JP5159007B2 - Manufacturing method of battery electrode plate - Google Patents

Manufacturing method of battery electrode plate Download PDF

Info

Publication number
JP5159007B2
JP5159007B2 JP2001140965A JP2001140965A JP5159007B2 JP 5159007 B2 JP5159007 B2 JP 5159007B2 JP 2001140965 A JP2001140965 A JP 2001140965A JP 2001140965 A JP2001140965 A JP 2001140965A JP 5159007 B2 JP5159007 B2 JP 5159007B2
Authority
JP
Japan
Prior art keywords
electrode plate
chamfered
punching
die
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001140965A
Other languages
Japanese (ja)
Other versions
JP2002343350A (en
Inventor
活徳 前川
勝 小林
英夫 峯
隆之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001140965A priority Critical patent/JP5159007B2/en
Publication of JP2002343350A publication Critical patent/JP2002343350A/en
Application granted granted Critical
Publication of JP5159007B2 publication Critical patent/JP5159007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Punching Or Piercing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は帯板状又は大形の電極板を打ち抜き加工して得られる電池用極板に関するものである。
【0002】
【従来の技術】
近年、各種機器の電源として使われるニッケル・カドミウム電池、ニッケル・水素電池などのアルカリ蓄電池においては、方形の極板を積層又は渦巻き状(スパイラル)に構成することにより高出力化と高信頼性を達成している。小型軽量化が進んで小型のものは各種ポータブル機器用に好適に適用され、また大型のものは産業用、各種移動用機器などに広く利用され始めている。
【0003】
従来、これら電池の極板の製造方法としては、正極または負極の活物質を主成分としたペーストを集電体となるフープ状や帯状の基板上に塗着、または充填してフープ状や帯状の電極板を形成し、この電極板を所定寸法に打ち抜き加工して極板を得る方法が知られている。
【0004】
具体例を図6を参照して説明すると、電極板21にはハッチング表示した活物質の塗工部22が、各極板24のリード部25となる非塗工部23を間に介在させて複数列形成されており、その非塗工部23にパンチ26とダイにて打ち抜き部27を加工するとともに塗工部22を剪断刃にて切断線28で切断することによって複数の極板24を得ている。また、極板24の形状としてはコーナー部の折れによる短絡を防止するために、塗工部22のコーナー部29を円弧形状に形成していた。
【0005】
【発明が解決しようとする課題】
しかしながら、極板24のコーナー部29を円弧状にした複数の極板24を歩留り良く打ち抜き形成するために極板24を互いに隣接させて打ち抜く場合、図6に示すように、円弧状のコーナー部29、29間に適当な間隔cを設けないと必要なパンチ強度が得られず強度不足のために欠け(チッピング)を生じ易く、また間隔cを形成する場合各極板24の活物質量を確保するため、その間隔cは極板24の側縁からコーナー部29の端までの距離dに比して小さくせざるを得ず、そのため狭幅で長く延びる部分ができるためにパンチ強度を得るのが困難であるという問題がある。
【0006】
このようにフープ状や帯板状の電極板21から所要の形状・寸法の極板24を打ち抜き加工する際には、切断カスとなる部分をできるだけ少なくして歩留りを良くすることが要求されるが、パンチの形状の観点からは強度不足による損傷を考慮して切断カスとなる部分を大きくしなければならないという問題がある。
【0007】
また、ダイ30側では、図7(a)に示すように、切断カスの詰まりを考慮して、打ち抜き穴31をパンチ嵌入穴31aの下部に2〜3倍の幅の空洞部31bを形成した構成としているが、ダイ30の強度が不足するという問題がある。また、ダイ30の強度を考慮して、図7(b)に示すように、パンチ嵌入穴31aの下部にテーパ状の空洞部31cを設けた構成としたものもあるが、切断カスが詰まり易く、ダイ30への負荷が大きくなり、ダイ30の寿命が短いという問題がある。
【0008】
本発明は、上記従来の問題点に鑑み、高い歩留りを確保できるとともに金型の長寿命化を図れ、安定的な製造が可能となる電池用極板及びその製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の電池用極板の製造方法は、上下動可能な上型と下型にて構成される打ち抜きプレス金型を用いて、帯板状又はフープ状の電極板から複数の極板を連続的に打ち抜き加工する電池用極板の製造方法であって、前記上型はパンチと切断進行方向の前方側に剪断刃を内蔵し、前記下型は前記パンチが嵌入する打ち抜き孔を有するダイと切断進行方向の前方側に剪断刃を内蔵し、極板の長手方向に極板同士の対辺を互いに共通辺として隣接させて打ち抜き加工する際に、極板の隣接方向に沿う一方の対辺を辺A、共通辺を辺Bとして、辺A、Bがつくるコーナー部を面取り形状とし、かつ、前記打ち抜き孔の下部に打ち抜き方向に段階的に孔寸法が大きくなる2段以上の階段状部を形成した下型を用いたものであり、コーナー部を面取り形状としたので極板の角折れによる短絡を防止することができるとともに、極板を隣接させかつコーナー部間に間隔を設けずに打ち抜き加工できて歩留り良く製造でき、かつパンチに狭幅で長く延びる部分を設ける必要がなく、金型の長寿命化を図れ、安定的な製造が可能となり、さらに金型寿命の向上により極板1枚当たりの金型費が削減され、結果として低コストの電池用極板を得ることができる。加えて、ダイに段階的に孔寸法が大きくなる打ち抜き穴を形成したので、切断カスの詰まりを防止しながら打ち抜き穴の強度を確保することができ、高い歩留りを確保できるとともに金型の長寿命化を図れることができる。
【0010】
また、A辺に対する面取り辺の傾斜角度を5〜45°とすると、パンチの強度をより安定的に確保できる。
【0011】
また、面取り辺とこの面取り辺の端と辺Bとの間の辺Aと平行な辺とによって台形状の切除部を形成し、この切除部の辺Aに沿う長さをa、辺Bに沿う長さをbとして、a>bとし、かつ辺Aに対する面取り辺の傾斜角度を5〜85°としても、同様にパンチの強度をより安定的に確保できる。
【0013】
【発明の実施の形態】
以下、本発明の電池用極板とその製造方法の一実施形態について、図1〜図5を参照して説明する。
【0014】
極板製造ラインの概略構成を示す図1において、1はフープ状の電極板であり、この電極板1を順次送り出しながら、打ち抜きプレス2にて極板3を連続的に打ち抜き形成し、その極板3を順次移載するように構成されている。
【0015】
打ち抜きプレス2は、図2に示すように、上下動可能な上型4と下型5にて構成され、上型4には切断カス6(図3参照)の打ち抜き形状に対応するパンチ20(図5参照)と剪断刃7を内蔵し、下型5は打ち抜き形状のパンチが嵌入する打ち抜き穴9を有するダイ8と剪断刃10を内蔵している。
【0016】
電極板1から打ち抜き形成する極板3と切断カス6の形状を図3に示す。本実施形態では、幅100mmの電極板1から、長さ100mm×幅46mmの極板3を、極板3、3間と両側にそれぞれ幅2mmと3mmの切断カス6を形成する状態で打ち抜き形成するもので、電極板1の長手方向には、極板3、3同士がその辺を共通にして互いに隣接し、切断カス6を形成せず、歩留り良く極板3を製造するようにしている。
【0017】
さらに、互いに辺を共通にして隣接する極板3、3の隣接方向に沿う一方の対辺を辺A、共通辺を辺Bとして、辺A、Bがつくるコーナー部を面取り形状の面取りコーナー部11としている。この面取りコーナー部11の面取り辺Cの辺Aに対する傾斜角θは、5〜45°に設定している。
【0018】
なお、図2、図3では極板3とパンチ及び切断カス6の形状が単純な例を示したが、図4に示すように、活物質の塗工部14の一側部に設けた非塗工部をリード部15として成る極板13の場合には、塗工部14側の一対のコーナー部は面取りコーナー部16とし、リード部15側の一対のコーナー部については必要に応じた所要の形状の切欠部17をリード部15の両端部に形成している。18はリード部15に形成した位置決め穴である。
【0019】
面取りコーナー部16においては、辺Aに対して傾斜した面取り辺Cとこの面取り辺Cの端と辺Bとの間の辺Aと平行な辺Dとによって台形状の切除部を形成し、その切除部の辺Aに沿う長さをa、辺Bに沿う長さをbとして、a>bとなるようにしている。この場合、面取り辺Cの辺Aに対する傾斜角度θは5〜85°に設定している。このような面取りコーナー部16の構成においても、同様にパンチの強度をより安定的に確保できる。
【0020】
また、下型5のダイ8の打ち抜き穴9には、図5に示すように、パンチ嵌入穴9aの下部に打ち抜き方向に段階的に孔寸法が大きくなる2段以上の階段状部19を形成し、切断カス6の詰まりを防止しつつ、打ち抜き穴9の強度を確保するようにしている。なお、図5中、20は上型4のパンチである。
【0021】
以上の構成によれば、極板3、13のコーナー部に面取りコーナー部11、16を設けているので、極板3、13の角折れによる短絡を防止することができる。また、極板3、13を隣接させて打ち抜き加工しているので、極板3、13を電極板1から歩留り良く製造できる。
【0022】
また、面取りコーナー部11、16としたことにより、極板3、13のコーナー部間に間隔を設けずに打ち抜き加工でき、極板3、13の活物質量の低減を抑制しつつ、パンチに狭幅で長く延びる部分を設ける必要がないために、上型4のパンチの長寿命化を図れる。特に、辺Aに対する面取りコーナー部11の面取り辺Cの傾斜角度θを5〜45°とし、または図4の面取りコーナー部16で、a>bとし、辺Aに対する面取り辺Cの傾斜角度θを5〜85°とすることにより、パンチの強度をより安定的に確保できる。
【0023】
また、ダイ8の打ち抜き孔9に打ち抜き方向に段階的に孔寸法が大きくなる2段以上の階段状部19を形成しているので、ダイ8に切断カス6の詰まりを防止しながら打ち抜き穴9の強度を確保することができる。
【0024】
実験例として、上述の図3の如く極板3を連続で打ち抜く、送り打ち抜き型の金型で極板3を作製する具体例において、従来例のように円弧状コーナー部(R形状)にしたものと、辺Aに対する面取り辺Cの傾斜角を4°、5°、45°、85°、86°にしたものについて、それぞれに対応する金型を用いて極板3を作製し、それぞれについて金型が損傷するまでの打ち抜き可能回数を目視により判定した。その結果を表1に示す。
【0025】
【表1】

Figure 0005159007
表1より、極板3のコーナー部を面取りコーナー部とすることにより、従来の円弧状コーナー部に対して傾斜角度が5〜45°で飛躍的に向上したことが分かる。
【0026】
以上のように、本実施形態の極板3、13によれば、高い歩留りを確保しながら金型の長寿命化を図れて安定的な製造が可能となり、金型寿命の向上により極板1枚当たりの金型費が削減され、結果として低コストの電池用極板を得ることができる。
【0027】
なお、以上の説明では、ニッケル水素蓄電池用の極板を例に説明したが、本発明の適用対象はこれに限定されず、打ち抜き加工される極板であれば、同様に適用することができる。
【0029】
【発明の効果】
本発明の電池用極板の製造方法によれば、極板の長手方向に極板同士の対辺を互いに共通辺として隣接させて打ち抜き加工する際に、極板の隣接方向に沿う一方の対辺を辺A、共通辺を辺Bとして、辺A、Bがつくるコーナー部を面取り形状とし、かつ打ち抜き方向に段階的に孔寸法が大きくなる2段以上の階段状部を形成した打ち抜き孔を有するダイを用いるので、上記作用効果を奏するとともに、切断カスの詰まりを防止しながら打ち抜き穴の強度を確保することができ、金型の長寿命化を図れることができる。
【図面の簡単な説明】
【図1】本発明の電池用極板の一実施形態における極板の製造ラインの概略構成図である。
【図2】同製造ラインの打ち抜きプレスの概略構成を示す斜視図である。
【図3】同実施形態における電極板からの極板と切断カスの打ち抜き状態の説明図である。
【図4】同実施形態における他の構成例の極板を示す平面図及び一部拡大図である。
【図5】同実施形態における打ち抜きプレスのパンチとダイの部分縦断面図である。
【図6】従来例の電極板から極板と切断カスを打ち抜く状態の説明図である。
【図7】従来例における打ち抜きプレスのパンチとダイの部分縦断面図である。
【符号の説明】
1 電極板
2 打ち抜きプレス
3、13 極板
6 切断カス
8 ダイ
9 打ち抜き穴
11、16 面取りコーナー部
19 階段状部
20 パンチ
A 極板の隣接方向に沿う辺
B 共通辺
C 面取り辺[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery electrode plate obtained by stamping a strip-like or large electrode plate.
[0002]
[Prior art]
In recent years, alkaline storage batteries such as nickel / cadmium batteries and nickel / hydrogen batteries, which are used as power sources for various devices, have high output and high reliability by forming rectangular plates in a stacked or spiral shape. Have achieved. As the size and weight have been reduced, the small size is suitably applied to various portable devices, and the large size has begun to be widely used for industrial and various mobile devices.
[0003]
Conventionally, as a method of manufacturing an electrode plate of these batteries, a paste mainly composed of a positive electrode or negative electrode active material is applied or filled on a hoop-like or belt-like substrate as a current collector to form a hoop-like or belt-like material. There is known a method of forming an electrode plate and punching the electrode plate to a predetermined size to obtain an electrode plate.
[0004]
A specific example will be described with reference to FIG. 6. An active material coating portion 22 indicated by hatching is provided on the electrode plate 21 with a non-coating portion 23 serving as a lead portion 25 of each electrode plate 24 interposed therebetween. A plurality of rows are formed, and the punched portion 27 is processed in the non-coated portion 23 with a punch 26 and a die, and the coated portion 22 is cut with a cutting line 28 with a shearing blade to form a plurality of electrode plates 24. It has gained. Further, as the shape of the electrode plate 24, the corner portion 29 of the coating portion 22 is formed in an arc shape in order to prevent a short circuit due to the bending of the corner portion.
[0005]
[Problems to be solved by the invention]
However, when punching the electrode plates 24 adjacent to each other in order to punch and form a plurality of electrode plates 24 having an arc shape in the corner portions 29 of the electrode plate 24 as shown in FIG. 6, as shown in FIG. If an appropriate distance c is not provided between 29 and 29, the required punch strength cannot be obtained, and the chipping (chipping) is liable to occur due to insufficient strength. In order to ensure this, the distance c must be made smaller than the distance d from the side edge of the electrode plate 24 to the end of the corner portion 29, and therefore, a narrow and long extending portion is formed, so that punch strength is obtained. There is a problem that it is difficult.
[0006]
Thus, when the electrode plate 24 having a required shape and size is punched from the hoop-shaped or strip-shaped electrode plate 21, it is required to improve the yield by minimizing the portion that becomes the cutting residue. However, from the viewpoint of the punch shape, there is a problem that a portion that becomes a cutting residue must be enlarged in consideration of damage due to insufficient strength.
[0007]
On the die 30 side, as shown in FIG. 7 (a), in consideration of clogging of cutting chips, the punching hole 31 is formed in the lower portion of the punch insertion hole 31a with a cavity 31b having a width of 2 to 3 times. Although it is configured, there is a problem that the strength of the die 30 is insufficient. In consideration of the strength of the die 30, as shown in FIG. 7B, there is a configuration in which a tapered cavity 31c is provided in the lower portion of the punch insertion hole 31a. There is a problem that the load on the die 30 becomes large and the life of the die 30 is short.
[0008]
SUMMARY OF THE INVENTION In view of the above-described conventional problems, the present invention has an object to provide a battery electrode plate and a method for manufacturing the same that can ensure a high yield, extend the life of a mold, and enable stable manufacturing. Yes.
[0009]
[Means for Solving the Problems]
The method for producing a battery electrode plate according to the present invention uses a stamping press die composed of an upper die and a lower die that can move up and down, and a plurality of electrode plates are continuously formed from a strip-like or hoop- like electrode plate. A method of manufacturing a battery electrode plate for punching, wherein the upper die incorporates a punch and a shearing blade on the front side in the cutting progress direction, and the lower die has a die having a punching hole into which the punch fits. A shearing blade is built in the front side of the cutting progress direction, and when punching with the opposite sides of the plates adjacent to each other as a common side in the longitudinal direction of the plates , one side along the adjacent direction of the plates is A, the common side is side B, the corner formed by sides A and B is chamfered, and a stepped portion having two or more steps in which the hole size gradually increases in the punching direction is formed below the punching hole. The lower mold is used and the corner is chamfered As a result, it is possible to prevent short-circuiting due to corner bending of the electrode plate, and to punch the electrode plate without making any gap between the corner portions and to produce it with a high yield, and to extend the punch with a narrow and long width It is possible to extend the life of the mold, enable stable production, and further reduce the mold cost per electrode plate by improving the mold life, resulting in low cost battery use. An electrode plate can be obtained. In addition, because the punched hole that increases the hole size stepwise is formed in the die, it is possible to ensure the strength of the punched hole while preventing clogging of the cutting residue, ensuring high yield and long life of the mold Can be achieved.
[0010]
Further, when the inclination angle of the chamfered side with respect to the A side is set to 5 to 45 °, the strength of the punch can be secured more stably.
[0011]
Further, a trapezoidal cut portion is formed by the chamfered side and a side parallel to the side A between the end of the chamfered side and the side B, and the length along the side A of the cut portion is defined as a and side B. Even if the length along the line is b, a> b, and the inclination angle of the chamfered side with respect to the side A is 5 to 85 °, the strength of the punch can be secured more stably.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a battery electrode plate and a method for producing the same according to the present invention will be described with reference to FIGS.
[0014]
In FIG. 1 showing a schematic configuration of an electrode plate production line, reference numeral 1 denotes a hoop-shaped electrode plate. While the electrode plate 1 is sequentially fed out, the electrode plate 3 is continuously punched and formed by a punching press 2. The plate 3 is configured to be transferred sequentially.
[0015]
As shown in FIG. 2, the punching press 2 is composed of an upper die 4 and a lower die 5 that can move up and down, and the upper die 4 has a punch 20 (see FIG. 3) corresponding to the punching shape of the cutting residue 6 (see FIG. 3). 5) and a shearing blade 7, and the lower die 5 incorporates a die 8 having a punching hole 9 into which a punching punch is inserted and a shearing blade 10.
[0016]
FIG. 3 shows the shapes of the electrode plate 3 and the cutting residue 6 formed by punching from the electrode plate 1. In this embodiment, the electrode plate 1 having a width of 100 mm × the width of 46 mm is punched out from the electrode plate 1 having a width of 100 mm in a state in which cut pieces 6 having a width of 2 mm and 3 mm are formed between the electrode plates 3 and 3 and on both sides. Therefore, in the longitudinal direction of the electrode plate 1, the electrode plates 3, 3 are adjacent to each other in common and do not form the cutting residue 6, and the electrode plate 3 is manufactured with good yield. .
[0017]
Further, a corner portion formed by the sides A and B is a chamfered corner portion 11 having a chamfered shape, with one side along the adjacent direction of the electrode plates 3 and 3 adjacent to each other having a common side as the side A and the common side as the side B. It is said. The inclination angle θ of the chamfered corner portion 11 with respect to the side A of the chamfered side C is set to 5 to 45 °.
[0018]
2 and 3 show examples in which the shape of the electrode plate 3, the punch and the cutting residue 6 is simple, but as shown in FIG. 4, the non-plate provided on one side of the active material coating portion 14 is not shown. In the case of the electrode plate 13 having the coating portion as the lead portion 15, the pair of corner portions on the coating portion 14 side is the chamfered corner portion 16, and the pair of corner portions on the lead portion 15 side is required as necessary. The notch 17 having the shape is formed at both ends of the lead portion 15. Reference numeral 18 denotes a positioning hole formed in the lead portion 15.
[0019]
In the chamfered corner portion 16, a trapezoidal cut portion is formed by a chamfered side C inclined with respect to the side A and a side D parallel to the side A between the end of the chamfered side C and the side B. The length along the side A of the cut portion is a, and the length along the side B is b, so that a> b. In this case, the inclination angle θ of the chamfered side C with respect to the side A is set to 5 to 85 °. In such a configuration of the chamfered corner portion 16 as well, the strength of the punch can be secured more stably.
[0020]
Further, as shown in FIG. 5, the punched hole 9 of the die 8 of the lower die 5 is formed with a stepped portion 19 having two or more steps in which the hole size is gradually increased in the punching direction below the punch insertion hole 9a. Thus, the strength of the punched hole 9 is ensured while preventing the clogging of the cutting residue 6. In FIG. 5, reference numeral 20 denotes an upper die 4 punch.
[0021]
According to the above configuration, since the chamfered corner portions 11 and 16 are provided at the corner portions of the electrode plates 3 and 13, it is possible to prevent a short circuit due to the corner plates 3 and 13 being bent. Moreover, since the electrode plates 3 and 13 are punched while being adjacent to each other, the electrode plates 3 and 13 can be manufactured from the electrode plate 1 with a high yield.
[0022]
In addition, since the chamfered corner portions 11 and 16 are formed, punching can be performed without providing a space between the corner portions of the electrode plates 3 and 13, and the punch 3 can be punched while suppressing the reduction of the active material amount of the electrode plates 3 and 13. Since it is not necessary to provide a narrow and long portion, the life of the punch of the upper die 4 can be extended. In particular, the inclination angle θ of the chamfered corner C of the chamfered corner portion 11 with respect to the side A is set to 5 to 45 °, or in the chamfered corner portion 16 of FIG. By setting the angle to 5 to 85 °, the strength of the punch can be secured more stably.
[0023]
Further, since the stepped portion 19 having two or more steps whose hole size gradually increases in the punching direction is formed in the punching hole 9 of the die 8, the punching hole 9 is prevented from being clogged with the cutting residue 6 in the die 8. The strength of the can be ensured.
[0024]
As an experimental example, in the specific example in which the electrode plate 3 is continuously punched out as shown in FIG. 3 and the electrode plate 3 is manufactured with a feed punching die, the arcuate corner portion (R shape) is formed as in the conventional example. The electrode plate 3 was prepared using the corresponding molds for the sample and the chamfered side C with respect to the side A at an inclination angle of 4 °, 5 °, 45 °, 85 °, and 86 °. The number of possible punches until the mold was damaged was visually determined. The results are shown in Table 1.
[0025]
[Table 1]
Figure 0005159007
From Table 1, it can be seen that by making the corner portion of the electrode plate 3 a chamfered corner portion, the inclination angle is dramatically improved by 5 to 45 ° with respect to the conventional arc-shaped corner portion.
[0026]
As described above, according to the electrode plates 3 and 13 of the present embodiment, the mold can have a long life while ensuring a high yield and can be stably manufactured. The die cost per sheet is reduced, and as a result, a low-cost battery electrode plate can be obtained.
[0027]
In the above description, the electrode plate for the nickel-metal hydride storage battery has been described as an example. However, the application target of the present invention is not limited to this, and any electrode plate that is stamped can be similarly applied. .
[0029]
【Effect of the invention】
According to the method for manufacturing a battery electrode plate of the present invention, when punching by making the opposite sides of the electrode plates adjacent to each other as a common side in the longitudinal direction of the electrode plates, one opposite side along the adjacent direction of the electrode plates is Die having punched holes with side A, common side being side B, corners formed by sides A and B are chamfered, and two or more stepped portions whose hole size is increased stepwise in the punching direction Therefore, it is possible to ensure the strength of the punched hole while preventing the clogging of the cutting residue, and to extend the life of the mold.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electrode plate production line in an embodiment of a battery electrode plate of the present invention.
FIG. 2 is a perspective view showing a schematic configuration of a punching press of the same production line.
FIG. 3 is an explanatory diagram of a punched state of an electrode plate and a cutting residue from an electrode plate in the same embodiment.
4A and 4B are a plan view and a partially enlarged view showing an electrode plate of another configuration example according to the embodiment.
FIG. 5 is a partial longitudinal sectional view of the punch and die of the punching press in the same embodiment.
FIG. 6 is an explanatory view showing a state in which an electrode plate and a cutting residue are punched from an electrode plate of a conventional example.
FIG. 7 is a partial longitudinal sectional view of a punch and die of a punching press in a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode plate 2 Punching press 3, 13 Electrode plate 6 Cutting scrap 8 Die 9 Punching holes 11, 16 Chamfering corner part 19 Stepped part 20 Punch A Side B along the adjacent direction of electrode plate Common side C Chamfering side

Claims (3)

上下動可能な上型と下型にて構成される打ち抜きプレス金型を用いて、帯板状又はフープ状の電極板から複数の極板を連続的に打ち抜き加工する電池用極板の製造方法であって、前記上型はパンチと切断進行方向の前方側に剪断刃を内蔵し、前記下型は前記パンチが嵌入する打ち抜き孔を有するダイと切断進行方向の前方側に剪断刃を内蔵し、前記極板の長手方向に極板同士の対辺を互いに共通辺として隣接させて打ち抜き加工する際に、極板の隣接方向に沿う一方の対辺を辺A、共通辺を辺Bとして、辺A、Bがつくるコーナー部を面取り形状とし、かつ、前記打ち抜き孔の下部に打ち抜き方向に段階的に孔寸法が大きくなる2段以上の階段状部を形成した下型を用いることを特徴とする電池用極板の製造方法。A method for manufacturing a battery electrode plate, in which a plurality of electrode plates are continuously punched from a strip plate-like or hoop- like electrode plate using a punching press die composed of an upper die and a lower die that can move up and down. The upper die incorporates a shear blade on the front side of the punch and cutting progress direction, and the lower die incorporates a die having a punching hole into which the punch fits and a shear blade on the front side of the cutting progress direction. When punching by making the opposite sides of the electrodes adjacent to each other as a common side in the longitudinal direction of the electrode plate , side A is defined as one side along the adjacent direction of the plates, and side A is defined as side B. A battery using a lower die in which a corner portion formed by B is chamfered, and a stepped portion having two or more steps in which the hole size increases stepwise in the punching direction is formed below the punching hole. Method for manufacturing an electrode plate. 前記辺Aに対する面取り辺の傾斜角度を5〜45°としたことを特徴とする請求項1記載の電池用極板の製造方法。The method for manufacturing a battery electrode plate according to claim 1, wherein an inclination angle of the chamfered side with respect to the side A is set to 5 to 45 °. 前記辺Aに対して傾斜した面取り辺とこの面取り辺の端と辺Bとの間の辺Aと平行な辺とによって台形状の切除部を形成し、切除部の辺Aに沿う長さをa、辺Bに沿う長さをbとして、a>bとし、かつ辺Aに対する面取り辺の傾斜角度を5〜85°としたことを特徴とする請求項1記載の電池用極板の製造方法。A trapezoidal cut portion is formed by a chamfered side inclined with respect to the side A and a side parallel to the side A between the end of the chamfered side and the side B, and a length along the side A of the cut portion is set. 2. The method for producing an electrode plate for a battery according to claim 1, wherein the length along a and the side B is b, a> b, and the inclination angle of the chamfered side with respect to the side A is 5 to 85 [deg.]. .
JP2001140965A 2001-05-11 2001-05-11 Manufacturing method of battery electrode plate Expired - Lifetime JP5159007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140965A JP5159007B2 (en) 2001-05-11 2001-05-11 Manufacturing method of battery electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140965A JP5159007B2 (en) 2001-05-11 2001-05-11 Manufacturing method of battery electrode plate

Publications (2)

Publication Number Publication Date
JP2002343350A JP2002343350A (en) 2002-11-29
JP5159007B2 true JP5159007B2 (en) 2013-03-06

Family

ID=18987483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140965A Expired - Lifetime JP5159007B2 (en) 2001-05-11 2001-05-11 Manufacturing method of battery electrode plate

Country Status (1)

Country Link
JP (1) JP5159007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080966A1 (en) 2020-10-16 2022-04-21 주식회사 엘지에너지솔루션 Electrode-forming device equipped with notching pilot pin, and method for forming electrode using same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326630B1 (en) 2010-12-02 2013-11-07 주식회사 엘지화학 Novel Device for Notching and Secondary Battery Manufactured Using the Same
KR101326628B1 (en) * 2010-12-02 2013-11-07 주식회사 엘지화학 Novel Device for Notching and Secondary Battery Manufactured Using the Same
US20130236768A1 (en) 2012-03-08 2013-09-12 Lg Chem, Ltd. Battery pack of stair-like structure
KR20130105271A (en) 2012-03-16 2013-09-25 주식회사 엘지화학 Battery cell of asymmetric structure and battery pack employed with the same
KR20130113301A (en) 2012-04-05 2013-10-15 주식회사 엘지화학 Battery cell of stair-like structure
KR20130133640A (en) 2012-05-29 2013-12-09 주식회사 엘지화학 A stepwise electrode assembly having corner of various shape and a battery cell, battery pack and device comprising the same
KR101483505B1 (en) 2012-11-13 2015-01-21 주식회사 엘지화학 Stepped Electrode Assembly
KR101393530B1 (en) * 2012-11-21 2014-05-12 주식회사 엘지화학 Electrode sheet including notching portion
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
JP5742869B2 (en) * 2013-04-16 2015-07-01 株式会社豊田自動織機 Power storage device
JP6244932B2 (en) * 2014-01-21 2017-12-13 株式会社豊田自動織機 Power storage device manufacturing apparatus and power storage device manufacturing method
WO2018048126A1 (en) * 2016-09-08 2018-03-15 주식회사 엘지화학 Method for manufacturing electrodes having uniform quality and method for manufacturing electrode assembly comprising same
KR102079929B1 (en) * 2016-09-08 2020-02-21 주식회사 엘지화학 Manufacturing Method for Electrodes Having Uniform Quality and Manufacturing Method for Electrode Assembly with the Same
WO2022015022A1 (en) * 2020-07-14 2022-01-20 주식회사 엘지에너지솔루션 Apparatus and method for cutting electrode, and electrode manufacturing equipment including same
CN113695678B (en) * 2021-08-23 2023-03-21 电子科技大学 Cutter for cutting electrode plate of lithium-sulfur battery cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120070A (en) * 1980-02-28 1981-09-21 Furukawa Battery Co Ltd:The Production of active material filling plate for storage battery and its continuous production line
JPS61195719A (en) * 1985-02-25 1986-08-30 Matsushita Electric Works Ltd Production of punched product
JP3622285B2 (en) * 1995-08-28 2005-02-23 日本電池株式会社 Method for manufacturing storage battery electrode plate
JP2000301259A (en) * 1999-04-13 2000-10-31 Fuji Electric Co Ltd Punching die of square hole for press forming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080966A1 (en) 2020-10-16 2022-04-21 주식회사 엘지에너지솔루션 Electrode-forming device equipped with notching pilot pin, and method for forming electrode using same
KR20220050709A (en) 2020-10-16 2022-04-25 주식회사 엘지에너지솔루션 Electrode Forming Device Comprising Notching Pilot Pin and Forming Method of Electrode Using the Same
US11901541B2 (en) 2020-10-16 2024-02-13 Lg Energy Solution, Ltd. Electrode shaping apparatus having notching pilot pin and electrode shaping method using the same

Also Published As

Publication number Publication date
JP2002343350A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
JP5159007B2 (en) Manufacturing method of battery electrode plate
EP2122725B1 (en) Negative grid for battery
US8790418B2 (en) Manufacturing method for an electrode for a battery
EP2398100A1 (en) Metal foil for secondary battery and secondary battery
US9741985B2 (en) Sealing plate for prismatic secondary battery, method for producing the same, and prismatic secondary battery using the same
JP2017157573A (en) Battery grid with varied corrosion resistance
JP7082142B2 (en) All-solid-state battery, its manufacturing method and processing equipment
JPH09320567A (en) Device for welding tab to battery plate and manufacture of battery plate using the same
JP4794184B2 (en) Method for producing electrode plate for alkaline storage battery
JP2001126708A (en) Method of manufacturing nonaqueous electrolyte battery
CN110707342B (en) Preparation method of turbulent flow field plate and fuel cell
JP5308425B2 (en) battery
US20100215837A1 (en) Process for making an electrode, an electrode and a battery comprising the electrode
EP1221731A2 (en) Method for assembling battery element group and battery manufactured with the same method
CN210866358U (en) Positive electrode collector for liquid lead storage battery and liquid lead storage battery
JPH11195411A (en) Manufacture of tab in battery pack
US6678926B2 (en) Method and apparatus for manufacturing battery plates
US11901541B2 (en) Electrode shaping apparatus having notching pilot pin and electrode shaping method using the same
CN220138635U (en) Pole piece, battery winding core and cylindrical battery
JP2000243371A (en) Connecting terminal for battery pack
KR101410803B1 (en) A discontinuous electrode, battery using the same, a method for producing thereof
CN221150037U (en) Battery piece, printing screen and battery piece
US20230125757A1 (en) Method of Manufacturing Electrode Including Folding Portion and Electrode Sheet Including Folding Portion
JPS59127370A (en) Manufacture of carbon zinc combined electrode for laminated dry buttery
JP2679055B2 (en) Conductive core for alkaline batteries

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5159007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term