JP5158520B2 - Treatment method for wastewater containing heavy metals - Google Patents

Treatment method for wastewater containing heavy metals Download PDF

Info

Publication number
JP5158520B2
JP5158520B2 JP2009069924A JP2009069924A JP5158520B2 JP 5158520 B2 JP5158520 B2 JP 5158520B2 JP 2009069924 A JP2009069924 A JP 2009069924A JP 2009069924 A JP2009069924 A JP 2009069924A JP 5158520 B2 JP5158520 B2 JP 5158520B2
Authority
JP
Japan
Prior art keywords
hydrogen phosphate
calcium hydrogen
heavy metal
phosphate dihydrate
dihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009069924A
Other languages
Japanese (ja)
Other versions
JP2010221104A (en
Inventor
昌幹 袋布
哲治 丁子
巧 藤田
宏一 中野
一郎 森岡
克巳 森
雅哉 日和佐
誠 前田
一将 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Ute Co Ltd
Original Assignee
Chiyoda Ute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Ute Co Ltd filed Critical Chiyoda Ute Co Ltd
Priority to JP2009069924A priority Critical patent/JP5158520B2/en
Publication of JP2010221104A publication Critical patent/JP2010221104A/en
Application granted granted Critical
Publication of JP5158520B2 publication Critical patent/JP5158520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は重金属含有排水の処理方法に関し、更に詳しくは鉛やカドミウム等の重金属を含有する排水からそれらを安全且つ簡便な手段で経済的且つ効率的に除去することができる重金属含有排水の処理方法に関する。   TECHNICAL FIELD The present invention relates to a method for treating heavy metal-containing wastewater, and more particularly, a method for treating heavy metal-containing wastewater that can be removed economically and efficiently from wastewater containing heavy metals such as lead and cadmium by a safe and simple means. About.

従来、重金属含有排水の処理方法としては、キノリン化合物、アミノベンゼン化合物、ジオキシム化合物、ポリアミン化合物等、有機化合物系の重金属固定化剤乃至不溶化剤を用いる方法が知られている(例えば特許文献1〜3参照)。しかし、これらの従来法には、有機化合物を用いるため、二次公害を引き起こすおそれがあり、概して処理操作が厄介で費用も嵩むという問題がある。重金属含有排水の処理方法としては、いずれもpH調整下で、酸化剤、ケイ酸化合物、マンガン化合物、硫化剤等、無機化合物系の沈澱形成剤を用いる方法も知られており(例えば特許文献4〜7参照)、また塩化カルシウムや水酸化カルシウムのようなカルシウム化合物、塩化第1鉄や硝酸第1鉄のような2価鉄塩等、無機化合物系の凝集剤を用いる方法も知られている(例えば特許文献8〜10参照)。しかし、これらの従来法には、使用量の割には重金属の除去が不充分で、概して相当量の沈澱物が生成するため、その処理が厄介という問題がある。   Conventionally, as a method for treating heavy metal-containing wastewater, methods using organic compound-based heavy metal immobilizing agents or insolubilizing agents such as quinoline compounds, aminobenzene compounds, dioxime compounds, and polyamine compounds are known (for example, Patent Documents 1 to 3). 3). However, these conventional methods use organic compounds, which may cause secondary pollution, and generally have a problem that the processing operation is troublesome and expensive. As a method for treating heavy metal-containing wastewater, there is also known a method using an inorganic compound-based precipitation forming agent such as an oxidizing agent, a silicic acid compound, a manganese compound, and a sulfurizing agent under pH adjustment (for example, Patent Document 4). To 7), and methods using inorganic compound-based flocculants such as calcium compounds such as calcium chloride and calcium hydroxide, and divalent iron salts such as ferrous chloride and ferrous nitrate are also known. (For example, refer to Patent Documents 8 to 10). However, these conventional methods have a problem that the removal of heavy metals is insufficient for the amount of use, and a considerable amount of precipitates are generally formed, so that the treatment is troublesome.

特開平7−171541号公報JP 7-171541 A 特開平8−168777号公報JP-A-8-168777 特開2008−273995号公報JP 2008-273395 A 特開平8−281277号公報JP-A-8-281277 特開平8−309368号公報JP-A-8-309368 特開平9−206761号公報Japanese Patent Laid-Open No. 9-206761 特開2000−34142号公報JP 2000-34142 A 特開2001−340870号公報JP 2001-340870 A 特開2002−143864号公報JP 2002-143864 A 特開2005−224670号公報JP 2005-224670 A

本発明が解決しようとする課題は、重金属含有排水から重金属を安全且つ簡便な手段で経済的且つ効率的に除去することができる重金属含有排水の処理方法を提供する処にある。   A problem to be solved by the present invention is to provide a method for treating heavy metal-containing wastewater that can remove heavy metals from heavy metal-containing wastewater economically and efficiently by safe and simple means.

前記の課題を解決する本発明は、重金属含有排水にpH4.0〜10.0の調整下で下記の活性化リン酸水素カルシウム二水和物を加えて混合し、排水中の重金属を該活性化リン酸水素カルシウム二水和物の粒子表面に吸着させた後、固液分離して、排水中の重金属を除去することを特徴とする重金属含有排水の処理方法に係る。
活性化リン酸水素カルシウム二水和物:リン酸水素カルシウム二水和物を水中で撹拌して、その粒子表面をエッチング処理したもの
The present invention for solving the above-mentioned problems is to add the following activated calcium hydrogen phosphate dihydrate to a heavy metal-containing wastewater under the adjustment of pH 4.0 to 10.0, and mix the resulting mixture with the heavy metal in the wastewater. The present invention relates to a method for treating heavy metal-containing wastewater, characterized in that the heavy metal in the wastewater is removed by solid-liquid separation after adsorbing to the particle surface of calcium hydrogen phosphate dihydrate.
Activated calcium hydrogen phosphate dihydrate: Calcium hydrogen phosphate dihydrate stirred in water and the particle surface etched

本発明では先ず、重金属含有排水を、そのpHが4.0〜10.0の範囲を外れている場合には、pH4.0〜10.0に調整する。pHがこの範囲を外れると、そのような重金属含有排水に活性化リン酸水素カルシウム二水和物を加えて混合しても、排水中の重金属を該活性化リン酸水素カルシウム二水和物の粒子表面に充分に吸着させることができない。pHは5.8〜8.6に調整すると、処理後の排水をそのまま放出することができる。かかるpHの調整には、排水のpHとの関係でそれ自体は公知の各種のアルカリ性剤や酸性剤を使用することができるが、塩化カルシウム、水酸化カルシウム、炭酸カルシウム等のカルシウム化合物を使用するのが有利である。   In the present invention, first, the heavy metal-containing wastewater is adjusted to pH 4.0 to 10.0 when the pH is out of the range of 4.0 to 10.0. When the pH is out of this range, even if activated calcium hydrogen phosphate dihydrate is added to and mixed with such heavy metal-containing wastewater, the heavy metal in the wastewater is mixed with the activated calcium hydrogen phosphate dihydrate. It cannot be sufficiently adsorbed on the particle surface. When the pH is adjusted to 5.8 to 8.6, the treated waste water can be discharged as it is. For adjusting the pH, various alkaline agents and acid agents known per se can be used in relation to the pH of the wastewater, but calcium compounds such as calcium chloride, calcium hydroxide and calcium carbonate are used. Is advantageous.

本発明では次に、重金属含有排水に、前記したようなpH4.0〜10.0の調整下で、活性化リン酸水素カルシウム二水和物を加えて混合する。活性化リン酸水素カルシウム二水和物はリン酸水素カルシウム二水和物を水中で撹拌してその粒子表面をエッチング処理することにより活性化したもので、その原料となるリン酸水素カルシウム二水和物としては市販されているものを適宜使用することができる。加える活性化リン酸水素カルシウム二水和物の量は、排水中の重金属濃度等にもよるが、通常は重金属含有排水に対して0.01〜0.5質量%となる量とする。また混合時間は通常、0.5〜24時間程度とする。   Next, in the present invention, activated calcium hydrogen phosphate dihydrate is added to and mixed with the heavy metal-containing wastewater under the adjustment of pH 4.0 to 10.0 as described above. Activated calcium hydrogen phosphate dihydrate is activated by stirring calcium hydrogen phosphate dihydrate in water and etching the particle surface. A commercially available product can be used as appropriate. The amount of activated calcium hydrogen phosphate dihydrate to be added depends on the heavy metal concentration in the wastewater, but is usually 0.01 to 0.5% by mass with respect to the heavy metal-containing wastewater. The mixing time is usually about 0.5 to 24 hours.

前記のように活性化リン酸水素カルシウム二水和物を加えて混合すると、排水中の重金属は活性化リン酸水素カルシウム二水和物の粒子表面に吸着されるので、本発明では最後に、活性化リン酸水素カルシウム二水和物を加えて混合したものを固液分離し、固形分を回収する。固液分離には、それ自体は公知の各種の濾過機や遠心分離機を使用することができる。排水中の重金属は活性化リン酸水素カルシウム二水和物の粒子表面に吸着され、かかる固液分離で固形分として回収されるので、排水から除去される。   When activated calcium hydrogen phosphate dihydrate is added and mixed as described above, the heavy metal in the waste water is adsorbed on the particle surface of the activated calcium hydrogen phosphate dihydrate. The mixture obtained by adding activated calcium hydrogen phosphate dihydrate is separated into solid and liquid, and the solid content is recovered. For solid-liquid separation, various types of known filters and centrifuges can be used. The heavy metal in the waste water is adsorbed on the surface of the activated calcium hydrogen phosphate dihydrate particles, and is recovered as a solid content by such solid-liquid separation, so that it is removed from the waste water.

排水からの重金属の除去程度は、重金属がリン酸水素カルシウム二水和物の粒子表面にどの程度吸着されるかによって異なり、具体的には重金属の種類やリン酸水素カルシウム二水和物の粒子表面の構造等によって異なる。実際のところ、表面が滑らかな柱状結晶構造を呈する市販のリン酸水素カルシウム二水和物をそのまま使用しても、排水からの重金属の除去率は、例えば鉛の場合に90質量%程度を超えるが、例えばカドミウムの場合には80質量%程度未満になる。   The degree of heavy metal removal from wastewater depends on how much heavy metal is adsorbed on the surface of calcium hydrogen phosphate dihydrate particles. Specifically, the type of heavy metal and calcium hydrogen phosphate dihydrate particles It depends on the surface structure. In fact, even if a commercially available calcium hydrogen phosphate dihydrate having a smooth columnar crystal structure is used as it is, the removal rate of heavy metals from wastewater exceeds, for example, about 90% by mass in the case of lead. However, in the case of cadmium, for example, it is less than about 80% by mass.

しかし、リン酸水素カルシウム二水和物として、その粒子表面をエッチング処理することにより活性化した活性化リン酸水素カルシウム二水和物を使用すると、排水からの重金属の除去率を著しく高めることができる。実際のところ、その粒子表面をナノメータ(nm)レベルのエッチング構造とした活性化リン酸水素カルシウム二水和物を使用すると、排水からの重金属の除去率を、鉛の場合も、またカドミウムの場合も、更に銅の場合も、95〜100質量%にまですることができる。   However, when activated calcium hydrogen phosphate dihydrate activated by etching the particle surface as calcium hydrogen phosphate dihydrate is used, the removal rate of heavy metals from wastewater can be significantly increased. it can. In fact, using activated calcium hydrogen phosphate dihydrate with a nanometer (nm) level etching structure on the particle surface, the removal rate of heavy metals from wastewater can be reduced in the case of lead and cadmium. Further, in the case of copper, the content can be increased to 95 to 100% by mass.

前記のようなエッチング処理は、リン酸水素カルシウム水和物を水中で撹拌することにより行なうことができるが、リン酸水素カルシウム二水和物の粒子表面をナノメータ(nm)レベルのエッチング構造とするためには、リン酸水素カルシウム二水和物を水中で撹拌するときの水/リン酸水素カルシウム二水和物の質量比、温度及び時間、なかでも温度に注意し、温度を40℃以上とするのが好ましく、水/リン酸水素カルシウム二水和物の質量比を35〜100、温度を50〜80℃及び時間を1〜60分間とするのがより好ましい。   The etching treatment as described above can be performed by stirring the calcium hydrogen phosphate hydrate in water, but the particle surface of the calcium hydrogen phosphate dihydrate has a nanometer (nm) level etching structure. For this purpose, pay attention to the mass ratio of water / calcium hydrogen phosphate dihydrate, temperature and time, especially temperature when stirring calcium hydrogen phosphate dihydrate in water, and the temperature should be 40 ° C or higher. Preferably, the mass ratio of water / calcium hydrogen phosphate dihydrate is 35 to 100, the temperature is 50 to 80 ° C., and the time is 1 to 60 minutes.

本発明によると、重金属含有排水から重金属を安全且つ簡便な手段で経済的且つ効率的に除去することができる。   According to the present invention, heavy metals can be removed economically and efficiently from heavy metal-containing wastewater by safe and simple means.

市販のリン酸水素カルシウム二水和物を用いて重金属含有排水を処理したときの鉛イオン又はカドミウムイオンの除去率を例示するグラフ。The graph which illustrates the removal rate of a lead ion or a cadmium ion when processing heavy metal containing wastewater using commercially available calcium hydrogenphosphate dihydrate. 活性化リン酸水素カルシウム二水和物を用いて重金属含有排水を処理したときの鉛イオン又はカドミウムイオン又は銅イオンの除去率を例示するグラフ。The graph which illustrates the removal rate of a lead ion, a cadmium ion, or a copper ion when processing a heavy metal containing waste water using activated calcium hydrogenphosphate dihydrate. 市販のリン酸水素カルシウム二水和物の粒子表面を例示する5000倍の走査型電子顕微鏡写真。The scanning electron micrograph of 5000 times which illustrates the particle | grain surface of commercially available calcium hydrogenphosphate dihydrate. 活性化リン酸水素カルシウム二水和物の粒子表面を例示する5000倍の走査型電子顕微鏡写真。The scanning electron micrograph of 5000 times which illustrates the particle | grain surface of activated calcium hydrogenphosphate dihydrate.

試験区分1
硝酸鉛を用いて調製した鉛イオンを5mg/L、10mg/L又は15mg/L含有する酸性水溶液20gに、撹拌しながら少量の水酸化カルシウムを加えてpH5.5に調整した後、リン酸水素カルシウム二水和物として市販品A(試薬)又は市販品B(ゼラチン製造時の副生物)を0.02g加え、25℃の温度下で6時間撹拌し、遠心分離して、固形分を回収した。固形分を回収した後の遠心分離液をICP発光分光分析に供し、鉛イオンの濃度を求めた。結果を表1及び図1に示した。
Test category 1
After adjusting the pH to 5.5 by adding a small amount of calcium hydroxide with stirring to 20 g of an acidic aqueous solution containing 5 mg / L, 10 mg / L or 15 mg / L of lead ions prepared using lead nitrate, hydrogen phosphate Add 0.02g of commercial product A (reagent) or commercial product B (by-product of gelatin production) as calcium dihydrate, stir at 25 ° C for 6 hours, and centrifuge to recover solids did. The centrifuged liquid after recovering the solid content was subjected to ICP emission spectroscopic analysis to determine the concentration of lead ions. The results are shown in Table 1 and FIG.

硝酸カドミウムを用いて調製したカドミウムイオンを5mg/L、10mg/L又は15mg/L含有する酸性水溶液20gに、撹拌しながら少量の水酸化カルシウムを加えてpH5.5に調整した後、リン酸水素カルシウム二水和物として市販品A(試薬)又は市販品B(ゼラチン製造時の副生物)を0.02g加え、25℃の温度下で6時間撹拌し、遠心分離して、固形分を回収した。固形分を回収した後の遠心分離液をICP発光分光分析に供し、カドミウムイオンの濃度を求めた。結果を表2及び図1に示した。


After adjusting the pH to 5.5 by adding a small amount of calcium hydroxide with stirring to 20 g of an acidic aqueous solution containing 5 mg / L, 10 mg / L or 15 mg / L of cadmium ions prepared using cadmium nitrate, hydrogen phosphate Add 0.02g of commercial product A (reagent) or commercial product B (by-product of gelatin production) as calcium dihydrate, stir at 25 ° C for 6 hours, and centrifuge to recover solids did. The centrifuged liquid after recovering the solid content was subjected to ICP emission spectroscopic analysis to determine the concentration of cadmium ions. The results are shown in Table 2 and FIG.


Figure 0005158520
Figure 0005158520

Figure 0005158520
Figure 0005158520

図1において、曲線1は市販品Bについて鉛イオンの除去率を示し、曲線2は市販品Aについて鉛イオンの除去率を示し、曲線3は市販品Bについてカドミウムイオンの除去率を示し、曲線4は市販品Aについてカドミウムイオンの除去率を示している。また図3は、市販品Aのリン酸水素カルシウム二水和物の粒子表面を例示する5000倍の走査型電子顕微鏡写真である。図示を省略するが、市販品Bの粒子表面も市販品Aとほぼ同様になっている。これらの表1、表2、図1及び図3からも明らかなように、表面が滑らかな柱状結晶構造を呈する市販のリン酸水素カルシウム二水和物をそのまま使用しても、排水から重金属を相応に除去することができ、その除去率は、例えば鉛の場合に90質量%程度を超えるが、例えばカドミウムの場合には80質量%程度未満になる。   In FIG. 1, curve 1 shows the removal rate of lead ions for commercial product B, curve 2 shows the removal rate of lead ions for commercial product A, curve 3 shows the removal rate of cadmium ions for commercial product B, and curve 4 shows the removal rate of cadmium ions for the commercial product A. FIG. 3 is a scanning electron micrograph of 5000 times illustrating the particle surface of commercially available product A calcium hydrogen phosphate dihydrate. Although not shown, the particle surface of the commercial product B is almost the same as that of the commercial product A. As is clear from these Tables 1 and 2, FIG. 1 and FIG. 3, even if a commercially available calcium hydrogen phosphate dihydrate having a smooth columnar crystal structure is used as it is, heavy metals can be removed from the wastewater. For example, in the case of lead, the removal rate exceeds about 90% by mass, but in the case of cadmium, for example, it becomes less than about 80% by mass.

試験区分2
硝酸鉛を用いて調製した鉛イオンを5mg/L、10mg/L又は15mg/L含有する酸性水溶液20gに、撹拌しながら少量の水酸化カルシウムを加えてpH5.5に調整した後、下記の活性化リン酸水素カルシウム二水和物A又はBを0.02g加え、25℃の温度下で6時間撹拌し、遠心分離して、固形分を回収した。固形分を回収した後の遠心分離液をICP発光分光分析に供し、鉛イオンの濃度を求めた。結果を表3及び図2に示した。
活性化リン酸水素カルシウム二水和物A:前記の市販品A(試薬)を、水/市販品Aの質量比が50、温度50℃の水中で60分間撹拌して、その粒子表面をエッチング処理し、ナノメータ(nm)レベルのエッチング構造としたもの。
活性化リン酸水素カルシウム二水和物B:前記の市販品B(ゼラチン製造時の副生物)を、水/市販品Bの質量比が50、温度50℃の水中で60分間撹拌して、その粒子表面をエッチング処理し、ナノメータ(nm)レベルのエッチング構造としたもの。
Test category 2
After adjusting the pH to 5.5 by adding a small amount of calcium hydroxide while stirring to 20 g of an acidic aqueous solution containing 5 mg / L, 10 mg / L or 15 mg / L of lead ions prepared using lead nitrate, 0.02 g of calcium hydrogen phosphate dihydrate A or B was added, and the mixture was stirred at a temperature of 25 ° C. for 6 hours and centrifuged to recover a solid content. The centrifuged liquid after recovering the solid content was subjected to ICP emission spectroscopic analysis to determine the concentration of lead ions. The results are shown in Table 3 and FIG.
Activated calcium hydrogen phosphate dihydrate A: The above-mentioned commercial product A (reagent) is stirred for 60 minutes in water with a mass ratio of water / commercial product A of 50 and temperature of 50 ° C., and the particle surface is etched. Processed into a nanometer (nm) level etching structure.
Activated calcium hydrogen phosphate dihydrate B: The above-mentioned commercial product B (by-product in the production of gelatin) is stirred for 60 minutes in water at a mass ratio of water / commercial product B of 50, temperature 50 ° C., The particle surface is etched to have a nanometer (nm) level etching structure.

硝酸カドミウムを用いて調製したカドミウムイオンを5mg/L、10mg/L又は15mg/L含有する酸性水溶液20gに、撹拌しながら少量の水酸化カルシウムを加えてpH5.5に調整した後、前記の活性化リン酸水素カルシウム二水和物A又はBを0.02g加え、25℃の温度下で6時間撹拌し、遠心分離して、固形分を回収した。固形分を回収した後の遠心分離液をICP発光分光分析に供し、カドミウムイオンの濃度を求めた。結果を表4及び図2に示した。   After adjusting the pH to 5.5 by adding a small amount of calcium hydroxide while stirring to 20 g of an acidic aqueous solution containing 5 mg / L, 10 mg / L or 15 mg / L of cadmium ions prepared using cadmium nitrate, 0.02 g of calcium hydrogen phosphate dihydrate A or B was added, and the mixture was stirred at a temperature of 25 ° C. for 6 hours and centrifuged to recover a solid content. The centrifuged liquid after recovering the solid content was subjected to ICP emission spectroscopic analysis to determine the concentration of cadmium ions. The results are shown in Table 4 and FIG.

硫酸銅を用いて調製した銅イオンを5mg/L、10mg/L又は15mg/L含有する酸性水溶液20gに、撹拌しながら少量の水酸化カルシウムを加えてpH5.5に調整した後、前記の活性化リン酸水素カルシウム二水和物A又はBを0.02g加え、25℃の温度下で6時間撹拌し、遠心分離して、固形分を回収した。固形分を回収した後の遠心分離液をICP発光分光分析に供し、カドミウムイオンの濃度を求めた。結果を表5及び図2に示した。   After adjusting the pH to 5.5 by adding a small amount of calcium hydroxide with stirring to 20 g of an acidic aqueous solution containing 5 mg / L, 10 mg / L or 15 mg / L of copper ions prepared using copper sulfate, the activity described above 0.02 g of calcium hydrogen phosphate dihydrate A or B was added, and the mixture was stirred at a temperature of 25 ° C. for 6 hours and centrifuged to recover a solid content. The centrifuged liquid after recovering the solid content was subjected to ICP emission spectroscopic analysis to determine the concentration of cadmium ions. The results are shown in Table 5 and FIG.

Figure 0005158520
Figure 0005158520

Figure 0005158520
Figure 0005158520




Figure 0005158520
Figure 0005158520

図2において、曲線5は活性化リン酸水素カルシウム二水和物Bについて鉛イオンの除去率を示し、曲線6は活性化リン酸水素カルシウム二水和物Aについて鉛イオンの除去率を示し、曲線7は活性化リン酸水素カルシウム二水和物Bについてカドミウムイオンの除去率を示し、曲線8は活性化リン酸水素カルシウム二水和物Aについてカドミウムイオンの除去率を示し、曲線9は活性化リン酸水素カルシウム二水和物Bについて銅イオンの除去率を示し、曲線10は活性化リン酸水素カルシウム二水和物Aについて銅イオンの除去率を示している。また図4は活性化リン酸水素カルシウム二水和物Aの粒子表面を例示する5000倍の走査型電子顕微鏡写真である。図示を省略するが、活性化リン酸水素カルシウム二水和物Bの粒子表面も活性化リン酸水素カルシウム二水和物Aとほぼ同様になっている。これらの表3〜表5、図2及び図4からも明らかなように、表面が滑らかな柱状結晶構造を呈する市販のリン酸水素カルシウム二水和物をエッチング処理して活性化し、その粒子表面をナノメータ(nm)レベルのエッチング構造にすると、排水からの重金属の除去率は、例えば鉛の場合も、またカドミウムの場合も、更に銅の場合も、95〜100質量%程度にすることができる。   In FIG. 2, curve 5 shows the removal rate of lead ions for activated calcium hydrogen phosphate dihydrate B, curve 6 shows the removal rate of lead ions for activated calcium hydrogen phosphate dihydrate A, Curve 7 shows the removal rate of cadmium ions for the activated calcium hydrogen phosphate dihydrate B, curve 8 shows the removal rate of cadmium ions for the activated calcium hydrogen phosphate dihydrate A, and curve 9 shows the activity. The removal rate of copper ions for activated calcium hydrogen phosphate dihydrate B is shown, and curve 10 shows the removal rate of copper ions for activated calcium hydrogen phosphate dihydrate A. FIG. 4 is a scanning electron micrograph at a magnification of 5000 illustrating the particle surface of activated calcium hydrogen phosphate dihydrate A. Although not shown, the particle surface of the activated calcium hydrogen phosphate dihydrate B is substantially the same as that of the activated calcium hydrogen phosphate dihydrate A. As is clear from these Tables 3 to 5, FIG. 2 and FIG. 4, a commercially available calcium hydrogen phosphate dihydrate having a smooth columnar crystal structure is activated by etching to activate the particle surface. When an etching structure of a nanometer (nm) is used, the removal rate of heavy metals from waste water can be about 95 to 100% by mass in the case of lead, cadmium, and copper, for example. .

1 リン酸水素カルシウム二水和物の市販品Bについて鉛イオンの除去率を示す曲線
2 リン酸水素カルシウム二水和物の市販品Aについて鉛イオンの除去率を示す曲線
3 リン酸水素カルシウム二水和物の市販品Bについてカドミウムイオンの除去率を示す曲線
4 リン酸水素カルシウム二水和物の市販品Aについてカドミウムイオンの除去率を示す曲線
5 活性化リン酸水素カルシウム二水和物Bについて鉛イオンの除去率を示す曲線
6 活性化リン酸水素カルシウム二水和物Aについて鉛イオンの除去率を示す曲線
7 活性化リン酸水素カルシウム二水和物Bについてカドミウムイオンの除去率を示す曲線
8 活性化リン酸水素カルシウム二水和物Aについてカドミウムイオンの除去率を示す曲線
9 活性化リン酸水素カルシウム二水和物Bについて銅イオンの除去率を示す曲線
10 活性化リン酸水素カルシウム二水和物Aについて銅イオンの除去率を示す曲線
1 Curve showing lead ion removal rate for commercial product B of calcium hydrogen phosphate dihydrate 2 Curve showing lead ion removal rate for commercial product A of calcium hydrogen phosphate dihydrate 3 Calcium hydrogen phosphate 2 Curve showing removal rate of cadmium ion for commercial product B of hydrate 4 Curve showing removal rate of cadmium ion for commercial product A of calcium hydrogen phosphate dihydrate 5 Activated calcium hydrogen phosphate dihydrate B Curve showing the removal rate of lead ion for 6 Activated calcium hydrogen phosphate dihydrate Curve showing the removal rate of lead ion for activated calcium diphosphate 7 Demonstrating the removal rate of cadmium ion for activated calcium hydrogen phosphate dihydrate B Curve 8 Curve showing the removal rate of cadmium ions for activated calcium hydrogen phosphate dihydrate A 9 Activated calcium hydrogen phosphate dihydrate B Curve showing the removal rate of copper ions for curve 10 activated calcium hydrogen phosphate dihydrate A showing the removal rate of the copper ions with

Claims (4)

重金属含有排水にpH4.0〜10.0の調整下で下記の活性化リン酸水素カルシウム二水和物を加えて混合し、排水中の重金属を該活性化リン酸水素カルシウム二水和物の粒子表面に吸着させた後、固液分離して、排水中の重金属を除去することを特徴とする重金属含有排水の処理方法。
活性化リン酸水素カルシウム二水和物:リン酸水素カルシウム二水和物を水中で撹拌して、その粒子表面をエッチング処理したもの
Adjustment of a pH4.0~10.0 heavy metal-containing waste water by the addition of active potash phosphate dibasic calcium dihydrate below were mixed, heavy metals the activated-phosphate dibasic calcium dihydrate in the wastewater A method for treating heavy metal-containing wastewater, wherein the heavy metal in the wastewater is removed by solid-liquid separation after being adsorbed on the particle surface of the object.
Activated calcium hydrogen phosphate dihydrate: Calcium hydrogen phosphate dihydrate stirred in water and the particle surface etched
重金属が鉛、カドミウム及び銅から選ばれるものである請求項1記載の重金属含有排水の処理方法。   The method for treating heavy metal-containing wastewater according to claim 1, wherein the heavy metal is selected from lead, cadmium and copper. 重金属含有排水に対して0.01〜0.5質量%となる量の活性化リン酸水素カルシウム二水和物を加える請求項1又は2記載の重金属含有排水の処理方法。 0.01 wt% and comprising an amount of active potash phosphate calcium hydrogen added dihydrate claim 1 or 2 processing method of heavy metal-containing wastewater according against heavy metal-containing waste water. 活性化リン酸水素カルシウム二水和物が、リン酸水素カルシウム二水和物を水/リン酸水素カルシウム二水和物の質量比が35〜100となる50〜80℃の水中で1〜60分間撹拌して、その粒子表面をエッチング処理したものである請求項1〜3のいずれか一つの項記載の重金属含有排水の処理方法。 The activated calcium hydrogen phosphate dihydrate is 1-60 in 50-80 ° C. water in which the mass ratio of water / calcium hydrogen phosphate dihydrate is 35-100. The method for treating heavy metal-containing wastewater according to any one of claims 1 to 3 , wherein the particle surface is etched by stirring for a minute.
JP2009069924A 2009-03-23 2009-03-23 Treatment method for wastewater containing heavy metals Expired - Fee Related JP5158520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069924A JP5158520B2 (en) 2009-03-23 2009-03-23 Treatment method for wastewater containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069924A JP5158520B2 (en) 2009-03-23 2009-03-23 Treatment method for wastewater containing heavy metals

Publications (2)

Publication Number Publication Date
JP2010221104A JP2010221104A (en) 2010-10-07
JP5158520B2 true JP5158520B2 (en) 2013-03-06

Family

ID=43038875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069924A Expired - Fee Related JP5158520B2 (en) 2009-03-23 2009-03-23 Treatment method for wastewater containing heavy metals

Country Status (1)

Country Link
JP (1) JP5158520B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182984A (en) * 1994-12-28 1996-07-16 Toto Ltd Removal of heavy metal ion from heavy metal ion-containing water
JP2006175315A (en) * 2004-12-21 2006-07-06 Toyobo Co Ltd Harmful substance adsorbing and removing material

Also Published As

Publication number Publication date
JP2010221104A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
CN102001734B (en) Heavy metal settling agent for treating mercury-containing wastewater
TWI626990B (en) Treatment method and treatment device for radioactive waste water
JP2008184469A (en) Mixture composition and method for treating heavy metal therewith
JP5831914B2 (en) Water treatment method
JP5451323B2 (en) Water treatment method
WO2018168558A1 (en) Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
JP6242743B2 (en) Purification treatment agent and purification treatment method
JP2012157834A (en) Removing agent for harmful substances in wastewater and removal method using the same
JP2007237075A (en) Treatment method for wastewater containing fluoride ion, and wastewater treatment agent
JP2010082497A (en) Water treating agent and method for treating water
JP2011156470A (en) Method for treatment of contaminant components
JP5158520B2 (en) Treatment method for wastewater containing heavy metals
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
JP4338705B2 (en) Method for treating waste liquid containing borofluoride ions
JP2013159822A (en) Impurity removal method
JP2017159222A (en) Method for removing arsenic
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
TWI694057B (en) Method for manufacturing gypsum and method for manufacturing cement composition
JP5171705B2 (en) Treatment method for fluorine-containing wastewater
JP2010234306A (en) Selenium insolubilization method
JP7191753B2 (en) Method for treating selenium-containing water
JP5306977B2 (en) Method for treating boron-containing water and boron removing agent
JP2003340465A (en) Method for cleaning waste water, groundwater or soil leachate
JP2016168545A (en) Heavy metal treatment material and treatment method of heavy metal-containing fly ash washing liquid
JP6901807B1 (en) Treatment method of water containing selenate ion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121122

R150 Certificate of patent or registration of utility model

Ref document number: 5158520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees