラス分離」をONからOFFにし、下型を急降下させると、上記くびれ部分より下の熔融ガラスが分離して下型上に熔融ガラス塊を得ることができる。次に「成形機インデックス」をOFFからONにしてターンテーブルを回転軸のまわりに30°回転し、停止させる。   When 6120 milliseconds · second have passed since the table stopped, turning “melting glass separation” from ON to OFF and dropping the lower mold rapidly, the molten glass below the constricted part separates and melts onto the lower mold. A glass lump can be obtained. Next, the “molding machine index” is turned from OFF to ON, and the turntable is rotated 30 ° around the rotation axis and stopped.

本実施例では、熔融ガラス塊を受け取った位置から9番目の停留位置10(取り出し位置)でガラス塊の位置合わせを行った。成形機を起動後、熔融ガラス分離動作を9回行ない、停留位置10にインデックスで割り出された成形型が停止する。30m秒(ミリ・秒)のタイミングの後「位置矯正装置下降用シリンダ」を480m秒(ミリ・秒)下降させる。30+480=510m秒(ミリ・秒)後、「位置矯正装置下降用シリンダ」をOFFにして位置矯正部材を元の高さまで上昇させ、下型が取り出し位置に停止してから530m秒経過後、「位置矯正装置90度旋回アーム」をONにして、位置矯正部材を保持するアーム10を90°旋回させて位置矯正部材を取り出し位置上方から水平方向に移動、退避させる。このようにして位置矯正部材とその保持、移動機構がプリフォームの取り出しに邪魔にならないようにした上で、570m秒後に搬送装置の吸着ノズルを成形型上方まで移動させ負圧を発生させてプリフォームを吸着しアニール工程へ搬送する。   In this example, the glass lump was aligned at the ninth stop position 10 (takeout position) from the position where the molten glass lump was received. After starting the molding machine, the molten glass separation operation is performed nine times, and the molding die indexed at the stop position 10 is stopped. After the timing of 30 milliseconds (milliseconds), the “position correction device lowering cylinder” is lowered 480 milliseconds (milliseconds). 30 + 480 = 510 msec (milliseconds) later, turn off the “position correction device lowering cylinder” and raise the position correction member to its original height, and 530 msec after the lower mold stops at the take-out position Then, the “position correcting device 90-degree turning arm” is turned ON, the arm 10 holding the position correcting member is turned 90 °, and the position correcting member is taken out and moved horizontally from the upper position. In this way, the position correcting member and its holding and moving mechanism do not interfere with the removal of the preform, and after 570 msec, the suction nozzle of the transfer device is moved to the upper side of the mold to generate a negative pressure. The reform is adsorbed and transported to the annealing process.

後に「位置矯正装置90度旋回アーム」をOFFにして位置矯正部材を取り出し位置上方に戻す。その後、「成形機インデックス」をONにしてターンテーブルを30°回転させて各下型を次の停留位置に移動させる。   Later, the “position correction device 90-degree turning arm” is turned OFF, and the position correction member is taken out and returned to the upper position. Thereafter, the “molding machine index” is turned ON, the turntable is rotated by 30 °, and each lower mold is moved to the next stopping position.

このような動作を繰り返し行い、プリフォームを位置矯正して固化したガラス塊を順に吸着しアニール工程へ搬送する。   Such an operation is repeated, and the glass lump solidified by correcting the position of the preform is sequentially adsorbed and conveyed to the annealing process.

装置名称「位置矯正装置90度旋回アーム」は、図1の10で示される回転アームである。このアームがOFFの場合、位置矯正部材(多孔質体)11は取り出し位置上方にある。図2の(A)に示す状態である。この状態で「位置矯正装置下降用シリンダ」をONにし下降させると、ガスを噴出する位置矯正部材が下降し、下型上のガラス塊に接近して成形品を非接触で位置合せする。図2の(B)に示す状態である。「位置矯正装置下降用シリンダ」をONにするタイミングは、下型が取り出し位置に停止してから30m秒(ミリ・秒)後である。下型が取り出し位置に停止してから30+480=510m秒(ミリ・秒)後、「位置矯正装置下降用シリンダ」をOFFにして位置矯正部材を元の高さまで上昇させ、下型が取り出し位置に停止してから530m秒経過後、「位置矯正装置90度旋回アーム」をONにして、位置矯正部材を保持するアーム10を90°旋回させて位置矯正部材を取り出し位置上方から水平方向に移動、退避させる。このようにして位置矯正部材とその保持、移動機構が取り出しに邪魔にならないようにした上で、成形品上面を吸着して上方に持ち上げる。図2の(C)に示す状態である。   The device name “position correcting device 90-degree turning arm” is a rotating arm indicated by 10 in FIG. When this arm is OFF, the position correction member (porous body) 11 is above the take-out position. This is the state shown in FIG. In this state, when the “position correction device lowering cylinder” is turned on and lowered, the position correction member that ejects gas descends, approaches the glass block on the lower mold, and aligns the molded product in a non-contact manner. This is the state shown in FIG. The timing for turning on the “position correction device lowering cylinder” is 30 msec (milliseconds) after the lower mold stops at the take-out position. 30 + 480 = 510 msec (milliseconds) after the lower mold stops at the removal position, turn off the “position correction device lowering cylinder” and raise the position correction member to its original height, and the lower mold is removed. 530 msec after stopping at the position, the “position correction device 90 degree turning arm” is turned ON, the arm 10 holding the position correction member is turned 90 °, and the position correction member is taken out horizontally from above the position. Move and evacuate. In this way, the position correction member and its holding / moving mechanism do not interfere with the removal, and the upper surface of the molded product is sucked and lifted upward. This is the state shown in FIG.

取り出し後、アニール(徐冷)工程に移動し、徐冷する。成形品を取り出して空になった下型に再び熔融ガラス塊を供給して成形する。   After taking out, it moves to an annealing (slow cooling) process and cools slowly. The molded product is taken out and the molten glass lump is supplied again to the empty lower mold and molded.

このようにして上面が扁平、下面が凸面の回転体形状のプリフォームを成形した。図2の(C)の状態に於いて、成形品の搬送装置30の吸着ノズル31の中心を成形型の中心に予め教示しておくことで位置矯正装置により成形型の中心に位置を矯正されたプリフォームは数百回の動作に於いても取り出し不良などを起こさずに吸着されることを確認できた。   Thus, a rotating body-shaped preform having a flat upper surface and a convex lower surface was formed. In the state of FIG. 2 (C), the position of the suction nozzle 31 of the molded product conveying device 30 is preliminarily taught at the center of the mold, and the position is corrected at the center of the mold by the position correcting device. In addition, it was confirmed that the preform was adsorbed without causing a defective take-out even after several hundred operations.

このようにして得たプリフォームを公知の方法で精密プレス成形して偏肉のない凸メニスカス形状の非球面レンズを作製した。   The preform thus obtained was precision press-molded by a known method to produce a convex meniscus aspherical lens without uneven thickness.

(比較例)
「位置矯正装置90度旋回アーム」を常時ONにして、位置矯正部材をプレス位置上方から退避させた状態とした以外は、上記実施例と同じ条件で上面が扁平、下面が凸面のプリフォームを成形した。成形型に対してプリフォームが図3の位置矯正が行われる前の状態で搬送装置30の吸着ノズル31が下降しプリフォームを吸着ノズルの片側のエッジで押える状態がかなりの頻度で発生し取り出し不良が多発した。実施した硝材ではプリフォーム上面にはキズが発生しなかったが、硝材の種類によってはこの押し付けの動作によりキズになることもある。
(Comparative example)
A preform with a flat top surface and a convex bottom surface under the same conditions as in the above example, except that the “position correction device 90 ° swivel arm” is always ON and the position correction member is retracted from above the press position. Molded. Before the position correction of the preform shown in FIG. 3 is performed on the mold, the suction nozzle 31 of the transfer device 30 is lowered and the preform is pressed at one edge of the suction nozzle and is frequently taken out. Many defects occurred. In the implemented glass material, no scratch was generated on the upper surface of the preform. However, depending on the type of the glass material, this pressing operation may cause a scratch.

ガラスレンズ等の光学素子の製造分野に有用である。   This is useful in the field of manufacturing optical elements such as glass lenses.

本発明に使用する位置合わせ装置の一例。An example of the alignment apparatus used for this invention. 位置合わせ装置の動作説明図。Operation | movement explanatory drawing of a position alignment apparatus. 位置合わせの説明図。Explanatory drawing of alignment. 熔融ガラスからプリフォームを成形する成形装置の動作をタイムチャートとして示す。The operation | movement of the shaping | molding apparatus which shape | molds a preform from a molten glass is shown as a time chart. ターンテーブルの一例を示す説明図。Explanatory drawing which shows an example of a turntable.

Claims (7)

連続的または断続的に循環移動する複数の下型を用い、
(1)連続して流出する熔融ガラスから熔融ガラス塊を順次に分離して、分離した熔融ガラス塊を、上記複数の下型に定位置で受け取り、
(2-1)下型に受け取られた熔融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却して所定粘度に調整し、
(3)所定粘度に調整した下型上のガラス塊を、定位置で上型を用いてプレス成形し、その後、さらにプレス成形品を下型上で、下型の移動中に冷却するか、または、
(2-2)下型に受け取られた熔融ガラス塊を下型上で風圧を加えて浮上させながら、下型の移動中に冷却し、かつプレスすることなく前記風圧による浮上により所定の形状に成形し、
(4)(3)のプレス成形品または(2-2)の成形品を定位置で下型から取り出すことを含む、熱間成形品の製造方法であって、
前記下型からの取り出しの前に、前記成形品を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に取り出しを行う
ことを特徴とする熱間成形品の製造方法。
Use multiple lower molds that circulate continuously or intermittently,
(1) The molten glass lump is sequentially separated from the molten glass that continuously flows out, and the separated molten glass lump is received at a fixed position by the plurality of lower molds,
(2-1) While the molten glass block received in the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold and adjusted to a predetermined viscosity,
(3) The glass lump on the lower mold adjusted to a predetermined viscosity is press-molded using the upper mold at a fixed position, and then the press-molded product is further cooled on the lower mold while moving the lower mold, Or
(2-2) While the molten glass block received by the lower mold is floated by applying wind pressure on the lower mold, it is cooled during the movement of the lower mold, and is brought into a predetermined shape by floating by the wind pressure without pressing. Molded,
(4) A method for producing a hot-formed product, comprising removing the press-formed product of (3) or the molded product of (2-2) from the lower mold at a fixed position,
Prior to taking out from the lower mold, the molded product is aligned in a non-contact manner at a predetermined position on the molding surface of the lower mold, and the hot mold product is taken out after being aligned. .
前記非接触の位置合せは、前記成形品に上型から風圧を加えることにより行う請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the non-contact alignment is performed by applying wind pressure from an upper mold to the molded product. (3)におけるプレス成形前にプレス成形用の定位置で、所定粘度に調整した熔融ガラス塊を下型の成形面上の所定位置に非接触で位置合せし、位置合せした後に上型を用いてプレス成形する請求項1または2に記載の製造方法。   Prior to press molding in (3), the molten glass lump adjusted to the predetermined viscosity at the fixed position for press molding is aligned with the predetermined position on the molding surface of the lower mold in a non-contact manner, and the upper mold is used after alignment. The manufacturing method according to claim 1 or 2, wherein press molding is performed. (2-1)における熔融ガラス塊の前記所定粘度は103ポアズから104.4ポアズの範囲である請求項1〜3のいずれかに記載の製造方法。 The method according to any one of claims 1 to 3, wherein the predetermined viscosity of the molten glass gob in (2-1) is in the range of 10 3 poise to 10 4.4 poise. 熱間成形品が、精密プレス成形用プリフォームまたは、研磨を含む方法により精密プレス成形用プリフォームに加工されるガラス母材である請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the hot-formed product is a precision press-molding preform or a glass base material processed into a precision press-molding preform by a method including polishing. 請求項5に記載の方法により作製したガラス母材を少なくとも研磨を含む工程により精密プレス成形用プリフォームに加工する精密プレス成形用プリフォームの製造方法。   A method for producing a precision press-molding preform, wherein the glass base material produced by the method according to claim 5 is processed into a precision press-molding preform by a process including at least polishing. 請求項1〜6のいずれかに記載の方法により作製したプリフォームを精密プレス成形する光学素子の製造方法。   The manufacturing method of the optical element which carries out precision press molding of the preform produced by the method in any one of Claims 1-6.
JP2008017136A 2008-01-29 2008-01-29 Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element Pending JP2009179486A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008017136A JP2009179486A (en) 2008-01-29 2008-01-29 Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element
CN200910008442XA CN101497491B (en) 2008-01-29 2009-01-23 Method for manufacturing finished product, method for manufacturing preformed member for precise stamping and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017136A JP2009179486A (en) 2008-01-29 2008-01-29 Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012203909A Division JP5566432B2 (en) 2012-09-18 2012-09-18 Method for producing hot-formed product, method for producing precision press-molding preform, and method for producing optical element

Publications (1)

Publication Number Publication Date
JP2009179486A true JP2009179486A (en) 2009-08-13

Family

ID=40944795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017136A Pending JP2009179486A (en) 2008-01-29 2008-01-29 Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element

Country Status (2)

Country Link
JP (1) JP2009179486A (en)
CN (1) CN101497491B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063410A (en) * 2013-09-24 2015-04-09 日本電気硝子株式会社 Method for manufacturing glass material and device for manufacturing glass material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8806893B2 (en) * 2011-02-18 2014-08-19 Hoya Corporation Manufacturing method of a glass blank for magnetic disk and manufacturing method of a glass substrate for magnetic disk
JP5654383B2 (en) * 2011-02-25 2015-01-14 Hoya株式会社 Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
CN102757168B (en) * 2011-04-27 2016-01-27 Hoya株式会社 Precise punch forming preformed glass part manufacture method and Optical element manufacturing method
JP6641923B2 (en) 2015-11-25 2020-02-05 日本電気硝子株式会社 Glass material manufacturing method and glass material manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001321A (en) * 1998-06-15 2000-01-07 Canon Inc Method for forming glass gob as glass optical element or blank for producing the same
JP2001019444A (en) * 1999-06-29 2001-01-23 Canon Inc Formation of optical device
JP2001163627A (en) * 1999-12-10 2001-06-19 Hoya Corp Method for manufacturing glass gob and apparatus for manufacturing the same
JP2005272194A (en) * 2004-03-24 2005-10-06 Hoya Corp Method for manufacturing preform for press molding, manufacturing apparatus, and method for manufacturing optical element
JP2007045696A (en) * 2005-07-13 2007-02-22 Hoya Corp Method of manufacturing preform for press molding and molding apparatus, preform for press molding and method of manufacturing optical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149400B4 (en) * 2001-10-06 2004-05-13 Schott Glas Method and device for the contactless shaping of molten glass items by means of gas levitation
JP4684014B2 (en) * 2005-06-06 2011-05-18 Hoya株式会社 Precision press molding preform manufacturing method and optical element manufacturing method
JP4346624B2 (en) * 2006-04-27 2009-10-21 Hoya株式会社 Method for producing glass molded body and method for producing optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001321A (en) * 1998-06-15 2000-01-07 Canon Inc Method for forming glass gob as glass optical element or blank for producing the same
JP2001019444A (en) * 1999-06-29 2001-01-23 Canon Inc Formation of optical device
JP2001163627A (en) * 1999-12-10 2001-06-19 Hoya Corp Method for manufacturing glass gob and apparatus for manufacturing the same
JP2005272194A (en) * 2004-03-24 2005-10-06 Hoya Corp Method for manufacturing preform for press molding, manufacturing apparatus, and method for manufacturing optical element
JP2007045696A (en) * 2005-07-13 2007-02-22 Hoya Corp Method of manufacturing preform for press molding and molding apparatus, preform for press molding and method of manufacturing optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063410A (en) * 2013-09-24 2015-04-09 日本電気硝子株式会社 Method for manufacturing glass material and device for manufacturing glass material

Also Published As

Publication number Publication date
CN101497491A (en) 2009-08-05
CN101497491B (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JP3929237B2 (en) Glass lump manufacturing method and manufacturing apparatus, glass molded product manufacturing method, and optical element manufacturing method
JP2009179486A (en) Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element
JP3974200B2 (en) Glass optical element molding method
JP4918182B2 (en) Manufacturing method and manufacturing apparatus for glass molded body, and manufacturing method for optical element
JP5566432B2 (en) Method for producing hot-formed product, method for producing precision press-molding preform, and method for producing optical element
JPH10338530A (en) Production of softened glass and floating holder
JP3974376B2 (en) Method for producing glass lump, method for producing glass molded product, and method for producing optical element
JPH0912317A (en) Production of glass optical element
JP5654383B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP5166011B2 (en) Method for manufacturing hot press-formed product, method for manufacturing precision press-molding preform, and method for manufacturing optical element
JP4460339B2 (en) Mold press molding apparatus and optical element manufacturing method
JP3712575B2 (en) Glass gob manufacturing method and manufacturing apparatus
WO2013118888A1 (en) Glass preform manufacturing method and glass preform, and optical device manufacturing method and optical device
JP2002012431A (en) Method of producing pressure molded body and device therefor
JP2970790B2 (en) Suction and transport method for optical element members
CN104066690A (en) Glass gob molding device, method for producing glass gob, method for producing glass molded product, and method for producing optical element
JP5919109B2 (en) Glass lump forming apparatus, glass lump manufacturing method, and glass optical element manufacturing method
JPH06157051A (en) Apparatus for producing pressed glass article and production process
JP6080394B2 (en) Method for producing glass molded body and mold for molding
JP2012236758A (en) Method for producing glass preform for precision press-molding, and method for producing optical element
JP6055714B2 (en) Glass lump manufacturing method, glass lump manufacturing apparatus, and glass molded product manufacturing method
JP4877743B2 (en) Method for producing glass molded body and method for producing optical element
JPH08133756A (en) Production of glass optical element
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113