JP5158761B2 - Dye-sensitized semiconductor electrode and photoelectric conversion device using the same - Google Patents

Dye-sensitized semiconductor electrode and photoelectric conversion device using the same Download PDF

Info

Publication number
JP5158761B2
JP5158761B2 JP2007236453A JP2007236453A JP5158761B2 JP 5158761 B2 JP5158761 B2 JP 5158761B2 JP 2007236453 A JP2007236453 A JP 2007236453A JP 2007236453 A JP2007236453 A JP 2007236453A JP 5158761 B2 JP5158761 B2 JP 5158761B2
Authority
JP
Japan
Prior art keywords
dye
semiconductor
electrode
photoelectric conversion
semiconductor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007236453A
Other languages
Japanese (ja)
Other versions
JP2009070648A (en
Inventor
和弘 佐山
和行 春日
真利 柳田
秀樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007236453A priority Critical patent/JP5158761B2/en
Publication of JP2009070648A publication Critical patent/JP2009070648A/en
Application granted granted Critical
Publication of JP5158761B2 publication Critical patent/JP5158761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は光電変換用の半導体電極に関するものであり、さらに詳しくは、長波長まで利用できる色素を効率よく増感させるための半導体電極と光電変換デバイスに関するものである。   The present invention relates to a semiconductor electrode for photoelectric conversion, and more particularly to a semiconductor electrode and a photoelectric conversion device for efficiently sensitizing a dye that can be used up to a long wavelength.

グレッツェルらの発明した色素増感光電池(特許文献1)は、高価な原料を使用せず、製造法も簡便であり、多大なエネルギーを必要としないことから低価格型の光電池としてその実用化が期待され、国内外で精力的に研究されている。   The dye-sensitized photovoltaic cell invented by Gretzell et al. (Patent Document 1) does not use expensive raw materials, is easy to manufacture, and does not require a large amount of energy, so that it can be put to practical use as a low-cost photovoltaic cell. Expected and researched energetically at home and abroad.

従来の色素増感光電池は、色素含有半導体層からなる半導体電極(作用極)と、白金や炭素などの導電体からなる対極と、作用極と対極との間に挟まれたヨウ化物を主成分とする電解質層とを備えた構造を有する。この半導体電極は、概ね次のようにして作製される。   A conventional dye-sensitized photocell has a semiconductor electrode (working electrode) made of a dye-containing semiconductor layer, a counter electrode made of a conductor such as platinum or carbon, and an iodide sandwiched between the working electrode and the counter electrode as main components. And an electrolyte layer. This semiconductor electrode is generally manufactured as follows.

フッ素をドープした酸化スズ(以下FTO)やインジウム−スズ酸化物などの導電物をガラス基板上に被覆した導電性ガラスを基板に用い、その上に多孔質の半導体粒子(例えば酸化チタン)からなる薄膜を形成する。その後、半導体薄膜の固定されたガラス基板を色素溶液に浸漬、乾燥させることで半導体粒子表面に色素の吸着した半導体電極(アノード極)が出来上がる。次に、白金やカーボンなど触媒がコートされた対極(カソード極)と対向させてその間に電解液を挟み込み、全体をシールすると光電変換デバイスができあがる。   The substrate is made of conductive glass in which a conductive material such as tin oxide doped with fluorine (hereinafter referred to as FTO) or indium-tin oxide is coated on a glass substrate, and porous semiconductor particles (for example, titanium oxide) are formed thereon. A thin film is formed. Thereafter, the glass substrate on which the semiconductor thin film is fixed is immersed in a dye solution and dried, so that a semiconductor electrode (anode electrode) having the dye adsorbed on the surface of the semiconductor particles is completed. Next, a photoelectric conversion device is completed by facing a counter electrode (cathode electrode) coated with a catalyst such as platinum or carbon, sandwiching the electrolytic solution therebetween, and sealing the whole.

ところで、このような光電変換デバイスの性能を向上させるには、短絡光電流(Isc)や開放電圧(Voc)、形状因子(ff)を向上させる必要がある。Iscを向上させるためには、太陽光スペクトルの吸収波長領域を広げるため、赤外線など長波長まで吸収の延びた色素を使う必要があるが、赤外線吸収色素はその励起準位が低い(電子のポテンシャルとして正に大きい)ために、酸化チタン電極では増感できないことが多く、そのため、一般に、酸化スズなど伝導帯準位の低い半導体を利用される(特許文献2)。   By the way, in order to improve the performance of such a photoelectric conversion device, it is necessary to improve the short circuit photocurrent (Isc), the open circuit voltage (Voc), and the form factor (ff). In order to improve Isc, in order to broaden the absorption wavelength region of the solar spectrum, it is necessary to use dyes that have extended absorption to long wavelengths such as infrared rays, but infrared absorption dyes have low excitation levels (electron potentials). Therefore, it is often impossible to sensitize with a titanium oxide electrode. Therefore, a semiconductor having a low conduction band level such as tin oxide is generally used (Patent Document 2).

一方、酸化タングステンも伝導帯準位の低い半導体であることが知られており、酸化チタン、酸化亜鉛、酸化ニオブなどの半導体化合物と同様に光電変換素子の半導体電極として利用できるとされている(特許文献3、非特許文献1)。   On the other hand, tungsten oxide is also known to be a semiconductor having a low conduction band level and can be used as a semiconductor electrode of a photoelectric conversion element as well as a semiconductor compound such as titanium oxide, zinc oxide, and niobium oxide ( Patent Document 3, Non-Patent Document 1).

しかしながら、これらの文献において、実用化レベルの効率の高いデータを以て開示されている半導体は酸化チタンだけであり、かつ増感色素としてはルテニウム錯体(N3やN719)のようなカルボン酸(酸性)アンカー基を持つ色素分子の使用例がみられるだけであった。
このように、太陽光スペクトルの吸収波長領域を広げ、赤外線などの長波長光によっても高度に増感され、光電変換デバイスとして極めて有用な半導体電極は種々提案されているが、いずれも満足すべきものではなかった。
However, in these references, titanium oxide is the only semiconductor disclosed with high-efficiency data at a practical level, and carboxylic acid (acidic) anchors such as ruthenium complexes (N3 and N719) are used as sensitizing dyes. There were only examples of use of dye molecules having groups.
As described above, various semiconductor electrodes have been proposed that broaden the absorption wavelength region of the solar spectrum and are highly sensitized by long-wavelength light such as infrared rays and are extremely useful as photoelectric conversion devices. It wasn't.

一方、増感色素と半導体は通常、別々に研究されるため、増感色素の研究ではTiO2半導体を基準とし、半導体の研究ではルテニウム錯体(N3やN719)のようなカルボン酸(酸性)アンカー基を持つ色素分子が基準となる。しかし、色素と半導体との関係は、吸着特性および伝導帯準位と色素励起準位(LUMO)との相関など複雑であり、赤外光利用などの増感が難しい条件では、色素と半導体の特異的な組み合わせが重要となるが、これらの点に関する検討はこれまでに十分にはなされていなかった。 On the other hand, since sensitizing dyes and semiconductors are usually studied separately, TiO 2 semiconductors are the standard for sensitizing dye research, and carboxylic acid (acidic) anchors such as ruthenium complexes (N3 and N719) are used for semiconductor research. A dye molecule having a group is a standard. However, the relationship between the dye and the semiconductor is complicated, such as the adsorption characteristics and the correlation between the conduction band level and the dye excitation level (LUMO). Specific combinations are important, but these points have not been fully studied so far.

特許第2664194号明細書Japanese Patent No. 2664194 特開2002-100418号公報JP 2002-100418 A 特開2005-243393号公報JP 2005-243393 A Chem.Mater.,vol.10,pp.3825-3832、1998Chem. Mater., Vol. 10, pp.3825-3832, 1998

本発明は、上記のような実情に鑑みなされたものであって、太陽光スペクトルの吸収波長領域を広げ、赤外線などの長波長光によっても高度に増感され、短絡光電流やエネルギー効率を向上することができ、光電変換デバイスとして極めて有用な、半導体と色素を選択的に組み合わせた新規な半導体電極を提供することを目的とする。   The present invention has been made in view of the above circumstances, and broadens the absorption wavelength region of the solar spectrum and is highly sensitized by long-wavelength light such as infrared rays to improve short-circuit photocurrent and energy efficiency. An object of the present invention is to provide a novel semiconductor electrode in which a semiconductor and a dye are selectively combined, which is extremely useful as a photoelectric conversion device.

本発明者等は、上記課題を解決するために鋭意検討した結果、酸化タングステンや酸化モリブデンは、アンカー基として一般的に使用されているカルボン酸などの酸性基を有する色素(N3やN719、ブラックダイなど)をほとんど吸着しないが、アンカー基として塩基性基を有する色素を強く吸着すること、及び酸化タングステンや酸化モリブデンはTiO2より伝導帯が低く、SnO2より開放電圧が高いことに着目し、これらの要件を組み合わせると上記課題が解決できることを見出し、本発明を完成するに至った。
すなわち、この出願によれば、以下の発明が提供される。
〈1〉色素増感型の多孔質半導体電極において、半導体が、(1)タングステン酸化物、(2)モリブデン酸化物、または(3)タングステン又はモリブデンの少なくとも1つの元素を含む化合物であり、色素が塩基性のアンカー基を含む色素であることを特徴とする色素増感型半導体電極。
〈2〉塩基性のアンカー基がアミノ基またはピリジン基であることを特徴とする〈1〉に記載の半導体電極。
〈3〉色素の光吸収波長が800nm以上にあることを特徴とする〈1〉又は〈2〉に記載の半導体電極。
〈4〉色素の励起準位がTiO2伝導帯より低いことを特徴とする〈1〉から〈3〉のいずれかに記載の半導体電極。
〈5〉〈1〉から〈4〉のいずれかに記載の半導体電極を用いた光電変換デバイス。
〈6〉〈1〉からの〈5〉のいずれか記載の半導体電極をタンデム型光電変換デバイスの後段に用いたタンデム型光電変換デバイス。
As a result of intensive studies to solve the above problems, the present inventors have found that tungsten oxide and molybdenum oxide are dyes having an acidic group such as carboxylic acid that is generally used as an anchor group (N3, N719, black Die etc.) is hardly adsorbed, but strongly adsorbs dyes with basic groups as anchor groups, and tungsten oxide and molybdenum oxide have lower conduction band than TiO 2 and higher open circuit voltage than SnO 2 The inventors have found that the above problem can be solved by combining these requirements, and have completed the present invention.
That is, according to this application, the following invention is provided.
<1> In the dye-sensitized porous semiconductor electrode, the semiconductor is a compound containing (1) tungsten oxide, (2) molybdenum oxide, or (3) at least one element of tungsten or molybdenum, Is a dye containing a basic anchor group, A dye-sensitized semiconductor electrode.
<2> The semiconductor electrode according to <1>, wherein the basic anchor group is an amino group or a pyridine group.
<3> The semiconductor electrode according to <1> or <2>, wherein the light absorption wavelength of the dye is 800 nm or more.
<4> The semiconductor electrode according to any one of <1> to <3>, wherein the excitation level of the dye is lower than the TiO 2 conduction band.
<5> A photoelectric conversion device using the semiconductor electrode according to any one of <1> to <4>.
<6> A tandem photoelectric conversion device using the semiconductor electrode according to any one of <1> to <5> in a subsequent stage of the tandem photoelectric conversion device.

本発明の色素増感型半導体電極は、太陽光スペクトルの吸収波長領域を広げ、赤外線などの長波長光によっても高度に増感されることから、短絡光電流やエネルギー効率を向上することができ、光電変換デバイスとして極めて有用なものである。   Since the dye-sensitized semiconductor electrode of the present invention broadens the absorption wavelength region of the solar spectrum and is highly sensitized by long-wavelength light such as infrared rays, it can improve short-circuit photocurrent and energy efficiency. It is extremely useful as a photoelectric conversion device.

本発明の色素増感型の多孔質半導体電極は、半導体として、(1)タングステン酸化物、(2)モリブデン酸化物、または(3)タングステンおよびモリブデンの少なくとも1つの元素を含む化合物を、色素として、塩基性のアンカー基を含む色素を用いたことを特徴とする。   The dye-sensitized porous semiconductor electrode of the present invention has, as a semiconductor, (1) tungsten oxide, (2) molybdenum oxide, or (3) a compound containing at least one element of tungsten and molybdenum as a dye. And a dye containing a basic anchor group.

上記要件を満足する半導体としては、タングステン酸化物、モリブデン酸化物、またはタングステンおよびモリブデンの少なくとも1つの元素を含む化合物などが挙げられる。この場合、酸素欠陥のあるWOxや異種金属やアニオン(N,C,S)をドーピングや置換することで伝導性を少し向上させても良い。タングステンと同族であり似た特性を持つモリブデン化合物も半導体として用いることができる。   Examples of the semiconductor that satisfies the above requirements include tungsten oxide, molybdenum oxide, or a compound containing at least one element of tungsten and molybdenum. In this case, the conductivity may be slightly improved by doping or substituting WOx, a foreign metal, or an anion (N, C, S) having oxygen defects. Molybdenum compounds that are similar to tungsten and have similar characteristics can also be used as semiconductors.

本発明で用いられる半導体の具体例としては、WO(X≦3)、MoO(X≦3)、WyMo1-yO(x≦3、y≦1)Bi2WO6、BiMoO6などが例示される。 Specific examples of the semiconductor used in the present invention include WO x (X ≦ 3), MoO x (X ≦ 3), WyMo 1-y O x (x ≦ 3, y ≦ 1) Bi 2 WO 6 , BiMoO 6 Etc. are exemplified.

タングステンの酸化物WOx(X≦3)としては、代表的なのが酸化タングステン(WO3)であり、これを例に以下に詳しく説明する。WO3は粒子経が小さく、表面積が大きく、且つ結晶性が高いことが好ましい。具体的には、粒子経は5〜500nm、好ましくは、7〜200nmである。表面積は3〜120m2/g、好ましくは5〜80m2/gである。表面積を大きくする方法としては高分子のテンプレートを用いたWO3のメソポーラス構造を作る方法(J.Mater.Chem.11(2001)92、J.Alloys.Comp., 396(2005)295等)が知られているので、これを参考にしても良い。 A typical example of the tungsten oxide WOx (X ≦ 3) is tungsten oxide (WO 3 ), which will be described in detail below as an example. WO 3 preferably has a small particle size, a large surface area, and high crystallinity. Specifically, the particle size is 5 to 500 nm, preferably 7 to 200 nm. The surface area is 3 to 120 m 2 / g, preferably 5 to 80 m 2 / g. As a method of increasing the surface area, there is a method of making a WO 3 mesoporous structure using a polymer template (J. Mater. Chem. 11 (2001) 92, J. Alloys. Comp., 396 (2005) 295, etc.). Since it is known, you may refer to this.

本発明者等の検討によれば、酸化タングステンや酸化モリブデンを、酸性基(カルボン酸)を持つ色素(N3やN719、ブラックダイなど)の溶液に浸漬させても、これらの色素はほとんど吸着されず、また吸着されたとしてもすぐに脱離してしまい、その増感作用がほとんど機能しないことが判った。
すなわち、色素増感太陽電池で一般的な色素はほとんどがカルボン酸基、リン酸基、硫酸基などの酸性基をアンカー基としているが、これらのアンカー基は実際に調べてみると酸化タングステンや酸化モリブデンの表面に吸着しないことが分かった。さらに、酸化タングステンや酸化モリブデンには特定な色素が吸着されるとしても果たして実際に増感反応に寄与するか否か、更には一般的に伝導帯準位が低いとして知られている酸化スズ半導体より効率のよい電極が得られるか否かが不明であり、この点に関する検討が待たれていた。
According to the study by the present inventors, even when tungsten oxide or molybdenum oxide is immersed in a solution of a dye having an acidic group (carboxylic acid) (N3, N719, black dye, etc.), these dyes are almost adsorbed. In addition, it was found that even if it was adsorbed, it immediately desorbed and its sensitizing action hardly functioned.
In other words, most of the dyes common in dye-sensitized solar cells have acidic groups such as carboxylic acid groups, phosphoric acid groups, and sulfuric acid groups as anchor groups. It was found that it does not adsorb on the surface of molybdenum oxide. Furthermore, even if a specific dye is adsorbed to tungsten oxide or molybdenum oxide, it actually contributes to the sensitization reaction, and further, a tin oxide semiconductor generally known as having a low conduction band level It is unclear whether a more efficient electrode can be obtained, and studies on this point have been awaited.

また、近年、光電変換デバイスの性能向上のためにはタンデム型セルが検討されており、その後段には赤外線などの長波長の光を吸収する色素の活用が必要不可欠である。しかし、長波長吸収色素は一般に励起準位が低く、伝導帯準位の高いTiO2では増感出来ないという欠点があり、また、SnO2の場合は伝導帯準位が低いが、漏れ電流が大きいためか開放電圧が低いという欠点があった。
本発明者等は、これらの課題を一挙に解消すべく、更に研究を進めた結果、色素増感型の多孔質半導体電極において、半導体として前記特有な化合物を用いると共に色素として塩基性のアンカー基を持つ色素を用いた場合には、TiO2より伝導帯が低く、SnO2より開放電圧が高く、色素を強く吸着でき、増感性優れた半導体電極が得られることを見出したのである。
In recent years, tandem cells have been studied for improving the performance of photoelectric conversion devices, and it is essential to use dyes that absorb long-wavelength light such as infrared rays in the subsequent stage. However, long-wavelength absorption dyes generally have the disadvantage that they cannot be sensitized by TiO 2 which has a low excitation level and a high conduction band level, and SnO 2 has a low conduction band level but leakage current is low. There was a disadvantage that the open circuit voltage was low because of its large size.
As a result of further research to solve these problems all at once, the present inventors have used the above-mentioned unique compound as a semiconductor and a basic anchor group as a dye in a dye-sensitized porous semiconductor electrode. It was found that a semiconductor electrode having a conduction band lower than that of TiO 2 , an open-circuit voltage higher than that of SnO 2 , and capable of strongly adsorbing the dye and having excellent sensitization can be obtained by using a dye having the above.

つぎに、本発明で用いる色素について説明する。本発明においては、上述したように、塩基性のアンカー基を含む色素を使用することが必要である。これは、上記半導体の酸点または表面のマイナスチャージ部分等にこれらの色素が吸着しやすいこと等の理由による。   Next, the dye used in the present invention will be described. In the present invention, as described above, it is necessary to use a dye containing a basic anchor group. This is because these dyes are easily adsorbed to the acid sites of the semiconductor or negatively charged portions on the surface.

ここで、アンカー基とは、「色素の構成分子の中で半導体表面と結合吸着する部位」をいう。具体的には、アミノ基(-NR2)やプロトン化したアミノ基(--NR3+)、ピリジン基、ピリジン環の置換体、シアノ基、oxazolinyidene環などのNを含む5員環を含む基などが例示される。
式中、Rは、H、アルキル基、芳香環を含むフェニル基、N,S,O、ハロゲン元素等を含む置換基などである。Rが複数の場合、同一であっても同一でなくても良い。Rの大きさについては、小さい置換基ほど望ましく、最も良いのはHである。
なお、N719色素はRu金属に配位したピリジン環を持つが、この部分は色素内部にあるため、アンカーとしては機能しない。本発明においては、アンカー基は半導体表面と吸着できる立体構造を持っている必要がある。
また、アンカー基は色素のクロモフォア(発色団)と共役している必要はないが、クロモフォアから半導体へ電子移動することを考慮すると、好ましくは共役しているか、共役していない場合はできるだけクロモフォアと半導体の距離が短くなるアンカー基構造が望ましい。具体的には、-NH2のような短いアンカー基であったり、クロモフォア面が半導体表面と近接するコンフォメーションになるようなアンカー基の方向が望ましい。強い吸着特性を考慮すると、アンカー基は1個だけでなくより複数であることが望ましい。
Here, the anchor group refers to a “site that binds and adsorbs to the semiconductor surface in the constituent molecules of the dye”. Specifically, it includes 5-membered rings containing N such as amino group (—NR 2 ), protonated amino group (——NR 3 +), pyridine group, pyridine ring substituent, cyano group, oxazolinyidene ring, etc. Examples include groups.
In the formula, R is H, an alkyl group, a phenyl group containing an aromatic ring, a substituent containing N, S, O, a halogen element, or the like. When there are a plurality of R, they may or may not be the same. Regarding the size of R, smaller substituents are desirable, and H is the best.
N719 dye has a pyridine ring coordinated to Ru metal, but this part is inside the dye, so it does not function as an anchor. In the present invention, the anchor group needs to have a three-dimensional structure capable of adsorbing to the semiconductor surface.
The anchor group does not need to be conjugated with the chromophore (chromophore) of the dye. However, in consideration of the electron transfer from the chromophore to the semiconductor, it is preferably conjugated or not conjugated with the chromophore as much as possible. An anchor base structure that shortens the distance of the semiconductor is desirable. Specifically, the direction of the anchor group is preferably a short anchor group such as —NH 2 or a conformation in which the chromophore surface is close to the semiconductor surface. Considering strong adsorption characteristics, it is desirable that the number of anchor groups is not only one but more.

本発明で用いる色素は、従来公知の色素から選定することができる。すなわち、従来公知の金属錯体系色素(Ru金属錯体、Os金属錯体、Fe金属錯体、Pt金属錯体)、あるいは有機色素系(メチン系色素、マーキュロム系、サキンテン系色素、ポルフィリン系色素、フタロシアニン系色素、アゾ系色素、クマリン系色素、その他の有機色素)の中から塩基性のアンカー基を持つ色素を選べばよい。   The dye used in the present invention can be selected from conventionally known dyes. That is, conventionally known metal complex dyes (Ru metal complexes, Os metal complexes, Fe metal complexes, Pt metal complexes) or organic dyes (methine dyes, mercurom dyes, sachinten dyes, porphyrin dyes, phthalocyanine dyes) Azo dyes, coumarin dyes, and other organic dyes) may be selected from dyes having a basic anchor group.

このような色素の代表例としては、下記に示すような構造のものが挙げられる。

Figure 0005158761
Figure 0005158761
Typical examples of such dyes include those having the structures shown below.
Figure 0005158761
Figure 0005158761

また、上記の他に、ローダミン誘導体、サフラニン誘導体、メチレンブルー誘導体、チオニン誘導体、プロフラビン誘導体、塩基性色素群(ベーシックレッド5誘導体、ベーシックオレンジ14誘導体、ベーシックブルー3誘導体など)なども有機色素の具体例として挙げられる。   In addition to the above, rhodamine derivatives, safranine derivatives, methylene blue derivatives, thionine derivatives, proflavine derivatives, basic dye groups (basic red 5 derivative, basic orange 14 derivative, basic blue 3 derivative, etc.) are also specific examples of organic dyes. Take as an example.

本発明で用いる色素は前記した要件を満足する必要があるが、さらにその励起準位(LUMO)は半導体の伝導帯準位より高いことが好ましい。もっとも、吸着によりLUMOが低くシフトする場合は、LUMOは半導体の伝導帯準位より少し低い程度でも良い。色素のHOMOは用いるレドックス準位よりも正であることが望ましい。   The dye used in the present invention needs to satisfy the above-described requirements, but the excitation level (LUMO) is preferably higher than the conduction band level of the semiconductor. However, when LUMO shifts lower due to adsorption, LUMO may be slightly lower than the conduction band level of the semiconductor. It is desirable that the HOMO of the dye is more positive than the redox level used.

また本発明で用いる色素はその吸収波長領域が長波長ほど好ましく、特に800-1000nm付近に強い吸収を持つことが望ましい。LUMOとHOMOの両方が増感反応に最適な準位にあるためには、吸収端は1200nm以下が望ましい。また、LUMOが高すぎ、且つ長波長吸収の色素の場合は、色素のHOMOが用いるレドックス準位よりも正であるという条件を満たすことが難しくなる。そのため、本発明の半導体に対してLUMOは必要最低限に高ければ充分であり、高すぎる必要はない。その目安は色素のLUMOがTiO2伝導帯準位より低いことである。 Further, the dye used in the present invention preferably has a longer absorption wavelength region, and it is particularly desirable that the dye has strong absorption in the vicinity of 800 to 1000 nm. In order for both LUMO and HOMO to be at the optimum level for the sensitization reaction, the absorption edge is desirably 1200 nm or less. Further, in the case of a dye having a LUMO that is too high and absorbs a long wavelength, it is difficult to satisfy the condition that it is more positive than the redox level used by the HOMO of the dye. Therefore, it is sufficient that the LUMO is as high as necessary for the semiconductor of the present invention, and it is not necessary to be too high. The standard is that the LUMO of the dye is lower than the TiO 2 conduction band level.

本発明に係る多孔質半導体電極の作製には、たとえばTiO2を用いた色素増感太陽電池の多孔質電極の作製方法が適用できるが、特にこれに限定されるものではない。
具体的には、上述のWO3微粒子やタングステンを含む化合物、例えばH2WO4やWCl6などの前駆体溶液を用いて、スピンコート、ディップコート、バーコート、スクリーン印刷などで、電極基板に成膜する。この場合、多孔性を制御したり粒子間の接触を良くするために、ポリエチレングリコールやトリトンXなど有機物を添加しても良い。これを焼成することでWO3微粒子同士が結合した半導体薄膜が作製できる。また、加圧法や高電圧をかけて成膜する方法も使用することができる。
For the production of the porous semiconductor electrode according to the present invention, for example, a method for producing a porous electrode of a dye-sensitized solar cell using TiO 2 can be applied, but the method is not particularly limited thereto.
Specifically, the above-mentioned WO 3 fine particles and a compound containing tungsten, for example, a precursor solution such as H 2 WO 4 or WCl 6 are used to form an electrode substrate by spin coating, dip coating, bar coating, screen printing, etc. Form a film. In this case, an organic substance such as polyethylene glycol or Triton X may be added to control the porosity or improve the contact between the particles. By baking this, a semiconductor thin film in which WO 3 fine particles are bonded to each other can be produced. Moreover, a pressurizing method or a method of forming a film by applying a high voltage can also be used.

多孔質半導体電極への色素の吸着は、一般的には色素の溶解した水溶液や有機溶媒溶液に多孔質半導体電極を長時間浸すことで、アンカー基が半導体表面に化学吸着される。化学吸着を促進するために、加熱したり、減圧と加圧を組み合わせたりすることも有効である。色素の会合を制御するために、共吸着体を吸着溶液に入れることもできる。
電極基板は導電性があれば用いることができる。例えば、導電性ガラスや導電性プラスチック、金属などである。
In general, the dye is adsorbed on the porous semiconductor electrode by immersing the porous semiconductor electrode in an aqueous solution or organic solvent solution in which the dye is dissolved for a long time, whereby the anchor group is chemically adsorbed on the semiconductor surface. In order to promote chemisorption, it is also effective to heat or combine decompression and pressurization. Coadsorbents can also be placed in the adsorption solution to control dye association.
The electrode substrate can be used if it has conductivity. For example, conductive glass, conductive plastic, metal and the like.

本電極は対極や参照極と組み合わせることで種々の光電変換デバイスに利用できる。特にタンデム構造の光電変換デバイスに用いると有効である。タンデム型の場合は、前段の電極で短波長側の光を大部分吸収し、後段の電極でそれをすり抜けてきた主に長波長側の光を吸収する。本発明に係る伝導帯の低い半導体と長波長吸収色素を組み合わせた電極は、タンデム構造の後段の電極で最も有効であり、前段の電極で利用できなかった光子を最大限吸収して活用することができる。   This electrode can be used for various photoelectric conversion devices by combining with a counter electrode or a reference electrode. In particular, it is effective when used for a photoelectric conversion device having a tandem structure. In the case of the tandem type, most of the light on the short wavelength side is absorbed by the front electrode, and the light on the long wavelength side that has passed through it is absorbed by the back electrode. An electrode combining a semiconductor having a low conduction band and a long wavelength absorption dye according to the present invention is most effective in the latter stage electrode of the tandem structure, and utilizes photons that could not be used in the former stage electrode to the maximum extent. Can do.

以下、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

参考例1
WO3粉末(後記実施例1と同じ)とMoO3粉末(Wako製)のそれぞれの粉末を後記実施例1と同様の方法で導電性ガラスに成膜した。また、TiO2膜は比較例1と同様に成膜した。
塩基性アンカー基を持つ色素として下記構造を有する色素B(Basic Fuchsin, Basic Red 9)、カルボン酸アンカー基を持つ色素としてルテニウム錯体色素(N719)のエタノール溶液に入れて色素を吸着させた。その後エタノール洗浄・乾燥させた。これらの色素吸着半導体膜に対する各種アンカー基を持つ色素の吸着特性を、積分球を用いた反射スペクトル法により評価した。その結果を以下の表1に示す。反射率(R%)の小さい膜ほど光吸収が大きく、色素吸着量が多いことを示す。色素吸着量の多さは吸着アンカー基の吸着力が大きいことを示す。

Figure 0005158761
Reference example 1
Each powder of WO 3 powder (same as Example 1 described later) and MoO 3 powder (manufactured by Wako) was deposited on conductive glass in the same manner as Example 1 described later. The TiO 2 film was formed in the same manner as in Comparative Example 1.
Dye B (Basic Fuchsin, Basic Red 9) having the following structure as a dye having a basic anchor group and ruthenium complex dye (N719) as a dye having a carboxylic acid anchor group were put in an ethanol solution to adsorb the dye. Thereafter, it was washed with ethanol and dried. The adsorption characteristics of dyes having various anchor groups on these dye adsorbing semiconductor films were evaluated by the reflection spectrum method using an integrating sphere. The results are shown in Table 1 below. A film having a smaller reflectance (R%) has a higher light absorption and a higher amount of dye adsorption. A large amount of dye adsorption indicates that the adsorption force of the adsorption anchor group is large.
Figure 0005158761

表1から、WO3の場合は、酸性のカルボン酸アンカーを持つN719色素は反射率が色素無しの数字に近く、ほとんど吸着しないが、塩基性のアミノ基アンカーを持つB色素は反射率が大きく低下し、色素がN719色素より吸着していることがわかる。MoO3でも同様であった。
一方、TiO2の場合は、塩基性のアミノ基アンカーを持つB色素は反射率が色素無しの数字に近く、ほとんど吸着しないが、酸性のカルボン酸アンカーを持つN719色素は反射率が大きく低下し、色素がB色素より吸着していることがわかる。
From Table 1, in the case of WO 3, the N719 dye having an acidic carboxylic acid anchor has a reflectance close to the number without the dye and hardly adsorbs, but the B dye having a basic amino group anchor has a high reflectance. It can be seen that the dye is adsorbed more than the N719 dye. The same was true for MoO 3 .
On the other hand, in the case of TiO 2, the B dye with a basic amino group anchor has a reflectance close to the number without the dye and hardly adsorbs, but the N719 dye with an acidic carboxylic acid anchor has a greatly reduced reflectance. It can be seen that the dye is adsorbed more than the B dye.

Figure 0005158761
Figure 0005158761

実施例1
WO3微粒子はタングステン酸(H2WO4、Wako製)の過酸化物の熱分解法で調製した。すなわち、タングステン酸2gを過酸化水素(30%水溶液)40mlに100rpmで撹拌しながらゆっくり溶解させた。得られた乳白色の透明溶液をゆっくり100℃に設定した乾燥機内で加熱しながら、水分と過酸化水素を蒸発させると、白色の固体が析出する。これを電気炉で空気中400度で0.5時間焼成してWO3微粒子を作製した。このWO3微粒子の表面積は33m/gであった。
次に上記で得たWO3微粒子粉末40mgとアセチルアセトン10μLをメノウ乳鉢で良く混練し、エタノールを200μL加えて更に良く混練してスラリーにする。導電性ガラス(F-SnO2、10Ω/sq)に5mm角の窓を付けたマスクフィルムを貼り、このWO3スラリーをドクターブレード法で薄くのばして成膜する。乾燥後にマスクフィルムを取り除き、500度で1時間空気焼成し、WO3電極とした。
次に、青紫色の下記色素A(Cresyl Violet 670, 5,9-Diaminobenzophenoxazonium Perchlorate、)のエタノール溶液(10mg/50ml)にWO3電極を24時間浸積させ色素をWO3上に吸着させた。色素Aの構造を以下に示す。-NH2基または=NH2+基があり、この部分で吸着していると考えられる。

Figure 0005158761
この電極をエタノールで洗浄して物理吸着している過剰な色素を除去し、室温で乾燥させ、色素吸着WO3電極とした。次に、溶媒がアセトニトリルでヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化ジメチルプロピルイミダゾリウム0.62Mを溶解した電解質溶液を調製した(電解液ELS1)。この電解液にさらにt−ブチルピリジンを濃度0.5Mになるように添加し溶解したものを電解液ELA1とした。
この電解質溶液を、上述の増感色素吸着WO3半導体電極と白金対極との間に60mmのスぺーサーをつけてはさんで、クリップで止めた。得られた光電変換素子に、ソーラーシュミレーター(AM-1.5、JIS-A)を光源として強度100mW/cm2の光を照射した。半導体自身の光励起による光電流の影響を除外するため、カットフィルター(L-48)を付けて450nm以上の光を照射した。結果を表2に示す。同じ電解液同士で比較して、後述の比較例1,2のSnO2やTiO2に比べて短絡電流Iscや太陽エネルギー変換効率(hsun)が高いことが確認できた。開放電圧(Voc)はSnO2より高かった。 Example 1
WO 3 fine particles were prepared by a thermal decomposition method of a peroxide of tungstic acid (H 2 WO 4 manufactured by Wako). That is, 2 g of tungstic acid was slowly dissolved in 40 ml of hydrogen peroxide (30% aqueous solution) with stirring at 100 rpm. When the obtained milky white transparent solution is slowly heated in a drier set at 100 ° C. and water and hydrogen peroxide are evaporated, a white solid is deposited. This was baked in an electric furnace at 400 ° C. for 0.5 hours to prepare WO 3 fine particles. The surface area of the WO3 fine particles was 33 m 2 / g.
Next, 40 mg of the WO 3 fine particle powder obtained above and 10 μL of acetylacetone are well kneaded in an agate mortar, and 200 μL of ethanol is added and kneaded further to make a slurry. A mask film with a 5 mm square window is pasted on conductive glass (F-SnO 2 , 10Ω / sq), and this WO 3 slurry is thinly formed by a doctor blade method to form a film. After drying, the mask film was removed and air baked at 500 ° C. for 1 hour to obtain a WO 3 electrode.
Next, the following dye A (Cresyl Violet 670, 5,9- Diaminobenzophenoxazonium Perchlorate,) of the blue-violet ethanol solution (10 mg / 50 ml) for 24 hours immersed the WO3 electrodes dye was adsorbed on the WO 3. The structure of Dye A is shown below. There are —NH 2 groups or ═NH 2 + groups, which are considered to be adsorbed at this portion.
Figure 0005158761
This electrode was washed with ethanol to remove excess dye that was physically adsorbed, and dried at room temperature to obtain a dye-adsorbed WO 3 electrode. Next, an electrolyte solution was prepared by dissolving 0.1M lithium iodide, 0.05M iodine, and 0.62M dimethylpropylimidazolium iodide with an acetonitrile solvent (electrolytic solution ELS1). Electrolytic solution ELA1 was obtained by further adding t-butylpyridine to this electrolytic solution to a concentration of 0.5 M and dissolving it.
The electrolyte solution was clamped with a spacer of 60 mm between the sensitizing dye adsorbing WO 3 semiconductor electrode and the platinum counter electrode. The obtained photoelectric conversion element was irradiated with light having an intensity of 100 mW / cm 2 using a solar simulator (AM-1.5, JIS-A) as a light source. In order to exclude the influence of the photocurrent due to the photoexcitation of the semiconductor itself, a cut filter (L-48) was attached and irradiated with light of 450 nm or more. The results are shown in Table 2. Compared with the same electrolyte solution, it was confirmed that the short-circuit current Isc and the solar energy conversion efficiency (hsun) were higher than those of SnO 2 and TiO 2 of Comparative Examples 1 and 2 described later. Open-circuit voltage (Voc) was higher than SnO 2.

実施例2
実施例1において、色素Aを赤色の前記色素B(Basic Fuchsin, Basic Red 9)に代えた以外は実施例1と同様な実験を行った。その結果を表3に示す。色素Bの構造は前記のように、-NH2基または=NH2+基があり、この部分で吸着していると考えられる。同じ電解液同士で比較して、後述の比較例3,4のSnO2やTiO2に比べて短絡電流Iscや太陽エネルギー変換効率(hsun)が高いことが確認できた。
Example 2
In Example 1, the same experiment as in Example 1 was performed except that the dye A was replaced with the red dye B (Basic Fuchsin, Basic Red 9). The results are shown in Table 3. As described above, the structure of the dye B has an —NH 2 group or ═NH 2 + group, and is considered to be adsorbed at this portion. Compared with the same electrolyte solution, it was confirmed that the short-circuit current Isc and the solar energy conversion efficiency (hsun) were higher than those of SnO 2 and TiO 2 of Comparative Examples 3 and 4 described later.

実施例3
実施例1において、色素Aをオレンジ色のニウム錯体色素C(以下の文献に従い自己調製:E. Ishow, A. Gourdon, J.-P. Launay, Chem. Commun., 1998, 1909-1910)に代えた以外は実施例1と同様な実験を行った。その結果を表4に示す。色素Cの構造は以下に示され、-NH2基があり、この部分で吸着していると考えられる。同じ電解液同士で比較して、後述の比較例5のSnO2に比べて短絡電流Iscや太陽エネルギー変換効率(hsun)が高いことが確認できた。

Figure 0005158761
Example 3
In Example 1, the dye A was converted to an orange nium complex dye C (self-prepared according to the following literature: E. Ishow, A. Gourdon, J.-P. Launay, Chem. Commun., 1998, 1909-1910). An experiment similar to that of Example 1 was performed except that it was replaced. The results are shown in Table 4. The structure of the dye C is shown below, and there is an —NH 2 group, which is considered to be adsorbed at this portion. Compared with the same electrolyte solution, it was confirmed that the short circuit current Isc and the solar energy conversion efficiency (hsun) were higher than SnO 2 of Comparative Example 5 described later.
Figure 0005158761

比較例1,3
実施例1,2において、WO3に代えてTiO2を用いた以外は実施例1,2と同様な実験を行った。
TiO2微粒子(自己調製、アナタース型)を用い、TiO2微粒子を30重量%含むTiO2ペーストを調製した。ここでは、TiO2微粒子が30重量%、α−テルピネオール(関東化学社製)が65重量%、エチルセルロース(関東化学社製)が5重量%
となるように、それぞれを秤量し、これらを混合した後、3本ロールを用いて所定時間混練し、TiO2ペーストとした。
導電性ガラス基板上に、スクリーン印刷法により上記で得たTiO2ペーストを塗布した。その後、大気中、500℃で60分間焼成を行い、TiO2電極を得た。色素を吸着した電極の光電変換特性を表2と表3に示すWO3電極に比べて低い太陽エネルギー変換効率であった。特に短絡電流が小さかった。TiO2の伝導帯準位がWO3に比べて高いために、色素からの電子注入が難しかったためと推察される。
Comparative Examples 1 and 3
In Examples 1 and 2 , the same experiment as in Examples 1 and 2 was performed except that TiO 2 was used instead of WO 3 .
Using TiO 2 fine particles (self-prepared, anatase type), a TiO 2 paste containing 30% by weight of TiO 2 fine particles was prepared. Here, TiO 2 fine particles are 30% by weight, α-terpineol (manufactured by Kanto Chemical Co., Inc.) is 65% by weight, and ethyl cellulose (manufactured by Kanto Chemical Co., Inc.) is 5% by weight.
Then, each was weighed and mixed, and then kneaded for a predetermined time using three rolls to obtain a TiO 2 paste.
On the conductive glass substrate, the TiO 2 paste obtained above was applied by screen printing. Thereafter, baking was performed at 500 ° C. for 60 minutes in the air to obtain a TiO 2 electrode. Tables 2 and 3 show the photoelectric conversion characteristics of the electrode on which the dye was adsorbed . The solar energy conversion efficiency was lower than that of the WO 3 electrode. Especially the short circuit current was small. This is presumably because the conduction band level of TiO 2 was higher than that of WO 3 and it was difficult to inject electrons from the dye.

比較例2,4,5
実施例1〜3において、WO3に代えてSnO2を用いた以外は実施例1〜3と同様な実験を行った。SnO2微粒子は関東化学社製を用いた。この微粒子を比較例1と同じ方法でペースト化、印刷、焼成し、SnO2電極を得た。色素を吸着した電極の光電変換特性を表2〜表4に示す。WO3電極に比べて低い太陽エネルギー変換効率であった。特に開放電圧が低かった。SnO2の伝導帯準位はWO3と似た位置にあると言われているが、開放電圧が低かった理由は、SnO2はWO3より漏れ電流が大きかったためと考えられる。
Comparative Examples 2, 4, and 5
In Examples 1 to 3 , experiments similar to those in Examples 1 to 3 were performed except that SnO 2 was used instead of WO 3 . SnO 2 fine particles were manufactured by Kanto Chemical. The fine particles were pasted, printed and fired in the same manner as in Comparative Example 1 to obtain a SnO 2 electrode. Tables 2 to 4 show the photoelectric conversion characteristics of the electrode on which the dye was adsorbed. The solar energy conversion efficiency was lower than that of the WO 3 electrode. In particular, the open circuit voltage was low. The conduction band level of SnO 2 is said to be in a position similar to that of WO 3 , but the reason why the open circuit voltage was low is considered to be that SnO 2 had a larger leakage current than WO 3 .

Figure 0005158761
Figure 0005158761

Figure 0005158761
Figure 0005158761

Figure 0005158761
Figure 0005158761

Claims (6)

色素増感型の多孔質半導体電極において、半導体が酸化タングステンであり、色素が塩基性のアンカー基を含む色素であることを特徴とする色素増感型半導体電極。 A dye-sensitized semiconductor electrode, wherein the semiconductor is tungsten oxide and the dye is a dye containing a basic anchor group. 塩基性のアンカー基がアミノ基またはピリジン基であることを特徴とする請求項1に記載の半導体電極。   The semiconductor electrode according to claim 1, wherein the basic anchor group is an amino group or a pyridine group. 色素の光吸収波長が800nm以上にあることを特徴とする請求項1又は2に記載の半導体電極。   The semiconductor electrode according to claim 1 or 2, wherein the light absorption wavelength of the dye is 800 nm or more. 色素の励起準位がTiO2伝導帯より低いことを特徴とする請求項1から3のいずれかに1項に記載の半導体電極。 4. The semiconductor electrode according to claim 1, wherein an excitation level of the dye is lower than that of the TiO 2 conduction band. 5. 請求項1から4のいずれか1項に記載の半導体電極を用いた光電変換デバイス。   The photoelectric conversion device using the semiconductor electrode of any one of Claim 1 to 4. 請求項1から5のいずれか1項に記載の半導体電極をタンデム型光電変換デバイスの後段に用いたタンデム型光電変換デバイス。   A tandem photoelectric conversion device using the semiconductor electrode according to any one of claims 1 to 5 in a subsequent stage of the tandem photoelectric conversion device.
JP2007236453A 2007-09-12 2007-09-12 Dye-sensitized semiconductor electrode and photoelectric conversion device using the same Expired - Fee Related JP5158761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236453A JP5158761B2 (en) 2007-09-12 2007-09-12 Dye-sensitized semiconductor electrode and photoelectric conversion device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236453A JP5158761B2 (en) 2007-09-12 2007-09-12 Dye-sensitized semiconductor electrode and photoelectric conversion device using the same

Publications (2)

Publication Number Publication Date
JP2009070648A JP2009070648A (en) 2009-04-02
JP5158761B2 true JP5158761B2 (en) 2013-03-06

Family

ID=40606695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236453A Expired - Fee Related JP5158761B2 (en) 2007-09-12 2007-09-12 Dye-sensitized semiconductor electrode and photoelectric conversion device using the same

Country Status (1)

Country Link
JP (1) JP5158761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609800B2 (en) * 2011-07-19 2014-10-22 住友金属鉱山株式会社 Dye-sensitized solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640065C2 (en) * 1996-09-28 2000-05-04 Forschungszentrum Juelich Gmbh Dye-sensitized photo-electrochemical solar cell
JP3309785B2 (en) * 1997-11-06 2002-07-29 富士ゼロックス株式会社 Semiconductor electrode, method of manufacturing the same, and photovoltaic cell using the same
JP2006179380A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Solar cell module equipped with designability and its manufacturing method

Also Published As

Publication number Publication date
JP2009070648A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
Wang et al. Efficient eosin Y dye-sensitized solar cell containing Br-/Br3-electrolyte
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
WO2007088871A1 (en) Dye sensitization photoelectric converter
JP5206092B2 (en) Photoelectric conversion element and solar cell
JP2008186752A (en) Photoelectric conversion element and solar cell
JP4338981B2 (en) Dye-sensitized photoelectric conversion element
JP2009272296A (en) Photoelectric conversion element and solar cell
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
Kushwaha et al. Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode
Seo et al. Dual-channel anchorable organic dye with triphenylamine-based core bridge unit for dye-sensitized solar cells
Gnida et al. Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells
Ramasamy Organic photosensitizers containing fused indole-imidazole ancillary acceptor with triphenylamine donor moieties for efficient dye-sensitized solar cells
Afrooz et al. Enhanced photovoltaic properties of modified redox electrolyte in dye-sensitized solar cells using tributyl phosphate as additive
Kamaraj et al. Performance of 4-Subsituted Pyridine Based Additive and Cobalt Redox in Poly (ethylene glycol)–Hydroxyethylcellulose Polymer Electrolytes with DTTCY Acid Sensitizer on Dye Sensitized Solar Cells
Shibayama et al. Highly efficient cosensitized plastic-substrate dye-sensitized solar cells with black dye and pyridine-anchor organic dye
JP5217475B2 (en) Photoelectric conversion element and solar cell
JP5347329B2 (en) Photoelectric conversion element and solar cell
JP5233318B2 (en) Photoelectric conversion element and solar cell
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
JP5158761B2 (en) Dye-sensitized semiconductor electrode and photoelectric conversion device using the same
KR20100096813A (en) Electrolyte for dye sensitized solar cell and dye sensitized solar cell using the same
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP2010282780A (en) Photoelectric conversion element and solar cell
JP5537336B2 (en) Dye-sensitized solar cell and method for producing the same
JP4776182B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees