JP5158304B2 - Method for producing polyethylene - Google Patents

Method for producing polyethylene Download PDF

Info

Publication number
JP5158304B2
JP5158304B2 JP2006117425A JP2006117425A JP5158304B2 JP 5158304 B2 JP5158304 B2 JP 5158304B2 JP 2006117425 A JP2006117425 A JP 2006117425A JP 2006117425 A JP2006117425 A JP 2006117425A JP 5158304 B2 JP5158304 B2 JP 5158304B2
Authority
JP
Japan
Prior art keywords
group
component
zirconium dichloride
fluorenyl
diphenylmethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006117425A
Other languages
Japanese (ja)
Other versions
JP2006321991A (en
Inventor
悟 山田
保武 若林
敬 稲富
明広 矢野
隆治 池田
敏 羽村
正雄 田靡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006117425A priority Critical patent/JP5158304B2/en
Publication of JP2006321991A publication Critical patent/JP2006321991A/en
Application granted granted Critical
Publication of JP5158304B2 publication Critical patent/JP5158304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

本発明はポリエチレンの製造方法に関するものである。   The present invention relates to a method for producing polyethylene.

高圧ラジカル法で製造される低密度ポリエチレン(LDPE)は分岐型ポリオレフィンであり、その側鎖は非線状な樹状構造である。このような構造は溶融流動性、溶融張力等の成形加工性に優れ、ポリマーを溶融加工する際には利点となるが、一方では固体ポリマーの機械的強度を低下させるという欠点がある。   Low density polyethylene (LDPE) produced by the high pressure radical method is a branched polyolefin, and its side chain has a non-linear dendritic structure. Such a structure is excellent in molding processability such as melt fluidity and melt tension, and is advantageous when the polymer is melt-processed. On the other hand, it has a drawback of reducing the mechanical strength of the solid polymer.

このため固体ポリマーの機械的強度を必要とする用途では、チーグラー触媒またはメタロセン触媒で得られる直鎖状高密度ポリエチレン(HDPE)や直鎖状低密度ポリエチレン(LLDPE)が一般的に使用されている。しかし、LDPEの利点である良成形加工性をこれらのHDPEおよびLLDPEは有していない。   For this reason, linear high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) obtained with Ziegler catalysts or metallocene catalysts are generally used in applications that require the mechanical strength of solid polymers. . However, these HDPE and LLDPE do not have good moldability, which is an advantage of LDPE.

HDPEおよびLLDPEの成形加工性をポリエチレンの製造方法により改良する手法としては、例えば(イ)従来のチーグラー触媒を用いた多段重合法により分子量分布を広げる方法(例えば、特許文献1〜3参照。)、(ロ)伝統的なCr系触媒を用いて長鎖分岐を有するポリエチレンを製造する方法、(ハ)特定のメタロセン触媒を用いてエチレンを重合し長鎖分岐を有するポリエチレンを製造する方法(例えば、特許文献4参照。)、が提案されている。しかし、これらの方法で得られるポリエチレンの成型加工性は未だ十分ではない。また、(イ)および(ロ)の方法で得られるポリエチレンに関しては、分子量分布が広がることにより、機械強度が低下するという問題点がある。さらに、(ハ)の方法で得られるポリエチレンに関しては、粒子形状に問題があり、スラリー法プロセスまたは気相法プロセスで製造することはできなかった。   As a technique for improving the molding processability of HDPE and LLDPE by a polyethylene production method, for example, (a) a method of broadening the molecular weight distribution by a multistage polymerization method using a conventional Ziegler catalyst (see, for example, Patent Documents 1 to 3). (B) a method for producing a polyethylene having a long chain branch using a traditional Cr-based catalyst, and (c) a method for producing a polyethylene having a long chain branch by polymerizing ethylene using a specific metallocene catalyst (for example, , See Patent Document 4). However, the moldability of polyethylene obtained by these methods is still not sufficient. Further, the polyethylene obtained by the methods (a) and (b) has a problem that the mechanical strength is lowered due to the broadening of the molecular weight distribution. Furthermore, the polyethylene obtained by the method (c) has a problem in the particle shape and cannot be produced by a slurry process or a gas phase process.

一方、オレフィンの重合によりポリオレフィンを製造する方法として、遷移金属化合物および有機金属化合物の組み合わせからなる触媒系を用いることはすでに知られている。また、カミンスキーらにより、メタロセンとメチルアルミノキサンを用いた触媒が、プロピレンを含むオレフィン系重合体を製造する際に、高い活性を示すことが開示されている(例えば、特許文献5参照。)。   On the other hand, it is already known to use a catalyst system comprising a combination of a transition metal compound and an organometallic compound as a method for producing a polyolefin by polymerization of olefin. Kaminsky et al. Discloses that a catalyst using a metallocene and methylaluminoxane exhibits high activity when producing an olefin polymer containing propylene (see, for example, Patent Document 5).

しかしながら、特許文献5に開示されている触媒系は重合活性には優れるが、触媒系が反応系に可溶性であるために、溶液重合系を採用することが多く、製造プロセスが限定されるばかりか、工業的に有用な物性を示すポリマーを製造するためには、比較的高価なメチルアルミノキサンを大量に用いる必要がある。このため、これら触媒系を用いた場合、コスト的な問題やポリマー中に大量のアルミニウムが残存する問題等があった。   However, although the catalyst system disclosed in Patent Document 5 is excellent in polymerization activity, since the catalyst system is soluble in the reaction system, a solution polymerization system is often adopted, which not only limits the production process. In order to produce a polymer exhibiting industrially useful physical properties, it is necessary to use a large amount of a relatively expensive methylaluminoxane. For this reason, when these catalyst systems are used, there are problems such as a cost problem and a large amount of aluminum remaining in the polymer.

これに対して、有機カチオンでイオン交換した粘土化合物を助触媒とする触媒系が開示され(例えば、特許文献6〜8参照。)、スラリー法プロセスで、高い重合活性、モルフォロジーの良好なポリマーの製造が実現されている。   On the other hand, a catalyst system using a clay compound ion-exchanged with an organic cation as a co-catalyst is disclosed (see, for example, Patent Documents 6 to 8), and in a slurry process, a polymer having high polymerization activity and good morphology is disclosed. Manufacturing has been realized.

特開平2−53811号公報JP-A-2-53811 特開平2−132109号公報JP-A-2-132109 特開平10−182742号公報JP-A-10-182742 米国特許第5,272,236号明細書US Pat. No. 5,272,236 特開昭58−19309号公報JP 58-19309 A 特開平7−224106号公報JP 7-224106 A 特開平10−324708号公報Japanese Patent Laid-Open No. 10-324708 特開平11−335408号公報JP 11-335408 A

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、モルフォロジーが良好な、LDPEの良成形加工性とHDPEおよびLLDPEの機械強度を併せ持つポリエチレンの経済的な製造方法を提供するものである。   The present invention has been made in order to solve the above-mentioned problems of the prior art, and has an economical production of polyethylene having a good morphology and having a good moldability of LDPE and a mechanical strength of HDPE and LLDPE. A method is provided.

本発明は、上記の目的に対して鋭意検討した結果見出されたものである。すなわち本発明は、
(A)密度が0.890g/cm以上0.980g/cm以下であり、
(B)重量平均分子量(Mw)が30,000以上10,000,000以下であり、
(C)Mwと数平均分子量(Mn)の比(Mw/Mn)が2以上20以下であり、
(D)長鎖分岐数が1,000個の炭素原子当たり0.01個以上3個以下
であるポリエチレンの製造方法であって、該製造方法は少なくとも遷移金属化合物(成分(a))と遷移金属化合物(成分(b))を主成分として含む触媒を用いて、エチレンおよび任意に炭素数3以上のオレフィンを重合することを特徴とする前記ポリエチレンの製造方法に関するものである。
The present invention has been found as a result of intensive studies on the above-described object. That is, the present invention
(A) a density is at 0.890 g / cm 3 or more 0.980 g / cm 3 or less,
(B) The weight average molecular weight (Mw) is 30,000 to 10,000,000,
(C) The ratio (Mw / Mn) of Mw to number average molecular weight (Mn) is 2 or more and 20 or less,
(D) A method for producing polyethylene having a long chain branch number of 0.01 to 3 per 1,000 carbon atoms, the production method comprising at least a transition metal compound (component (a)) and a transition The present invention relates to a method for producing polyethylene, characterized in that ethylene and optionally an olefin having 3 or more carbon atoms are polymerized using a catalyst containing a metal compound (component (b)) as a main component.

本発明で製造されるポリエチレンの密度(d)(g/cm)は、JIS K6760(1995)に準拠して密度勾配管法で測定した値であり、0.890g/cm以上0.980g/cm以下である。 The density (d) (g / cm 3 ) of the polyethylene produced in the present invention is a value measured by a density gradient tube method in accordance with JIS K6760 (1995), and is 0.890 g / cm 3 or more and 0.980 g. / Cm 3 or less.

本発明で製造されるポリエチレンの重量平均分子量(Mw)は、30,000以上10,000,000以下であり、好ましくは40,000以上8,000,000以下であり、さらに好ましくは50,000以上5,000,000以下である。   The weight average molecular weight (Mw) of the polyethylene produced by the present invention is 30,000 or more and 10,000,000 or less, preferably 40,000 or more and 8,000,000 or less, more preferably 50,000. More than 5,000,000.

本発明で製造されるポリエチレンのMw/Mnは2以上20以下であり、好ましくは2以上15以下であり、さらに好ましくは2以上12以下である。   Mw / Mn of the polyethylene produced in the present invention is 2 or more and 20 or less, preferably 2 or more and 15 or less, and more preferably 2 or more and 12 or less.

本発明で製造されるポリエチレンの長鎖分岐数は、13C−NMR測定で検出されるヘキシル基以上の分岐の数であり、1,000個の炭素原子当たり0.01個以上3個以下であり、好ましくは0.01個以上1個以下であり、さらに好ましくは0.01個以上0.1個未満である。 The number of long chain branches of the polyethylene produced by the present invention is the number of branches of hexyl groups or more detected by 13 C-NMR measurement, and is 0.01 or more and 3 or less per 1,000 carbon atoms. Yes, preferably from 0.01 to 1, more preferably from 0.01 to less than 0.1.

本発明で製造されるポリエチレンのGPC/固有粘度計によって評価した収縮因子(g’値)は、好ましくは0.1以上0.9未満であり、さらに好ましくは0.1以上0.8以下であり、さらに好ましくは0.1以上0.7以下である。なお、g’値は長鎖分岐の程度を表すパラメータであり、絶対分子量70万または重量平均分子量(Mw)の3倍の絶対分子量における本ポリエチレンと分岐が全く無いHDPEの固有粘度の比である。また、このg’値とGPC/光散乱計によって評価した収縮因子(g値)の間には、好ましくは式(14)、さらに好ましくは式(14)’で示される関係がある。なお、g値は絶対分子量70万またはMwの3倍の絶対分子量における本ポリエチレンとHDPEの慣性半径の二乗平均の比である。   The shrinkage factor (g ′ value) of the polyethylene produced by the present invention evaluated by GPC / intrinsic viscometer is preferably 0.1 or more and less than 0.9, more preferably 0.1 or more and 0.8 or less. Yes, more preferably from 0.1 to 0.7. The g ′ value is a parameter representing the degree of long-chain branching, and is the ratio of the intrinsic viscosity of this polyethylene and HDPE having no branching at an absolute molecular weight of 700,000 or 3 times the weight average molecular weight (Mw). . Further, there is a relationship between the g ′ value and the contraction factor (g value) evaluated by the GPC / light scatterometer, preferably by the formula (14), more preferably by the formula (14) ′. In addition, g value is ratio of the square average of the inertial radius of this polyethylene and HDPE in absolute molecular weight 700,000 or the absolute molecular weight 3 times Mw.

0.2<log(g’)/log(g)<1.3 (14)
0.5<log(g’)/log(g)<1.0 (14)’
なお、log(g’)/log(g)は長鎖分岐の形態を表すパラメータであり、枝の短い櫛型分岐では1.5に近づき、星型分岐では小さな値になることが「福田猛著,新高分子実験学1,高分子実験の基礎,分子特性解析,“3−4.分子形状および形態”,295(1994)」に記載されている。本発明で製造されるポリエチレンは、星型に近い形態を示す為に1.3よりも小さい値を示す。さらに、Mwの3倍の絶対分子量におけるg値(g3M)とMwの1倍の絶対分子量におけるg値(g)の間には、好ましくは式(15)、特に好ましくは式(15)’更に好ましくは式(15)’’で示される関係がある。
0.2 <log (g ′) / log (g) <1.3 (14)
0.5 <log (g ′) / log (g) <1.0 (14) ′
Note that log (g ′) / log (g) is a parameter representing the form of long-chain branching, and it is close to 1.5 for a short comb-shaped branch, and a small value for a star-shaped branch. Author, New Polymer Experimental Science 1, Basics of Polymer Experiment, Molecular Characterization, “3-4. Molecular shape and morphology ", 295 (1994)". The polyethylene produced by the present invention shows a value smaller than 1.3 in order to show a shape close to a star shape. Further, g-value in an absolute molecular weight three times Mw of (g 3M) and g values of the absolute molecular weight of 1 × Mw between (g M), preferably of formula (15), particularly preferably the formula (15) 'More preferably, there is a relationship represented by the formula (15)'.

0<g3M/g≦1 (15)
0<g3M/g≦0.9 (15)’
0<g3M/g≦0.8 (15)’’
本発明で製造されるポリエチレンのJIS K6760(1995)に準拠した方法で測定した(E)粉体嵩密度は、0.15g/cm以上0.70g/cm以下が好ましく、より好ましくは0.15g/cm以上0.50g/cm以下であり、特に好ましくは0.17g/cm以上0.50g/cm以下であり、さらに好ましくは0.20g/cm以上0.50g/cm以下である。
0 <g 3M / g M ≦ 1 (15)
0 <g 3M / g M ≦ 0.9 (15) ′
0 <g 3M / g M ≦ 0.8 (15) ''
The (E) powder bulk density of the polyethylene produced in the present invention, measured by a method based on JIS K6760 (1995), is preferably 0.15 g / cm 3 or more and 0.70 g / cm 3 or less, more preferably 0. 0.15 g / cm 3 or more and 0.50 g / cm 3 or less, particularly preferably 0.17 g / cm 3 or more and 0.50 g / cm 3 or less, more preferably 0.20 g / cm 3 or more and 0.50 g / cm 3 or less. cm 3 or less.

本発明で用いられる炭素数3以上のオレフィンとしては、例えばプロピレン、1−ブテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、4−メチル−1−ペンテン、3−メチル−1−ブテンもしくはビニルシクロアルカン等のα−オレフィン;ノルボルネンもしくはノルボルナジエン等の環状オレフィン;ブタジエンもしくは1,4−ヘキサジエン等のジエンまたはスチレン等を例示することができる。また、これらのオレフィンを2種類以上混合して用いることもできる。   Examples of the olefin having 3 or more carbon atoms used in the present invention include propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, Α-olefins such as eicosene, 4-methyl-1-pentene, 3-methyl-1-butene or vinylcycloalkane; cyclic olefins such as norbornene or norbornadiene; dienes such as butadiene or 1,4-hexadiene or styrene It can be illustrated. Two or more of these olefins can be mixed and used.

本発明における遷移金属化合物(成分(a))は、成分(a)のみを主成分として含む触媒を用いて、本発明の製造方法で、エチレンまたはエチレンと炭素数3以上のオレフィンを共重合することによって、
(F)Mnが5,000以上が好ましく、特に好ましくは10,000以上であり、さらに好ましくは15,000以上であり、
(G)Mwが、10,000以上が好ましく、特に好ましくは15,000以上であり、さらに好ましくは20,000以上であり、
(H)Mw/Mnが2以上5以下が好ましく、特に好ましくは2以上4以下であり、さらに好ましくは2以上3.5以下であり、
(I)下記一般式(16)
Z=X/(X+Y)×2 (16)
(ここで、Xはマクロマーの主鎖メチレン炭素1,000個当たりのビニル末端数であり、Yはマクロマーの主鎖メチレン炭素1,000個当たりの飽和末端数である。)
で表されるZが0.25以上1以下が好ましく、特に好ましくは0.50以上1以下であり、
(J)好ましくは粉体嵩密度が0.15g/cm以上0.50g/cm以下であり、
(K)好ましくは長鎖分岐(すなわち、13C−NMR測定で検出されるヘキシル基以上の分岐)が、主鎖メチレン炭素1,000個当たり0.01個未満であるマクロマーを製造する遷移金属化合物であることが好ましく、2種類以上の遷移金属化合物を混合して用いることもできる。
The transition metal compound (component (a)) in the present invention is copolymerized with ethylene or ethylene and an olefin having 3 or more carbon atoms by the production method of the present invention using a catalyst containing only the component (a) as a main component. By
(F) Mn is preferably 5,000 or more, particularly preferably 10,000 or more, more preferably 15,000 or more,
(G) Mw is preferably 10,000 or more, particularly preferably 15,000 or more, further preferably 20,000 or more,
(H) Mw / Mn is preferably 2 or more and 5 or less, particularly preferably 2 or more and 4 or less, more preferably 2 or more and 3.5 or less,
(I) The following general formula (16)
Z = X / (X + Y) × 2 (16)
(Where X is the number of vinyl ends per 1,000 macromer main chain methylene carbons and Y is the number of saturated ends per 1,000 macromer main chain methylene carbons.)
Z represented by is preferably 0.25 or more and 1 or less, particularly preferably 0.50 or more and 1 or less,
(J) Preferably the powder bulk density is 0.15 g / cm 3 or more and 0.50 g / cm 3 or less,
(K) Transition metal that produces a macromer, preferably having a long chain branch (ie, a branch of a hexyl group or higher detected by 13 C-NMR measurement) of less than 0.01 per 1,000 main chain methylene carbons A compound is preferable, and two or more kinds of transition metal compounds may be mixed and used.

本発明において用いられる遷移金属化合物(成分(a))は、好ましくは、一般式(1)   The transition metal compound (component (a)) used in the present invention is preferably represented by the general formula (1)

Figure 0005158304
で表される遷移金属化合物である。
Figure 0005158304
It is a transition metal compound represented by these.

本発明において用いられる一般式(1)で表される成分(a)中のMはチタニウム原子、ジルコニウム原子またはハフニウム原子であり、Xは各々独立して水素原子、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。 M 1 in the component (a) represented by the general formula (1) used in the present invention is a titanium atom, a zirconium atom or a hafnium atom, and each X 1 is independently a hydrogen atom, a halogen atom, 20 hydrocarbon group, C1-C20 silicon atom-containing hydrocarbon group, C1-C20 nitrogen atom-containing hydrocarbon group or C1-C20 oxygen atom-containing hydrocarbon group.

におけるハロゲンとしては、例えば塩素、フッ素、臭素、ヨウ素等が挙げられ、炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ノルボルニル基、フェニル基、スチリル基、ビフェニリル基、ナフチル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基、ジフェニルフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、トリブチルフェニル基、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基、ビニル基、プロペニル基、ブテニル基、ブタジエニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基等が挙げられ、炭素数1〜20のケイ素原子含有炭化水素基としては、例えばメチルシリル基、エチルシリル基、プロピルシリル基、ブチルシリル基、ペンチルシリル基、ヘキシルシリル基、フェニルシリル基、ベンジルシリル基、ジメチルシリル基、ジエチルシリル基、ジプロピルシリル基、ジブチルシリル基、ジフェニルシリル基、ジベンジルシリル基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリメチルシリルメチル基、トリメチルシリルエチル基、トリメチルシリルプロピル基、トリメチルシリルブチル基、トリメチルシリルフェニル基、ビス(トリメチルシリル)メチル基、ビス(トリメチルシリル)エチル基、ビス(トリメチルシリル)プロピル基、ビス(トリメチルシリル)ブチル基、ビス(トリメチルシリル)フェニル基、トリフェニルシリルメチル基等が挙げられ、炭素数1〜20の窒素原子含有炭化水素基としては、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、フェニルアミノ基、ベンジルアミノ基、フェニルエチルアミノ基、フェニルプロピルアミノ基、フェニルブチルアミノ基、ナフチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジベンジルアミノ基、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジメチルアミノフェニル基、ビス(ジメチルアミノ)メチル基、ビス(ジメチルアミノ)エチル基、ビス(ジメチルアミノ)プロピル基、ビス(ジメチルアミノ)ブチル基、ビス(ジメチルアミノ)フェニル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジフェニルアミノフェニル基等が挙げられ、炭素数1〜20の酸素原子含有炭化水素基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、ナフトキシ基、メチルフェノキシ基、エチルフェノキシ基、プロピルフェノキシ基、ブチルフェノキシ基、ビフェノキシ基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、フェノキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、フェノキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、ブトキシブチル基、フェノキシブチル基、メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基、ブトキシフェニル基、フェノキシフェニル基等が挙げられる。 Examples of the halogen in X 1 include chlorine, fluorine, bromine and iodine. Examples of the hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. , Heptyl group, octyl group, nonyl group, decyl group, norbornyl group, phenyl group, styryl group, biphenylyl group, naphthyl group, tolyl group, ethylphenyl group, propylphenyl group, butylphenyl group, dimethylphenyl group, diethylphenyl group , Dipropylphenyl group, dibutylphenyl group, diphenylphenyl group, trimethylphenyl group, triethylphenyl group, tripropylphenyl group, tributylphenyl group, benzyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, diphenylmethyl group, Diphenylethyl group, di Examples thereof include phenylpropyl group, diphenylbutyl group, vinyl group, propenyl group, butenyl group, butadienyl group, pentenyl group, pentadienyl group, hexenyl group, hexadienyl group and the like. For example, methylsilyl group, ethylsilyl group, propylsilyl group, butylsilyl group, pentylsilyl group, hexylsilyl group, phenylsilyl group, benzylsilyl group, dimethylsilyl group, diethylsilyl group, dipropylsilyl group, dibutylsilyl group, diphenylsilyl group Group, dibenzylsilyl group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, trimethylsilylmethyl group, trimethyl Silylethyl group, trimethylsilylpropyl group, trimethylsilylbutyl group, trimethylsilylphenyl group, bis (trimethylsilyl) methyl group, bis (trimethylsilyl) ethyl group, bis (trimethylsilyl) propyl group, bis (trimethylsilyl) butyl group, bis (trimethylsilyl) phenyl group, Examples of the nitrogen atom-containing hydrocarbon group having 1 to 20 carbon atoms include a methylamino group, an ethylamino group, a propylamino group, a butylamino group, a pentylamino group, a hexylamino group, and the like. Phenylamino, benzylamino, phenylethylamino, phenylpropylamino, phenylbutylamino, naphthylamino, dimethylamino, diethylamino, dipropylamino, dibutylamino Group, diphenylamino group, dibenzylamino group, dimethylaminomethyl group, dimethylaminoethyl group, dimethylaminopropyl group, dimethylaminobutyl group, dimethylaminophenyl group, bis (dimethylamino) methyl group, bis (dimethylamino) ethyl Group, bis (dimethylamino) propyl group, bis (dimethylamino) butyl group, bis (dimethylamino) phenyl group, phenylaminomethyl group, diphenylaminomethyl group, diphenylaminophenyl group, etc. Examples of the oxygen atom-containing hydrocarbon group of methoxy group, ethoxy group, propoxy group, butoxy group, phenoxy group, naphthoxy group, methylphenoxy group, ethylphenoxy group, propylphenoxy group, butylphenoxy group, biphenoxy group, methoxymethyl Group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, phenoxymethyl group, methoxyethyl group, ethoxyethyl group, propoxyethyl group, butoxyethyl group, phenoxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, Examples include butoxypropyl group, phenoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, butoxybutyl group, phenoxybutyl group, methoxyphenyl group, ethoxyphenyl group, propoxyphenyl group, butoxyphenyl group, phenoxyphenyl group, etc. It is done.

また、一般式(1)におけるRおよびRは一般式(2)、(3)または(4) In the general formula (1), R 1 and R 2 are the general formula (2), (3) or (4).

Figure 0005158304
で表され、それぞれ同じでも異なっていてもよく、Mとともにサンドイッチ構造を形成する。一般式(2)、(3)または(4)におけるRは各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。
Figure 0005158304
Each of which may be the same or different and forms a sandwich structure with M 1 . R 4 in the general formula (2), (3) or (4) is each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, A nitrogen atom-containing hydrocarbon group having 1 to 20 carbon atoms or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms.

一般式(2)、(3)または(4)におけるRのハロゲンとしては、例えば塩素、フッ素、臭素、ヨウ素等が挙げられ、炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ノルボルニル基、フェニル基、スチリル基、ビフェニリル基、ナフチル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基、ジフェニルフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、トリブチルフェニル基、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基、ビニル基、プロペニル基、ブテニル基、ブタジエニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基等が挙げられ、炭素数1〜20のケイ素原子含有炭化水素基としては、例えばメチルシリル基、エチルシリル基、プロピルシリル基、ブチルシリル基、ペンチルシリル基、ヘキシルシリル基、フェニルシリル基、ベンジルシリル基、ジメチルシリル基、ジエチルシリル基、ジプロピルシリル基、ジブチルシリル基、ジフェニルシリル基、ジベンジルシリル基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリメチルシリルメチル基、トリメチルシリルエチル基、トリメチルシリルプロピル基、トリメチルシリルブチル基、トリメチルシリルフェニル基、ビス(トリメチルシリル)メチル基、ビス(トリメチルシリル)エチル基、ビス(トリメチルシリル)プロピル基、ビス(トリメチルシリル)ブチル基、ビス(トリメチルシリル)フェニル基、トリフェニルシリルメチル基等が挙げられ、炭素数1〜20の窒素原子含有炭化水素基としては、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、フェニルアミノ基、ベンジルアミノ基、フェニルエチルアミノ基、フェニルプロピルアミノ基、フェニルブチルアミノ基、ナフチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジベンジルアミノ基、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジメチルアミノフェニル基、ビス(ジメチルアミノ)メチル基、ビス(ジメチルアミノ)エチル基、ビス(ジメチルアミノ)プロピル基、ビス(ジメチルアミノ)ブチル基、ビス(ジメチルアミノ)フェニル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジフェニルアミノフェニル基等が挙げられ、炭素数1〜20の酸素原子含有炭化水素基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、ナフトキシ基、メチルフェノキシ基、エチルフェノキシ基、プロピルフェノキシ基、ブチルフェノキシ基、ビフェノキシ基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、フェノキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、フェノキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、ブトキシブチル基、フェノキシブチル基、メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基、ブトキシフェニル基、フェノキシフェニル基等が挙げられる。 Examples of the halogen of R 4 in the general formula (2), (3) or (4) include chlorine, fluorine, bromine, iodine and the like. Examples of the hydrocarbon group having 1 to 20 carbon atoms include a methyl group, Ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, norbornyl, phenyl, styryl, biphenylyl, naphthyl, tolyl, ethylphenyl, propyl Phenyl group, butylphenyl group, dimethylphenyl group, diethylphenyl group, dipropylphenyl group, dibutylphenyl group, diphenylphenyl group, trimethylphenyl group, triethylphenyl group, tripropylphenyl group, tributylphenyl group, benzyl group, phenylethyl Group, phenylpropyl group, phenylbutyl group, diphenyl Rumethyl group, diphenylethyl group, diphenylpropyl group, diphenylbutyl group, vinyl group, propenyl group, butenyl group, butadienyl group, pentenyl group, pentadienyl group, hexenyl group, hexadienyl group and the like. As the atom-containing hydrocarbon group, for example, methylsilyl group, ethylsilyl group, propylsilyl group, butylsilyl group, pentylsilyl group, hexylsilyl group, phenylsilyl group, benzylsilyl group, dimethylsilyl group, diethylsilyl group, dipropylsilyl group , Dibutylsilyl group, diphenylsilyl group, dibenzylsilyl group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, Limethylsilylmethyl group, trimethylsilylethyl group, trimethylsilylpropyl group, trimethylsilylbutyl group, trimethylsilylphenyl group, bis (trimethylsilyl) methyl group, bis (trimethylsilyl) ethyl group, bis (trimethylsilyl) propyl group, bis (trimethylsilyl) butyl group, Examples thereof include bis (trimethylsilyl) phenyl group and triphenylsilylmethyl group. Examples of the nitrogen atom-containing hydrocarbon group having 1 to 20 carbon atoms include methylamino group, ethylamino group, propylamino group, butylamino group, and pentyl. Amino group, hexylamino group, phenylamino group, benzylamino group, phenylethylamino group, phenylpropylamino group, phenylbutylamino group, naphthylamino group, dimethylamino group, diethylamino group Dipropylamino group, dibutylamino group, diphenylamino group, dibenzylamino group, dimethylaminomethyl group, dimethylaminoethyl group, dimethylaminopropyl group, dimethylaminobutyl group, dimethylaminophenyl group, bis (dimethylamino) methyl group Bis (dimethylamino) ethyl group, bis (dimethylamino) propyl group, bis (dimethylamino) butyl group, bis (dimethylamino) phenyl group, phenylaminomethyl group, diphenylaminomethyl group, diphenylaminophenyl group, etc. Examples of the oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, phenoxy group, naphthoxy group, methylphenoxy group, ethylphenoxy group, propylphenoxy group, butylphenoxy Group, biphenoxy group, methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, phenoxymethyl group, methoxyethyl group, ethoxyethyl group, propoxyethyl group, butoxyethyl group, phenoxyethyl group, methoxypropyl group, ethoxy Propyl group, propoxypropyl group, butoxypropyl group, phenoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, butoxybutyl group, phenoxybutyl group, methoxyphenyl group, ethoxyphenyl group, propoxyphenyl group, butoxyphenyl group And a phenoxyphenyl group.

そして、一般式(1)中のRおよびRの具体的としては、例えばシクロペンタジエニル基、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、トリメチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ジエチルシクロペンタジエニル基、トリエチルシクロペンタジエニル基、テトラエチルシクロペンタジエニル基、プロピルシクロペンタジエニル基、ジプロピルシクロペンタジエニル基、トリプロピルシクロペンタジエニル基、テトラプロピルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ジブチルシクロペンタジエニル基、トリブチルシクロペンタジエニル基、テトラブチルシクロペンタジエニル基、フェニルシクロペンタジエニル基、ジフェニルシクロペンタジエニル基、ナフチルシクロペンタジエニル基、メトキシシクロペンタジエニル基、トリメチルシリルシクロペンタジエニル基、インデニル基、メチルインデニル基、ジメチルインデニル基、トリメチルインデニル基、テトラメチルインデニル基、ペンタメチルインデニル基、ヘキサメチルインデニル基、エチルインデニル基、ジエチルインデニル基、トリエチルインデニル基、テトラエチルインデニル基、ペンタエチルインデニル基、ヘキサエチルインデニル基、プロピルインデニル基、ジプロピルインデニル基、トリプロピルインデニル基、テトラプロピルインデニル基、ペンタプロピルインデニル基、ヘキサプロピルインデニル基、ブチルインデニル基、ジブチルインデニル基、トリブチルインデニル基、テトラブチルインデニル基、ペンタブチルインデニル基、ヘキサブチルインデニル基、フェニルインデニル基、ジフェニルインデニル基、ベンゾインデニル基、ナフチルインデニル基、メトキシインデニル基、トリメチルシリルインデニル基等を挙げることができる。 Specific examples of R 1 and R 2 in the general formula (1) include, for example, cyclopentadienyl group, methylcyclopentadienyl group, dimethylcyclopentadienyl group, trimethylcyclopentadienyl group, tetramethyl Cyclopentadienyl, ethylcyclopentadienyl, diethylcyclopentadienyl, triethylcyclopentadienyl, tetraethylcyclopentadienyl, propylcyclopentadienyl, dipropylcyclopentadienyl, tri Propylcyclopentadienyl group, tetrapropylcyclopentadienyl group, butylcyclopentadienyl group, dibutylcyclopentadienyl group, tributylcyclopentadienyl group, tetrabutylcyclopentadienyl group, phenylcyclopentadienyl group , Diphenyl Clopentadienyl, naphthylcyclopentadienyl, methoxycyclopentadienyl, trimethylsilylcyclopentadienyl, indenyl, methylindenyl, dimethylindenyl, trimethylindenyl, tetramethylindenyl , Pentamethyl indenyl group, hexamethyl indenyl group, ethyl indenyl group, diethyl indenyl group, triethyl indenyl group, tetraethyl indenyl group, pentaethyl indenyl group, hexaethyl indenyl group, propyl indenyl group, Dipropyl indenyl group, tripropyl indenyl group, tetrapropyl indenyl group, pentapropyl indenyl group, hexapropyl indenyl group, butyl indenyl group, dibutyl indenyl group, tributyl indenyl group, tetrabutyl ind Examples thereof include a denyl group, a pentabutylindenyl group, a hexabutylindenyl group, a phenylindenyl group, a diphenylindenyl group, a benzoindenyl group, a naphthylindenyl group, a methoxyindenyl group, and a trimethylsilylindenyl group. .

また、一般式(1)におけるR、Rを架橋する架橋基Rは一般式(5) In addition, the crosslinking group R 3 for crosslinking R 1 and R 2 in the general formula (1) is represented by the general formula (5).

Figure 0005158304
で表され、置換基Rは各々独立して水素原子、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基であり、Yは炭素原子、ケイ素原子、ゲルマニウム原子または錫原子であり、その中でも好ましくは炭素原子、ケイ素原子であり、lは1から5の整数である。
Figure 0005158304
Each of the substituents R 5 is independently a hydrogen atom, halogen, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom having 1 to 20 carbon atoms. A hydrocarbon group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms, Y 1 is a carbon atom, a silicon atom, a germanium atom or a tin atom, preferably a carbon atom or a silicon atom, and l is It is an integer from 1 to 5.

一般式(5)のRにおけるハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基としては、例えばRと同じものを挙げることができる。 Halogen in R 5 of general formula (5), a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, a nitrogen atom-containing hydrocarbon group having 1 to 20 carbon atoms, or 1 carbon atom Examples of the ˜20 oxygen atom-containing hydrocarbon group include the same as those described above for R 4 .

そして、一般式(5)の具体例としては、例えばメチレン基、エチリデン基、エチレン基、プロピリデン基、プロピレン基、ブチリデン基、ブチレン基、ペンチリデン基、ペンチレン基、ヘキシリデン基、イソプロピリデン基、メチルエチルメチレン基、メチルプロピルメチレン基、メチルブチルメチレン基、ビス(シクロヘキシル)メチレン基、メチルフェニルメチレン基、ジフェニルメチレン基、フェニル(メチルフェニル)メチレン基、ジ(メチルフェニル)メチレン基、ビス(ジメチルフェニル)メチレン基、ビス(トリメチルフェニル)メチレン基、フェニル(エチルフェニル)メチレン基、ジ(エチルフェニル)メチレン基、ビス(ジエチルフェニル)メチレン基、フェニル(プロピルフェニル)メチレン基、ジ(プロピルフェニル)メチレン基、ビス(ジプロピルフェニル)メチレン基、フェニル(ブチルフェニル)メチレン基、ジ(ブチルフェニル)メチレン基、フェニル(ナフチル)メチレン基、ジ(ナフチル)メチレン基、フェニル(ビフェニル)メチレン基、ジ(ビフェニル)メチレン基、フェニル(トリメチルシリルフェニル)メチレン基、ビス(トリメチルシリルフェニル)メチレン基、ビス(ペンタフルオロフェニル)メチレン基、シランジイル基、ジシランジイル基、トリシランジイル基、テトラシランジイル基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基、ジエチルシランジイル基、ジプロピルシランジイル基、ジブチルシランジイル基、ジフェニルシランジイル基、シラシクロブタンジイル基、シラシクロヘキサンジイル基、ジビニルシランジイル基、ジアリルシランジイル基、(メチル)(ビニル)シランジイル基、(アリル)(メチル)シランジイル基等を挙げることができる。   Specific examples of the general formula (5) include, for example, a methylene group, an ethylidene group, an ethylene group, a propylidene group, a propylene group, a butylidene group, a butylene group, a pentylidene group, a pentylene group, a hexylidene group, an isopropylidene group, and methylethyl. Methylene group, methylpropylmethylene group, methylbutylmethylene group, bis (cyclohexyl) methylene group, methylphenylmethylene group, diphenylmethylene group, phenyl (methylphenyl) methylene group, di (methylphenyl) methylene group, bis (dimethylphenyl) Methylene group, bis (trimethylphenyl) methylene group, phenyl (ethylphenyl) methylene group, di (ethylphenyl) methylene group, bis (diethylphenyl) methylene group, phenyl (propylphenyl) methylene group, di (propylphenol) E) methylene group, bis (dipropylphenyl) methylene group, phenyl (butylphenyl) methylene group, di (butylphenyl) methylene group, phenyl (naphthyl) methylene group, di (naphthyl) methylene group, phenyl (biphenyl) methylene group Di (biphenyl) methylene group, phenyl (trimethylsilylphenyl) methylene group, bis (trimethylsilylphenyl) methylene group, bis (pentafluorophenyl) methylene group, silanediyl group, disilanediyl group, trisilanediyl group, tetrasilanediyl group, dimethylsilanediyl group Group, bis (dimethylsilane) diyl group, diethylsilanediyl group, dipropylsilanediyl group, dibutylsilanediyl group, diphenylsilanediyl group, silacyclobutanediyl group, silacyclohexanediyl group, Vinylsilane-diyl group, diallyl silane diyl group, (methyl) (vinyl) silanediyl group, and (allyl) (methyl) silanediyl group.

本発明で用いられる一般式(1)で表される具体的な化合物としては、Mをジルコニウム原子、Xを塩素原子とすると、例えばメチレンビス(シクロペンタジエニル)ジルコニウムジクロリド、イソプロピリデンビス(シクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(シクロペンタジエニル)ジルコニウムジクロリド、ジフェニルメチレンビス(シクロペンタジエニル)ジルコニウムジクロリド、エチレンビス(シクロペンタジエニル)ジルコニウムジクロリド、メチレンビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、イソプロピリデンビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジフェニルメチレンビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、エチレンビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、メチレン(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレン(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、エチレン(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、メチレンビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、イソプロピリデンビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジフェニルメチレンビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、エチレンビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、メチレン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、エチレン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジエチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジ(p−トリル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジビニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジアリルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、(メチル)(ビニル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、(アリル)(メチル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(シクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジエチルシランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジエチルシランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジイソプロピルシランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジフェニルシランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイル(シクロペンタジエニル)(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジエチルシランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(2,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、ジエチルシランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、ジイソプロピルシランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、ジフェニルシランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)シランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイル(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド等を例示することができる。また上記遷移金属化合物のXをフッ素原子、臭素原子またはヨウ素原子に置換した化合物も例示することができる。さらに、上記遷移金属化合物のMをチタン原子またはハフニウム原子に置換した化合物も例示することができる。 As specific compounds represented by the general formula (1) used in the present invention, when M 1 is a zirconium atom and X 1 is a chlorine atom, for example, methylenebis (cyclopentadienyl) zirconium dichloride, isopropylidenebis ( Cyclopentadienyl) zirconium dichloride, (methyl) (phenyl) methylenebis (cyclopentadienyl) zirconium dichloride, diphenylmethylenebis (cyclopentadienyl) zirconium dichloride, ethylenebis (cyclopentadienyl) zirconium dichloride, methylenebis (methyl) Cyclopentadienyl) zirconium dichloride, isopropylidenebis (methylcyclopentadienyl) zirconium dichloride, (methyl) (phenyl) methylenebis (methylcyclopentadienyl) di Konium dichloride, diphenylmethylenebis (methylcyclopentadienyl) zirconium dichloride, ethylenebis (methylcyclopentadienyl) zirconium dichloride, methylene (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, isopropylidene (cyclo Pentadienyl) (methylcyclopentadienyl) zirconium dichloride, (methyl) (phenyl) methylene (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (methylcyclopentadiyl) Enyl) zirconium dichloride, ethylene (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, methylene bis (2,4-dimethyl cyclide) Lopentadienyl) zirconium dichloride, isopropylidenebis (2,4-dimethylcyclopentadienyl) zirconium dichloride, (methyl) (phenyl) methylenebis (2,4-dimethylcyclopentadienyl) zirconium dichloride, diphenylmethylenebis (2,4 -Dimethylcyclopentadienyl) zirconium dichloride, ethylenebis (2,4-dimethylcyclopentadienyl) zirconium dichloride, methylene (cyclopentadienyl) (indenyl) zirconium dichloride, isopropylidene (cyclopentadienyl) (indenyl) Zirconium dichloride, (methyl) (phenyl) methylene (cyclopentadienyl) (indenyl) zirconium dichloride, diphenylmethylene (cyclopentadienyl) (Indenyl) zirconium dichloride, ethylene (cyclopentadienyl) (indenyl) zirconium dichloride, dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride, diethylsilanediylbis (cyclopentadienyl) zirconium dichloride, di (n-propyl) ) Silanediylbis (cyclopentadienyl) zirconium dichloride, diisopropylsilanediylbis (cyclopentadienyl) zirconium dichloride, dicyclohexylsilanediylbis (cyclopentadienyl) zirconium dichloride, diphenylsilanediylbis (cyclopentadienyl) zirconium dichloride, Di (p-tolyl) silanediylbis (cyclopentadienyl) zirconium dichloride, divinylsilane dii Bis (cyclopentadienyl) zirconium dichloride, diallylsilanediylbis (cyclopentadienyl) zirconium dichloride, (methyl) (vinyl) silanediylbis (cyclopentadienyl) zirconium dichloride, (allyl) (methyl) silanediylbis (cyclopentadi) Enyl) zirconium dichloride, (ethyl) (methyl) silanediylbis (cyclopentadienyl) zirconium dichloride, (methyl) (n-propyl) silanediylbis (cyclopentadienyl) zirconium dichloride, (methyl) (isopropyl) silanediylbis (cyclopentadi) Enyl) zirconium dichloride, (cyclohexyl) (methyl) bis (cyclopentadienyl) zirconium dichloride, (methyl) (phenyl) silanedi Irbis (cyclopentadienyl) zirconium dichloride, dimethylsilanediylbis (methylcyclopentadienyl) zirconium dichloride, diethylsilanediylbis (methylcyclopentadienyl) zirconium dichloride, di (n-propyl) silanediylbis (methylcyclopentadiyl) Enyl) zirconium dichloride, diisopropylsilanediylbis (methylcyclopentadienyl) zirconium dichloride, dicyclohexylsilanediylbis (methylcyclopentadienyl) zirconium dichloride, diphenylsilanediylbis (methylcyclopentadienyl) zirconium dichloride, (ethyl) (Methyl) silanediylbis (methylcyclopentadienyl) zirconium dichloride, (methyl) (n-propyl) Randiylbis (methylcyclopentadienyl) zirconium dichloride, (methyl) (isopropyl) silanediylbis (methylcyclopentadienyl) zirconium dichloride, (cyclohexyl) (methyl) bis (methylcyclopentadienyl) zirconium dichloride, (methyl) (phenyl) ) Silanediylbis (methylcyclopentadienyl) zirconium dichloride, dimethylsilanediyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, diethylsilanediyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, Di (n-propyl) silanediyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, diisopropylsila Diyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, dicyclohexylsilanediyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (methylcyclopentadienyl) Enyl) zirconium dichloride, (ethyl) (methyl) silanediyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, (methyl) (n-propyl) silanediyl (cyclopentadienyl) (methylcyclopentadienyl) Zirconium dichloride, (methyl) (isopropyl) silanediyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, (cyclohexyl) (methyl) (cycline Lopentadienyl) (methylcyclopentadienyl) zirconium dichloride, (methyl) (phenyl) silanediyl (cyclopentadienyl) (methylcyclopentadienyl) zirconium dichloride, dimethylsilanediylbis (2,4-dimethylcyclopentadienyl) Zirconium dichloride, diethylsilanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride, di (n-propyl) silanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride, diisopropylsilanediylbis (2,4 -Dimethylcyclopentadienyl) zirconium dichloride, dicyclohexylsilanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride, diphenylsilanedi Rubis (2,4-dimethylcyclopentadienyl) zirconium dichloride, (ethyl) (methyl) silanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride, (methyl) (n-propyl) silanediylbis (2,4- Dimethylcyclopentadienyl) zirconium dichloride, (methyl) (isopropyl) silanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride, (cyclohexyl) (methyl) bis (2,4-dimethylcyclopentadienyl) zirconium dichloride (Methyl) (phenyl) silanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride, dimethylsilanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, di Tylsilanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, di (n-propyl) silanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, diisopropylsilanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, dicyclohexylsilanediyl (Cyclopentadienyl) (indenyl) zirconium dichloride, diphenylsilanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, (ethyl) (methyl) silanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, (methyl) ( n-propyl) silanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, (methyl) (isopropyl) silanediyl ( Cyclopentadienyl) (indenyl) zirconium dichloride, (cyclohexyl) (methyl) silanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, (methyl) (phenyl) silanediyl (cyclopentadienyl) (indenyl) zirconium dichloride, etc. It can be illustrated. The compounds obtained by substituting X 1 of the above transition metal compounds fluorine atom, a bromine atom or an iodine atom can be exemplified. Furthermore, the M 1 of the transition metal compound can also be exemplified compounds obtained by replacing the titanium atom or a hafnium atom.

本発明において主成分として含む遷移金属化合物(成分(b))は、成分(b)のみを主成分として含む触媒を用いて、本発明の製造方法で、前記マクロマーの存在下、エチレンまたはエチレンと炭素数3以上のオレフィンを共重合することによって、(A)〜(D)、好ましくは(E)を満たすポリエチレンを製造する遷移金属化合物であることが好ましく、2種類以上の遷移金属化合物を混合して用いることもできる。   In the present invention, the transition metal compound (component (b)) contained as a main component is produced by using the catalyst containing only the component (b) as a main component, and in the production method of the present invention, in the presence of the macromer, It is preferably a transition metal compound that produces polyethylene satisfying (A) to (D), preferably (E), by copolymerizing an olefin having 3 or more carbon atoms, and two or more transition metal compounds are mixed. It can also be used.

本発明において用いられる遷移金属化合物(成分(b))は、好ましくは、一般式(6)   The transition metal compound (component (b)) used in the present invention is preferably represented by the general formula (6)

Figure 0005158304
で表される遷移金属化合物である。
Figure 0005158304
It is a transition metal compound represented by these.

本発明において用いられる一般式(6)で表される成分(b)中のMはチタニウム原子、ジルコニウム原子またはハフニウム原子であり、Xは各々独立して水素原子、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。 M 2 in the component (b) represented by the general formula (6) used in the present invention is a titanium atom, a zirconium atom or a hafnium atom, and each X 2 is independently a hydrogen atom, a halogen, a carbon number of 1 to 20 hydrocarbon group, C1-C20 silicon atom-containing hydrocarbon group, C1-C20 nitrogen atom-containing hydrocarbon group or C1-C20 oxygen atom-containing hydrocarbon group.

におけるハロゲンとしては、例えば塩素、フッ素、臭素、ヨウ素等が挙げられ、炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ノルボルニル基、フェニル基、スチリル基、ビフェニリル基、ナフチル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基、ジフェニルフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、トリブチルフェニル基、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基、ビニル基、プロペニル基、ブテニル基、ブタジエニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基等が挙げられ、炭素数1〜20のケイ素原子含有炭化水素基としては、例えばメチルシリル基、エチルシリル基、プロピルシリル基、ブチルシリル基、ペンチルシリル基、ヘキシルシリル基、フェニルシリル基、ベンジルシリル基、ジメチルシリル基、ジエチルシリル基、ジプロピルシリル基、ジブチルシリル基、ジフェニルシリル基、ジベンジルシリル基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリメチルシリルメチル基、トリメチルシリルエチル基、トリメチルシリルプロピル基、トリメチルシリルブチル基、トリメチルシリルフェニル基、ビス(トリメチルシリル)メチル基、ビス(トリメチルシリル)エチル基、ビス(トリメチルシリル)プロピル基、ビス(トリメチルシリル)ブチル基、ビス(トリメチルシリル)フェニル基、トリフェニルシリルメチル基等が挙げられ、炭素数1〜20の窒素原子含有炭化水素基としては、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、フェニルアミノ基、ベンジルアミノ基、フェニルエチルアミノ基、フェニルプロピルアミノ基、フェニルブチルアミノ基、ナフチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジベンジルアミノ基、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジメチルアミノフェニル基、ビス(ジメチルアミノ)メチル基、ビス(ジメチルアミノ)エチル基、ビス(ジメチルアミノ)プロピル基、ビス(ジメチルアミノ)ブチル基、ビス(ジメチルアミノ)フェニル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジフェニルアミノフェニル基等が挙げられ、炭素数1〜20の酸素原子含有炭化水素基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、ナフトキシ基、メチルフェノキシ基、エチルフェノキシ基、プロピルフェノキシ基、ブチルフェノキシ基、ビフェノキシ基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、フェノキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、フェノキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、ブトキシブチル基、フェノキシブチル基、メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基、ブトキシフェニル基、フェノキシフェニル基等が挙げられる。 Examples of the halogen in X 2 include chlorine, fluorine, bromine, and iodine. Examples of the hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. , Heptyl group, octyl group, nonyl group, decyl group, norbornyl group, phenyl group, styryl group, biphenylyl group, naphthyl group, tolyl group, ethylphenyl group, propylphenyl group, butylphenyl group, dimethylphenyl group, diethylphenyl group , Dipropylphenyl group, dibutylphenyl group, diphenylphenyl group, trimethylphenyl group, triethylphenyl group, tripropylphenyl group, tributylphenyl group, benzyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, diphenylmethyl group, Diphenylethyl group, di Examples thereof include phenylpropyl group, diphenylbutyl group, vinyl group, propenyl group, butenyl group, butadienyl group, pentenyl group, pentadienyl group, hexenyl group, hexadienyl group and the like. For example, methylsilyl group, ethylsilyl group, propylsilyl group, butylsilyl group, pentylsilyl group, hexylsilyl group, phenylsilyl group, benzylsilyl group, dimethylsilyl group, diethylsilyl group, dipropylsilyl group, dibutylsilyl group, diphenylsilyl group Group, dibenzylsilyl group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, trimethylsilylmethyl group, trimethyl Silylethyl group, trimethylsilylpropyl group, trimethylsilylbutyl group, trimethylsilylphenyl group, bis (trimethylsilyl) methyl group, bis (trimethylsilyl) ethyl group, bis (trimethylsilyl) propyl group, bis (trimethylsilyl) butyl group, bis (trimethylsilyl) phenyl group, Examples of the nitrogen atom-containing hydrocarbon group having 1 to 20 carbon atoms include a methylamino group, an ethylamino group, a propylamino group, a butylamino group, a pentylamino group, a hexylamino group, and the like. Phenylamino, benzylamino, phenylethylamino, phenylpropylamino, phenylbutylamino, naphthylamino, dimethylamino, diethylamino, dipropylamino, dibutylamino Group, diphenylamino group, dibenzylamino group, dimethylaminomethyl group, dimethylaminoethyl group, dimethylaminopropyl group, dimethylaminobutyl group, dimethylaminophenyl group, bis (dimethylamino) methyl group, bis (dimethylamino) ethyl Group, bis (dimethylamino) propyl group, bis (dimethylamino) butyl group, bis (dimethylamino) phenyl group, phenylaminomethyl group, diphenylaminomethyl group, diphenylaminophenyl group, etc. Examples of the oxygen atom-containing hydrocarbon group of methoxy group, ethoxy group, propoxy group, butoxy group, phenoxy group, naphthoxy group, methylphenoxy group, ethylphenoxy group, propylphenoxy group, butylphenoxy group, biphenoxy group, methoxymethyl Group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, phenoxymethyl group, methoxyethyl group, ethoxyethyl group, propoxyethyl group, butoxyethyl group, phenoxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, Examples include butoxypropyl group, phenoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, butoxybutyl group, phenoxybutyl group, methoxyphenyl group, ethoxyphenyl group, propoxyphenyl group, butoxyphenyl group, phenoxyphenyl group, etc. It is done.

また、一般式(6)におけるRは一般式(7)、(8)または(9) In the general formula (6), R 7 represents the general formula (7), (8) or (9).

Figure 0005158304
で表され、置換基R10は各々独立して水素原子、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。
Figure 0005158304
Each of the substituents R 10 is independently a hydrogen atom, a halogen, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom having 1 to 20 carbon atoms. It is a hydrocarbon group or a C1-C20 oxygen atom containing hydrocarbon group.

一般式(7)、(8)または(9)におけるR10のハロゲンとしては、例えば塩素、フッ素、臭素、ヨウ素等が挙げられ、炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ノルボルニル基、フェニル基、スチリル基、ビフェニリル基、ナフチル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基、ジフェニルフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、トリブチルフェニル基、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基、ビニル基、プロペニル基、ブテニル基、ブタジエニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基等が挙げられ、炭素数1〜20のケイ素原子含有炭化水素基としては、例えばメチルシリル基、エチルシリル基、プロピルシリル基、ブチルシリル基、ペンチルシリル基、ヘキシルシリル基、フェニルシリル基、ベンジルシリル基、ジメチルシリル基、ジエチルシリル基、ジプロピルシリル基、ジブチルシリル基、ジフェニルシリル基、ジベンジルシリル基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリメチルシリルメチル基、トリメチルシリルエチル基、トリメチルシリルプロピル基、トリメチルシリルブチル基、トリメチルシリルフェニル基、ビス(トリメチルシリル)メチル基、ビス(トリメチルシリル)エチル基、ビス(トリメチルシリル)プロピル基、ビス(トリメチルシリル)ブチル基、ビス(トリメチルシリル)フェニル基、トリフェニルシリルメチル基等が挙げられ、炭素数1〜20の窒素原子含有炭化水素基としては、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、フェニルアミノ基、ベンジルアミノ基、フェニルエチルアミノ基、フェニルプロピルアミノ基、フェニルブチルアミノ基、ナフチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジベンジルアミノ基、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジメチルアミノフェニル基、ビス(ジメチルアミノ)メチル基、ビス(ジメチルアミノ)エチル基、ビス(ジメチルアミノ)プロピル基、ビス(ジメチルアミノ)ブチル基、ビス(ジメチルアミノ)フェニル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジフェニルアミノフェニル基等が挙げられ、炭素数1〜20の酸素原子含有炭化水素基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、ナフトキシ基、メチルフェノキシ基、エチルフェノキシ基、プロピルフェノキシ基、ブチルフェノキシ基、ビフェノキシ基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、フェノキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、フェノキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、ブトキシブチル基、フェノキシブチル基、メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基、ブトキシフェニル基、フェノキシフェニル基等が挙げられる。 Examples of the halogen of R 10 in the general formula (7), (8) or (9) include chlorine, fluorine, bromine, iodine and the like, and examples of the hydrocarbon group having 1 to 20 carbon atoms include a methyl group, Ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, norbornyl, phenyl, styryl, biphenylyl, naphthyl, tolyl, ethylphenyl, propyl Phenyl group, butylphenyl group, dimethylphenyl group, diethylphenyl group, dipropylphenyl group, dibutylphenyl group, diphenylphenyl group, trimethylphenyl group, triethylphenyl group, tripropylphenyl group, tributylphenyl group, benzyl group, phenylethyl Group, phenylpropyl group, phenylbutyl group, diphenyl Nylmethyl group, diphenylethyl group, diphenylpropyl group, diphenylbutyl group, vinyl group, propenyl group, butenyl group, butadienyl group, pentenyl group, pentadienyl group, hexenyl group, hexadienyl group, etc., and silicon having 1 to 20 carbon atoms As the atom-containing hydrocarbon group, for example, methylsilyl group, ethylsilyl group, propylsilyl group, butylsilyl group, pentylsilyl group, hexylsilyl group, phenylsilyl group, benzylsilyl group, dimethylsilyl group, diethylsilyl group, dipropylsilyl group , Dibutylsilyl group, diphenylsilyl group, dibenzylsilyl group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group Trimethylsilylmethyl group, trimethylsilylethyl group, trimethylsilylpropyl group, trimethylsilylbutyl group, trimethylsilylphenyl group, bis (trimethylsilyl) methyl group, bis (trimethylsilyl) ethyl group, bis (trimethylsilyl) propyl group, bis (trimethylsilyl) butyl group, bis ( Trimethylsilyl) phenyl group, triphenylsilylmethyl group and the like. Examples of the nitrogen atom-containing hydrocarbon group having 1 to 20 carbon atoms include methylamino group, ethylamino group, propylamino group, butylamino group, and pentylamino group. Hexylamino group, phenylamino group, benzylamino group, phenylethylamino group, phenylpropylamino group, phenylbutylamino group, naphthylamino group, dimethylamino group, diethylamino , Dipropylamino group, dibutylamino group, diphenylamino group, dibenzylamino group, dimethylaminomethyl group, dimethylaminoethyl group, dimethylaminopropyl group, dimethylaminobutyl group, dimethylaminophenyl group, bis (dimethylamino) methyl Group, bis (dimethylamino) ethyl group, bis (dimethylamino) propyl group, bis (dimethylamino) butyl group, bis (dimethylamino) phenyl group, phenylaminomethyl group, diphenylaminomethyl group, diphenylaminophenyl group, etc. Examples of the oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, phenoxy group, naphthoxy group, methylphenoxy group, ethylphenoxy group, propylphenoxy group, butyl Fenoki Si group, biphenoxy group, methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, phenoxymethyl group, methoxyethyl group, ethoxyethyl group, propoxyethyl group, butoxyethyl group, phenoxyethyl group, methoxypropyl group, Ethoxypropyl group, propoxypropyl group, butoxypropyl group, phenoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, butoxybutyl group, phenoxybutyl group, methoxyphenyl group, ethoxyphenyl group, propoxyphenyl group, butoxyphenyl Group, phenoxyphenyl group and the like.

そして、一般式(6)におけるRの具体的としては、例えばシクロペンタジエニル基、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、トリメチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ジエチルシクロペンタジエニル基、トリエチルシクロペンタジエニル基、テトラエチルシクロペンタジエニル基、プロピルシクロペンタジエニル基、ジプロピルシクロペンタジエニル基、トリプロピルシクロペンタジエニル基、テトラプロピルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ジブチルシクロペンタジエニル基、トリブチルシクロペンタジエニル基、テトラブチルシクロペンタジエニル基、フェニルシクロペンタジエニル基、ジフェニルシクロペンタジエニル基、ナフチルシクロペンタジエニル基、メトキシシクロペンタジエニル基、トリメチルシリルシクロペンタジエニル基、インデニル基、メチルインデニル基、ジメチルインデニル基、トリメチルインデニル基、テトラメチルインデニル基、ペンタメチルインデニル基、ヘキサメチルインデニル基、エチルインデニル基、ジエチルインデニル基、トリエチルインデニル基、テトラエチルインデニル基、ペンタエチルインデニル基、ヘキサエチルインデニル基、プロピルインデニル基、ジプロピルインデニル基、トリプロピルインデニル基、テトラプロピルインデニル基、ペンタプロピルインデニル基、ヘキサプロピルインデニル基、ブチルインデニル基、ジブチルインデニル基、トリブチルインデニル基、テトラブチルインデニル基、ペンタブチルインデニル基、ヘキサブチルインデニル基、フェニルインデニル基、ジフェニルインデニル基、ベンゾインデニル基、ナフチルインデニル基、メトキシインデニル基、トリメチルシリルインデニル基等を挙げることができる。 Specific examples of R 7 in the general formula (6) include, for example, a cyclopentadienyl group, a methylcyclopentadienyl group, a dimethylcyclopentadienyl group, a trimethylcyclopentadienyl group, and a tetramethylcyclopentadienyl. Group, ethylcyclopentadienyl group, diethylcyclopentadienyl group, triethylcyclopentadienyl group, tetraethylcyclopentadienyl group, propylcyclopentadienyl group, dipropylcyclopentadienyl group, tripropylcyclopentadienyl Enyl, tetrapropylcyclopentadienyl, butylcyclopentadienyl, dibutylcyclopentadienyl, tributylcyclopentadienyl, tetrabutylcyclopentadienyl, phenylcyclopentadienyl, diphenylcyclopent Interdienyl group, naphthylcyclopentadienyl group, methoxycyclopentadienyl group, trimethylsilylcyclopentadienyl group, indenyl group, methylindenyl group, dimethylindenyl group, trimethylindenyl group, tetramethylindenyl group, pentamethyl Indenyl, hexamethylindenyl, ethylindenyl, diethylindenyl, triethylindenyl, tetraethylindenyl, pentaethylindenyl, hexaethylindenyl, propylindenyl, dipropylindenyl Nyl group, tripropyl indenyl group, tetrapropyl indenyl group, pentapropyl indenyl group, hexapropyl indenyl group, butyl indenyl group, dibutyl indenyl group, tributyl indenyl group, tetrabutyl indenyl , Mention may be made of penta-butyl indenyl group, hexa-butyl indenyl group, phenylindenyl group, diphenyl indenyl group, benzoindenyl group, naphthyl indenyl group, a methoxy indenyl group, a trimethylsilyl indenyl group.

一般式(6)におけるRは一般式(10) R 8 in the general formula (6) is the general formula (10).

Figure 0005158304
で表され、置換基R11は各々独立して水素原子、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基であり、具体的には、例えば前記Rと同じものを挙げることができる。
Figure 0005158304
Each of the substituents R 11 independently represents a hydrogen atom, a halogen, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom having 1 to 20 carbon atoms. a hydrocarbon group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms, specifically, can be for example include the same meanings as defined above R 4.

そして、一般式(6)におけるRの具体例としては、例えばフルオレニル基、メチルフルオレニル基、ジメチルフルオレニル基、トリメチルフルオレニル基、テトラメチルフルオレニル基、ペンタメチルフルオレニル基、ヘキサメチルフルオレニル基、ヘプタメチルフルオレニル基、オクタメチルフルオレニル基、エチルフルオレニル基、ジエチルフルオレニル基、トリエチルフルオレニル基、テトラエチルフルオレニル基、ペンタエチルフルオレニル基、ヘキサエチルフルオレニル基、ヘプタエチルフルオレニル基、オクタエチルフルオレニル基、プロピルフルオレニル基、ジプロピルフルオレニル基、トリプロピルフルオレニル基、テトラプロピルフルオレニル基、ペンタプロピルフルオレニル基、ヘキサプロピルフルオレニル基、ヘプタプロピルフルオレニル基、オクタプロピルフルオレニル基、ブチルフルオレニル基、ジブチルフルオレニル基、トリブチルフルオレニル基、テトラブチルフルオレニル基、ペンタブチルフルオレニル基、ヘキサブチルフルオレニル基、ヘプタブチルフルオレニル基、オクタブチルフルオレニル基、フェニルフルオレニル基、ジフェニルフルオレニル基、ベンジルフルオレニル基、ジベンジルフルオレニル基、ベンゾフルオレニル基、ジメチルアミノフルオレニル基、ビス(ジメチルアミノ)フルオレニル基、メトキシフルオレニル基、ジメトキシフルオレニル基等を挙げることができる。 Specific examples of R 8 in the general formula (6) include, for example, a fluorenyl group, a methyl fluorenyl group, a dimethyl fluorenyl group, a trimethyl fluorenyl group, a tetramethyl fluorenyl group, and pentamethyl fluorenyl. Group, hexamethylfluorenyl group, heptamethylfluorenyl group, octamethylfluorenyl group, ethylfluorenyl group, diethylfluorenyl group, triethylfluorenyl group, tetraethylfluorenyl group, pentaethylfluoride Olenyl group, hexaethylfluorenyl group, heptaethylfluorenyl group, octaethylfluorenyl group, propylfluorenyl group, dipropylfluorenyl group, tripropylfluorenyl group, tetrapropylfluorenyl Group, pentapropylfluorenyl group, hexapropylfluorenyl group, Putapropyl fluorenyl group, octapropyl fluorenyl group, butyl fluorenyl group, dibutyl fluorenyl group, tributyl fluorenyl group, tetrabutyl fluorenyl group, pentabutyl fluorenyl group, hexabutyl fluorenyl group Nyl group, heptabutylfluorenyl group, octabutylfluorenyl group, phenylfluorenyl group, diphenylfluorenyl group, benzylfluorenyl group, dibenzylfluorenyl group, benzofluorenyl group, dimethylamino Examples include fluorenyl group, bis (dimethylamino) fluorenyl group, methoxyfluorenyl group, dimethoxyfluorenyl group and the like.

また一般式(6)におけるR、Rを架橋する架橋基Rは一般式(11) In the general formula (6), the bridging group R 9 that crosslinks R 7 and R 8 is represented by the general formula (11).

Figure 0005158304
で表され、置換基R12は各々独立して水素原子、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基であり、Yは炭素原子、ケイ素原子、ゲルマニウム原子または錫原子であり、その中でも好ましくは炭素原子、ケイ素原子等であり、mは1から5の整数である。
Figure 0005158304
Each of the substituents R 12 independently represents a hydrogen atom, a halogen, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom having 1 to 20 carbon atoms. A hydrocarbon group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms, Y 2 is a carbon atom, a silicon atom, a germanium atom or a tin atom, preferably a carbon atom, a silicon atom or the like, m Is an integer from 1 to 5.

一般式(11)におけるR12のハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基としては、例えばRと同じものを挙げることができる。 R 12 halogen in formula (11), C 1-20 hydrocarbon group, C 1-20 silicon atom-containing hydrocarbon group, C 1-20 nitrogen atom-containing hydrocarbon group, or C 1 Examples of the ˜20 oxygen atom-containing hydrocarbon group include the same as R 5 .

そして、一般式(11)の具体例としては、例えばメチレン基、エチリデン基、エチレン基、プロピリデン基、プロピレン基、ブチリデン基、ブチレン基、ペンチリデン基、ペンチレン基、ヘキシリデン基、イソプロピリデン基、メチルエチルメチレン基、メチルプロピルメチレン基、メチルブチルメチレン基、ビス(シクロヘキシル)メチレン基、メチルフェニルメチレン基、ジフェニルメチレン基、フェニル(メチルフェニル)メチレン基、ジ(メチルフェニル)メチレン基、ビス(ジメチルフェニル)メチレン基、ビス(トリメチルフェニル)メチレン基、フェニル(エチルフェニル)メチレン基、ジ(エチルフェニル)メチレン基、ビス(ジエチルフェニル)メチレン基、フェニル(プロピルフェニル)メチレン基、ジ(プロピルフェニル)メチレン基、ビス(ジプロピルフェニル)メチレン基、フェニル(ブチルフェニル)メチレン基、ジ(ブチルフェニル)メチレン基、フェニル(ナフチル)メチレン基、ジ(ナフチル)メチレン基、フェニル(ビフェニル)メチレン基、ジ(ビフェニル)メチレン基、フェニル(トリメチルシリルフェニル)メチレン基、ビス(トリメチルシリルフェニル)メチレン基、ビス(ペンタフルオロフェニル)メチレン基、シランジイル基、ジシランジイル基、トリシランジイル基、テトラシランジイル基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基、ジエチルシランジイル基、ジプロピルシランジイル基、ジブチルシランジイル基、ジフェニルシランジイル基、シラシクロブタンジイル基、シラシクロヘキサンジイル基等を挙げることができる。   Specific examples of the general formula (11) include a methylene group, an ethylidene group, an ethylene group, a propylidene group, a propylene group, a butylidene group, a butylene group, a pentylidene group, a pentylene group, a hexylidene group, an isopropylidene group, and methylethyl. Methylene group, methylpropylmethylene group, methylbutylmethylene group, bis (cyclohexyl) methylene group, methylphenylmethylene group, diphenylmethylene group, phenyl (methylphenyl) methylene group, di (methylphenyl) methylene group, bis (dimethylphenyl) Methylene group, bis (trimethylphenyl) methylene group, phenyl (ethylphenyl) methylene group, di (ethylphenyl) methylene group, bis (diethylphenyl) methylene group, phenyl (propylphenyl) methylene group, di (propylphenyl) Nyl) methylene group, bis (dipropylphenyl) methylene group, phenyl (butylphenyl) methylene group, di (butylphenyl) methylene group, phenyl (naphthyl) methylene group, di (naphthyl) methylene group, phenyl (biphenyl) methylene group Di (biphenyl) methylene group, phenyl (trimethylsilylphenyl) methylene group, bis (trimethylsilylphenyl) methylene group, bis (pentafluorophenyl) methylene group, silanediyl group, disilanediyl group, trisilanediyl group, tetrasilanediyl group, dimethylsilanediyl group Group, bis (dimethylsilane) diyl group, diethylsilanediyl group, dipropylsilanediyl group, dibutylsilanediyl group, diphenylsilanediyl group, silacyclobutanediyl group, silacyclohexanediyl group It can be mentioned.

本発明で用いられる一般式(6)で表される具体的な化合物としては、Mをジルコニウム原子、Xを塩素原子とし、架橋基Rをジフェニルメチレン基とすると、例えばジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド
、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウ
ムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−メチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−メチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−メチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,6−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,7−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチ
レン(3,5−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,6−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,7−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,5−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,6−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,7−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,6−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,7−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6,7−ジメチル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4,5−ベンゾ−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−5,6−ベンゾ−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−(α−ナフチル)−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−(β−ナフチル)−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−メチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−メチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−メチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−フェニル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−フェニル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−フェニル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,6−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,7−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,5−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,6−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,7−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,5−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,6−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,7−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,6−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,7−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6,7−ジメチル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−フェニル−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4,5−ベンゾ−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−5,6−ベンゾ−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−(α−ナフチル)−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−(β−ナフチル)−1−インデニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−メチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−メチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−メチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−フェニル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−フェニル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−フェニル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,6−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,7−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,5−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,6−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,7−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,5−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,6−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,7−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,6−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,7−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6,7−ジメチル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−フェニル−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4,5−ベンゾ−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−5,6−ベンゾ−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−(α−ナフチル)−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−(β−ナフチル)−1−インデニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−メチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−メチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−メチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−メチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5−フェニル−1−インデニル)
(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(7−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,6−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,7−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,5−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,6−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,7−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,5−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,6−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4,7−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,6−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(5,7−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(6,7−ジメチル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4,5−ベンゾ−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−5,6−ベンゾ−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2−メチル−4−(α−ナフチル)−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリドジフェニルメチレン(2−メチル−4−(β−ナフチル)−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド等を例示することができる。また上記遷移金属化合物のXをフッ素原子、臭素原子またはヨウ素原子に置換した化合物も例示することができる。また、上記遷移金属化合物のRをメチレン基、エチレン基、イソプロピリデン基、メチルフェニルメチレン基、ジメチルシランジイル基、ジフェニルシランジイル基、シラシクロブタンジイル基、シラシクロヘキサンジイル基等に置換した化合物も例示することができる。さらに、上記遷移金属化合物のMをチタン原子またはハフニウム原子に置換した化合物も例示することもできる。
Specific examples of the compound represented by the general formula (6) used in the present invention include M 2 Zirconium atom, X 2 Is a chlorine atom and the bridging group R 9 Is a diphenylmethylene group, for example, diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-Methyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5 -Dimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenyl Tylene (2,3,4-trimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-trimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride Diphenylmethylene (3,4,5-trimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetramethyl-1-cyclopentadienyl) (9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2-ethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-ethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, Diphenyl Tylene (2,4-diethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene ( 3,4-diethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene ( 2,3,5-triethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenyl Me Tylene (2,3,4,5-tetraethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenyl Methylene (3-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dipropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2, 5-dipropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dipropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene ( , 3,4-tripropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tripropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, Diphenylmethylene (3,4,5-tripropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrapropyl-1-cyclopentadienyl) (9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2-isopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-isopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, Phenylmethylene (2,4-diisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-Diisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenyl Methylene (2,3,5-triisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1-cyclopentadienyl) (9-fur Oleenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium Dichloride, diphenylmethylene (2-phenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-phenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 4-Diphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium Chloride, diphenylmethylene (3,4-diphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triphenyl-1-cyclopentadienyl) (9-fluorenyl) Zirconium dichloride, diphenylmethylene (2,3,5-triphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl-1-cyclopentadienyl) ( 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-trimethylsilyl-1-cyclopentadienyl) (9- (Luolenyl) zirconium dichloride, diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-bis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) ) Zirconium dichloride, diphenylmethylene (2,5-bis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-bis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tris (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethyle (2,3,5-tris (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tris (trimethylsilyl) -1-cyclopentadienyl) ( 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrakis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2 , 7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclo) Pentadienyl (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5 -Dimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) ) Zirconium dichloride, diphenylmethylene (2,3,4-trimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-trimethyl-1-cyclo) Pentadienyl) (2,7-dimethyl-9 Fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-trimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetramethyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-ethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, Diphenylmethylene (3-ethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diethyl-1-cyclopentadienyl) (2,7-dimethyl) -9-Fluorenyl) zirconium Loride, diphenylmethylene (2,5-diethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diethyl-1-cyclopentadienyl) (2 , 7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3 , 5-triethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triethyl-1-cyclopentadienyl) (2,7-dimethyl -9-fluorenyl) zirconium dichloride, diphenyl Tylene (2,3,4,5-tetraethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-propyl-1-cyclopentadienyl) (2, 7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-propyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dipropyl-1- Cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dipropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (3,4-dipropyl 1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tripropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) ) Zirconium dichloride, diphenylmethylene (2,3,5-tripropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tripropyl-1) -Cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrapropyl-1-cyclopentadienyl) (2,7-dimethyl-9- Fluorenyl) zirconium dichloride, diphenylmethylene (2-isopropyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride
Diphenylmethylene (3-isopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diisopropyl-1-cyclopentadienyl) (2,7- Dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diisopropyl-1- Cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium Dichloride, gif Nilmethylene (2,3,5-triisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1-cyclopentadienyl) ) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, Diphenylmethylene (1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-phenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene ( -Phenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) ) Zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene ( 2,3,5-triphenyl-1 -Cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) Zirconium dichloride, diphenylmethylene (2,3,4,5-tetraphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-trimethylsilyl-1-cyclopentadi) Enyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4 -Bis (trimethylsilane L) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tris) (Trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7 -Dimethyl-9-fluorenyl) zirconium di Loride, diphenylmethylene (3,4,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrakis ( Trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-Methyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) ) Zirconium dichloride, diphe Nilmethylene (2,4-dimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dimethyl-1-cyclopentadienyl) (2,7- Diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-trimethyl-) 1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-trimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) Zirconium dichloride, diphenylmethylene (3,4,5 Trimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetramethyl-1-cyclopentadienyl) (2,7-diethyl) -9-fluorenyl) zirconium dichloride, diphenylmethylene (2-ethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-ethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5 -Diethyl-1-cyclopentadieny ) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2, 3,4-triethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triethyl-1-cyclopentadienyl) (2,7- Diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4, 5-tetraethyl-1-cyclopentadienyl) (2 , 7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-propyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-propyl-1-cyclo) Pentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dipropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dipropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dipropyl-1-cyclopentadienyl) (2,7-diethyl -9-fluorenyl) zyl Nium dichloride, diphenylmethylene (2,3,4-tripropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tripropyl-1- Cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tripropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene (2,3,4,5-tetrapropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-isopropyl-1-cyclopentadienyl) ) (2,7-diethyl-9-fluorenyl) di Conium dichloride, diphenylmethylene (3-isopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diisopropyl-1-cyclopentadienyl) (2 , 7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diisopropyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triisopropyl-1-cyclopentadienyl) (2,7-diethyl-9- Fluorenyl) Zirconium Mudichloride, diphenylmethylene (2,3,5-triisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1-cyclo) Pentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) Zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-phenyl-1-cyclopentadienyl) (2,7-diethyl-9- Fluorenyl) zirconium dichloride, di Enylmethylene (3-phenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diphenyl-1-cyclopentadienyl) (2,7-diethyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diphenyl-1-cyclopenta) Dienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, Diphenylmethylene (2, 3, -Triphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl-1-cyclopentadienyl) (2,7-diethyl -9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-trimethylsilyl- 1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (2,4- Bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7- Diethyl-9-fluorenyl) zirconium
Mudichloride, diphenylmethylene (3,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tris (trimethylsilyl) -1 -Cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9- Fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5) -Tetrakis (trimethylsilyl) 1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (2-methyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (2,7- Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene ( 2,5-dimethyl-1-cyclopentadienyl) (2,7-di- -Butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3 , 4-Trimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-trimethyl-1-cyclopentadienyl) (2 , 7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-trimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene (2,3,4,5-tetramethyl-1-cyclopentadi Enyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-ethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene (3-ethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene (3,4-diethyl-1-cyclopentadienyl) (2,7- -T-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triethyl-1-cyclopentadi) Enyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraethyl-1-cyclopentadienyl) (2,7-di-t-butyl) -9-fluorenyl) zirconium dichloride, diphenylmethylene (2-propyl-1-cyclopenta) Enyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene (2,4-dipropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dipropyl-1-cyclopentadi) Enyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dipropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) ) Zirconium dichloride, diphenylmethylene (2,3,4-tripropyl-1-cyclopente) Tadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tripropyl-1-cyclopentadienyl) (2,7-di-t-butyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tripropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3 , 4,5-tetrapropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-isopropyl-1-cyclopentadienyl) (2, 7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-iso (Lopyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diisopropyl-1-cyclopentadienyl) (2,7-di-) t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3 4-diisopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triisopropyl-1-cyclopentadienyl) (2 , 7-di-t-butyl-9-fluorenyl) zirconium dichloride, diph Nilmethylene (2,3,5-triisopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1- Cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraisopropyl-1-cyclopentadienyl) (2,7-di -T-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-phenyl-1-cyclo) Pentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dic Loride, diphenylmethylene (3-phenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene (3,4-diphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triphenyl-1- Cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Chloride, diphenylmethylene (2,3,5-triphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraphenyl-1-cyclopentadienyl) (2, 7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-trimethylsilyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene ( 3-Trimethylsilyl-1-cyclopentadienyl) (2,7-di-t-butyl 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5 -Bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3 , 5-Tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tris (trimethylsilyl) -1-cyclo Pentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrakis (trimethylsilyl) -1-cyclopentadienyl) (2,7- Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene ( 3-methyl-1-indenyl) ( -Fluorenyl) zirconium dichloride, diphenylmethylene (4-methyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (5-methyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (6-methyl) -1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (7-methyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-phenyl-1-indenyl) (9-fluorenyl) zirconium dichloride Diphenylmethylene (3-phenyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (4-phenyl-1-indenyl) (9-fluorenyl) Zirconium dichloride, diphenylmethylene (5-phenyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (6-phenyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (7-phenyl-1- Indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-indenyl) (9-fluorenyl) zirconium Dichloride, diphenylmethylene (2,5-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,6-dimethyl-1-indenyl) (9-fluoride) Rhenyl) zirconium dichloride, diphenylmethylene (2,7-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethyl
Len (3,5-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,6-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,7-dimethyl- 1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (4,5-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (4,6-dimethyl-1-indenyl) (9-fluorenyl) ) Zirconium dichloride, diphenylmethylene (4,7-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (5,6-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride Diphenylmethylene (5,7-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (6,7-dimethyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl) -4-phenyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4,5-benzo-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-5) , 6-Benzo-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4- (α-naphthyl) -1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl) -4- (β-naphthyl) -1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-1) -Indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4-methyl-1) -Indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5-methyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (6-methyl-1) -Indeni ) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (7-methyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-phenyl-1-indenyl) ) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-phenyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4-phenyl-1-indenyl) ) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5-phenyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (6-phenyl-1-indene) Nyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (7-phenyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3-dimethyl- 1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2, 5-Dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,6-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (2 7-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (3,5-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,6-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) Zirconium dichloride, diphenylmethylene (3,7-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4,5-dimethyl-1-indenyl) (2,7-dimethyl- 9-fluorenyl) zirconium di Lido, diphenylmethylene (4,6-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4,7-dimethyl-1-indenyl) (2,7-dimethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (5,6-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5,7-dimethyl-1-indenyl) (2,7 -Dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (6,7-dimethyl-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4-phenyl-1- Indenyl) (2,7-dimethyl) -9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4,5-benzo-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-5,6- Benzo-1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4- (α-naphthyl) -1-indenyl) (2,7-dimethyl-9-fluorenyl) Zirconium dichloride, diphenylmethylene (2-methyl-4- (β-naphthyl) -1-indenyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-indenyl) (2,7-diethyl- 9-fluorenyl) zirconium dichloride, diphenyl Methylene (2-methyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (4-methyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5-methyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (6-methyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (7-methyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenyl Michile (2-Phenyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-phenyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4-Phenyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5-phenyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (6-Phenyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (7-phenyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenyl Tylene (2,3-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) Zirconium dichloride, diphenylmethylene (2,5-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,6-dimethyl-1-indenyl) (2,7-diethyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,7-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-indenyl) (2, 7-diethyl-9-fluorenyl) zirco Nium dichloride, diphenylmethylene (3,5-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,6-dimethyl-1-indenyl) (2,7-diethyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (3,7-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4,5-dimethyl-1-indenyl) (2, 7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4,6-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4,7-dimethyl-1-indenyl) ) (2,7-die Ru-9-fluorenyl) zirconium dichloride, diphenylmethylene (5,6-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5,7-dimethyl-1-indenyl) ( 2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (6,7-dimethyl-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4-phenyl) -1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4,5-benzo-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, Diphenylmethylene ( -Methyl-5,6-benzo-1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4- (α-naphthyl) -1-indenyl) (2,7 -Diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4- (β-naphthyl) -1-indenyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene ( 3-methyl-1-indenyl) (2,7-di-t-butyl-9- (Luolenyl) zirconium dichloride, diphenylmethylene (4-methyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5-methyl-1-indenyl) (2,7- Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (6-methyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (7-methyl-1) -Indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, Diphenylmethylene (3-phenyl-1-indenyl ) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5-phenyl-1-indenyl)
(2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (6-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene ( 7-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3-dimethyl-1-indenyl) (2,7-di-t-butyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dimethyl-1-indenyl) ) (2,7-di-t-butyl-9-fluorenyl) zirconium dichlorine Diphenylmethylene (2,6-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,7-dimethyl-1-indenyl) (2,7- Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,5 -Dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,6-dimethyl-1-indenyl) (2,7-di-t-butyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (3,7-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4,5-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenyl Methylene (4,6-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (4,7-dimethyl-1-indenyl) (2,7-di-) t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5,6-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (5,7-dimethyl) -1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride, diphenylmethylene (6,7-dimethyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4-phenyl-1-indenyl) (2 , 7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4,5-benzo-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride Diphenylmethylene (2-methyl-5,6-benzo-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2-methyl-4- (α-naphthyl) -1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride dichloride Enirumechiren (2-methyl-4-(beta-naphthyl) -1-indenyl) (2,7-di -t- butyl-9-fluorenyl) can be exemplified zirconium dichloride and the like. X of the above transition metal compound 2 A compound in which is substituted with a fluorine atom, a bromine atom or an iodine atom can also be exemplified. In addition, R of the above transition metal compound 9 Examples include compounds in which is substituted with a methylene group, ethylene group, isopropylidene group, methylphenylmethylene group, dimethylsilanediyl group, diphenylsilanediyl group, silacyclobutanediyl group, silacyclohexanediyl group, and the like. Further, M of the above transition metal compound 2 A compound in which is substituted with a titanium atom or a hafnium atom can also be exemplified.

本発明のポリエチレンの製造方法における、成分(a)に対する成分(b)の量は、特に制限はなく、0.0001〜100倍モルであることが好ましく、特に好ましくは0.001〜10倍モルである。
本発明の製造方法において使用される成分(a)と成分(b)を主成分として含む触媒としては、成分(a)と成分(b)と下記一般式(12)
AlR13 (12)
で表される有機アルミニウム化合物(成分(d))からなる触媒、さらに水を含んでなる触媒、
成分(a)と成分(b)と下記一般式(19)
MgR16 (19)
で表される有機マグネシウム化合物(成分(e))からなる触媒、さらに成分(d)を含んでなる触媒、
成分(a)と成分(b)と下記一般式(20)
LiR17 (20)
で表される有機リチウム化合物(成分(f))からなる触媒、さらに成分(d)を含んでなる触媒、
成分(a)と成分(b)と下記一般式(21)
The amount of component (b) with respect to component (a) in the method for producing polyethylene of the present invention is not particularly limited, and is preferably 0.0001 to 100 times mol, particularly preferably 0.001 to 10 times mol. It is.
As a catalyst containing component (a) and component (b) as main components used in the production method of the present invention, component (a), component (b) and the following general formula (12)
AlR 13 3 (12)
A catalyst comprising an organoaluminum compound (component (d)) represented by: a catalyst further comprising water,
Component (a), Component (b), and the following general formula (19)
MgR 16 3 (19)
A catalyst comprising an organomagnesium compound represented by (component (e)), and a catalyst further comprising component (d),
Component (a), Component (b) and the following general formula (20)
LiR 17 (20)
A catalyst comprising an organolithium compound represented by (component (f)), and a catalyst further comprising component (d),
Component (a), Component (b), and the following general formula (21)

Figure 0005158304
および/または下記一般式(22)
Figure 0005158304
And / or the following general formula (22)

Figure 0005158304
で表されるアルミノオキサン(成分(g))からなる触媒、さらに成分(d)、成分(e)および/または成分(f)を含んでなる触媒、
成分(a)と成分(b)と下記一般式(23)
[R1920 y−1H][MAr] (23)
で表されるプロトン酸塩(成分(h))、下記一般式(24)
[C][MAr] (24)
で表されるルイス酸塩(成分(i)]または下記一般式(25)
[M ][MAr] (25)
で表される金属塩(成分(j))から選ばれる少なくとも1種類の塩からなる触媒、さらに成分(d)および/または成分(g)を含んでなる触媒、
成分(a)と下記一般式(26)
10Ar (26)
で表されるルイス酸(成分(k)]からなる触媒、さらに成分(d)および/または成分(g)を含んでなる触媒、
成分(a)と成分(b)と成分(k)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩からなる触媒、さらに成分(d)および/または成分(g)を含んでなる触媒、成分(a)と成分(b)と塩化マグネシウム(成分(l))からなる触媒、さらに成分(d)および/または成分(g)を含んでなる触媒、成分(a)と成分(b)とスルホン酸塩(成分(m))からなる触媒、さらに成分(d)および/または成分(g)を含んでなる触媒、成分(a)と成分(b)とカルボン酸(成分(n))からなる触媒、さらに成分(d)および/または成分(g)を含んでなる触媒、成分(a)と成分(b)と成分(g)と無機酸化物(成分(o))からなる触媒、さらに成分(d)、成分(e)および/または成分(f)を含んでなる触媒、成分(a)と成分(b)と成分(o)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩からなる触媒、さらに成分(d)、成分(e)および/または成分(f)を含んでなる触媒、成分(a)と成分(b)と無機ハロゲン化物(成分(p))と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩からなる触媒、さらに成分(d)、成分(e)および/または成分(f)を含んでなる触媒、成分(a)と成分(b)と粘土鉱物(成分(q))と成分(d)からなる触媒、成分(a)と成分(b)と有機化合物で処理された粘土鉱物(成分(c))からなる触媒、さらに成分(d)、成分(e)および/または成分(f)を含んでなる触媒等を例示することができ、その中でも好ましくは成分(a)と成分(b)と有機化合物で処理された粘土鉱物(成分(c))からなる触媒、さらに成分(d)を含んでなる触媒を用いることができる。
Figure 0005158304
A catalyst comprising an aluminoxane represented by (component (g)), a catalyst further comprising component (d), component (e) and / or component (f),
Component (a), Component (b) and the following general formula (23)
[R 19 R 20 y-1 M 5 H] [M 6 Ar 4] (23)
Protonate (component (h)) represented by the following general formula (24)
[C] [M 7 Ar 4 ] (24)
A Lewis acid salt represented by the formula (component (i)) or the following general formula (25)
[M 8 L 2 z ] [M 9 Ar 4 ] (25)
A catalyst comprising at least one salt selected from metal salts (component (j)) represented by: a catalyst further comprising component (d) and / or component (g),
Component (a) and the following general formula (26)
M 10 Ar 3 (26)
A catalyst comprising a Lewis acid (component (k)) represented by: a catalyst further comprising component (d) and / or component (g),
Catalyst comprising at least one salt selected from component (a), component (b), component (k), component (h), component (i) and component (j), and further component (d) and / or component A catalyst comprising (g), a catalyst comprising component (a), component (b) and magnesium chloride (component (l)), and a catalyst comprising component (d) and / or component (g), component A catalyst comprising (a), component (b) and sulfonate (component (m)), further comprising a component (d) and / or component (g), component (a) and component (b) Catalyst comprising carboxylic acid (component (n)), catalyst comprising component (d) and / or component (g), component (a), component (b), component (g) and inorganic oxide (component) (O)), a component (d), a component (e) and / or a component (f) A catalyst comprising at least one salt selected from component (a), component (b), component (o), component (h), component (i), and component (j); d), a catalyst comprising component (e) and / or component (f), component (a), component (b), inorganic halide (component (p)), component (h), component (i), Catalyst comprising at least one salt selected from component (j), catalyst comprising component (d), component (e) and / or component (f), component (a), component (b) and clay A catalyst composed of mineral (component (q)) and component (d), a catalyst composed of clay mineral (component (c)) treated with component (a), component (b) and an organic compound, further component (d), Examples of the catalyst and the like comprising the component (e) and / or the component (f) can be exemplified. Can be preferably used a catalyst comprising components (a) and (b) the organic compound treated clay mineral (component (c)) catalyst comprising further component (d).

本発明における成分(c)として用いることが可能な粘土鉱物は、微結晶状のケイ酸塩を主成分とする微粒子である。粘土鉱物の大部分は、その構造上の特色として層状構造を成しており、層の中に種々の大きさの負電荷を有することが挙げられる。この点で、シリカやアルミナのような三次元構造を持つ金属酸化物と大きく異なる。これらの粘土鉱物は、一般に層電荷の大きさで、パイロフィライト、カオリナイト、ディッカイトおよびタルク群(化学式当たりの負電荷がおよそ0)、スメクタイト群(化学式当たりの負電荷がおよそ0.25から0.6)、バーミキュライト群(化学式当たりの負電荷がおよそ0.6から0.9)、雲母群(化学式当たりの負電荷がおよそ1)、脆雲母群(化学式当たりの負電荷がおよそ2)に分類されている。ここで示した各群には、それぞれ種々の粘土鉱物が含まれ、スメクタイト群に属する粘土鉱物としては、例えばモンモリロナイト、バイデライト、サポナイト、ヘクトライト等が挙げられる。また、これらの粘土鉱物としては、天然に存在する粘土鉱物、人工合成により得られる不純物の少ない粘土鉱物等が挙げられ、本発明においては、ここに示した天然の粘土鉱物及び人工合成により得られる粘土鉱物のすべてが使用可能であり、また、上記に例示がないものでも粘土鉱物の定義に属するものはすべて用いることができる。そして、これらの中でもスメクタイト群、雲母群に属する粘土鉱物が好ましい。さらに、上記粘土鉱物は複数混合して用いることもできる。また、これら粘土鉱物はそのまま用いても良いし、新たに水を添加吸着させ、あるいは加熱脱水処理した後用いても良い。   The clay mineral that can be used as the component (c) in the present invention is a fine particle mainly composed of a microcrystalline silicate. Most of the clay minerals have a layered structure as a structural feature, and it can be mentioned that the layers have negative charges of various sizes. In this respect, it is greatly different from a metal oxide having a three-dimensional structure such as silica or alumina. These clay minerals are generally of a large layer charge, with pyrophyllite, kaolinite, dickite and talc groups (negative charge per chemical formula is approximately 0), smectite groups (negative charge per chemical formula is from about 0.25). 0.6), vermiculite group (negative charge per chemical formula is approximately 0.6 to 0.9), mica group (negative charge per chemical formula is approximately 1), brittle mica group (negative charge per chemical formula is approximately 2) It is classified. Each group shown here contains various clay minerals, and examples of the clay mineral belonging to the smectite group include montmorillonite, beidellite, saponite, hectorite and the like. Examples of these clay minerals include naturally occurring clay minerals, clay minerals with few impurities obtained by artificial synthesis, etc. In the present invention, these clay minerals can be obtained by natural clay minerals and artificial synthesis shown here. All of the clay minerals can be used, and any of those not included in the above description but belonging to the definition of clay minerals can be used. Among these, clay minerals belonging to the smectite group and the mica group are preferable. Furthermore, a mixture of a plurality of the above clay minerals can be used. Moreover, these clay minerals may be used as they are, or may be used after newly adsorbing and adsorbing water, or after heat dehydration treatment.

成分(c)における有機化合物処理とは、前期粘土鉱物層間に有機イオンを導入し、イオン複合体を形成することをいう。有機化合物処理で用いられる有機化合物としては、下記一般式(13)、(17)または(18)で表される化合物を用いることができ、その中でも特に一般式(13)で表される化合物を好ましく用いることができる。   The organic compound treatment in component (c) refers to introducing an organic ion between the previous clay mineral layers to form an ionic complex. As the organic compound used in the organic compound treatment, a compound represented by the following general formula (13), (17) or (18) can be used, and among them, a compound represented by the general formula (13) is particularly preferable. It can be preferably used.

[R1415 y−1H][A] (13)
[C][A] (17)
[M [A] (18)
一般式(13)、(17)および(18)で表される化合物中の[A]はアニオンであり、例えばフッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、シュウ酸イオン、クエン酸イオン、コハク酸イオン、テトラフルオロホウ酸イオンまたはヘキサフルオロリン酸イオン等を例示することができる。
[R 14 R 15 y-1 M 3 H] a [A] b (13)
[C] a [A] b (17)
[M 4 L 1 z ] a [A] b (18)
[A] in the compounds represented by the general formulas (13), (17) and (18) is an anion, for example, fluorine ion, chlorine ion, bromine ion, iodine ion, sulfate ion, nitrate ion, phosphate ion. Perchlorate ions, oxalate ions, citrate ions, succinate ions, tetrafluoroborate ions, hexafluorophosphate ions, and the like.

一般式(13)、(17)および(18)で表される化合物中のaおよびbは電荷が釣り合うように選ばれた整数である。   In the compounds represented by the general formulas (13), (17) and (18), a and b are integers selected so that charges are balanced.

一般式(13)で表される化合物中の[R1415 y−1H]はカチオンであり、Mは周期表の第15族または第16族から選ばれる元素であり、R14は炭素数1〜30の炭化水素基であり、R15は各々独立して水素原子または炭素数1〜30の炭化水素基であり、yはMが第15族元素の時y=3であり、Mが第16族元素の時y=2である。 [R 14 R 15 y-1 M 3 H] in the compound represented by the general formula (13) is a cation, M 3 is an element selected from Group 15 or Group 16 of the periodic table, and R 14 is a hydrocarbon group having 1 to 30 carbon atoms, R 15 is each independently a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and y is y = 3 when M 3 is a Group 15 element. And y = 2 when M 3 is a Group 16 element.

ここで、Mは周期表の第15族または第16族から選ばれる元素であり、例えば酸素、窒素、硫黄、リン等が挙げられ、R14およびR15に用いられる炭素数1〜30の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、アリル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、1−エチルプロピル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、4−メチルペンチル基、ネオヘキシル基、2,3−ジメチルブチル基、2,2−ジメチルブチル基、4−メチル−2−ペンチル、3,3−ジメチル−2−ブチル基、1,1−ジメチルブチル基、2,3−ジメチル−2−ブチル基、シクロヘキシル基、n−ヘプチル基、シクロヘプチル基、2−メチルシクロヘキシル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、n−オクチル基、イソオクチル基、1,5−ジメチルヘキシル基、1−メチルヘプチル基、2−エチルヘキシル基、tert−オクチル基、2,3−ジメチルシクロヘキシル基、2−(1−シクロヘキセニル)エチル基、n−ノニル基、n−デシル基、イソデシル基、ゲラニル基、n−ウンデシル基、n−ドデシル基、シクロドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基、n−ヘンエイコシル基、n−ドコシル基、n−トリコシル基、オレイル基、ベヘニル基、フェニル基、o−トリル基、m−トリル基、p−トリル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2−イソプロピルフェニル基、3−イソプロピルフェニル基、4−イソプロピルフェニル基、2−tert−ブチルフェニル基、4−n−ブチルフェニル基、4−sec−ブチルフェニル基、4−tert−ブチルフェニル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,6−ジエチルフェニル基、2−イソプロピル−6−メチルフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−エトキシフェニル基、3−エトキシフェニル基、4−エトキシフェニル基、1−ナフチル基、2−ナフチル基、1−フルオレニル基、2−フルオレニル基、3−フルオレニル基、4−フルオレニル基、2,3−ジヒドロインデン−5−イル基、2−ビフェニル基、4−ビフェニル基、p−トリメチルシリルフェニル基等を例示することができる。また、R14とR15は互いに結合していてもよい。 Here, M 3 is an element selected from Group 15 or Group 16 of the periodic table, and examples thereof include oxygen, nitrogen, sulfur, phosphorus, etc., and those having 1 to 30 carbon atoms used for R 14 and R 15 Examples of the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, allyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, 1-ethylpropyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 4-methylpentyl group, neohexyl group, 2,3-dimethylbutyl group, 2,2-dimethylbutyl group, 4-methyl-2-pentyl group, 3,3-dimethyl-2-butyl group, 1 1-dimethylbutyl group, 2,3-dimethyl-2-butyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, 2-methylcyclohexyl group, 3-methylcyclohexyl group, 4-methylcyclohexyl group, n-octyl Group, isooctyl group, 1,5-dimethylhexyl group, 1-methylheptyl group, 2-ethylhexyl group, tert-octyl group, 2,3-dimethylcyclohexyl group, 2- (1-cyclohexenyl) ethyl group, n- Nonyl group, n-decyl group, isodecyl group, geranyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n- Heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group, n-henecosi Group, n-docosyl group, n-tricosyl group, oleyl group, behenyl group, phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4- Ethylphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2-tert-butylphenyl group, 4-n-butylphenyl group, 4-sec-butylphenyl group, 4-tert- Butylphenyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, 2,6- Diethylphenyl group, 2-isopropyl-6-methylphenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2-bromophenyl group, 3- Bromophenyl group, 4-bromophenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-ethoxyphenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 1-naphthyl group 2-naphthyl group, 1-fluorenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2,3-dihydroinden-5-yl group, 2-biphenyl group, 4-biphenyl group, p- A trimethylsilylphenyl group etc. can be illustrated. R 14 and R 15 may be bonded to each other.

そして、具体的な一般式(13)で表される化合物のうち、Mが窒素原子であるものとしては、例えばメチルアミン塩酸塩、エチルアミン塩酸塩、n−プロピルアミン塩酸塩、イソプロピルアミン塩酸塩、n−ブチルアミン塩酸塩、イソブチルアミン塩酸塩、tert−ブチルアミン塩酸塩、n−ペンチルアミン塩酸塩、イソペンチルアミン塩酸塩、2−メチルブチルアミン塩酸塩、ネオペンチルアミン塩酸塩、tert−ペンチルアミン塩酸塩、n−ヘキシルアミン塩酸塩、イソヘキシルアミン塩酸塩、n−ヘプチルアミン塩酸塩、n−オクチルアミン塩酸塩、n−ノニルアミン塩酸塩、n−デシルアミン塩酸塩、n−ウンデシルアミン塩酸塩、n−ドデシルアミン塩酸塩、n−テトラデシルアミン塩酸塩、n−ヘキサデシルアミン塩酸塩、n−オクタデシルアミン塩酸塩、アリルアミン塩酸塩、シクロペンチルアミン塩酸塩、ジメチルアミン塩酸塩、ジエチルアミン塩酸塩、ジアリルアミン塩酸塩、トリメチルアミン塩酸塩、トリ−n−ブチルアミン塩酸塩、トリアリルアミン塩酸塩、ヘキシルアミン塩酸塩、2−アミノヘプタン塩酸塩、3−アミノヘプタン塩酸塩、n−ヘプチルアミン塩酸塩、1,5−ジメチルヘキシルアミン塩酸塩、1−メチルヘプチルアミン塩酸塩、n−オクチルアミン塩酸塩、tert−オクチルアミン塩酸塩、ノニルアミン塩酸塩、デシルアミン塩酸塩、ウンデシルアミン塩酸塩、ドデシルアミン塩酸塩、トリデシルアミン塩酸塩、テトラデシルアミン塩酸塩、ペンタデシルアミン塩酸塩、ヘキサデシルアミン塩酸塩、ヘプタデシルアミン塩酸塩、オクタデシルアミン塩酸塩、ノナデシルアミン塩酸塩、シクロヘキシルアミン塩酸塩、シクロヘプチルアミン塩酸塩、2−メチルシクロヘキシルアミン塩酸塩、3−メチルシクロヘキシルアミン塩酸塩、4−メチルシクロヘキシルアミン塩酸塩、2,3−ジメチルシクロヘキシルアミン塩酸塩、シクロドデシルアミン塩酸塩、2−(1−シクロヘキセニル)エチルアミン塩酸塩、ゲラニルアミン塩酸塩、N−メチルヘキシルアミン塩酸塩、ジヘキシルアミン塩酸塩、ビス(2−エチルヘキシル)アミン塩酸塩、ジオクチルアミン塩酸塩、ジデシルアミン塩酸塩、N−メチルシクロヘキシルアミン塩酸塩、N−エチルシクロヘキシルアミン塩酸塩、N−イソプロピルシクロヘキシルアミン塩酸塩、N−tert−ブチルシクロヘキシルアミン塩酸塩、N−アリルシクロヘキシルアミン塩酸塩、N,N−ジメチルオクチルアミン塩酸塩、N,N−ジメチルウンデシルアミン塩酸塩、N,N−ジメチルドデシルアミン塩酸塩、N,N−ジメチル−n−テトラデシルアミン塩酸塩、N,N−ジメチル−n−ヘキサデシルアミン塩酸塩、N,N−ジメチル−n−オクタデシルアミン塩酸塩、N,N−ジメチル−n−エイコシルアミン塩酸塩、N,N−ジメチル−n−ドコシルアミン塩酸塩、N,N−ジメチルオレイルアミン塩酸塩、N,N−ジメチルベヘニルアミン塩酸塩、トリヘキシルアミン塩酸塩、トリイソオクチルアミン塩酸塩、トリオクチルアミン塩酸塩、トリイソデシルアミン塩酸塩、トリドデシルアミン塩酸塩、N−メチル−N−オクタデシル−1−オクタデシルアミン塩酸塩、N,N−ジメチルシクロヘキシルアミン塩酸塩、N,N−ジメチルシクロヘキシルメチルアミン塩酸塩、N,N−ジエチルシクロヘキシルアミン塩酸塩、ピロリジン塩酸塩、ピペリジン塩酸塩、2,5−ジメチルピロリジン塩酸塩、2−メチルピペリジン塩酸塩、3−メチルピペリジン塩酸塩、4−メチルピペリジン塩酸塩、2,6−ジメチルピペリジン塩酸塩、3,3−ジメチルピペリジン塩酸塩、3,5−ジメチルピペリジン塩酸塩、2−エチルピペリジン塩酸塩、2,2,6,6−テトラメチルピペリジン塩酸塩、1−メチルピロリジン塩酸塩、1−メチルピペリジン塩酸塩、1−エチルピペリジン塩酸塩、1−ブチルピロリジン塩酸塩、1,2,2,6,6−ペンタメチルピペリジン塩酸塩等の脂肪族アミンの塩酸塩、アニリン塩酸塩、N−メチルアニリン塩酸塩、N−エチルアニリン塩酸塩、N−アリルアニリン塩酸塩、o−トルイジン塩酸塩、m−トルイジン塩酸塩、p−トルイジン塩酸塩、N,N−ジメチルアニリン塩酸塩、N−メチル−o−トルイジン塩酸塩、N−メチル−m−トルイジン塩酸塩、N−メチル−p−トルイジン塩酸塩、N−エチル−o−トルイジン塩酸塩、N−エチル−m−トルイジン塩酸塩、N−エチル−p−トルイジン塩酸塩、N−アリル−o−トルイジン塩酸塩、N−アリル−m−トルイジン塩酸塩、N−アリル−p−トルイジン塩酸塩、N−プロピル−o−トルイジン塩酸塩、N−プロピル−m−トルイジン塩酸塩、N−プロピル−p−トルイジン塩酸塩、2,3−ジメチルアニリン塩酸塩、2,4−ジメチルアニリン塩酸塩、2,5−ジメチルアニリン塩酸塩、2,6−ジメチルアニリン塩酸塩、3,4−ジメチルアニリン塩酸塩、3,5−ジメチルアニリン塩酸塩、2−エチルアニリン塩酸塩、3−エチルアニリン塩酸塩、4−エチルアニリン塩酸塩、N,N−ジエチルアニリン塩酸塩、2−イソプロピルアニリン塩酸塩、4−イソプロピルアニリン塩酸塩、2−tert−ブチルアニリン塩酸塩、4−n−ブチルアニリン塩酸塩、4−sec−ブチルアニリン塩酸塩、4−tert−ブチルアニリン塩酸塩、2,6−ジエチルアニリン塩酸塩、2−イソプロピル−6−メチルアニリン塩酸塩、2−クロロアニリン塩酸塩、3−クロロアニリン塩酸塩、4−クロロアニリン塩酸塩、2−ブロモアニリン塩酸塩、3−ブロモアニリン塩酸塩、4−ブロモアニリン塩酸塩、o−アニシジン塩酸塩、m−アニシジン塩酸塩、p−アニシジン塩酸塩、o−フェネチジン塩酸塩、m−フェネチジン塩酸塩、p−フェネチジン塩酸塩、1−アミノナフタレン塩酸塩、2−アミノナフタレン塩酸塩、1−アミノフルオレン塩酸塩、2−アミノフルオレン塩酸塩、3−アミノフルオレン塩酸塩、4−アミノフルオレン塩酸塩、5−アミノインダン塩酸塩、2−アミノビフェニル塩酸塩、4−アミノビフェニル塩酸塩、N,2,3−トリメチルアニリン塩酸塩、N,2,4−トリメチルアニリン塩酸塩、N,2,5−トリメチルアニリン塩酸塩、N,2,6−トリメチルアニリン塩酸塩、N,3,4−トリメチルアニリン塩酸塩、N,3,5−トリメチルアニリン塩酸塩、N−メチル−2−エチルアニリン塩酸塩、N−メチル−3−エチルアニリン塩酸塩、N−メチル−4−エチルアニリン塩酸塩、N−メチル−6−エチル−o−トルイジン塩酸塩、N−メチル−2−イソプロピルアニリン塩酸塩、N−メチル−4−イソプロピルアニリン塩酸塩、N−メチル−2−tert−ブチルアニリン塩酸塩、N−メチル−4−n−ブチルアニリン塩酸塩、N−メチル−4−sec−ブチルアニリン塩酸塩、N−メチル−4−tert−ブチルアニリン塩酸塩、N−メチル−2,6−ジエチルアニリン塩酸塩、N−メチル−2−イソプロピル−6−メチルアニリン塩酸塩、N−メチル−p−アニシジン塩酸塩、N−エチル−2,3−アニシジン塩酸塩、N,N−ジメチル−o−トルイジン塩酸塩、N,N−ジメチル−m−トルイジン塩酸塩、N,N−ジメチル−p−トルイジン塩酸塩、N,N,2,3−テトラメチルアニリン塩酸塩、N,N,2,4−テトラメチルアニリン塩酸塩、N,N,2,5−テトラメチルアニリン塩酸塩、N,N,2,6−テトラメチルアニリン塩酸塩、N,N,3,4−テトラメチルアニリン塩酸塩、N,N,3,5−テトラメチルアニリン塩酸塩、N,N−ジメチル−2−エチルアニリン塩酸塩、N,N−ジメチル−3−エチルアニリン塩酸塩、N,N−ジメチル−4−エチルアニリン塩酸塩、N,N−ジメチル−6−エチル−o−トルイジン塩酸塩、N,N−ジメチル−2−イソプロピルアニリン塩酸塩、N,N−ジメチル−4−イソプロピルアニリン塩酸塩、N,N−ジメチル−2−tert−ブチルアニリン塩酸塩、N,N−ジメチル−4−n−ブチルアニリン塩酸塩、N,N−ジメチル−4−sec−ブチルアニリン塩酸塩、N,N−ジメチル−4−tert−ブチルアニリン塩酸塩、N,N−ジメチル−2,6−ジエチルアニリン塩酸塩、N,N−ジメチル−2−イソプロピル−6−メチルアニリン塩酸塩、N,N−ジメチル−2−クロロアニリン塩酸塩、N,N−ジメチル−3−クロロアニリン塩酸塩、N,N−ジメチル−4−クロロアニリン塩酸塩、N,N−ジメチル−2−ブロモアニリン塩酸塩、N,N−ジメチル−3−ブロモアニリン塩酸塩、N,N−ジメチル−4−ブロモアニリン塩酸塩、N,N−ジメチル−o−アニシジン塩酸塩、N,N−ジメチル−m−アニシジン塩酸塩、N,N−ジメチル−p−アニシジン塩酸塩、N,N−ジメチル−o−フェネチジン塩酸塩、N,N−ジメチル−m−フェネチジン塩酸塩、N,N−ジメチル−p−フェネチジン塩酸塩、N,N−ジメチル−1−アミノナフタレン塩酸塩、N,N−ジメチル−2−アミノナフタレン塩酸塩、N,N−ジメチル−1−アミノフルオレン塩酸塩、N,N−ジメチル−2−アミノフルオレン塩酸塩、N,N−ジメチル−3−アミノフルオレン塩酸塩、N,N−ジメチル−4−アミノフルオレン塩酸塩、N,N−ジメチル−5−アミノインダン塩酸塩、N,N−ジメチル−2−アミノビフェニル塩酸塩、N,N−ジメチル−4−アミノビフェニル塩酸塩、N,N−ジメチル−p−トリメチルシリルアニリン塩酸塩等の芳香族アミンの塩酸塩および上記化合物の塩酸塩をフッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩または硫酸塩に置換した化合物等を例示することができる。 Among the compounds represented by the general formula (13), those in which M 3 is a nitrogen atom include, for example, methylamine hydrochloride, ethylamine hydrochloride, n-propylamine hydrochloride, isopropylamine hydrochloride , N-butylamine hydrochloride, isobutylamine hydrochloride, tert-butylamine hydrochloride, n-pentylamine hydrochloride, isopentylamine hydrochloride, 2-methylbutylamine hydrochloride, neopentylamine hydrochloride, tert-pentylamine hydrochloride N-hexylamine hydrochloride, isohexylamine hydrochloride, n-heptylamine hydrochloride, n-octylamine hydrochloride, n-nonylamine hydrochloride, n-decylamine hydrochloride, n-undecylamine hydrochloride, n- Dodecylamine hydrochloride, n-tetradecylamine hydrochloride, n-hexadecylamine hydrochloride Salt, n-octadecylamine hydrochloride, allylamine hydrochloride, cyclopentylamine hydrochloride, dimethylamine hydrochloride, diethylamine hydrochloride, diallylamine hydrochloride, trimethylamine hydrochloride, tri-n-butylamine hydrochloride, triallylamine hydrochloride, hexylamine Hydrochloride, 2-aminoheptane hydrochloride, 3-aminoheptane hydrochloride, n-heptylamine hydrochloride, 1,5-dimethylhexylamine hydrochloride, 1-methylheptylamine hydrochloride, n-octylamine hydrochloride, tert -Octylamine hydrochloride, nonylamine hydrochloride, decylamine hydrochloride, undecylamine hydrochloride, dodecylamine hydrochloride, tridecylamine hydrochloride, tetradecylamine hydrochloride, pentadecylamine hydrochloride, hexadecylamine hydrochloride, hepta Decylamine hydrochloride Octadecylamine hydrochloride, nonadecylamine hydrochloride, cyclohexylamine hydrochloride, cycloheptylamine hydrochloride, 2-methylcyclohexylamine hydrochloride, 3-methylcyclohexylamine hydrochloride, 4-methylcyclohexylamine hydrochloride, 2,3-dimethylcyclohexyl Amine hydrochloride, cyclododecylamine hydrochloride, 2- (1-cyclohexenyl) ethylamine hydrochloride, geranylamine hydrochloride, N-methylhexylamine hydrochloride, dihexylamine hydrochloride, bis (2-ethylhexyl) amine hydrochloride, Dioctylamine hydrochloride, didecylamine hydrochloride, N-methylcyclohexylamine hydrochloride, N-ethylcyclohexylamine hydrochloride, N-isopropylcyclohexylamine hydrochloride, N-tert-butylcyclohexylamine Acid salt, N-allylcyclohexylamine hydrochloride, N, N-dimethyloctylamine hydrochloride, N, N-dimethylundecylamine hydrochloride, N, N-dimethyldodecylamine hydrochloride, N, N-dimethyl-n- Tetradecylamine hydrochloride, N, N-dimethyl-n-hexadecylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride, N, N-dimethyl-n-eicosylamine hydrochloride, N, N -Dimethyl-n-docosylamine hydrochloride, N, N-dimethyloleylamine hydrochloride, N, N-dimethylbehenylamine hydrochloride, trihexylamine hydrochloride, triisooctylamine hydrochloride, trioctylamine hydrochloride, triisodecyl Amine hydrochloride, tridodecylamine hydrochloride, N-methyl-N-octadecyl-1-octadecylamine hydrochloride, N, N-dimethylcyclohexylamine hydrochloride, N, N-dimethylcyclohexylmethylamine hydrochloride, N, N-diethylcyclohexylamine hydrochloride, pyrrolidine hydrochloride, piperidine hydrochloride, 2,5-dimethylpyrrolidine hydrochloride, 2- Methylpiperidine hydrochloride, 3-methylpiperidine hydrochloride, 4-methylpiperidine hydrochloride, 2,6-dimethylpiperidine hydrochloride, 3,3-dimethylpiperidine hydrochloride, 3,5-dimethylpiperidine hydrochloride, 2-ethylpiperidine Hydrochloride, 2,2,6,6-tetramethylpiperidine hydrochloride, 1-methylpyrrolidine hydrochloride, 1-methylpiperidine hydrochloride, 1-ethylpiperidine hydrochloride, 1-butylpyrrolidine hydrochloride, 1,2,2 Hydrochloric acid hydrochlorides such as 1,6,6-pentamethylpiperidine hydrochloride, aniline hydrochloride N-methylaniline hydrochloride, N-ethylaniline hydrochloride, N-allylaniline hydrochloride, o-toluidine hydrochloride, m-toluidine hydrochloride, p-toluidine hydrochloride, N, N-dimethylaniline hydrochloride, N -Methyl-o-toluidine hydrochloride, N-methyl-m-toluidine hydrochloride, N-methyl-p-toluidine hydrochloride, N-ethyl-o-toluidine hydrochloride, N-ethyl-m-toluidine hydrochloride, N -Ethyl-p-toluidine hydrochloride, N-allyl-o-toluidine hydrochloride, N-allyl-m-toluidine hydrochloride, N-allyl-p-toluidine hydrochloride, N-propyl-o-toluidine hydrochloride, N -Propyl-m-toluidine hydrochloride, N-propyl-p-toluidine hydrochloride, 2,3-dimethylaniline hydrochloride, 2,4-dimethylaniline hydrochloride, 2,5- Methylaniline hydrochloride, 2,6-dimethylaniline hydrochloride, 3,4-dimethylaniline hydrochloride, 3,5-dimethylaniline hydrochloride, 2-ethylaniline hydrochloride, 3-ethylaniline hydrochloride, 4-ethylaniline Hydrochloride, N, N-diethylaniline hydrochloride, 2-isopropylaniline hydrochloride, 4-isopropylaniline hydrochloride, 2-tert-butylaniline hydrochloride, 4-n-butylaniline hydrochloride, 4-sec-butylaniline Hydrochloride, 4-tert-butylaniline hydrochloride, 2,6-diethylaniline hydrochloride, 2-isopropyl-6-methylaniline hydrochloride, 2-chloroaniline hydrochloride, 3-chloroaniline hydrochloride, 4-chloroaniline Hydrochloride, 2-bromoaniline hydrochloride, 3-bromoaniline hydrochloride, 4-bromoaniline hydrochloride, o-a Nicidin hydrochloride, m-anisidine hydrochloride, p-anisidine hydrochloride, o-phenetidine hydrochloride, m-phenetidine hydrochloride, p-phenetidine hydrochloride, 1-aminonaphthalene hydrochloride, 2-aminonaphthalene hydrochloride, 1- Aminofluorene hydrochloride, 2-aminofluorene hydrochloride, 3-aminofluorene hydrochloride, 4-aminofluorene hydrochloride, 5-aminoindan hydrochloride, 2-aminobiphenyl hydrochloride, 4-aminobiphenyl hydrochloride, N, 2 , 3-Trimethylaniline hydrochloride, N, 2,4-trimethylaniline hydrochloride, N, 2,5-trimethylaniline hydrochloride, N, 2,6-trimethylaniline hydrochloride, N, 3,4-trimethylaniline hydrochloride Salt, N, 3,5-trimethylaniline hydrochloride, N-methyl-2-ethylaniline hydrochloride, N-methyl-3-e Ruaniline hydrochloride, N-methyl-4-ethylaniline hydrochloride, N-methyl-6-ethyl-o-toluidine hydrochloride, N-methyl-2-isopropylaniline hydrochloride, N-methyl-4-isopropylaniline hydrochloride N-methyl-2-tert-butylaniline hydrochloride, N-methyl-4-n-butylaniline hydrochloride, N-methyl-4-sec-butylaniline hydrochloride, N-methyl-4-tert-butylaniline Hydrochloride, N-methyl-2,6-diethylaniline hydrochloride, N-methyl-2-isopropyl-6-methylaniline hydrochloride, N-methyl-p-anisidine hydrochloride, N-ethyl-2,3-anisidine Hydrochloride, N, N-dimethyl-o-toluidine hydrochloride, N, N-dimethyl-m-toluidine hydrochloride, N, N-dimethyl-p-toluidine hydrochloride N, N, 2,3-tetramethylaniline hydrochloride, N, N, 2,4-tetramethylaniline hydrochloride, N, N, 2,5-tetramethylaniline hydrochloride, N, N, 2,6- Tetramethylaniline hydrochloride, N, N, 3,4-tetramethylaniline hydrochloride, N, N, 3,5-tetramethylaniline hydrochloride, N, N-dimethyl-2-ethylaniline hydrochloride, N, N -Dimethyl-3-ethylaniline hydrochloride, N, N-dimethyl-4-ethylaniline hydrochloride, N, N-dimethyl-6-ethyl-o-toluidine hydrochloride, N, N-dimethyl-2-isopropylaniline hydrochloride Salt, N, N-dimethyl-4-isopropylaniline hydrochloride, N, N-dimethyl-2-tert-butylaniline hydrochloride, N, N-dimethyl-4-n-butylaniline hydrochloride, N, N-dimethyl -4-sec-butylaniline hydrochloride, N, N-dimethyl-4-tert-butylaniline hydrochloride, N, N-dimethyl-2,6-diethylaniline hydrochloride, N, N-dimethyl-2-isopropyl- 6-methylaniline hydrochloride, N, N-dimethyl-2-chloroaniline hydrochloride, N, N-dimethyl-3-chloroaniline hydrochloride, N, N-dimethyl-4-chloroaniline hydrochloride, N, N- Dimethyl-2-bromoaniline hydrochloride, N, N-dimethyl-3-bromoaniline hydrochloride, N, N-dimethyl-4-bromoaniline hydrochloride, N, N-dimethyl-o-anisidine hydrochloride, N, N -Dimethyl-m-anisidine hydrochloride, N, N-dimethyl-p-anisidine hydrochloride, N, N-dimethyl-o-phenetidine hydrochloride, N, N-dimethyl-m-phenetidine hydrochloride N, N-dimethyl-p-phenetidine hydrochloride, N, N-dimethyl-1-aminonaphthalene hydrochloride, N, N-dimethyl-2-aminonaphthalene hydrochloride, N, N-dimethyl-1-aminofluorene hydrochloride Salt, N, N-dimethyl-2-aminofluorene hydrochloride, N, N-dimethyl-3-aminofluorene hydrochloride, N, N-dimethyl-4-aminofluorene hydrochloride, N, N-dimethyl-5-amino Hydrochlorides of aromatic amines such as indane hydrochloride, N, N-dimethyl-2-aminobiphenyl hydrochloride, N, N-dimethyl-4-aminobiphenyl hydrochloride, N, N-dimethyl-p-trimethylsilylaniline hydrochloride Examples thereof include compounds obtained by substituting hydrochlorides of the above compounds with hydrofluoric acid salts, hydrobromide salts, hydroiodide salts or sulfates.

一般式(13)で表される化合物のうち、Mが酸素原子であるものとしては、例えばメチルエーテル塩酸塩、エチルエーテル塩酸塩、n−ブチルエーテル塩酸塩、テトラヒドロフラン塩酸塩、フェニルエーテル塩酸塩等の化合物および上記化合物の塩酸塩をフッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩または硫酸塩に置換した化合物等を例示することができる。 Among the compounds represented by the general formula (13), those in which M 3 is an oxygen atom include, for example, methyl ether hydrochloride, ethyl ether hydrochloride, n-butyl ether hydrochloride, tetrahydrofuran hydrochloride, phenyl ether hydrochloride and the like. And a compound obtained by substituting the hydrochloride of the above compound with a hydrofluoride, hydrobromide, hydroiodide, or sulfate.

一般式(13)で表される化合物のうち、Mが硫黄原子であるものとしては、例えばフッ化ジエチルスルホニウム、塩化ジエチルスルホニウム、臭化ジエチルスルホニウム、ヨウ化ジエチルスルホニウム、フッ化ジメチルスルホニウム、塩化ジメチルスルホニウム、臭化ジメチルスルホニウム、ヨウ化ジメチルスルホニウム等を例示することができる。 Among the compounds represented by the general formula (13), those in which M 3 is a sulfur atom include, for example, diethylsulfonium fluoride, diethylsulfonium chloride, diethylsulfonium bromide, diethylsulfonium iodide, dimethylsulfonium fluoride, chloride Examples thereof include dimethylsulfonium, dimethylsulfonium bromide, dimethylsulfonium iodide and the like.

一般式(13)で表される化合物のうち、Mがリン原子であるものとしては、例えばトリフェニルホスフィン塩酸塩、トリ(o−トリル)ホスフィン塩酸塩、トリ(p−トリル)ホスフィン塩酸塩、トリメシチルホスフィン塩酸塩等の化合物および上記化合物の塩酸塩をフッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩または硫酸塩に置換した化合物等を例示することができる。 Among the compounds represented by the general formula (13), those in which M 3 is a phosphorus atom include, for example, triphenylphosphine hydrochloride, tri (o-tolyl) phosphine hydrochloride, and tri (p-tolyl) phosphine hydrochloride. Examples thereof include compounds such as trimesitylphosphine hydrochloride and the like, and compounds obtained by substituting hydrochlorides of the above compounds with hydrofluoric acid salts, hydrobromide salts, hydroiodide salts or sulfate salts.

一般式(17)で表される化合物中の[C]はカルボニウムカチオンまたはトロピリウムカチオンであり、具体的な一般式(17)で表される化合物としては、例えば臭化トリチル、塩化トリチル、テトラフルオロホウ酸トリチル、ヘキサフルオロリン酸トリチル、臭化トロピリウム、塩化トロピリウム、テトラフルオロホウ酸トロピリウム、ヘキサフルオロリン酸トロピリウム等を例示することができる。   [C] in the compound represented by the general formula (17) is a carbonium cation or a tropylium cation. Specific examples of the compound represented by the general formula (17) include trityl bromide, trityl chloride, Examples include trityl tetrafluoroborate, trityl hexafluorophosphate, tropylium bromide, tropylium chloride, tropylium tetrafluoroborate, tropylium hexafluorophosphate, and the like.

一般式(18)で表される化合物中のMはリチウム原子、鉄原子および銀原子の陽イオンであり、Lはエーテル類、脂肪族アミン類、芳香族アミン類、ホスフィン類等のルイス塩基、または置換もしくは無置換のシクロペンタジエニル基等であり、zは0≦z≦2であり、具体的な一般式(18)で表される化合物としては、例えば臭化フェロセニウム、塩化フェロセニウム、テトラフルオロホウ酸フェロセニウム、ヘキサフルオロリン酸フェロセニウム等を例示することができる。 M 4 in the compound represented by the general formula (18) is a cation of a lithium atom, an iron atom and a silver atom, and L 1 is a Lewis such as ethers, aliphatic amines, aromatic amines, phosphines and the like. A base, a substituted or unsubstituted cyclopentadienyl group, and the like, z is 0 ≦ z ≦ 2, and specific examples of the compound represented by the general formula (18) include ferrocenium bromide and ferrocenium chloride. And ferrocenium tetrafluoroborate, ferrocenium hexafluorophosphate, and the like.

成分(c)における有機化合物処理においては、粘土鉱物の濃度は0.1〜30重量%、処理温度は0〜150℃の条件を選択して処理を行うことが好ましい。また、有機化合物は固体として調製して溶媒に溶解させて使用しても良いし、溶媒中での化学反応により有機化合物の溶液を調製してそのまま使用しても良い。粘土鉱物と有機化合物の反応量比については、粘土鉱物の交換可能なカチオンに対して当量以上の有機化合物を用いることが好ましい。処理溶媒としては、例えばペンタン、ヘキサンもしくはヘプタン等の脂肪族炭化水素類;ベンゼンもしくはトルエン等の芳香族炭化水素類;エチルアルコールもしくはメチルアルコール等のアルコール類;エチルエーテルもしくはn−ブチルエーテル等のエーテル類;塩化メチレンもしくはクロロホルム等のハロゲン化炭化水素類;アセトン;1,4−ジオキサン;テトラヒドロフランまたは水等を用いることができ、その中でもアルコール類または水を単独もしくは溶媒の一成分を好ましく用いることができる。   In the organic compound treatment in the component (c), it is preferable to carry out the treatment by selecting the conditions of a clay mineral concentration of 0.1 to 30% by weight and a treatment temperature of 0 to 150 ° C. Further, the organic compound may be prepared as a solid and dissolved in a solvent for use, or a solution of the organic compound may be prepared by a chemical reaction in the solvent and used as it is. Regarding the reaction amount ratio between the clay mineral and the organic compound, it is preferable to use an organic compound having an equivalent amount or more with respect to exchangeable cations of the clay mineral. Examples of the processing solvent include aliphatic hydrocarbons such as pentane, hexane, and heptane; aromatic hydrocarbons such as benzene and toluene; alcohols such as ethyl alcohol and methyl alcohol; ethers such as ethyl ether and n-butyl ether. Halogenated hydrocarbons such as methylene chloride or chloroform; acetone; 1,4-dioxane; tetrahydrofuran or water can be used, among which alcohols or water can be used alone or one component of a solvent can be preferably used. .

本発明において使用される成分(a)と成分(b)と成分(c)からなる触媒は、有機溶媒中、成分(a)と成分(b)と成分(c)を接触させることによって得られ、その接触方法としては、例えば成分(a)と成分(c)の接触生成物に成分(b)を添加する方法、成分(b)と成分(c)の接触生成物に成分(a)を添加する方法、成分(a)と成分(b)の接触生成物に成分(c)を添加する方法、成分(c)に成分(a)と成分(b)の接触生成物を添加する方法等を例示することができる。   The catalyst comprising component (a), component (b) and component (c) used in the present invention is obtained by bringing component (a), component (b) and component (c) into contact in an organic solvent. As the contact method, for example, the method of adding the component (b) to the contact product of the component (a) and the component (c), the component (a) to the contact product of the component (b) and the component (c) A method of adding, a method of adding the component (c) to the contact product of the component (a) and the component (b), a method of adding the contact product of the component (a) and the component (b) to the component (c), etc. Can be illustrated.

接触する際の溶媒としては、例えばブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロペンタンもしくはシクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエンもしくはキシレン等の芳香族炭化水素類;エチルエーテルもしくはn−ブチルエーテル等のエーテル類;塩化メチレンもしくはクロロホルム等のハロゲン化炭化水素類;1,4−ジオキサン;アセトニトリルまたはテトラヒドロフラン等を例示することができる。   Examples of the solvent used for contact include aliphatic hydrocarbons such as butane, pentane, hexane, heptane, octane, nonane, decane, cyclopentane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; ethyl ether Or, ethers such as n-butyl ether; halogenated hydrocarbons such as methylene chloride or chloroform; 1,4-dioxane; acetonitrile or tetrahydrofuran can be exemplified.

接触する際の温度は、0〜200℃の間で選択して処理を行うことが好ましい。   The temperature at the time of contact is preferably selected from 0 to 200 ° C. for treatment.

各成分の使用量は、成分(c)1gあたり成分(a)が、0.0001〜100mmolが好ましく、特に好ましくは0.001〜10mmolである。また、成分(b)は、成分(c)1gあたり、0.0001〜100mmolが好ましく、特に好ましくは0.001〜10mmolである。   The amount of each component used is preferably 0.0001 to 100 mmol, particularly preferably 0.001 to 10 mmol, per 1 g of component (c). Moreover, 0.0001-100 mmol is preferable per 1 g of component (c), and, as for a component (b), Most preferably, it is 0.001-10 mmol.

このようにして調製された成分(a)と成分(b)と成分(c)の接触生成物は、洗浄せずに用いても良く、また洗浄した後に用いても良い。   The contact product of component (a), component (b), and component (c) prepared in this manner may be used without washing, or may be used after washing.

成分(a)と成分(b)と成分(c)と成分(d)からなる触媒は、有機溶媒中、成分(a)と成分(b)と成分(c)と成分(d)を接触させることによって得られ、その際の接触方法としては、例えば成分(c)に成分(a)と成分(d)の接触生成物を添加した後、成分(b)を添加する方法;成分(c)に成分(a)を添加した後、成分(b)と成分(d)の接触生成物を添加する方法;成分(c)に成分(a)と成分(d)の接触生成物を添加した後、成分(b)と成分(d)の接触生成物を添加する方法;成分(c)と成分(d)の接触生成物に成分(a)を添加した後、成分(b)を添加する方法;成分(c)と成分(d)の接触生成物に成分(a)と成分(d)の接触生成物を添加した後、成分(b)を添加する方法;成分(c)と成分(d)の接触生成物に成分(a)を添加した後、成分(b)と成分(d)の接触生成物を添加する方法;成分(c)と成分(d)の接触生成物に成分(a)と成分(d)の接触生成物を添加した後、成分(b)と成分(d)の接触生成物を添加する方法;成分(a)と成分(d)の接触生成物に成分(b)を添加した後、成分(c)を添加する方法;成分(a)に成分(b)と成分(d)の接触生成物を添加した後、成分(c)を添加する方法;成分(a)と成分(d)の接触生成物に成分(b)と成分(d)の接触生成物を添加した後、成分(c)を添加する方法;成分(a)に成分(b)を添加した後、成分(c)と成分(d)の接触生成物を添加する方法;成分(a)と成分(d)の接触生成物に成分(b)を添加した後、成分(c)と成分(d)の接触生成物を添加する方法;成分(a)に成分(b)と成分(d)の接触生成物を添加した後、成分(c)と成分(d)の接触生成物を添加する方法;成分(a)と成分(d)の接触生成物に成分(b)と成分(d)の接触生成物を添加した後、成分(c)と成分(d)の接触生成物を添加する方法;成分(a)と成分(c)の接触生成物に成分(b)を添加した後、成分(d)を添加する方法;成分(b)と成分(c)の接触生成物に成分(a)を添加した後、成分(d)を添加する方法;成分(a)と成分(b)の接触生成物に成分(c)を添加した後、成分(d)を添加する方法;成分(c)に成分(a)と成分(b)の接触生成物を添加した後、成分(d)を添加する方法;成分(b)に成分(a)と成分(c)の接触生成物を添加した後、成分(d)を添加する方法;成分(a)に成分(b)と成分(c)の接触生成物を添加した後、成分(d)を添加する方法;成分(a)と成分(c)の接触生成物に成分(b)と成分(c)の接触生成物を添加した後、成分(d)を添加する方法等を例示することができる。   The catalyst comprising component (a), component (b), component (c) and component (d) brings component (a), component (b), component (c) and component (d) into contact in an organic solvent. As a contact method at that time, for example, a method of adding the component (b) to the component (c) after adding the contact product of the components (a) and (d); and the component (c) After adding the component (a) to the method, the contact product of the component (b) and the component (d) is added; after the contact product of the component (a) and the component (d) is added to the component (c) A method of adding a contact product of component (b) and component (d); a method of adding component (b) after adding component (a) to a contact product of component (c) and component (d) A method of adding the component (b) to the contact product of the component (c) and the component (d) after adding the contact product of the component (a) and the component (d); a method of adding the contact product of component (b) and component (d) after adding component (a) to the contact product of c) and component (d); contact of component (c) and component (d) A method of adding a contact product of component (b) and component (d) after adding a contact product of component (a) and component (d) to the product; contact of component (a) and component (d) Method of adding component (c) after adding component (b) to the product; adding component (c) to component (a) after adding the contact product of component (b) and component (d) A method of adding the component (b) and the component (d) to the contact product of the component (a) and the component (d) and then adding the component (c); a component of the component (a) Method of adding the contact product of component (c) and component (d) after adding (b); After adding component (b) to the contact product of component (a) and component (d) Method of adding the contact product of component (c) and component (d); After adding the contact product of component (b) and component (d) to component (a), component (c) and component (d) Adding the contact product of component (b) and component (d) to the contact product of component (a) and component (d), and then adding component (c) and component (d) A method of adding a contact product of component (a) and component (c) after adding component (b) to component (c) and then adding component (d); component (b) and component (c) A method in which component (a) is added to the contact product of step (b), and then component (d) is added; component (c) is added to the contact product of component (a) and component (b), and then component (d) A method in which the contact product of component (a) and component (b) is added to component (c) and then component (d) is added; component (a) and component in component (b) Method of adding the component (d) after adding the contact product of (c); adding the component (d) after adding the contact products of the component (b) and the component (c) to the component (a) A method of adding the component (d) to the contact product of the component (a) and the component (c) after adding the contact product of the component (b) and the component (c) can be exemplified. .

本発明において用いられる一般式(12)で表される成分(d)中のR13は各々独立して炭素数1〜20の炭化水素基である。 R 13 in the component (d) represented by the general formula (12) used in the present invention is each independently a hydrocarbon group having 1 to 20 carbon atoms.

成分(d)中のR13に用いられる炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、2−メチルブチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、4−メチルペンチル基、ネオヘキシル基、2,3−ジメチルブチル基、2,2−ジメチルブチル基、4−メチル−2−ペンチル、3,3−ジメチル−2−ブチル基、1,1−ジメチルブチル基、2,3−ジメチル−2−ブチル基、n−ペンチル基、イソペンチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、n−テトラデシル基、n−ヘキサデシル基、n−オクタデシル基、フェニル基、シクロヘキシル基等を例示することができる。 Examples of the hydrocarbon group having 1 to 20 carbon atoms used for R 13 in the component (d) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. Tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 4-methylpentyl group, neohexyl group, 2,3-dimethylbutyl group, 2,2-dimethylbutyl group, 4-methyl-2-pentyl, 3,3-dimethyl-2-butyl group, 1,1-dimethylbutyl group, 2,3-dimethyl-2 -Butyl group, n-pentyl group, isopentyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-hexadecyl group Examples thereof include a syl group, an n-octadecyl group, a phenyl group, and a cyclohexyl group.

具体的な成分(d)としては、例えばトリメチルアルミニウム、ジメチルアルミニウムヒドリド、トリエチルアルミニウム、ジエチルアルミニウムヒドリド、トリ−n−プロピルアルミニウム、ジ−n−プロピルアルミニウムヒドリド、トリイソプロピルアルミニウム、ジイソプロピルアルミニウムヒドリド、トリ−n−ブチルアルミニウム、ジ−n−ブチルアルミニウムヒドリド、トリイソブチルアルミニウム、ジイソブチルアルミニウムヒドリド、トリ−tert−ブチルアルミニウム、ジ−tert−ブチルアルミニウムヒドリド、トリ−n−ヘキシルアルミニウム、ジ−n−ヘキシルアルミニウムヒドリド、トリイソヘキシルアルミニウム、ジイソヘキシルアルミニウムヒドリド、トリ−n−オクチルアルミニウム、ジ−n−オクチルアルミニウムヒドリド、トリイソオクチルアルミニウム、ジイソオクチルアルミニウムヒドリド等を例示することができる。   Specific examples of the component (d) include trimethylaluminum, dimethylaluminum hydride, triethylaluminum, diethylaluminum hydride, tri-n-propylaluminum, di-n-propylaluminum hydride, triisopropylaluminum, diisopropylaluminum hydride, tri- n-butylaluminum, di-n-butylaluminum hydride, triisobutylaluminum, diisobutylaluminum hydride, tri-tert-butylaluminum, di-tert-butylaluminum hydride, tri-n-hexylaluminum, di-n-hexylaluminum hydride , Triisohexyl aluminum, diisohexyl aluminum hydride, tri-n-octyl aluminum, di-n-octyl Aluminum hydride, tri-isooctyl aluminum, can be exemplified diisooctyl aluminum hydride or the like.

本発明において用いられる成分(d)の量は、成分(a)と成分(b)のモル数の和1モル当たり0.1〜10000モルが好ましく、特に好ましくは1〜1000モルである。   The amount of component (d) used in the present invention is preferably 0.1 to 10,000 mol, particularly preferably 1 to 1000 mol, per mol of the sum of the number of moles of component (a) and component (b).

本発明において用いられる一般式(19)で表される成分(e)中のR16は各々独立してハロゲン原子または炭素数1〜20の炭化水素基であり、そのうち少なくとも1つは炭素数1〜20の炭化水素基である。 R 16 in the component (e) represented by the general formula (19) used in the present invention is each independently a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of them is 1 carbon atom. ˜20 hydrocarbon groups.

成分(e)中のR16に用いられるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等を例示することができ、炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、2−メチルブチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、4−メチルペンチル基、ネオヘキシル基、2,3−ジメチルブチル基、2,2−ジメチルブチル基、4−メチル−2−ペンチル、3,3−ジメチル−2−ブチル基、1,1−ジメチルブチル基、2,3−ジメチル−2−ブチル基、n−ペンチル基、イソペンチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、n−テトラデシル基、n−ヘキサデシル基、n−オクタデシル基、フェニル基、シクロヘキシル基等を例示することができる。 Examples of the halogen atom used for R 16 in the component (e) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and examples of the hydrocarbon group having 1 to 20 carbon atoms include methyl. Group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, tert-pentyl group Group, n-hexyl group, isohexyl group, 3-methylpentyl group, 4-methylpentyl group, neohexyl group, 2,3-dimethylbutyl group, 2,2-dimethylbutyl group, 4-methyl-2-pentyl, 3 , 3-dimethyl-2-butyl group, 1,1-dimethylbutyl group, 2,3-dimethyl-2-butyl group, n-pentyl group, isopentyl group N-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-hexadecyl group, n-octadecyl group, phenyl group, cyclohexyl group and the like.

具体的な成分(e)としては、例えばジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、エチルブチルマグネシウム、メチルマグネシウムクロライド、メチルマグネシウムブロマイド、エチルマグネシウムクロライド、エチルマグネシウムブロマイド、イソプロピルマグネシウムクロライド、イソプロピルマグネシウムブロマイド、ブチルマグネシウムクロライド、ブチルマグネシウムブロマイド等を例示することができる。   Specific components (e) include, for example, dimethyl magnesium, diethyl magnesium, dibutyl magnesium, ethyl butyl magnesium, methyl magnesium chloride, methyl magnesium bromide, ethyl magnesium chloride, ethyl magnesium bromide, isopropyl magnesium chloride, isopropyl magnesium bromide, butyl magnesium. Examples include chloride and butyl magnesium bromide.

本発明において用いられる成分(e)の量は、成分(a)と成分(b)のモル数の和1モル当たり0.1〜10000モルが好ましく、特に好ましくは1〜1000モルである。   The amount of component (e) used in the present invention is preferably 0.1 to 10,000 mol, particularly preferably 1 to 1000 mol, per mol of the sum of the number of moles of component (a) and component (b).

本発明において用いられる一般式(20)で表される成分(f)中のR17は炭素数1〜20の炭化水素基である。 R 17 in the component (f) represented by the general formula (20) used in the present invention is a hydrocarbon group having 1 to 20 carbon atoms.

成分(f)中のR17に用いられる炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、2−メチルブチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、4−メチルペンチル基、ネオヘキシル基、2,3−ジメチルブチル基、2,2−ジメチルブチル基、4−メチル−2−ペンチル、3,3−ジメチル−2−ブチル基、1,1−ジメチルブチル基、2,3−ジメチル−2−ブチル基、n−ペンチル基、イソペンチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、n−テトラデシル基、n−ヘキサデシル基、n−オクタデシル基、フェニル基、シクロヘキシル基等を例示することができる。 Examples of the hydrocarbon group having 1 to 20 carbon atoms used for R 17 in the component (f) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. Tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 4-methylpentyl group, neohexyl group, 2,3-dimethylbutyl group, 2,2-dimethylbutyl group, 4-methyl-2-pentyl, 3,3-dimethyl-2-butyl group, 1,1-dimethylbutyl group, 2,3-dimethyl-2 -Butyl group, n-pentyl group, isopentyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-hexadecyl group Examples thereof include a syl group, an n-octadecyl group, a phenyl group, and a cyclohexyl group.

具体的な成分(f)としては、例えばメチルリチウム、エチルリチウム、ブチルリチウム等を例示することができる。   Specific examples of the component (f) include methyl lithium, ethyl lithium, butyl lithium and the like.

本発明において用いられる成分(f)の量は、成分(a)と成分(b)のモル数の和1モル当たり0.1〜10000モルが好ましく、特に好ましくは1〜1000モルである。   The amount of the component (f) used in the present invention is preferably 0.1 to 10000 mol, particularly preferably 1 to 1000 mol, per mol of the sum of the number of moles of the component (a) and the component (b).

本発明において用いられる一般式(21)または(22)で表される成分(g)中のR18は各々独立して、水素原子、炭素数1〜20の炭化水素であり、qは2〜60である。 R 18 in the component (g) represented by the general formula (21) or (22) used in the present invention is each independently a hydrogen atom or a hydrocarbon having 1 to 20 carbon atoms, and q is 2 to 2. 60.

成分(g)中のR18に用いられる炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、t−ブチル基等を例示することができる。さらに、成分(g)は有機アルミニウム化合物の単量体、2量体およびオリゴマーを含む場合がある。 Examples of the hydrocarbon group having 1 to 20 carbon atoms used in R 18 in the component (g), for example a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, can be exemplified t- butyl group . Furthermore, component (g) may contain a monomer, dimer and oligomer of an organoaluminum compound.

これら成分(g)は、一般には有機アルミニウム化合物と水を有機溶媒中、または有機アルミニウム化合物と塩もしくは酸化物の水和物を有機溶媒中で反応させることにより得ることができ、公知の方法によって製造したものを用いることができる。   These components (g) can generally be obtained by reacting an organoaluminum compound and water in an organic solvent, or by reacting an organoaluminum compound and a salt or oxide hydrate in an organic solvent, by a known method. What was manufactured can be used.

本発明において用いられる成分(g)の量は、成分(a)と成分(b)のモル数の和1モル当たり0.01〜1000000モルが好ましく、特に好ましくは1〜100000モルである。   The amount of the component (g) used in the present invention is preferably 0.01 to 1,000,000 moles, particularly preferably 1 to 100,000 moles per mole of the sum of the moles of the component (a) and the component (b).

本発明において用いられる一般式(23)で表される成分(h)中の[R1920 y−1H]はカチオンであり、[MAr]はアニオンである。 [R 19 R 20 y-1 M 5 H] in the component (h) represented by the general formula (23) used in the present invention is a cation, and [M 6 Ar 4 ] is an anion.

成分(h)中のMは周期表の第15族または第16族から選ばれる元素であり、R19は炭素数1〜30の炭化水素基であり、R20は各々独立して水素原子または炭素数1〜30の炭化水素基であり、yはMが第15族元素の時y=3であり、Mが第16族元素の時y=2であり、Mはホウ素、アルミニウムまたはガリウムであり、Arは各々独立して炭素数6〜20のハロゲン置換アリール基である。 M 5 in the component (h) is an element selected from Group 15 or 16 of the periodic table, R 19 is a hydrocarbon group having 1 to 30 carbon atoms, and R 20 is independently a hydrogen atom. Or a hydrocarbon group having 1 to 30 carbon atoms, y is y = 3 when M 5 is a Group 15 element, y = 2 when M 5 is a Group 16 element, M 6 is boron, Aluminum or gallium, and each Ar is independently a halogen-substituted aryl group having 6 to 20 carbon atoms.

成分(h)中のR19およびR20に用いられる炭素数1〜30の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、アリル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、1−エチルプロピル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、4−メチルペンチル基、ネオヘキシル基、2,3−ジメチルブチル基、2,2−ジメチルブチル基、4−メチル−2−ペンチル、3,3−ジメチル−2−ブチル基、1,1−ジメチルブチル基、2,3−ジメチル−2−ブチル基、シクロヘキシル基、n−ヘプチル基、シクロヘプチル基、2−メチルシクロヘキシル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、n−オクチル基、イソオクチル基、1,5−ジメチルヘキシル基、1−メチルヘプチル基、2−エチルヘキシル基、tert−オクチル基、2,3−ジメチルシクロヘキシル基、2−(1−シクロヘキセニル)エチル基、n−ノニル基、n−デシル基、イソデシル基、ゲラニル基、n−ウンデシル基、n−ドデシル基、シクロドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基、n−ヘンエイコシル基、n−ドコシル基、n−トリコシル基、オレイル基、ベヘニル基、フェニル基、o−トリル基、m−トリル基、p−トリル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2−イソプロピルフェニル基、3−イソプロピルフェニル基、4−イソプロピルフェニル基、2−tert−ブチルフェニル基、4−n−ブチルフェニル基、4−sec−ブチルフェニル基、4−tert−ブチルフェニル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,6−ジエチルフェニル基、2−イソプロピル−6−メチルフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−エトキシフェニル基、3−エトキシフェニル基、4−エトキシフェニル基、1−ナフチル基、2−ナフチル基、1−フルオレニル基、2−フルオレニル基、3−フルオレニル基、4−フルオレニル基、2,3−ジヒドロインデン−5−イル基、2−ビフェニル基、4−ビフェニル基、p−トリメチルシリルフェニル基等を例示することができる。また、R19とR20は互いに結合していてもよい。 Examples of the hydrocarbon group having 1 to 30 carbon atoms used for R 19 and R 20 in the component (h) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an allyl group, an n-butyl group, and isobutyl. Group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, 1-ethylpropyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl Group, isohexyl group, 3-methylpentyl group, 4-methylpentyl group, neohexyl group, 2,3-dimethylbutyl group, 2,2-dimethylbutyl group, 4-methyl-2-pentyl, 3,3-dimethyl- 2-butyl, 1,1-dimethylbutyl, 2,3-dimethyl-2-butyl, cyclohexyl, n-heptyl, cyclo Butyl group, 2-methylcyclohexyl group, 3-methylcyclohexyl group, 4-methylcyclohexyl group, n-octyl group, isooctyl group, 1,5-dimethylhexyl group, 1-methylheptyl group, 2-ethylhexyl group, tert- Octyl group, 2,3-dimethylcyclohexyl group, 2- (1-cyclohexenyl) ethyl group, n-nonyl group, n-decyl group, isodecyl group, geranyl group, n-undecyl group, n-dodecyl group, cyclododecyl group Group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group, n-heneicosyl group, n-docosyl group Group, n-tricosyl group, oleyl group, behenyl group, phenyl group, o-tolyl group, m-tril Group, p-tolyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2-tert-butylphenyl Group, 4-n-butylphenyl group, 4-sec-butylphenyl group, 4-tert-butylphenyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6 -Xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,6-diethylphenyl group, 2-isopropyl-6-methylphenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-metho Siphenyl group, 2-ethoxyphenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 1-naphthyl group, 2-naphthyl group, 1-fluorenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group 2,3-dihydroinden-5-yl group, 2-biphenyl group, 4-biphenyl group, p-trimethylsilylphenyl group and the like. R 19 and R 20 may be bonded to each other.

成分(h)中のArに用いられる炭素数6〜20のハロゲン置換アリール基としては、例えばペンタフルオロフェニル基を例示することができる。   Examples of the halogen-substituted aryl group having 6 to 20 carbon atoms used for Ar in component (h) include a pentafluorophenyl group.

具体的な成分(h)としては、例えばジエチルオキソニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルオキソニウムテトラキス(ペンタフルオロフェニル)ボレート、テトラメチレンオキソニウムテトラキス(ペンタフルオロフェニル)ボレート、ヒドロニウムテトラキス(ペンタフルオロフェニル)ボレート、トリメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、ジエチルオキソニウムテトラキス(ペンタフルオロフェニル)アルミネート、ジメチルオキソニウムテトラキス(ペンタフルオロフェニル)アルミネート、テトラメチレンオキソニウムテトラキス(ペンタフルオロフェニル)アルミネート、ヒドロニウムテトラキス(ペンタフルオロフェニル)アルミネート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)アルミネート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)アルミネート等を例示することができる。   Specific examples of the component (h) include diethyloxonium tetrakis (pentafluorophenyl) borate, dimethyloxonium tetrakis (pentafluorophenyl) borate, tetramethylene oxonium tetrakis (pentafluorophenyl) borate, hydronium tetrakis (penta). Fluorophenyl) borate, trimethylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, diethyloxonium tetrakis ( Pentafluorophenyl) aluminate, dimethyloxonium tetrakis (pentafluorophenyl) aluminate, tetramethyle Oxonium tetrakis (pentafluorophenyl) aluminate, hydronium tetrakis (pentafluorophenyl) aluminate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) aluminate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) ) Aluminate and the like can be exemplified.

本発明において用いられる一般式(24)で表される成分(i)中の[C]はカルボニウムカチオンまたはトロピリウムカチオンであり、Mはホウ素、アルミニウムまたはガリウムである。 [C] in the component (i) represented by the general formula (24) used in the present invention is a carbonium cation or a tropylium cation, and M 7 is boron, aluminum or gallium.

具体的な成分(i)としては、例えばトリチルテトラキス(ペンタフルオロフェニル)ボレート、トリチルテトラキス(ペンタフルオロフェニル)アルミネート、トロピリウムテトラキス(ペンタフルオロフェニル)ボレート、トロピリウムテトラキス(ペンタフルオロフェニル)アルミネート等を例示することができる。   Specific examples of the component (i) include trityl tetrakis (pentafluorophenyl) borate, trityl tetrakis (pentafluorophenyl) aluminate, tropylium tetrakis (pentafluorophenyl) borate, tropylium tetrakis (pentafluorophenyl) aluminate. Etc. can be illustrated.

本発明において用いられる一般式(25)で表される成分(j)中のMはリチウム原子、鉄原子および銀原子の陽イオンであり、Lはエーテル類、脂肪族アミン類、芳香族アミン類、ホスフィン類等のルイス塩基、または置換もしくは無置換のシクロペンタジエニル基であり、zは0≦z≦2であり、Mはホウ素、アルミニウムまたはガリウムである。 In the component (j) represented by the general formula (25) used in the present invention, M 8 is a cation of a lithium atom, an iron atom and a silver atom, and L 2 is an ether, aliphatic amine, aromatic Lewis bases such as amines and phosphines, or substituted or unsubstituted cyclopentadienyl groups, z is 0 ≦ z ≦ 2, and M 9 is boron, aluminum, or gallium.

具体的な成分(j)としては、例えばリチウムテトラキス(ペンタフルオロフェニル)ボレート、リチウムテトラキス(ペンタフルオロフェニル)アルミネート等のリチウム塩;またはそのエーテル錯体;フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラキス(ペンタフルオロフェニル)アルミネート等のフェロセニウム塩;シルバーテトラキス(ペンタフルオロフェニル)ボレート、シルバーテトラキス(ペンタフルオレフェニル)アルミネート等の銀塩等を例示することができる。   Specific examples of the component (j) include lithium salts such as lithium tetrakis (pentafluorophenyl) borate and lithium tetrakis (pentafluorophenyl) aluminate; or ether complexes thereof; ferrocenium tetrakis (pentafluorophenyl) borate, Examples include ferrocenium salts such as ferrocenium tetrakis (pentafluorophenyl) aluminate; silver salts such as silver tetrakis (pentafluorophenyl) borate and silver tetrakis (pentafluorphenyl) aluminate.

本発明において用いられる一般式(26)で表される成分(k)における、M10はホウ素、アルミニウムであり、具体的な成分(k)としては、例えばトリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6−テトラフルオロフェニル)ボラン、トリス(2,3,4,5−テトラフェニルフェニル)ボラン、トリス(3,4,5−トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボラン、トリス(3,4,5−トリフルオロフェニル)アルミニウム等を例示することができる。 In the component (k) represented by the general formula (26) used in the present invention, M 10 is boron or aluminum. Specific examples of the component (k) include tris (pentafluorophenyl) borane and tris ( 2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetraphenylphenyl) borane, tris (3,4,5-trifluorophenyl) borane, phenylbis (pentafluorophenyl) ) Borane, tris (3,4,5-trifluorophenyl) aluminum and the like can be exemplified.

本発明において用いられる成分(m)は、スルホン酸塩であり、該スルホン酸塩としては、例えばトリフルオロメタンスルホナートリチウム、トリフルオロメタンスルホナートナトリウム、トリフルオロメタンスルホナートカリウム、ビス(トリフルオロメタンスルホナート)カルシウム、ビス(トリフルオロメタンスルホナート)バリウム、トリス(トリフルオロメタンスルホナート)チタニウム、テトラキス(トリフルオロメタンスルホナート)チタニウム、テトラキス(トリフルオロメタンスルホナート)ジルコニウム、テトラキス(トリフルオロメタンスルホナート)ハフニウム、ペンタキス(トリフルオロメタンスルホナート)ニオブ、ペンタキス(トリフルオロメタンスルホナート)タンタル、トリス(トリフルオロメタンスルホナート)鉄、トリフルオロメタンスルホナート銀、トリス(トリフルオロメタンスルホナート)ホウ素、トリス(トリフルオロメタンスルホナート)アルミニウム、トリス(トリフルオロメタンスルホナート)ガリウム、テトラキス(トリフルオロメタンスルホナート)錫、ペンタフルオロベンゼンスルホナートリチウム、ペンタフルオロベンゼンスルホナートナトリウム、ペンタフルオロベンゼンスルホナートカリウム、ビス(ペンタフルオロベンゼンスルホナート)マグネシウム、ビス(ペンタフルオロベンゼンスルホナート)カルシウム、ビス(ペンタフルオロベンゼンスルホナート)バリウム、トリス(ペンタフルオロベンゼンスルホナート)チタニウム、テトラキス(ペンタフルオロベンゼンスルホナート)ジルコニウム、テトラキス(ペンタフルオロベンゼンスルホナート)ハフニウム、ペンタキス(ペンタフルオロベンゼンスルホナート)ニオブ、ペンタキス(ペンタフルオロベンゼンスルホナート)タンタル、トリス(ペンタフルオロベンゼンスルホナート)鉄、ペンタフルオロベンゼンスルホナート銀、トリス(ペンタフルオロベンゼンスルホナート)ホウ素、トリス(ペンタフルオロベンゼンスルホナート)アルミニウム、トリス(ペンタフルオロベンゼンスルホナート)ガリウム、テトラキス(ペンタフルオロベンゼンスルホナート)錫、ビス(トリフルオロメタンスルホナート)マグネシウム、ペンタキス(トリフルオロメタンスルホナート)ニオブ、ビス(ペンタフルオロベンゼンスルホナート)マグネシウム、テトラキス(ペンタフルオロベンゼンスルホナート)チタニウムおよびペンタキス(ペンタフルオロベンゼンスルホナート)ニオブ等を例示することができる。   The component (m) used in the present invention is a sulfonate, and examples of the sulfonate include lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, and bis (trifluoromethanesulfonate). Calcium, bis (trifluoromethanesulfonate) barium, tris (trifluoromethanesulfonate) titanium, tetrakis (trifluoromethanesulfonate) titanium, tetrakis (trifluoromethanesulfonate) zirconium, tetrakis (trifluoromethanesulfonate) hafnium, pentakis (trifluoro) Lomethanesulfonate) niobium, pentakis (trifluoromethanesulfonate) tantalum, tris (trifluoromethanesulfurate) Nato) iron, trifluoromethanesulfonate silver, tris (trifluoromethanesulfonate) boron, tris (trifluoromethanesulfonate) aluminum, tris (trifluoromethanesulfonate) gallium, tetrakis (trifluoromethanesulfonate) tin, pentafluorobenzenesulfone Sodium lithium, pentafluorobenzenesulfonate sodium, potassium pentafluorobenzenesulfonate, bis (pentafluorobenzenesulfonate) magnesium, bis (pentafluorobenzenesulfonate) calcium, bis (pentafluorobenzenesulfonate) barium, tris (penta Fluorobenzenesulfonate) titanium, tetrakis (pentafluorobenzenesulfonate) zirconium, Tet Kis (pentafluorobenzene sulfonate) hafnium, pentakis (pentafluorobenzene sulfonate) niobium, pentakis (pentafluorobenzene sulfonate) tantalum, tris (pentafluorobenzene sulfonate) iron, pentafluorobenzene sulfonate silver, tris (penta Fluorobenzenesulfonate) boron, tris (pentafluorobenzenesulfonate) aluminum, tris (pentafluorobenzenesulfonate) gallium, tetrakis (pentafluorobenzenesulfonate) tin, bis (trifluoromethanesulfonate) magnesium, pentakis (trifluoromethane) Sulfonate) niobium, bis (pentafluorobenzenesulfonate) magnesium, tetrakis (pentafluorobenzenes) (Rufonate) titanium and pentakis (pentafluorobenzenesulfonate) niobium.

本発明において用いられる成分(n)は、カルボン酸であり、該カルボン酸としては、例えばトリフルオロ酢酸、トリクロロ酢酸、トリブロモ酢酸、ペンタフルオロ安息香酸、テトラフルオロトルイル酸、2,4−(トリフルオロメチル)安息香酸、ペンタフルオロフェニル酢酸等を例示することができる。   The component (n) used in the present invention is a carboxylic acid, and examples of the carboxylic acid include trifluoroacetic acid, trichloroacetic acid, tribromoacetic acid, pentafluorobenzoic acid, tetrafluorotoluic acid, 2,4- (trifluoro Examples thereof include methyl) benzoic acid and pentafluorophenylacetic acid.

本発明において用いられる成分(h)、成分(i)、成分(j)、成分(k)、成分(m)、成分(n)の量は、成分(a)と成分(b)のモル数の和1モル当たり0.1〜1000モルが好ましく、特に好ましくは0.3〜100モルである。   The amount of component (h), component (i), component (j), component (k), component (m), and component (n) used in the present invention is the number of moles of component (a) and component (b). Is preferably from 0.1 to 1000 mol, particularly preferably from 0.3 to 100 mol, per mol of the sum.

本発明において用いられる成分(l)は、塩化マグネシウムであり、該塩化マグネシウムは公知の方法によって調製され、成分(l)の量は、成分(a)と成分(b)のモル数の和1モル当たり0.01〜10000kgが好ましく、特に好ましくは0.1〜1000kgである。また、ハロゲン化有機アルミニウムおよび有機マグネシウム等を用いて、重合あるいは触媒調製時に、系中で塩化マグネシウムを生成させて重合に用いることもできる。   Component (l) used in the present invention is magnesium chloride, which is prepared by a known method, and the amount of component (l) is the sum of the number of moles of component (a) and component (b) 1 0.01 to 10000 kg per mole is preferred, and 0.1 to 1000 kg is particularly preferred. Further, using organic aluminum halide, organic magnesium, or the like, magnesium chloride can be produced in the system during polymerization or catalyst preparation and used for the polymerization.

本発明において用いられる成分(o)は、無機酸化物であり、該無機酸化物は、平均粒径が1〜300μmであることが好ましく、特に10〜200μmの範囲にある微粒子状の多孔質の粒子は、触媒調製や重合プロセス時の取り扱いが容易であるので好適である。具体的な無機酸化物としては、例えばシリカ、アルミナ、マグネシア等の典型元素の無機酸化物;チタニア、ジルコニア等の遷移金属元素の無機酸化物およびシリカ−アルミナ、シリカ−マグネシア等の混合物が例示できる。これらの無機酸化物には通常不純物としてNaO、KCO、BaSO等のアルカリ金属やアルカリ土類金属の塩類が含まれている。上記の微粒子状の無機酸化物はこれらの不純物を含んだ状態で使用しても良いが、予めこれらの不純物を除去する操作を施した無機酸化物を使用するのが好ましい。このような多孔質の微粒子状の無機酸化物はその種類および製造方法により性質を異にするが、本発明においては比表面積が10〜1000m/g、特に50〜800m/g、細孔容積が0.1〜3mL/gのものが、遷移金属化合物の担持成分を多く担持することができるので好ましい。これらの無機酸化物は必要に応じて100〜1000℃で減圧下または気体流通下で焼成して用いられる。 The component (o) used in the present invention is an inorganic oxide, and the inorganic oxide preferably has an average particle size of 1 to 300 μm, particularly a fine porous particle in the range of 10 to 200 μm. Particles are preferred because they are easy to handle during catalyst preparation and polymerization processes. Specific examples of the inorganic oxide include inorganic oxides of typical elements such as silica, alumina, and magnesia; inorganic oxides of transition metal elements such as titania and zirconia, and mixtures of silica-alumina, silica-magnesia, and the like. . These inorganic oxides usually contain alkali metal or alkaline earth metal salts such as Na 2 O, K 2 CO 3 and BaSO 4 as impurities. The fine particle inorganic oxide may be used in a state containing these impurities, but it is preferable to use an inorganic oxide that has been previously subjected to an operation for removing these impurities. Such porous fine-particle inorganic oxides have different properties depending on the kind and production method. In the present invention, the specific surface area is 10 to 1000 m 2 / g, particularly 50 to 800 m 2 / g, pores. The one having a volume of 0.1 to 3 mL / g is preferable because a large amount of a transition metal compound-supporting component can be supported. These inorganic oxides are used after being calcined at 100 to 1000 ° C. under reduced pressure or in a gas stream as necessary.

また、これらの無機酸化物の水酸基をハロゲンで置換して用いることもできる。無機酸化物の水酸基をハロゲンで置換する方法としては、表面水酸基と交換可能なハロゲンを有する反応剤と反応させる方法が好ましい。該反応剤としては、例えばフッ素、塩素、臭素、ヨウ素等のハロゲン;フッ化水素、塩化水素、臭化水素、ヨウ化水素等のハロゲン化水素:ホスゲン、塩化チオニル、フッ化アンモニウム、塩化アンモニウム、ヨウ化アンモニウム、四塩化炭素、クロロホルム、フロン等の含ハロゲン化合物等が挙げられる。これらの無機化合物は水酸基の一部または全部をハロゲンで置換した後、副生成物であるHOの除去を目的として、100〜1000℃で減圧下または気体流通下での熱処理をしてもよい。 Moreover, the hydroxyl group of these inorganic oxides can be substituted with halogen. As a method of substituting the hydroxyl group of the inorganic oxide with a halogen, a method of reacting with a reactive agent having a halogen exchangeable with the surface hydroxyl group is preferable. Examples of the reactant include halogens such as fluorine, chlorine, bromine and iodine; hydrogen halides such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide: phosgene, thionyl chloride, ammonium fluoride, ammonium chloride, And halogen-containing compounds such as ammonium iodide, carbon tetrachloride, chloroform, and chlorofluorocarbon. These inorganic compounds may be subjected to heat treatment under reduced pressure or gas flow at 100 to 1000 ° C. for the purpose of removing H 2 O, which is a by-product, after replacing some or all of the hydroxyl groups with halogen. Good.

また、該無機酸化物は他の触媒成分との接触に先だって、−OH残基の後処理を目的として予め金属化合物と接触させてもよい。ここで用いる金属化合物は特に限定はなく、好ましくは成分(d)、成分(e)および/または成分(f)が用いられる。該無機酸化物を上記の金属化合物と接触させる方法は特に限定はなく、例えば酸化物が不溶で金属化合物が可溶な有機溶媒中で懸濁状態にて接触させる方法、双方が可溶な有機溶媒中にて接触させる方法および実質的に溶媒のない状況下にてボールミル等で接触させる方法などが例示される。   The inorganic oxide may be contacted with a metal compound in advance for the purpose of post-treatment of the —OH residue prior to contact with other catalyst components. The metal compound used here is not particularly limited, and preferably component (d), component (e) and / or component (f) is used. The method for bringing the inorganic oxide into contact with the above metal compound is not particularly limited. For example, the method in which the oxide is insoluble in the organic solvent in which the metal compound is soluble, and the organic compound in which both are soluble. Examples include a method of contacting in a solvent and a method of contacting with a ball mill or the like in a substantially solvent-free condition.

本発明において用いられる成分(a)と成分(b)と成分(g)と成分(o)からなる触媒の調製方法としては、例えば成分(g)と成分(o)を接触させた後、成分(a)および成分(b)を添加する方法;成分(a)と成分(b)と成分(g)を接触させた後、成分(o)を添加する方法;成分(a)と成分(g)と成分(o)を接触させた後、成分(b)を添加する方法等を例示することができる。   As a method for preparing a catalyst comprising component (a), component (b), component (g) and component (o) used in the present invention, for example, after contacting component (g) and component (o), Method of adding (a) and component (b); Method of adding component (o) after contacting component (a), component (b) and component (g); Component (a) and component (g) ) And the component (o) are contacted and then the method of adding the component (b) can be exemplified.

成分(a)と成分(b)と成分(g)と成分(o)からなる触媒における成分(a)の量は、成分(o)1gに対して0.005〜1mmolが好ましく、特に好ましくは0.05〜0.5mmolであり、成分(g)に含まれるAl原子の量は成分(a)1molに対して10〜200molの割合で用いることにより、さらに良好な重合活性が得られ好適である。   The amount of component (a) in the catalyst comprising component (a), component (b), component (g) and component (o) is preferably 0.005 to 1 mmol, particularly preferably 1 g of component (o). The amount of Al atoms contained in the component (g) is 0.05 to 0.5 mmol, and it is preferable that a better polymerization activity can be obtained by using it in a proportion of 10 to 200 mol with respect to 1 mol of the component (a). is there.

本発明において用いられる成分(a)と成分(b)と成分(o)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩からなる触媒の調製方法としては、例えば成分(o)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩を接触させた後、成分(a)および成分(b)を添加する方法;成分(a)と成分(b)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩を接触させた後、成分(o)を添加する方法;成分(a)と成分(o)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩を接触させた後、成分(b)を添加する方法等を例示することができる。   As a method for preparing a catalyst comprising at least one salt selected from component (a), component (b), component (o), component (h), component (i) and component (j) used in the present invention, For example, a method of adding component (a) and component (b) after contacting component (o) with at least one salt selected from component (h), component (i) and component (j); A method of adding component (o) after contacting at least one salt selected from (a), component (b), component (h), component (i), and component (j); component (a) Examples thereof include a method of adding the component (b) after contacting at least one salt selected from the component (o), the component (h), the component (i) and the component (j).

成分(a)と成分(b)と成分(o)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩からなる触媒における、成分(a)1molに対する、成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩中のアニオン成分の量は、0.01〜1000molにあるときに良好な重合活性が得られ好適であり、特に好ましくは0.2〜500molである。さらに、成分(o)1kgに対する成分(a)の量は、0.001〜1モルであることが好ましく、特に好ましくは0.001〜0.5モル、さらに好ましくは0.001〜0.3モルの範囲である。   Component (a) with respect to 1 mol of component (a) in a catalyst comprising at least one salt selected from component (a), component (b), component (o), component (h), component (i), and component (j) The amount of the anionic component in at least one salt selected from (h), component (i), and component (j) is preferably 0.01 to 1000 mol because good polymerization activity is obtained. Preferably it is 0.2-500 mol. Furthermore, the amount of the component (a) relative to 1 kg of the component (o) is preferably 0.001 to 1 mol, particularly preferably 0.001 to 0.5 mol, and further preferably 0.001 to 0.3. The range of moles.

本発明において用いられる成分(p)は、無機ハロゲン化物であり、該無機ハロゲン化物としては、例えば塩化マグネシウム等のアルカリ土金属のハロゲン化物、塩化アルミニウム等の周期表13族元素のハロゲン化物等を例示することができる。   The component (p) used in the present invention is an inorganic halide. Examples of the inorganic halide include halides of alkaline earth metals such as magnesium chloride, halides of Group 13 elements of the periodic table such as aluminum chloride, and the like. It can be illustrated.

本発明において用いられる成分(a)と成分(b)と成分(p)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩からなる触媒の調製方法としては、例えば成分(p)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩を接触させた後、成分(a)および成分(b)を添加する方法;成分(a)と成分(b)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩を接触させた後、成分(p)を添加する方法;成分(a)と成分(p)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩を接触させた後、成分(b)を添加する方法等を例示することができる。   As a method for preparing a catalyst comprising at least one salt selected from component (a), component (b), component (p), component (h), component (i) and component (j) used in the present invention. For example, a method of adding component (a) and component (b) after contacting at least one salt selected from component (p) and component (h), component (i), component (j); Method of adding component (p) after contacting at least one salt selected from (a), component (b), component (h), component (i), and component (j); component (a) Examples thereof include a method of adding the component (b) after contacting at least one salt selected from the component (p), the component (h), the component (i), and the component (j).

成分(a)と成分(b)と成分(p)と成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩からなる触媒における、成分(a)1molに対する、成分(h)、成分(i)、成分(j)から選ばれる少なくとも1種類の塩中のアニオン成分の量は、0.01〜1000molにあるときに良好な重合活性が得られ好適であり、特に好ましくは0.2〜500molである。さらに、成分(p)1kgに対する成分(a)の量は、0.001〜1モルであることが好ましく、特に好ましくは0.001〜0.5モル、さらに好ましくは0.001〜0.3モルの範囲である。   Component (a) with respect to 1 mol of component (a) in a catalyst comprising at least one salt selected from component (a), component (b), component (p), component (h), component (i), and component (j) The amount of the anionic component in at least one salt selected from (h), component (i), and component (j) is preferably 0.01 to 1000 mol because good polymerization activity is obtained. Preferably it is 0.2-500 mol. Furthermore, the amount of the component (a) relative to 1 kg of the component (p) is preferably 0.001 to 1 mol, particularly preferably 0.001 to 0.5 mol, more preferably 0.001 to 0.3. The range of moles.

本発明における成分(q)は、粘土鉱物であり、該粘土鉱物は、微結晶状のケイ酸塩を主成分とする微粒子である。粘土鉱物の大部分は、その構造上の特色として層状構造を成しており、層の中に種々の大きさの負電荷を有することが挙げられる。この点で、シリカやアルミナのような三次元構造を持つ金属酸化物と大きく異なる。これらの粘土鉱物は、一般に層電荷の大きさで、パイロフィライト、カオリナイト、ディッカイトおよびタルク群(化学式当たりの負電荷がおよそ0)、スメクタイト群(化学式当たりの負電荷がおよそ0.25から0.6)、バーミキュライト群(化学式当たりの負電荷がおよそ0.6から0.9)、雲母群(化学式当たりの負電荷がおよそ1)、脆雲母群(化学式当たりの負電荷がおよそ2)に分類されている。ここで示した各群には、それぞれ種々の粘土鉱物が含まれるが、スメクタイト群に属する粘土鉱物としては、モンモリロナイト、バイデライト、サポナイト、ヘクトライト等が挙げられる。また、これらの粘土鉱物は天然に存在するが、人工合成により不純物の少ないものを得ることができる。本発明においては、ここに示した天然の粘土鉱物及び人工合成により得られる粘土鉱物のすべてが使用可能であり、また、上記に例示がないものでも粘土鉱物の定義に属するものはすべて用いることができる。さらに、上記粘土鉱物は複数混合して用いることもできる。   The component (q) in the present invention is a clay mineral, and the clay mineral is a fine particle mainly composed of a microcrystalline silicate. Most of the clay minerals have a layered structure as a structural feature, and it can be mentioned that the layers have negative charges of various sizes. In this respect, it is greatly different from a metal oxide having a three-dimensional structure such as silica or alumina. These clay minerals are generally of a large layer charge, with pyrophyllite, kaolinite, dickite and talc groups (negative charge per chemical formula is approximately 0), smectite groups (negative charge per chemical formula is from about 0.25). 0.6), vermiculite group (negative charge per chemical formula is approximately 0.6 to 0.9), mica group (negative charge per chemical formula is approximately 1), brittle mica group (negative charge per chemical formula is approximately 2) It is classified. Each group shown here includes various clay minerals, and examples of the clay mineral belonging to the smectite group include montmorillonite, beidellite, saponite, hectorite and the like. Moreover, although these clay minerals exist naturally, a thing with few impurities can be obtained by artificial synthesis. In the present invention, all of the natural clay minerals shown here and clay minerals obtained by artificial synthesis can be used, and those not listed above but belonging to the definition of clay minerals can be used. it can. Furthermore, a mixture of a plurality of the above clay minerals can be used.

本発明における成分(q)はそのまま用いても良いし、新たに水を添加吸着させ、あるいは加熱脱水処理した後用いても良い。   The component (q) in the present invention may be used as it is, or may be used after newly adsorbing and adsorbing water, or after heat dehydration treatment.

また、成分(q)は、アルカリ処理、塩類処理等の化学処理を施すことが好ましい。アルカリ処理は、例えば水酸化ナトリウム等のアルカリを用いて、成分(q)の結晶構造を破壊し、構造変化をもたらす。塩類処理は、例えば塩化リチウム、リン酸ナトリウム、硫酸ナトリウム、酢酸ナトリウム、ギ酸ナトリウム、クエン酸ナトリウム、硝酸ナトリウム、シュウ酸ナトリウム、塩化マグネシウム、硫酸マグネシウム、リン酸マグネシウム、過塩素酸マグネシウム、シュウ酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム、コハク酸マグネシウム、硫酸アルミニウム、リン酸アルミニウム、シュウ酸アルミニウム、硝酸アルミニウム等の塩類を用いて、成分(q)層間の交換性イオンを別のイオンと置換することによって膨潤性や層間距離を増大させる。   The component (q) is preferably subjected to chemical treatment such as alkali treatment and salt treatment. The alkali treatment uses an alkali such as sodium hydroxide to destroy the crystal structure of the component (q) and bring about a structural change. For example, lithium chloride, sodium phosphate, sodium sulfate, sodium acetate, sodium formate, sodium citrate, sodium nitrate, sodium oxalate, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium perchlorate, magnesium oxalate Swells by replacing the exchangeable ions between layers (q) with other ions using salts such as magnesium nitrate, magnesium acetate, magnesium succinate, aluminum sulfate, aluminum phosphate, aluminum oxalate, aluminum nitrate Increase the distance and interlayer distance.

本発明の製造方法において、エチレンおよび任意に炭素数3以上のオレフィンを重合してポリエチレンを製造する上で、重合温度、重合時間、重合圧力、モノマー濃度などの重合条件について特に制限はなく、重合温度は−100〜120℃が好ましく、特に生産性を考慮すると20〜120℃、さらには60〜120℃の範囲で行うことが好ましい。重合時間は10秒〜20時間の範囲が好ましく、重合圧力は常圧〜300MPaの範囲で行うことが好ましい。また、重合時に水素などを用いて分子量の調節を行うことも可能である。重合はバッチ式、半連続式、連続式のいずれの方法でも行うことが可能であり、重合条件を変えて2段階以上に分けて行うことも可能である。また、ポリエチレンは、重合終了後に従来既知の方法により重合溶媒から分離回収され、乾燥して得ることができる。   In the production method of the present invention, when producing polyethylene by polymerizing ethylene and optionally an olefin having 3 or more carbon atoms, there are no particular restrictions on polymerization conditions such as polymerization temperature, polymerization time, polymerization pressure, and monomer concentration. The temperature is preferably −100 to 120 ° C., and considering the productivity, it is preferably 20 to 120 ° C., more preferably 60 to 120 ° C. The polymerization time is preferably in the range of 10 seconds to 20 hours, and the polymerization pressure is preferably in the range of normal pressure to 300 MPa. It is also possible to adjust the molecular weight using hydrogen during polymerization. The polymerization can be carried out by any of batch, semi-continuous and continuous methods, and can be carried out in two or more stages by changing the polymerization conditions. In addition, polyethylene can be obtained by separating and recovering from the polymerization solvent by a conventionally known method after completion of the polymerization and drying.

本発明の製造方法では、重合は公知のスラリー法プロセス、気相法プロセス、溶液法プロセス、高圧法プロセスの何れのプロセスでもで実施することができるが、特に、重合をスラリー法プロセスで行う場合には粒子形状の整ったオレフィン重合体を効率よく、安定的に生産することができる。また、用いる溶媒は一般に用いられる有機溶媒であればいずれでもよく、具体的には例えばベンゼン、トルエン、キシレン、プロパン、イソブタン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、ガソリン等が挙げられ、プロピレン、1−ブテン、1−ヘキセン、1−オクテン等のオレフィン自身を溶媒として用いることもできる。   In the production method of the present invention, the polymerization can be carried out by any of the known slurry method process, gas phase method process, solution method process, and high pressure method process. Can efficiently and stably produce an olefin polymer having a uniform particle shape. The solvent to be used may be any organic solvent that is generally used. Specific examples include benzene, toluene, xylene, propane, isobutane, pentane, hexane, heptane, cyclohexane, gasoline, and the like. Olefin itself such as butene, 1-hexene and 1-octene can be used as a solvent.

本発明で製造されるポリエチレンは、例えば耐熱安定剤、耐候安定剤、帯電防止剤、防曇剤、抗ブロッキング剤、スリップ剤、滑剤、核剤、顔料、カーボンブラック、タルク、ガラス粉、ガラス繊維等の無機充填剤または補強剤、有機充填剤または補強剤、難燃剤、中性子遮蔽剤等の公知添加剤を配合することができる。   The polyethylene produced in the present invention is, for example, heat-resistant stabilizer, weather-resistant stabilizer, antistatic agent, anti-fogging agent, anti-blocking agent, slip agent, lubricant, nucleating agent, pigment, carbon black, talc, glass powder, glass fiber. And other known additives such as inorganic fillers or reinforcing agents, organic fillers or reinforcing agents, flame retardants, and neutron shielding agents.

本発明で製造されるポリエチレンは、他の熱可塑性樹脂と混合して用いることもでき、例えばHDPE、LLDPE、LDPE、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、ポリスチレン、これらの無水マレイン酸グラフト物等と混合することができる。   The polyethylene produced in the present invention can be used by mixing with other thermoplastic resins, such as HDPE, LLDPE, LDPE, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, ethylene It can be mixed with a vinyl acetate copolymer, an ethylene / vinyl alcohol copolymer, polystyrene, or a maleic anhydride graft product thereof.

本発明で製造されるポリエチレンの流動の活性化エネルギー(E)は、160〜230℃の動的粘弾性測定によって得られるシフトファクターをアレニウス式に代入して求めた値であり、30kJ/mol以上100kJ/mol以下が好ましく、特に好ましくは35kJ/mol以上80kJ/mol以下、さらに好ましくは40kJ/mol以上70kJ/mol以下の範囲にある。 The flow activation energy (E a ) of the polyethylene produced in the present invention is a value obtained by substituting the shift factor obtained by dynamic viscoelasticity measurement at 160 to 230 ° C. into the Arrhenius equation, and is 30 kJ / mol. It is preferably 100 kJ / mol or less, particularly preferably 35 kJ / mol or more and 80 kJ / mol or less, and further preferably 40 kJ / mol or more and 70 kJ / mol or less.

本発明で製造されるポリエチレンの溶融張力(MS)は、長さ(L)が8mm,直径(D)が2.095mmであるダイスを用い、流入角90°で、せん断速度10.8s−1、延伸比が47の条件で測定した値であり、最大延伸比が47未満の場合、破断しない最高の延伸比で測定した値をMSとした。メルトフローレート(MFR)は190℃で、2.16kg荷重で測定した値である。本発明のポリエチレンのMS(mN)とMFR(g/10min.、190℃)は、下記式(27)または(28)
MS190>22×MFR−0.88 (27)
(式中、MS190は190℃で測定したMSである。)
MS160>110−110×log(MFR) (28)
(式中、MS160は160℃で測定したMSである。)
のいずれか一方を満たすことが好ましく、より好ましくは式(28)または下記式(27)’
MS190>30×MFR−0.88 (27)’
のいずれか一方を満たし、特に好ましくは式(27)および式(28)を共に満たし、さらに好ましくは式(27)’および式(28)を共に満たし、その上に好ましくは式(27)’および下記式(28)’
MS160>130−110×log(MFR) (28)’
を共に満たし、最も好ましくは式(27)’および下記式(28)’’
MS160>150−110×log(MFR) (28)’’
を共に満たす関係にある。
The melt tension (MS) of polyethylene produced in the present invention is a die having a length (L) of 8 mm and a diameter (D) of 2.095 mm, an inflow angle of 90 °, and a shear rate of 10.8 s −1. The value measured at a stretch ratio of 47, and when the maximum stretch ratio was less than 47, the value measured at the highest stretch ratio that did not break was taken as MS. The melt flow rate (MFR) is a value measured at 190 ° C. and a 2.16 kg load. MS (mN) and MFR (g / 10 min., 190 ° C.) of the polyethylene of the present invention are the following formulas (27) or (28):
MS 190 > 22 × MFR −0.88 (27)
(In the formula, MS 190 is MS measured at 190 ° C.)
MS 160 > 110-110 × log (MFR) (28)
(In the formula, MS 160 is MS measured at 160 ° C.)
It is preferable to satisfy any one of the following, more preferably the formula (28) or the following formula (27) ′
MS 190 > 30 × MFR− 0.88 (27) ′
And particularly preferably satisfies both the formula (27) and the formula (28), more preferably satisfies both the formula (27) ′ and the formula (28), and preferably further satisfies the formula (27) ′. And the following formula (28) ′
MS 160 > 130-110 × log (MFR) (28) ′
And most preferably the formula (27) ′ and the following formula (28) ″
MS 160 > 150-110 × log (MFR) (28) ″
There is a relationship that satisfies both.

本発明で製造されるポリエチレンの伸長粘度の非線形性パラメータ(λ)は、1.2以上100以下が好ましく、特に好ましくは2.0以上100以下、さらに好ましくは2.0以上30以下の範囲にある。該λはマイスナー型一軸伸長粘度計を用いて、160℃で、ひずみ速度0.07〜0.1s−1の条件で測定した伸長粘度の最大値を、その時間の線形領域の伸長粘度で除した値であり、「M. Yamaguchi et al.Polymer Journal 32,164(2000)」に記載のように、線形領域の伸長粘度は動的粘弾性より計算できる。 The non-linearity parameter (λ) of the extensional viscosity of the polyethylene produced in the present invention is preferably 1.2 or more and 100 or less, particularly preferably 2.0 or more and 100 or less, more preferably 2.0 or more and 30 or less. is there. The λ is obtained by dividing the maximum value of the extension viscosity measured at 160 ° C. under a strain rate of 0.07 to 0.1 s −1 by the extension viscosity in the linear region at that time using a Meissner type uniaxial extension viscometer. As described in “M. Yamaguchi et al. Polymer Journal 32, 164 (2000)”, the elongational viscosity in the linear region can be calculated from dynamic viscoelasticity.

本発明で製造されるポリエチレンの最大延伸比(DR)は、長さ(L)が8mm,直径(D)が2.095mmであるダイスを用い、流入角90°、160℃で、せん断速度10.8s−1の条件で、引き取り速度を1分間に20m/分ずつ増加させた時の破断時の延伸比であり、本発明のポリエチレンのMS160とDRは、好ましくは下記式(29)の関係にある。 The maximum draw ratio (DR) of the polyethylene produced in the present invention is a die having a length (L) of 8 mm and a diameter (D) of 2.095 mm, an inflow angle of 90 °, 160 ° C., and a shear rate of 10 The stretching ratio at break when the take-up speed is increased by 20 m / min per minute under the condition of .8s −1 , and the MS 160 and DR of the polyethylene of the present invention are preferably represented by the following formula (29) There is a relationship.

log(DR)>5−1.33×log(MS160) (29) log (DR)> 5-1.33 × log (MS 160 ) (29)

本発明によれば、モルフォロジーが良好な、LDPEの良成形加工性と、HDPEおよびLLDPEの機械強度を併せ持つポリエチレンを経済的に製造することができる。   According to the present invention, it is possible to economically produce polyethylene having both good moldability of LDPE with good morphology and mechanical strength of HDPE and LLDPE.

以下実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、断りのない限り用いた試薬等は市販品を用いた。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, commercially available reagents were used.

成分(c)の調製、固体触媒成分の調製、ポリエチレン製造触媒の調製、ポリエチレンの製造および溶媒精製は全て不活性ガス雰囲気下で行った。成分(c)の調製、ポリエチレン製造触媒の調製、ポリエチレンの製造に用いた溶媒等は全て予め公知の方法で精製、乾燥、脱酸素を行ったものを用いた。成分(a)および成分(b)は公知の方法により合成、同定したものを用いた。トリイソブチルアルミニウムのヘキサン溶液(0.714M)、メチルアルミノキサンのトルエン溶液(商品名:PMAO;Al:2.39M)は東ソーファインケム(株)製を用いた。   Preparation of component (c), preparation of solid catalyst component, preparation of polyethylene production catalyst, production of polyethylene and solvent purification were all carried out under an inert gas atmosphere. Preparation of component (c), preparation of polyethylene production catalyst, solvent used for the production of polyethylene and the like were all purified, dried and deoxygenated by known methods in advance. Components (a) and (b) were synthesized and identified by known methods. Tosoh Finechem Co., Ltd. was used for the triisobutylaluminum hexane solution (0.714M) and the methylaluminoxane toluene solution (brand name: PMAO; Al: 2.39M).

さらに、実施例におけるポリエチレンの諸物性は、以下に示す方法により測定した。   Further, various physical properties of polyethylene in the examples were measured by the following methods.

重量平均分子量(Mw)、数平均分子量(Mn)および重量平均分子量と数平均分子量の比(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置としては東ソー(株)製 HLC−8121GPC/HTを用い、カラムとしては東ソー(株)製 TSKgel GMHhr−H(20)HTを用い、カラム温度を140℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いて測定した。測定試料は1.0mg/mlの濃度で調製し、0.3ml注入して測定した。分子量の検量線は、分子量既知のポリスチレン試料を用いて校正した。なお、MwおよびMnは直鎖状ポリエチレン換算の値として求めた。   The weight average molecular weight (Mw), the number average molecular weight (Mn) and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) were measured by gel permeation chromatography (GPC). Tosoh Co., Ltd. HLC-8121GPC / HT is used as the GPC apparatus, Tosoh Co., Ltd. TSKgel GMHhr-H (20) HT is used as the column, the column temperature is set to 140 ° C., and 1 is used as the eluent. Measurement was performed using 2,4-trichlorobenzene. A measurement sample was prepared at a concentration of 1.0 mg / ml, and 0.3 ml was injected and measured. The calibration curve of molecular weight was calibrated using a polystyrene sample having a known molecular weight. In addition, Mw and Mn were calculated | required as a value of linear polyethylene conversion.

収縮因子(g’値)は、GPCによって分別したポリエチレンの[η]を測定する手法で求めた、絶対分子量70万またはMwの3倍の絶対分子量における[η]を、分岐が全くないHDPEの同[η]で除した値である。GPC装置としては東ソー(株)製 HLC−8121GPC/HTを用い、カラムとしては東ソー(株)製 TSKgel GMHhr−H(20)HTを用い、カラム温度を145℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いて測定した。測定試料は2.0mg/mlの濃度で調製し、0.3ml注入して測定した。粘度計は、Viscotek社製 キャピラリー差圧粘度計210R+を用いた。   The shrinkage factor (g ′ value) was determined by measuring the [η] of polyethylene fractionated by GPC, and the [η] at an absolute molecular weight of 700,000 or 3 times the Mw of HDPE with no branching. The value divided by [η]. Tosoh Co., Ltd. HLC-8121GPC / HT is used as the GPC device, Tosoh Co., Ltd. TSKgel GMHhr-H (20) HT is used as the column, the column temperature is set to 145 ° C., and 1 is used as the eluent. Measurement was performed using 2,4-trichlorobenzene. A measurement sample was prepared at a concentration of 2.0 mg / ml, and 0.3 ml was injected and measured. As a viscometer, a capillary differential pressure viscometer 210R + manufactured by Viscotek was used.

収縮因子(g値)は、GPCによって分別したポリエチレンを、光散乱によって慣性半径を測定する手法で求めた。本発明のポリエチレンの絶対分子量70万またはMwの3倍の絶対分子量における慣性半径の二乗平均を、分岐が全くないHDPEの絶対分子量70万またはMwの3倍の絶対分子量における慣性半径の二乗平均で除した値である。光散乱検出器としては、Wyatt Technology社製 多角度光散乱検出器DAWV EOSを用い、690nmの波長で、29.5°、33.3°、39.0°、44.8°、50.7°、57.5°、64.4°、72.3°、81.1°、90.0°、98.9°、107.7°、116.6°、125.4°、133.2°、140.0°、145.8°の検出角度で測定した。   The shrinkage factor (g value) was determined by a method of measuring the radius of inertia of polyethylene separated by GPC by light scattering. The root mean square of the radius of inertia at 700,000 absolute molecular weight of the polyethylene of the present invention or 3 times the absolute molecular weight of Mw is the mean square of the radius of inertia at 700,000 absolute molecular weight of HDPE without branching or 3 times the absolute molecular weight of Mw. It is the value divided. As the light scattering detector, a multi-angle light scattering detector DAWV EOS manufactured by Wyatt Technology was used, and the wavelength of 690 nm was 29.5 °, 33.3 °, 39.0 °, 44.8 °, 50.7. °, 57.5 °, 64.4 °, 72.3 °, 81.1 °, 90.0 °, 98.9 °, 107.7 °, 116.6 °, 125.4 °, 133.2 Measurements were made at detection angles of °, 140.0 °, and 145.8 °.

ビニル末端、飽和末端などのポリマーの末端構造は、日本電子(株)製 JNM−ECA400型核磁気共鳴装置を用いて、13C−NMRによって測定した。溶媒はテトラクロロエタン−dである。ビニル末端数は、主鎖メチレン炭素(化学シフト:30ppm)1,000個当たりの個数として、114ppm、139ppmのピークの平均値から求めた。また、飽和末端数は、同様に32.3ppm、22.9ppm、14.1ppmのピークの平均値から求めた。このビニル末端数(X)と飽和末端数(Y)から、Z(=X/(X+Y)×2)を求めた。 The terminal structure of the polymer such as vinyl terminal and saturated terminal was measured by 13 C-NMR using a JNM-ECA400 nuclear magnetic resonance apparatus manufactured by JEOL Ltd. The solvent is tetrachloroethane -d 2. The number of vinyl ends was determined from the average value of peaks at 114 ppm and 139 ppm as the number per 1,000 main chain methylene carbons (chemical shift: 30 ppm). Similarly, the number of saturated terminals was determined from the average value of peaks at 32.3 ppm, 22.9 ppm, and 14.1 ppm. Z (= X / (X + Y) × 2) was determined from the number of vinyl ends (X) and the number of saturated ends (Y).

密度(d)は、JIS K6760(1995)に準拠して密度勾配管法で測定した。   The density (d) was measured by a density gradient tube method in accordance with JIS K6760 (1995).

長鎖分岐数は、日本電子(株)製 JNM−GSX400型核磁気共鳴装置を用いて、13C−NMRによってヘキシル基以上の分岐数を測定した。溶媒はベンゼン−d/オルトジクロロベンゼン(体積比30/70)である。主鎖メチレン炭素(化学シフト:30ppm)1,000個当たりの個数として、α−炭素(34.6ppm)およびβ−炭素(27.3ppm)のピークの平均値から求めた。 The number of long-chain branches was determined by 13 C-NMR using a JNM-GSX400 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. The solvent is benzene-d 6 / orthodichlorobenzene (volume ratio 30/70). The number per 1,000 main chain methylene carbons (chemical shift: 30 ppm) was determined from the average value of the peaks of α-carbon (34.6 ppm) and β-carbon (27.3 ppm).

流動の活性化エネルギー(E)、溶融張力(MS)、最大延伸比(DR)および伸長粘度の測定に用いたポリエチレンは、予め耐熱安定剤としてイルガノックス1010TM(チバスペシャリティケミカルズ社製)1,500ppm、イルガフォス168TM(チバスペシャリティケミカルズ社製)1,500ppmを添加したものを、インターナルミキサー(東洋精機製作所製、商品名:ラボプラストミル)を用いて、窒素気流下、190℃、回転数30rpmで3分間混練したものを用いた。 Polyethylene used for measurement of flow activation energy (E a ), melt tension (MS), maximum draw ratio (DR), and elongational viscosity is Irganox 1010 (manufactured by Ciba Specialty Chemicals) as a heat-resistant stabilizer. , 500ppm, Irgafos 168 (Ciba Specialty Chemicals Co., Ltd.) with 1,500ppm added, using an internal mixer (Toyo Seiki Seisakusho, trade name: Labo Plast Mill), rotating at 190 ° C under nitrogen flow What knead | mixed for several minutes at several 30 rpm was used.

流動の活性化エネルギー(E)は、円錐−円板レオメーター(レオメトリックス社製、商品名:SR2000)を用い、160℃、190℃、230℃の各温度で周波数0.01〜100Hzの範囲のせん断貯蔵弾性率G’、せん断損失弾性率G”を求め、基準温度160℃での横軸のシフトファクターを求め、「高分子学会編 新高分子実験学 第8巻 高分子の物性(1),369(1997)」に記載の方法により流動の活性化エネルギーを算出した。 The activation energy (E a ) of the flow was measured using a cone-disk rheometer (Rheometrics, trade name: SR2000) at a temperature of 160 ° C., 190 ° C., and 230 ° C. at a frequency of 0.01 to 100 Hz. The shear storage elastic modulus G ′ and the shear loss elastic modulus G ”of the range were obtained, the shift factor of the horizontal axis at the reference temperature of 160 ° C. was obtained, and“ Science of Polymer Science, Volume 8 Polymer Properties (1 ), 369 (1997) ”, the activation energy of the flow was calculated.

伸長粘度は、温度160℃に設定したマイスナー型一軸伸長粘度計(東洋精機製作所製、商品名:メルテンレオメーター)を用いて測定した。非線型パラメータ(λ)は、ひずみ速度0.07〜0.1s−1の条件で測定した伸長粘度の最大値を、その時間の線形領域の伸長粘度で除した値として求めた。なお、線形領域における伸長粘度の値は、「M. Yamaguchi et al.Polymer Journal 32,164(2000)」に記載の方法に従い、動的粘弾性より近似式を用いて計算した。 The extensional viscosity was measured using a Meissner type uniaxial extensional viscometer (trade name: Melten Rheometer manufactured by Toyo Seiki Seisakusho) set at a temperature of 160 ° C. The non-linear parameter (λ) was obtained as a value obtained by dividing the maximum value of the extensional viscosity measured under the condition of strain rate of 0.07 to 0.1 s −1 by the extensional viscosity in the linear region at that time. In addition, the value of the extensional viscosity in the linear region was calculated using an approximate expression from dynamic viscoelasticity according to the method described in “M. Yamaguchi et al. Polymer Journal 32, 164 (2000)”.

溶融張力(MS)および最大延伸比(DR)は、バレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名:キャピログラフ)に、長さ(L)が8mm,直径(D)が2.095mmのダイスを流入角が90°になるように装着し測定した。MSは、温度を160℃または190℃に設定し、ピストン降下速度を10mm/分、延伸比を47に設定し、引き取りに必要な荷重(mN)をMSとした。最大延伸比が47未満の場合、破断しない最高の延伸比での引き取りに必要な荷重(mN)をMSとした。DRは、温度を160℃に設定し、引き取り速度を1分間に20m/分ずつ増加させ、破断時の延伸比をDRとした。なお、引き取りは23℃に設定した恒温室で行った。   The melt tension (MS) and maximum draw ratio (DR) were as follows: a capillary viscometer (Toyo Seiki Seisakusho, trade name: Capillograph) with a barrel diameter of 9.55 mm, a length (L) of 8 mm, and a diameter (D) of 2. A 095 mm die was mounted and measured such that the inflow angle was 90 °. For MS, the temperature was set to 160 ° C. or 190 ° C., the piston lowering speed was set to 10 mm / min, the stretch ratio was set to 47, and the load (mN) required for take-up was MS. When the maximum draw ratio was less than 47, the load (mN) required for taking-up at the highest draw ratio that did not break was defined as MS. In DR, the temperature was set to 160 ° C., the take-up speed was increased by 20 m / min per minute, and the draw ratio at break was taken as DR. In addition, taking over was performed in the thermostatic chamber set to 23 degreeC.

実施例1
[成分(c)の調製]
水60mLにエタノール60mLと37%濃塩酸2.0mLを加えた後、得られた溶液にN,N−ジメチル−オクタデシルアミン6.6g(0.022mol)を添加し、60℃に加熱することによって、塩酸塩溶液を調製した。この溶液にヘクトライト20gを加えた。この懸濁液を60℃で、3時間撹拌し、上澄液を除去した後、60℃の水1Lで洗浄した。その後、60℃、10−3torrで24時間乾燥し、ジェットミルで粉砕することによって、平均粒径5.2μmの変性ヘクトライト(成分(c))を得た。
Example 1
[Preparation of component (c)]
After adding 60 mL of ethanol and 2.0 mL of 37% concentrated hydrochloric acid to 60 mL of water, 6.6 g (0.022 mol) of N, N-dimethyl-octadecylamine was added to the resulting solution and heated to 60 ° C. A hydrochloride solution was prepared. To this solution was added 20 g of hectorite. The suspension was stirred at 60 ° C. for 3 hours, the supernatant was removed, and then washed with 1 L of 60 ° C. water. Then, the modified hectorite (component (c)) with an average particle diameter of 5.2 micrometers was obtained by drying at 60 degreeC and 10 < -3 > torr for 24 hours, and grind | pulverizing with a jet mill.

[ポリエチレン製造触媒の調製]
上記変性ヘクトライト4.0gをヘキサン10mLに懸濁させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)(成分(d))17mLを添加し、60℃で1時間攪拌することによって、成分(c)と成分(d)の接触生成物を得た。一方、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド(成分(a))55.8mg(160μmol)をヘキサン4mLに懸濁させたものにトリイソブチルアルミニウムのヘキサン溶液(0.714M)6mLを添加し、その溶液を成分(c)と成分(d)の接触生成物へ添加した。60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒前駆体スラリー(100g/L)とした。
[Preparation of polyethylene production catalyst]
4.0 g of the above modified hectorite is suspended in 10 mL of hexane, 17 mL of a hexane solution of triisobutylaluminum (0.714 M) (component (d)) is added, and the mixture is stirred at 60 ° C. for 1 hour, whereby the component (c ) And component (d) contact product. Meanwhile, 6 mL of a hexane solution (0.714 M) of triisobutylaluminum was added to a suspension of 55.8 mg (160 μmol) of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride (component (a)) in 4 mL of hexane. The solution was added to the contact product of component (c) and component (d). After stirring at 60 ° C. for 3 hours, the mixture was allowed to stand to remove the supernatant, and washed with a hexane solution (0.03M) of triisobutylaluminum. Further, a hexane solution (0.15M) of triisobutylaluminum was added to obtain a catalyst precursor slurry (100 g / L).

上記で調製した触媒前駆体スラリーに、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して5mol%のジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))4.7mg(8.4μmol)をヘキサン7.2mL、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.2mLの溶液を添加して室温で6時間撹拌した。静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄し、さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。   To the catalyst precursor slurry prepared above, 5 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component (b)) with respect to dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride. ) A solution of 4.7 mg (8.4 μmol) of hexane (7.2 mL) and triisobutylaluminum in hexane (0.714 M) (1.2 mL) was added and stirred at room temperature for 6 hours. Let stand and remove the supernatant, wash with hexane solution of triisobutylaluminum (0.03M), add hexane solution of triisobutylaluminum (0.15M) and finally add 100g / L catalyst slurry. Obtained.

[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、上記触媒スラリー0.4mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、159gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane and 1.0 mL of a hexane solution of triisobutylaluminum (0.714 M) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. To the autoclave, 0.4 mL of the catalyst slurry was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 159 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

比較例1
[マクロモノマーの製造]
触媒スラリーの代わりに実施例1[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、150gのポリマーが得られた。得られたポリマーのMn=11,000、Mw/Mn=2.50であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.57であった。また、メチル分岐が1,000炭素原子当たり0.52個、エチル分岐が1,000炭素原子当たり1.22個検出された。さらに、長鎖分岐は検出されなかった。
Comparative Example 1
[Manufacture of macromonomer]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst precursor slurry prepared in Example 1 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 150 g of polymer was obtained. The obtained polymer had Mn = 11,000 and Mw / Mn = 2.50, and the terminal structure of the polymer was analyzed by 13 C-NMR. 57. In addition, 0.52 methyl branches per 1,000 carbon atoms and 1.22 ethyl branches per 1,000 carbon atoms were detected. Furthermore, no long chain branching was detected.

比較例2
[ポリエチレン製造触媒の調製]
実施例1[成分(c)の調製]で調製した変性ヘクトライト4.0gをヘキサン10mLに懸濁させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)(成分(d))17mLを添加し、60℃で1時間攪拌することによって、成分(c)と成分(d)の接触生成物を得た。一方、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))89.1mg(160μmol)をヘキサン4mLに懸濁させたものにトリイソブチルアルミニウムのヘキサン溶液(0.714M)6mLを添加し、その溶液を成分(c)と成分(d)の接触生成物へ添加した。60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。
Comparative Example 2
[Preparation of polyethylene production catalyst]
4.0 g of the modified hectorite prepared in Example 1 [Preparation of component (c)] was suspended in 10 mL of hexane, and 17 mL of a hexane solution of triisobutylaluminum (0.714 M) (component (d)) was added. By stirring at 60 ° C. for 1 hour, a contact product of component (c) and component (d) was obtained. On the other hand, 89.1 mg (160 μmol) of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component (b)) suspended in 4 mL of hexane was suspended in a hexane solution of triisobutylaluminum (0. 714M) 6 mL was added and the solution was added to the contact product of component (c) and component (d). After stirring at 60 ° C. for 3 hours, the mixture was allowed to stand to remove the supernatant, and washed with a hexane solution (0.03M) of triisobutylaluminum. Further, a hexane solution (0.15 M) of triisobutylaluminum was added to finally obtain a catalyst slurry of 100 g / L.

[ポリエチレンの製造]
上記触媒スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、200gのポリマーが得られた。13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端は検出されなかった。また、長鎖分岐は検出されなかった。
[Production of polyethylene]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst slurry was used. As a result, 200 g of polymer was obtained. When the terminal structure of the polymer was analyzed by 13 C-NMR, no vinyl terminal was detected. Further, no long chain branching was detected.

比較例3
[ポリエチレン製造触媒の調製]
実施例1[成分(c)の調製]で調製した変性ヘクトライト4.0gをヘキサン10mLに懸濁させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)(成分(d))17mLを添加し、60℃で1時間攪拌することによって、成分(c)と成分(d)の接触生成物を得た。一方、ビス(シクロペンタジエニル)ジルコニウムジクロリド46.8mg(160μmol)をヘキサン4mLに懸濁させたものにトリイソブチルアルミニウムのヘキサン溶液(0.714M)6mLを添加し、その溶液を成分(c)と成分(d)の接触生成物へ添加した。60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒前駆体スラリー(100g/L)とした。
Comparative Example 3
[Preparation of polyethylene production catalyst]
4.0 g of the modified hectorite prepared in Example 1 [Preparation of component (c)] was suspended in 10 mL of hexane, and 17 mL of a hexane solution of triisobutylaluminum (0.714 M) (component (d)) was added. By stirring at 60 ° C. for 1 hour, a contact product of component (c) and component (d) was obtained. Meanwhile, 6 mL of a hexane solution (0.714 M) of triisobutylaluminum was added to a suspension of 46.8 mg (160 μmol) of bis (cyclopentadienyl) zirconium dichloride in 4 mL of hexane, and this solution was added to the component (c). And component (d) to the contact product. After stirring at 60 ° C. for 3 hours, the mixture was allowed to stand to remove the supernatant, and washed with a hexane solution (0.03M) of triisobutylaluminum. Further, a hexane solution (0.15M) of triisobutylaluminum was added to obtain a catalyst precursor slurry (100 g / L).

上記で調製した触媒前駆体スラリーに、ビス(シクロペンタジエニル)ジルコニウムジクロリドに対して5mol%のジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))4.7mg(8.4μmol)をヘキサン7.2mL、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.2mLの溶液を添加して室温で6時間撹拌した。静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄し、さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。   3. 5 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component (b)) with respect to bis (cyclopentadienyl) zirconium dichloride is added to the catalyst precursor slurry prepared above. 7 mg (8.4 μmol) was added to a solution of 7.2 mL of hexane and 1.2 mL of a hexane solution of triisobutylaluminum (0.714 M) and stirred at room temperature for 6 hours. Let stand and remove the supernatant, wash with hexane solution of triisobutylaluminum (0.03M), add hexane solution of triisobutylaluminum (0.15M) and finally add 100g / L catalyst slurry. Obtained.

[ポリエチレンの製造]
上記触媒スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、75gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst slurry was used. As a result, 75 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

比較例4
[ポリエチレンの製造]
比較例3[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、70gのポリマーが得られた。13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端は検出されなかった。また、長鎖分岐は検出されなかった。
Comparative Example 4
[Production of polyethylene]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst precursor slurry prepared in Comparative Example 3 [Preparation of polyethylene production catalyst] was used. As a result, 70 g of polymer was obtained. When the terminal structure of the polymer was analyzed by 13 C-NMR, no vinyl terminal was detected. Further, no long chain branching was detected.

比較例5
[ポリエチレン製造触媒の調製]
実施例1[成分(c)の調製]で調製した変性ヘクトライト4.0gをヘキサン10mLに懸濁させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)(成分(d))17mLを添加し、60℃で1時間攪拌することによって、成分(c)と成分(d)の接触生成物を得た。一方、ジメチルシランジイルテトラメチルシクロペンタジエニル−t−ブチルアミドチタニウムジクロリド58.9mg(160μmol)をヘキサン4mLに懸濁させたものにトリイソブチルアルミニウムのヘキサン溶液(0.714M)6mLを添加し、その溶液を成分(c)と成分(d)の接触生成物へ添加した。60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。
Comparative Example 5
[Preparation of polyethylene production catalyst]
4.0 g of the modified hectorite prepared in Example 1 [Preparation of component (c)] was suspended in 10 mL of hexane, and 17 mL of a hexane solution of triisobutylaluminum (0.714 M) (component (d)) was added. By stirring at 60 ° C. for 1 hour, a contact product of component (c) and component (d) was obtained. Meanwhile, 6 mL of a hexane solution of triisobutylaluminum (0.714 M) was added to a suspension of 58.9 mg (160 μmol) of dimethylsilanediyltetramethylcyclopentadienyl-t-butylamidotitanium dichloride in 4 mL of hexane, The solution was added to the contact product of component (c) and component (d). After stirring at 60 ° C. for 3 hours, the mixture was allowed to stand to remove the supernatant, and washed with a hexane solution (0.03M) of triisobutylaluminum. Further, a hexane solution (0.15 M) of triisobutylaluminum was added to finally obtain a catalyst slurry of 100 g / L.

[ポリエチレンの製造]
上記触媒スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、75gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst slurry was used. As a result, 75 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

実施例2
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドのかわりにジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリドを用いたこと以外は実施例1と同様の方法で調製した。
Example 2
[Preparation of polyethylene production catalyst]
As component (b), diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) is used instead of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride. ) Prepared in the same manner as in Example 1 except that zirconium dichloride was used.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例1と同様の方法で重合を行った。その結果174gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 1 except that the prepared catalyst was used. As a result, 174 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

比較例6
[ポリエチレン製造触媒の調製]
実施例1[成分(c)の調製]で調製した変性ヘクトライト4.0gをヘキサン10mLに懸濁させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)(成分(d))17mLを添加し、60℃で1時間攪拌することによって、成分(c)と成分(d)の接触生成物を得た。一方、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド(成分(b))107.0mg(160μmol)をヘキサン4mLに懸濁させたものにトリイソブチルアルミニウムのヘキサン溶液(0.714M)6mLを添加し、その溶液を成分(c)と成分(d)の接触生成物へ添加した。60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。
Comparative Example 6
[Preparation of polyethylene production catalyst]
4.0 g of the modified hectorite prepared in Example 1 [Preparation of component (c)] was suspended in 10 mL of hexane, and 17 mL of a hexane solution of triisobutylaluminum (0.714 M) (component (d)) was added. By stirring at 60 ° C. for 1 hour, a contact product of component (c) and component (d) was obtained. On the other hand, 107.0 mg (160 μmol) of diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride (component (b)) suspended in 4 mL of hexane 6 mL of a hexane solution of triisobutylaluminum (0.714 M) was added to the contact product of components (c) and (d). After stirring at 60 ° C. for 3 hours, the mixture was allowed to stand to remove the supernatant, and washed with a hexane solution (0.03M) of triisobutylaluminum. Further, a hexane solution (0.15 M) of triisobutylaluminum was added to finally obtain a catalyst slurry of 100 g / L.

[ポリエチレンの製造]
上記触媒スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、230gのポリマーが得られた。13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端は検出されなかった。また、長鎖分岐は検出されなかった。
[Production of polyethylene]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst slurry was used. As a result, 230 g of polymer was obtained. When the terminal structure of the polymer was analyzed by 13 C-NMR, no vinyl terminal was detected. Further, no long chain branching was detected.

実施例3
[ポリエチレン製造触媒の調製]
ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド(成分(a))55.8mg(160μmol)をヘキサン17.6mLに懸濁させ、トリイソブチルアルミニウム(成分(d))のヘキサン溶液(0.714M)22.4mLを添加し、成分(a)と成分(d)の接触生成物を得た。この接触生成物に上記変性ヘクトライト(成分(c))4.0gを添加し、60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒前駆体スラリー(100g/L)とした。
Example 3
[Preparation of polyethylene production catalyst]
55.8 mg (160 μmol) of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride (component (a)) was suspended in 17.6 mL of hexane, and a hexane solution of triisobutylaluminum (component (d)) (0.714 M) ) 22.4 mL was added to obtain a contact product of component (a) and component (d). 4.0 g of the modified hectorite (component (c)) was added to the contact product, and the mixture was stirred at 60 ° C. for 3 hours, and then allowed to stand to remove the supernatant, and a hexane solution of triisobutylaluminum (0.03 M ). Further, a hexane solution (0.15M) of triisobutylaluminum was added to obtain a catalyst precursor slurry (100 g / L).

上記で調製した触媒前駆体スラリーに、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して5mol%のジフェニルメチレン(1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド(成分(b))4.7mg(8.4μmol)をヘキサン7.2mL、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.2mLの溶液を添加して室温で6時間撹拌した。静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄し、さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。   To the catalyst precursor slurry prepared above, 5 mol% of diphenylmethylene (1-indenyl) (2,7-di-t-butyl-9-fluorenyl) based on dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride. A solution of 4.7 mg (8.4 μmol) of zirconium dichloride (component (b)) in 7.2 mL of hexane and 1.2 mL of a hexane solution of triisobutylaluminum (0.714 M) was added and stirred at room temperature for 6 hours. Let stand and remove the supernatant, wash with hexane solution of triisobutylaluminum (0.03M), add hexane solution of triisobutylaluminum (0.15M) and finally add 100g / L catalyst slurry. Obtained.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例1と同様の方法で重合を行った。その結果215gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 1 except that the prepared catalyst was used. As a result, 215 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

比較例7
[ポリエチレン製造触媒の調製]
ジフェニルメチレン(1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド(成分(b))115.0mg(160μmol)をヘキサン17.6mLに懸濁させ、トリイソブチルアルミニウム(成分(d))のヘキサン溶液(0.714M)22.4mLを添加し、成分(a)と成分(d)の接触生成物を得た。この接触生成物に実施例1[成分(c)の調製]で調製した変性ヘクトライト(成分(c))4.0gを添加し、60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。
Comparative Example 7
[Preparation of polyethylene production catalyst]
115.0 mg (160 μmol) of diphenylmethylene (1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride (component (b)) was suspended in 17.6 mL of hexane, and triisobutylaluminum ( 22.4 mL of a hexane solution (0.714M) of component (d)) was added to obtain a contact product of component (a) and component (d). To this contact product, 4.0 g of the modified hectorite (component (c)) prepared in Example 1 [Preparation of component (c)] was added, stirred at 60 ° C. for 3 hours, and then allowed to stand to obtain a supernatant. And washed with a hexane solution of triisobutylaluminum (0.03M). Further, a hexane solution (0.15 M) of triisobutylaluminum was added to finally obtain a catalyst slurry of 100 g / L.

[ポリエチレンの製造]
上記触媒スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、250gのポリマーが得られた。13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端は検出されなかった。また、長鎖分岐は検出されなかった。
[Production of polyethylene]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst slurry was used. As a result, 250 g of polymer was obtained. When the terminal structure of the polymer was analyzed by 13 C-NMR, no vinyl terminal was detected. Further, no long chain branching was detected.

実施例4
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドをジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して10mol%添加したこと以外は実施例1と同様の方法で調製した。
Example 4
[Preparation of polyethylene production catalyst]
Example 1 except that diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride was added as a component (b) in an amount of 10 mol% based on dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride. Prepared in a similar manner.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例1と同様の方法で重合を行った。その結果205gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 1 except that the prepared catalyst was used. As a result, 205 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

実施例5
[ポリエチレン製造触媒の調製]
成分(a)として、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドのかわりにエチレンビス(シクロペンタジエニル)ジルコニウムジクロリドを用いたこと以外は実施例1と同様の方法で調製した。
Example 5
[Preparation of polyethylene production catalyst]
It was prepared in the same manner as in Example 1 except that ethylene bis (cyclopentadienyl) zirconium dichloride was used as component (a) instead of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride.

[ポリエチレンの製造]
上記調製触媒のスラリー0.3mLを用いたこと以外は実施例1と同様の方法で重合を行った。その結果167gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 1 except that 0.3 mL of the prepared catalyst slurry was used. As a result, 167 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, long chain branching number, bulk density, MFR, and MS 160 of the obtained polyethylene.

比較例8
[マクロモノマーの製造]
触媒スラリーの代わりに実施例5[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.4mLを用いたこと以外は実施例5と同様の方法でエチレンを重合した。その結果、160gのポリマーが得られた。得られたポリマーのMn=18,000、Mw/Mn=2.50であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.45であった。また、メチル分岐が1,000炭素原子当たり0.52個、エチル分岐が1,000炭素原子当たり1.22個検出された。さらに、長鎖分岐は検出されなかった。
Comparative Example 8
[Manufacture of macromonomer]
Ethylene was polymerized in the same manner as in Example 5 except that 0.4 mL of the catalyst precursor slurry prepared in Example 5 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 160 g of polymer was obtained. The obtained polymer had Mn = 18,000 and Mw / Mn = 2.50. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 45. In addition, 0.52 methyl branches per 1,000 carbon atoms and 1.22 ethyl branches per 1,000 carbon atoms were detected. Furthermore, no long chain branching was detected.

実施例6
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドをエチレンビス(シクロペンタジエニル)ジルコニウムジクロリドに対して10mol%添加したこと以外は実施例1と同様の方法で調製した。
Example 6
[Preparation of polyethylene production catalyst]
As component (b), the same as in Example 1 except that 10 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride was added to ethylenebis (cyclopentadienyl) zirconium dichloride. Prepared by method.

[ポリエチレンの製造]
上記調製触媒のスラリー0.3mLを用いたこと以外は実施例1と同様の方法で重合を行った。その結果130gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 1 except that 0.3 mL of the prepared catalyst slurry was used. As a result, 130 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

実施例7
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドをエチレンビス(シクロペンタジエニル)ジルコニウムジクロリドに対して15mol%添加したこと以外は実施例1と同様の方法で調製した。
Example 7
[Preparation of polyethylene production catalyst]
As component (b), the same as Example 1 except that 15 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride was added to ethylenebis (cyclopentadienyl) zirconium dichloride. Prepared by method.

[ポリエチレンの製造]
上記調製触媒のスラリー0.3mLを用いたこと以外は実施例1と同様の方法で重合を行った。その結果125gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 1 except that 0.3 mL of the prepared catalyst slurry was used. As a result, 125 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

実施例8
[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、実施例1で調製した触媒スラリー0.4mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、オートクレーブの内温を90℃まで昇温し、エチレンを分圧が0.3MPaになるまで導入して重合を開始した。重合中、分圧が0.3MPaに保たれるようにエチレンを連続的に導入し、重合温度を90℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、173gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表1に示す。
Example 8
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane and 1.0 mL of a hexane solution of triisobutylaluminum (0.714 M) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. To this autoclave, 0.4 mL of the catalyst slurry prepared in Example 1 was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of polymerization, the internal pressure of the autoclave was released, and then the internal temperature of the autoclave was raised to 90 ° C., and ethylene was introduced until the partial pressure reached 0.3 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was maintained at 0.3 MPa, and the polymerization temperature was controlled at 90 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 173 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, long chain branching number, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例9
[ポリエチレンの製造]
実施例1で調製した触媒スラリーのかわりに、実施例4で調製した触媒スラリーを添加したこと以外は、実施例6同様の方法で重合を行った。その結果184gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MSを表1に示す。
Example 9
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 6 except that the catalyst slurry prepared in Example 4 was added instead of the catalyst slurry prepared in Example 1. As a result, 184 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS of the obtained polyethylene.

実施例10
[成分(c)の調製]
水60mLにエタノール60mLと37%濃塩酸2.0mLを加えた後、得られた溶液にN、N−ジメチル−ベヘニルアミン7.78g(0.022mol)を添加し、60℃に加熱することによって、N、N−ジメチル−ベヘニルアミン塩酸塩溶液を調製した。この溶液にヘクトライト20gを加えた。この懸濁液を60℃で、3時間撹拌し、上澄液を除去した後、60℃の水1Lで洗浄した。その後、60℃、10−3torrで24時間乾燥し、ジェットミルで粉砕することによって、平均粒径5.2μmの変性ヘクトライト(成分(c))を得た。
Example 10
[Preparation of component (c)]
After adding 60 mL of ethanol and 2.0 mL of 37% concentrated hydrochloric acid to 60 mL of water, 7.78 g (0.022 mol) of N, N-dimethyl-behenylamine was added to the resulting solution and heated to 60 ° C. N, N-dimethyl-behenylamine hydrochloride solution was prepared. To this solution was added 20 g of hectorite. The suspension was stirred at 60 ° C. for 3 hours, the supernatant was removed, and then washed with 1 L of 60 ° C. water. Then, the modified hectorite (component (c)) with an average particle diameter of 5.2 micrometers was obtained by drying at 60 degreeC and 10 < -3 > torr for 24 hours, and grind | pulverizing with a jet mill.

[ポリエチレン製造触媒の調製]
ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド(成分(a))75.6mg(160μmol)をヘキサン17.6mLに懸濁させ、トリイソブチルアルミニウム(成分(d))のヘキサン溶液(0.714M)22.4mLを添加し、成分(a)と成分(d)の接触生成物を得た。この接触生成物に上記変性ヘクトライト(成分(c))4.0gを添加し、60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒前駆体スラリー(100g/L)とした。
[Preparation of polyethylene production catalyst]
75.6 mg (160 μmol) of diphenylsilanediylbis (cyclopentadienyl) zirconium dichloride (component (a)) was suspended in 17.6 mL of hexane, and a hexane solution of triisobutylaluminum (component (d)) (0.714 M) ) 22.4 mL was added to obtain a contact product of component (a) and component (d). 4.0 g of the modified hectorite (component (c)) was added to the contact product, and the mixture was stirred at 60 ° C. for 3 hours, and then allowed to stand to remove the supernatant, and a hexane solution of triisobutylaluminum (0.03 M ). Further, a hexane solution (0.15M) of triisobutylaluminum was added to obtain a catalyst precursor slurry (100 g / L).

上記で調製した触媒前駆体スラリーに、ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して5mol%のジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))4.7mg(8.4μmol)をヘキサン7.2mL、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.2mLの溶液を添加して室温で6時間撹拌した。静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄し、さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。   To the catalyst precursor slurry prepared above, 5 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component (b)) with respect to diphenylsilanediylbis (cyclopentadienyl) zirconium dichloride. ) A solution of 4.7 mg (8.4 μmol) of hexane (7.2 mL) and triisobutylaluminum in hexane (0.714 M) (1.2 mL) was added and stirred at room temperature for 6 hours. Let stand and remove the supernatant, wash with hexane solution of triisobutylaluminum (0.03M), add hexane solution of triisobutylaluminum (0.15M) and finally add 100g / L catalyst slurry. Obtained.

[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、上記触媒スラリー0.4mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、128gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane and 1.0 mL of a hexane solution of triisobutylaluminum (0.714 M) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. To the autoclave, 0.4 mL of the catalyst slurry was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 128 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

比較例9
[マクロモノマーの製造]
触媒スラリーの代わりに実施例10[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.4mLを用いたこと以外は実施例10と同様の方法でエチレンを重合した。その結果、120gのポリマーが得られた。得られたポリマーのMn=12,000、Mw/Mn=2.50であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.53であった。また、メチル分岐が1,000炭素原子当たり0.52個、エチル分岐が1,000炭素原子当たり1.22個検出された。さらに、長鎖分岐は検出されなかった。
Comparative Example 9
[Manufacture of macromonomer]
Ethylene was polymerized in the same manner as in Example 10 except that 0.4 mL of the catalyst precursor slurry prepared in Example 10 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 120 g of polymer was obtained. The obtained polymer had Mn = 12,000 and Mw / Mn = 2.50. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 53. In addition, 0.52 methyl branches per 1,000 carbon atoms and 1.22 ethyl branches per 1,000 carbon atoms were detected. Furthermore, no long chain branching was detected.

実施例11
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドのかわりにジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドを用いたこと以外は実施例10と同様の方法で調製した。
Example 11
[Preparation of polyethylene production catalyst]
As component (b), diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride was used in place of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride. Except for this, it was prepared in the same manner as in Example 10.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例10と同様の方法で重合を行った。その結果90gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 10 except that the prepared catalyst was used. As a result, 90 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the obtained polyethylene.

実施例12
[ポリエチレン製造触媒の調製]
成分(a)として、ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドのかわりにジビニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドを用いたこと以外は実施例10と同様の方法で調製した。
Example 12
[Preparation of polyethylene production catalyst]
It was prepared in the same manner as in Example 10 except that divinylsilanediylbis (cyclopentadienyl) zirconium dichloride was used as component (a) instead of diphenylsilanediylbis (cyclopentadienyl) zirconium dichloride.

[ポリエチレンの製造]
上記調製触媒のスラリー0.2mLを用いたこと以外は実施例10と同様の方法で重合を行った。その結果216gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表1に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 10, except that 0.2 mL of the prepared catalyst slurry was used. As a result, 216 g of polymer was obtained. Table 1 shows the density, Mw, Mw / Mn, long chain branching number, bulk density, MFR, and MS 160 of the obtained polyethylene.

比較例10
[マクロモノマーの製造]
触媒スラリーの代わりに実施例12[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.4mLを用いたこと以外は実施例12と同様の方法でエチレンを重合した。その結果、205gのポリマーが得られた。得られたポリマーのMn=19,000、Mw/Mn=2.60であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.30であった。また、メチル分岐が1,000炭素原子当たり0.52個、エチル分岐が1,000炭素原子当たり1.22個検出された。さらに、長鎖分岐は検出されなかった。
Comparative Example 10
[Manufacture of macromonomer]
Ethylene was polymerized in the same manner as in Example 12 except that 0.4 mL of the catalyst precursor slurry prepared in Example 12 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 205 g of polymer was obtained. The obtained polymer had Mn = 19000 and Mw / Mn = 2.60. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 30. In addition, 0.52 methyl branches per 1,000 carbon atoms and 1.22 ethyl branches per 1,000 carbon atoms were detected. Furthermore, no long chain branching was detected.

Figure 0005158304
実施例13
[ポリエチレン製造触媒の調製]
成分(a)として、ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドのかわりにエチレンビス(シクロペンタジエニル)ジルコニウムジクロリドを用いたこと以外は実施例10と同様の方法で調製した。
Figure 0005158304
Example 13
[Preparation of polyethylene production catalyst]
It was prepared in the same manner as in Example 10 except that ethylenebis (cyclopentadienyl) zirconium dichloride was used as component (a) instead of diphenylsilanediylbis (cyclopentadienyl) zirconium dichloride.

[ポリエチレンの製造]
上記調製触媒のスラリー0.2mLを用いたこと以外は実施例10と同様の方法で重合を行った。その結果136gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 10, except that 0.2 mL of the prepared catalyst slurry was used. As a result, 136 g of a polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

比較例11
[マクロモノマーの製造]
触媒スラリーの代わりに実施例13[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.4mLを用いたこと以外は実施例13と同様の方法でエチレンを重合した。その結果、120gのポリマーが得られた。得られたポリマーのMn=18,000、Mw/Mn=2.50であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.45であった。また、メチル分岐が1,000炭素原子当たり0.52個、エチル分岐が1,000炭素原子当たり1.22個検出された。さらに、長鎖分岐は検出されなかった。
Comparative Example 11
[Manufacture of macromonomer]
Ethylene was polymerized in the same manner as in Example 13 except that 0.4 mL of the catalyst precursor slurry prepared in Example 13 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 120 g of polymer was obtained. The obtained polymer had Mn = 18,000 and Mw / Mn = 2.50. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 45. In addition, 0.52 methyl branches per 1,000 carbon atoms and 1.22 ethyl branches per 1,000 carbon atoms were detected. Furthermore, no long chain branching was detected.

実施例14
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドをジビニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して10mol%添加したこと以外は実施例12と同様の方法で調製した。
Example 14
[Preparation of polyethylene production catalyst]
Example 12 with the exception that 10 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride was added as a component (b) to divinylsilanediylbis (cyclopentadienyl) zirconium dichloride. Prepared in a similar manner.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例12と同様の方法で重合を行った。その結果175gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 12 except that the prepared catalyst was used. As a result, 175 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例15
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドをエチレンビス(シクロペンタジエニル)ジルコニウムジクロリドに対して2mol%添加したこと以外は実施例13と同様の方法で調製した。
Example 15
[Preparation of polyethylene production catalyst]
The same as Example 13 except that 2 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride is added as a component (b) to ethylenebis (cyclopentadienyl) zirconium dichloride. Prepared by method.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例13と同様の方法で重合を行った。その結果144gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 13 except that the prepared catalyst was used. As a result, 144 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例16
[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、実施例14で調製した触媒スラリー0.1mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、オートクレーブの内温を90℃まで昇温し、エチレンを分圧が0.3MPaになるまで導入して重合を開始した。重合中、分圧が0.3MPaに保たれるようにエチレンを連続的に導入し、重合温度を90℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、98gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
Example 16
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane and 1.0 mL of a hexane solution of triisobutylaluminum (0.714 M) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. To this autoclave, 0.1 mL of the catalyst slurry prepared in Example 14 was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of polymerization, the internal pressure of the autoclave was released, and then the internal temperature of the autoclave was raised to 90 ° C., and ethylene was introduced until the partial pressure reached 0.3 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was maintained at 0.3 MPa, and the polymerization temperature was controlled at 90 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 98 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例17
[ポリエチレンの製造]
実施例14で調製した触媒スラリーのかわりに、実施例15で調製した触媒スラリー0.2mLを添加した以外は、実施例16と同様の方法で重合を行った。その結果157gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
Example 17
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 16 except that 0.2 mL of the catalyst slurry prepared in Example 15 was added instead of the catalyst slurry prepared in Example 14. As a result, 157 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例18
[成分(c)の調製]
水60mLにエタノール60mLと37%濃塩酸2.0mLを加えた後、得られた溶液にN、N−ジメチル−オクタデシルアミン6.55g(0.022mol)を添加し、60℃に加熱することによって、N、N−ジメチルオクタデシルアミン塩酸塩溶液を調製した。この溶液にモンモリロナイト20gを加えた。この懸濁液を60℃で、3時間撹拌し、上澄液を除去した後、60℃の水1Lで洗浄した。その後、60、10−3torrで24時間乾燥し、ジェットミルで粉砕することによって、平均粒径5.2μmの変性モンモリロナイト(成分(c))を得た。
Example 18
[Preparation of component (c)]
After adding 60 mL of ethanol and 2.0 mL of 37% concentrated hydrochloric acid to 60 mL of water, 6.55 g (0.022 mol) of N, N-dimethyl-octadecylamine was added to the resulting solution and heated to 60 ° C. N, N-dimethyloctadecylamine hydrochloride solution was prepared. To this solution, 20 g of montmorillonite was added. The suspension was stirred at 60 ° C. for 3 hours, the supernatant was removed, and then washed with 1 L of 60 ° C. water. Then, the modified montmorillonite (component (c)) with an average particle diameter of 5.2 micrometers was obtained by drying at 60,10 < -3 > torr for 24 hours, and grind | pulverizing with a jet mill.

[ポリエチレン製造触媒の調製]
ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド(成分(a))55.8mg(160μmol)をヘキサン17.6mLに懸濁させ、トリイソブチルアルミニウム(成分(d))のヘキサン溶液(0.714M)22.4mLを添加し、成分(a)と成分(d)の接触生成物を得た。この接触生成物に上記変性モンモリロナイト(成分(c))4.0gを添加し、60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒前駆体スラリー(100g/L)とした。
[Preparation of polyethylene production catalyst]
55.8 mg (160 μmol) of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride (component (a)) was suspended in 17.6 mL of hexane, and a hexane solution of triisobutylaluminum (component (d)) (0.714 M) ) 22.4 mL was added to obtain a contact product of component (a) and component (d). 4.0 g of the above modified montmorillonite (component (c)) was added to the contact product, and the mixture was stirred at 60 ° C. for 3 hours. Washed with. Further, a hexane solution (0.15M) of triisobutylaluminum was added to obtain a catalyst precursor slurry (100 g / L).

上記で調製した触媒前駆体スラリーに、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して5mol%のジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))4.7mg(8.4μmol)をヘキサン7.2mL、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.2mLの溶液を添加して室温で6時間撹拌した。静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄し、さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。   To the catalyst precursor slurry prepared above, 5 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component (b)) with respect to dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride. ) A solution of 4.7 mg (8.4 μmol) of hexane (7.2 mL) and triisobutylaluminum in hexane (0.714 M) (1.2 mL) was added and stirred at room temperature for 6 hours. Let stand and remove the supernatant, wash with hexane solution of triisobutylaluminum (0.03M), add hexane solution of triisobutylaluminum (0.15M) and finally add 100g / L catalyst slurry. Obtained.

[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、上記触媒スラリー0.4mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、125gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane and 1.0 mL of a hexane solution of triisobutylaluminum (0.714 M) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. To the autoclave, 0.4 mL of the catalyst slurry was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 125 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

比較例12
[マクロモノマーの製造]
触媒スラリーの代わりに実施例18[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.4mLを用いたこと以外は実施例18と同様の方法でエチレンを重合した。その結果、120gのポリマーが得られた。得られたポリマーのMn=13,000、Mw/Mn=2.40であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.65であった。また、メチル分岐が1,000炭素原子当たり0.52個、エチル分岐が1,000炭素原子当たり1.22個検出された。さらに、長鎖分岐は検出されなかった。
Comparative Example 12
[Manufacture of macromonomer]
Ethylene was polymerized in the same manner as in Example 18 except that 0.4 mL of the catalyst precursor slurry prepared in Example 18 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 120 g of polymer was obtained. The obtained polymer had Mn = 13,000 and Mw / Mn = 2.40. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 65. In addition, 0.52 methyl branches per 1,000 carbon atoms and 1.22 ethyl branches per 1,000 carbon atoms were detected. Furthermore, no long chain branching was detected.

実施例19
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドのかわりにジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリドを用いたこと以外は実施例18と同様の方法で調製した。
Example 19
[Preparation of polyethylene production catalyst]
As component (b), diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) is used instead of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride. ) Prepared in the same manner as in Example 18 except that zirconium dichloride was used.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例18と同様の方法で重合を行った。その結果136gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 18 except that the above prepared catalyst was used. As a result, 136 g of a polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例20
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドのかわりにジフェニルメチレン(1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリドを用いたこと以外は実施例18と同様の方法で調製した。
Example 20
[Preparation of polyethylene production catalyst]
As component (b), diphenylmethylene (1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride instead of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride It was prepared in the same manner as in Example 18 except that was used.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例18と同様の方法で重合を行った。その結果152gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 18 except that the above prepared catalyst was used. As a result, 152 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

実施例21
[ポリエチレン製造触媒の調製]
成分(b)として、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドをジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して10mol%添加したこと以外は実施例18と同様の方法で調製した。
Example 21
[Preparation of polyethylene production catalyst]
Example 18 except that diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride was added as a component (b) in an amount of 10 mol% based on dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride. Prepared in a similar manner.

[ポリエチレンの製造]
上記調製触媒を用いたこと以外は実施例18と同様の方法で重合を行った。その結果138gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 18 except that the above prepared catalyst was used. As a result, 138 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例22
[成分(o)と成分(j)の接触生成物の調製]
3Lのフラスコに、シリカ(ダビソン948、200℃、5時間減圧焼成)53g、トルエン1Lおよび(p−N,N−ジメチルアミノフェニル)トリメトキシシラン20g(91mmol)を加え、110℃で16時間攪拌した。反応終了後、トルエンで4回洗浄した。得られたシラン化合物で修飾したシリカ(成分(o))中の炭素含量は4.2wt%であった。このシラン化合物で修飾したシリカ18.7gをエーテル500mLに懸濁させ、塩化水素ガスを室温で30分間吹き込んだ後、ヘキサンにて洗浄し、減圧乾燥させた。これをさらに塩化メチレン600mLに懸濁させた後、リチウムテトラキス(ペンタフルオロフェニル)ボレート(成分(j))6.0g(8.7mmol)の塩化メチレン溶液(400mL)を加え、室温で3時間攪拌した。塩化メチレンで3回洗浄した後、真空乾燥し、固体触媒を得た。得られた固体触媒成分中の炭素含量は10.8wt%であった。
Example 22
[Preparation of Contact Product of Component (o) and Component (j)]
To a 3 L flask, 53 g of silica (Davison 948, baked under reduced pressure at 200 ° C. for 5 hours), 1 L of toluene and 20 g (91 mmol) of (pN, N-dimethylaminophenyl) trimethoxysilane were added and stirred at 110 ° C. for 16 hours. did. After completion of the reaction, it was washed 4 times with toluene. The carbon content in the silica (component (o)) modified with the obtained silane compound was 4.2 wt%. Silica modified with 18.7 g of this silane compound was suspended in 500 mL of ether, hydrogen chloride gas was blown in at room temperature for 30 minutes, washed with hexane, and dried under reduced pressure. This was further suspended in 600 mL of methylene chloride, and then a solution of lithium tetrakis (pentafluorophenyl) borate (component (j)) 6.0 g (8.7 mmol) in methylene chloride (400 mL) was added and stirred at room temperature for 3 hours. did. After washing with methylene chloride three times, it was vacuum dried to obtain a solid catalyst. The carbon content in the obtained solid catalyst component was 10.8 wt%.

[ポリエチレン製造触媒の調製]
上記で調製した成分(o)と成分(j)の接触生成物1.0gを100mLのヘキサンに分散させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.4mL、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド(成分(a))17.4mg(50μmol)、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して5mol%のジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))1.5mg(2.6μmol)を加え、室温で1時間攪拌し、触媒スラリーを調製した。
[Preparation of polyethylene production catalyst]
1.0 g of the contact product of component (o) and component (j) prepared above was dispersed in 100 mL of hexane, 1.4 mL of a hexane solution of triisobutylaluminum (0.714M), dimethylsilanediylbis (cyclopenta). Dienyl) zirconium dichloride (component (a)) 17.4 mg (50 μmol), 5 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) with respect to dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride ) Zirconium dichloride (component (b)) 1.5 mg (2.6 μmol) was added and stirred at room temperature for 1 hour to prepare a catalyst slurry.

[ポリエチレンの製造]
2Lのオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに上記触媒スラリーを固体成分で100mgを添加して、エチレンを分圧が1.2MPaになるまで導入した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入し、重合温度を85℃に制御した。重合開始90分間後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、107gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane and 1.0 mL of a hexane solution of triisobutylaluminum (0.714 M) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. 100 mg of the catalyst slurry as a solid component was added to the autoclave, and ethylene was introduced until the partial pressure reached 1.2 MPa. During the polymerization, ethylene was continuously introduced so that the partial pressure was maintained at 1.2 MPa, and the polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 107 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例23
[成分(o)と成分(g)の接触生成物の調製]
500mLのフラスコに、シリカ(ダビソン948、200℃、5時間減圧焼成)(成分(o))10.5g、トルエン200mLを加え懸濁状にした。そこへ、メチルアルミノキサン(成分(g))のトルエン溶液(2.39M)66mLを加え、室温で1時間攪拌した。
Example 23
[Preparation of contact product of component (o) and component (g)]
To a 500 mL flask, 10.5 g of silica (Davison 948, baked under reduced pressure at 200 ° C. for 5 hours) (component (o)) and 200 mL of toluene were added to form a suspension. Thereto was added 66 mL of a toluene solution (2.39 M) of methylaluminoxane (component (g)), and the mixture was stirred at room temperature for 1 hour.

[ポリエチレン製造触媒の調製]
上記成分(o)と成分(g)の接触生成物スラリーへジメチルシランジイルビス(シクロペンタジエニル)ジクロリド(成分(a))174mg(500μmol)、ジメチルシランジイルビス(シクロペンタジエニル)ジクロリドに対して5mol%のジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))15.0mg(26μmol)を加え、室温で1時間攪拌し、触媒スラリーを調製した。
[Preparation of polyethylene production catalyst]
To the contact product slurry of the above component (o) and component (g), 174 mg (500 μmol) of dimethylsilanediylbis (cyclopentadienyl) dichloride (component (a)), dimethylsilanediylbis (cyclopentadienyl) dichloride On the other hand, 5 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component (b)) 15.0 mg (26 μmol) was added and stirred at room temperature for 1 hour to prepare a catalyst slurry.

[ポリエチレンの製造]
2Lのオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに上記触媒スラリーを固体成分で100mgを添加して、エチレンを分圧が1.2MPaになるまで導入した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入し、重合温度を85℃に制御した。重合開始90分間後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、84gのポリマーを得た。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane and 1.0 mL of a hexane solution of triisobutylaluminum (0.714 M) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. 100 mg of the catalyst slurry as a solid component was added to the autoclave, and ethylene was introduced until the partial pressure reached 1.2 MPa. During the polymerization, ethylene was continuously introduced so that the partial pressure was maintained at 1.2 MPa, and the polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 84 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例24
[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLおよび1−ブテン4.0mL(2.4g)を導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、実施例1で調製した触媒スラリー0.2mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、47gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
Example 24
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane, 1.0 mL of hexane solution of triisobutylaluminum (0.714M) and 4.0 mL of 1-butene (2.4 g) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. . To this autoclave, 0.2 mL of the catalyst slurry prepared in Example 1 was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 47 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

比較例13
[マクロモノマーの製造]
触媒スラリーの代わりに実施例1[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.2mLを用いたこと以外は実施例24と同様の方法でエチレンとブテン−1を共重合した。その結果、45gのポリマーが得られた。得られたポリマーのMn=10,900、Mw/Mn=2.49であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.75であった。また、長鎖分岐は検出されなかった。
Comparative Example 13
[Manufacture of macromonomer]
Ethylene and butene-1 were copolymerized in the same manner as in Example 24 except that 0.2 mL of the catalyst precursor slurry prepared in Example 1 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 45 g of polymer was obtained. The obtained polymer had Mn = 10,900 and Mw / Mn = 2.49. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 75. Further, no long chain branching was detected.

実施例25
[ポリエチレンの製造]
1−ブテン8.0mL(4.8g)を添加したこと以外は、実施例24と同様の方法で重合を行った。その結果52gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
Example 25
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 24 except that 8.0 mL (4.8 g) of 1-butene was added. As a result, 52 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

比較例14
[マクロモノマーの製造]
触媒スラリーの代わりに実施例1[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.2mLを用いたこと以外は実施例25と同様の方法でエチレンとブテン−1を共重合した。その結果、48gのポリマーが得られた。得られたポリマーのMn=10,800、Mw/Mn=2.49であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.77であった。また、長鎖分岐は検出されなかった。
Comparative Example 14
[Manufacture of macromonomer]
Ethylene and butene-1 were copolymerized in the same manner as in Example 25 except that 0.2 mL of the catalyst precursor slurry prepared in Example 1 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 48 g of polymer was obtained. The obtained polymer had Mn = 10,800 and Mw / Mn = 2.49. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 77. Further, no long chain branching was detected.

実施例26
[ポリエチレンの製造]
実施例1で調製した触媒スラリーのかわりに実施例4で調製した触媒スラリーを用いたこと以外は、実施例24と同様の方法で重合を行った。その結果68gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
Example 26
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 24 except that the catalyst slurry prepared in Example 4 was used instead of the catalyst slurry prepared in Example 1. As a result, 68 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例27
[ポリエチレンの製造]
実施例1で調製した触媒スラリーのかわりに実施例4で調製した触媒スラリーを用いたこと以外は、実施例25と同様の方法で重合を行った。その結果67gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
Example 27
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 25 except that the catalyst slurry prepared in Example 4 was used instead of the catalyst slurry prepared in Example 1. As a result, 67 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

実施例28
[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLおよび1−ブテン36.0mL(21.6g)を導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、実施例5で調製した触媒スラリー0.2mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、71gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
Example 28
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane, 1.0 mL of hexane solution of triisobutylaluminum (0.714M) and 36.0 mL of 1-butene (21.6 g) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. . To this autoclave, 0.2 mL of the catalyst slurry prepared in Example 5 was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 71 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

比較例15
[マクロモノマーの製造]
触媒スラリーの代わりに実施例5[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.2mLを用いたこと以外は実施例28と同様の方法でエチレンとブテン−1を共重合した。その結果、65gのポリマーが得られた。得られたポリマーのMn=15,000、Mw/Mn=2.41であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.80であった。また、長鎖分岐は検出されなかった。
Comparative Example 15
[Manufacture of macromonomer]
Ethylene and butene-1 were copolymerized in the same manner as in Example 28 except that 0.2 mL of the catalyst precursor slurry prepared in Example 5 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 65 g of polymer was obtained. The obtained polymer had Mn = 15,000 and Mw / Mn = 2.41. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0.3. 80. Further, no long chain branching was detected.

実施例29
[ポリエチレンの製造]
2Lオートクレーブに、ヘキサン1,200mLとトリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLおよび1−ブテン24.7mL(14.8g)を導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、実施例7で調製した触媒スラリー0.2mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、61gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
Example 29
[Production of polyethylene]
Into a 2 L autoclave, 1,200 mL of hexane, 1.0 mL of hexane solution of triisobutylaluminum (0.714 M) and 14.7 mL of 1-butene (14.8 g) were introduced, and the internal temperature of the autoclave was raised to 85 ° C. . To this autoclave, 0.2 mL of the catalyst slurry prepared in Example 7 was added, and ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 85 ° C. After 90 minutes from the start of the polymerization, the internal pressure of the autoclave was released, and the contents were suction filtered. After drying, 61 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

比較例16
[マクロモノマーの製造]
触媒スラリーの代わりに実施例7[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.2mLを用いたこと以外は実施例29と同様の方法でエチレンとブテン−1を共重合した。その結果、55gのポリマーが得られた。得られたポリマーのMn=16,000、Mw/Mn=2.45であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.79であった。また、長鎖分岐は検出されなかった。
Comparative Example 16
[Manufacture of macromonomer]
Ethylene and butene-1 were copolymerized in the same manner as in Example 29 except that 0.2 mL of the catalyst precursor slurry prepared in Example 7 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 55 g of polymer was obtained. The obtained polymer had Mn = 16,000 and Mw / Mn = 2.45. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 79. Further, no long chain branching was detected.

実施例30
[ポリエチレンの製造]
1−ブテン18.7mL(11.2g)を添加したこと以外は、実施例29[ポリエチレンの製造]と同様の方法で重合を行った。その結果56gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
Example 30
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 29 [Production of polyethylene] except that 18.7 mL (11.2 g) of 1-butene was added. As a result, 56 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

比較例17
[マクロモノマーの製造]
触媒スラリーの代わりに実施例7[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.2mLを用いたこと以外は実施例30と同様の方法でエチレンとブテン−1を共重合した。その結果、47gのポリマーが得られた。得られたポリマーのMn=16,500、Mw/Mn=2.45であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.78であった。また、長鎖分岐は検出されなかった。
Comparative Example 17
[Manufacture of macromonomer]
Ethylene and butene-1 were copolymerized in the same manner as in Example 30, except that 0.2 mL of the catalyst precursor slurry prepared in Example 7 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 47 g of polymer was obtained. The obtained polymer had Mn = 16,500 and Mw / Mn = 2.45. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 78. Further, no long chain branching was detected.

実施例31
[ポリエチレンの製造]
1−ブテン12.7mL(7.6g)を添加したこと以外は、実施例29[と同様の方法で重合を行った。その結果50gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFR、MS160を表2に示す。
Example 31
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 29 [1 except that 12.7 mL (7.6 g) of 1-butene was added. As a result, 50 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, MFR, and MS 160 of the obtained polyethylene.

比較例18
[マクロモノマーの製造]
触媒スラリーの代わりに実施例7[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.2mLを用いたこと以外は実施例31と同様の方法でエチレンとブテン−1を共重合した。その結果、40gのポリマーが得られた。得られたポリマーのMn=17,000、Mw/Mn=2.45であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.78であった。また、長鎖分岐は検出されなかった。
Comparative Example 18
[Manufacture of macromonomer]
Ethylene and butene-1 were copolymerized in the same manner as in Example 31 except that 0.2 mL of the catalyst precursor slurry prepared in Example 7 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 40 g of polymer was obtained. The obtained polymer had Mn = 17,000 and Mw / Mn = 2.45. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 78. Further, no long chain branching was detected.

実施例32
[ポリエチレンの製造]
1−ブテン8.6mL(5.2g)を添加したこと以外は、実施例29と同様の方法で重合を行った。その結果122gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
Example 32
[Production of polyethylene]
Polymerization was carried out in the same manner as in Example 29 except that 8.6 mL (5.2 g) of 1-butene was added. As a result, 122 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

比較例19
[マクロモノマーの製造]
触媒スラリーの代わりに実施例7[ポリエチレン製造触媒の調製]で調製した触媒前駆体スラリー0.2mLを用いたこと以外は実施例32と同様の方法でエチレンとブテン−1を共重合した。その結果、100gのポリマーが得られた。得られたポリマーのMn=18,000、Mw/Mn=2.45であり、13C−NMRによりポリマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)は0.77であった。また、長鎖分岐は検出されなかった。
Comparative Example 19
[Manufacture of macromonomer]
Ethylene and butene-1 were copolymerized in the same manner as in Example 32 except that 0.2 mL of the catalyst precursor slurry prepared in Example 7 [Preparation of polyethylene production catalyst] was used instead of the catalyst slurry. As a result, 100 g of a polymer was obtained. The obtained polymer had Mn = 18,000 and Mw / Mn = 2.45. When the terminal structure of the polymer was analyzed by 13 C-NMR, the ratio (Z) of the number of vinyl terminals to the number of saturated terminals was 0. 77. Further, no long chain branching was detected.

実施例33
[ポリエチレン製造触媒の調製]
ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド(成分(a))55.8mg(160μmol)をヘキサン26.7mLに懸濁させ、トリエチルアルミニウム(成分(d))のヘキサン溶液(1.20M)13.3mLを添加し、成分(a)と成分(d)の接触生成物を得た。この接触生成物に実施例1[成分(c)の調製]で調製した変性ヘクトライト(成分(c))4.0gを添加し、60℃で3時間攪拌した後、静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄した。さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒前駆体スラリー(100g/L)とした。
Example 33
[Preparation of polyethylene production catalyst]
55.8 mg (160 μmol) of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride (component (a)) was suspended in 26.7 mL of hexane, and a hexane solution of triethylaluminum (component (d)) (1.20 M) 13.3 mL was added to obtain a contact product of component (a) and component (d). To this contact product, 4.0 g of the modified hectorite (component (c)) prepared in Example 1 [Preparation of component (c)] was added, stirred at 60 ° C. for 3 hours, and then allowed to stand to obtain a supernatant. And washed with a hexane solution of triisobutylaluminum (0.03M). Further, a hexane solution (0.15M) of triisobutylaluminum was added to obtain a catalyst precursor slurry (100 g / L).

上記で調製した触媒前駆体スラリーに、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリドに対して5mol%のジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド(成分(b))4.7mg(8.4μmol)をヘキサン7.2mL、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.2mLの溶液を添加して室温で6時間撹拌した。静置して上澄み液を除去、トリイソブチルアルミニウムのヘキサン溶液(0.03M)で洗浄し、さらにトリイソブチルアルミニウムのヘキサン溶液(0.15M)を添加して最終的に100g/Lの触媒スラリーを得た。   To the catalyst precursor slurry prepared above, 5 mol% of diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component (b)) with respect to dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride. ) A solution of 4.7 mg (8.4 μmol) of hexane (7.2 mL) and triisobutylaluminum in hexane (0.714 M) (1.2 mL) was added and stirred at room temperature for 6 hours. Let stand and remove the supernatant, wash with hexane solution of triisobutylaluminum (0.03M), add hexane solution of triisobutylaluminum (0.15M) and finally add 100g / L catalyst slurry. Obtained.

[ポリエチレンの製造]
上記触媒スラリー0.4mLを用いたこと以外は実施例1と同様の方法でエチレンを重合した。その結果、165gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
[Production of polyethylene]
Ethylene was polymerized in the same manner as in Example 1 except that 0.4 mL of the catalyst slurry was used. As a result, 165 g of polymer was obtained. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

実施例34
[ポリエチレンの製造]
2Lオートクレーブに、200℃、10−3torrで20時間乾燥した食塩200gを触媒の分散剤として入れ、内温を75℃に調製した。次いで、トリイソブチルアルミニウムのヘキサン溶液(0.714M)1.0mLおよび実施例33[ポリエチレン製造触媒の調製]で調製した触媒スラリー0.4mLをオートクレーブへ挿入した。直ちにエチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を80℃に制御した。重合開始90分後にオートクレーブの内圧を脱圧した後、内容物を純水で洗浄し、食塩を溶解した後に乾燥し、61gのポリマーが得られた。得られたポリエチレンの密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。
Example 34
[Production of polyethylene]
In a 2 L autoclave, 200 g of sodium chloride dried at 200 ° C. and 10 −3 torr for 20 hours was added as a catalyst dispersant, and the internal temperature was adjusted to 75 ° C. Then, 1.0 mL of a hexane solution (0.714M) of triisobutylaluminum and 0.4 mL of the catalyst slurry prepared in Example 33 [Preparation of polyethylene production catalyst] were inserted into an autoclave. Immediately, ethylene was introduced until the partial pressure reached 1.2 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was kept at 1.2 MPa. The polymerization temperature was controlled at 80 ° C. After 90 minutes from the start of polymerization, the internal pressure of the autoclave was released, and the contents were washed with pure water, dissolved in salt and dried to obtain 61 g of polymer. Table 2 shows the density, Mw, Mw / Mn, number of long-chain branches, bulk density, and MFR of the obtained polyethylene.

比較例20
[ポリエチレンの評価]
東ソー(株)が市販しているチーグラー触媒による2段重合で得られたHDPE(ニポロンハード8300)の密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。本ポリマーは、式(28)の要件から外れている。
Comparative Example 20
[Evaluation of polyethylene]
Table 2 shows the density, Mw, Mw / Mn, long-chain branching number, bulk density, and MFR of HDPE (Nipolon Hard 8300) obtained by two-stage polymerization using a Ziegler catalyst commercially available from Tosoh Corporation. This polymer deviates from the requirement of formula (28).

比較例21
[ポリエチレンの評価]
BASF社が市販しているCr触媒系HDPE(5003)の密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。本ポリマーは、式(28)の要件から外れている。
Comparative Example 21
[Evaluation of polyethylene]
Table 2 shows the density, Mw, Mw / Mn, long chain branching number, bulk density, and MFR of Cr catalyst HDPE (5003) commercially available from BASF. This polymer deviates from the requirement of formula (28).

比較例22
[ポリエチレンの評価]
ダウ・ケミカル社が市販しているメタロセン触媒系エチレン・1−オクテン共重合体(EG8100)の密度、Mw、Mw/Mn、長鎖分岐数、嵩密度、MFRを表2に示す。本ポリマーは、式(28)の要件から外れている。
Comparative Example 22
[Evaluation of polyethylene]
Table 2 shows the density, Mw, Mw / Mn, number of long chain branches, bulk density, and MFR of the metallocene catalyst ethylene / 1-octene copolymer (EG8100) commercially available from Dow Chemical Company. This polymer deviates from the requirement of formula (28).

Figure 0005158304
Figure 0005158304

Claims (4)

(A)密度が0.890g/cm以上0.980g/cm以下であり、
(B)重量平均分子量(Mw)が30,000以上10,000,000以下であり、
(C)Mwと数平均分子量(Mn)の比(Mw/Mn)が2以上20以下であり、
(D)長鎖分岐数が1,000個の炭素原子当たり0.01個以上3個以下
であるポリエチレンの製造方法であって、該製造方法は下記一般式(1)
Figure 0005158304
[ここで、M はジルコニウム原子であり、X は各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基であり、R およびR は下記一般式(2)
Figure 0005158304
(ここでR は各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。
で示される配位子であり、R およびR はM とともにサンドイッチ構造を形成し、R は下記一般式(5)
Figure 0005158304
(ここでR は各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基であり、Y は炭素原子またはケイ素原子である。)
で示され、R およびR を架橋するように作用しており、lは1から5の整数である。]
で表される遷移金属化合物(成分(a))、下記一般式(6)
Figure 0005158304
[ここで、M はジルコニウム原子であり、X は各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基であり、R は下記一般式(7)または(8)
Figure 0005158304
(ここでR 10 は各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。)
で示され、R は下記一般式(10)
Figure 0005158304
(ここでR 11 は各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。)
で示される配位子であり、R およびR はM とともにサンドイッチ構造を形成し、R は下記一般式(11)
Figure 0005158304
(ここでR 12 は各々独立して水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素原子含有炭化水素基、炭素数1〜20の窒素原子含有炭化水素基または炭素数1〜20の酸素原子含有炭化水素基である。)
で示され、R およびR を架橋するように作用しており、mは1から5の整数である。]
で表される遷移金属化合物(成分(b))、下記一般式(13)
[R 14 15 y−1 H] [A] (13)
(式中、[R 14 15 y−1 H]はカチオンであり、M は周期表の第15族または第16族から選ばれる元素であり、R 14 は炭素数1〜30の炭化水素基であり、R 15 は各々独立して水素原子または炭素数1〜30の炭化水素基であり、yはM が第15族元素の時y=3であり、M が第16族元素の時y=2であり、[A]はアニオンであり、aおよびbは電荷が釣り合うように選ばれた整数である。)
で表される有機化合物で処理された変性粘土鉱物(成分(c))、および下記一般式(12)
AlR 13 (12)
(式中、R 13 は炭素数1〜20の炭化水素基である。)
で表される有機アルミニウム化合物(成分(d))からなる触媒を用いて、エチレン、またはエチレンおよび1−ブテンを重合することを特徴とする前記ポリエチレンの製造方法。
(A) a density is at 0.890 g / cm 3 or more 0.980 g / cm 3 or less,
(B) The weight average molecular weight (Mw) is 30,000 to 10,000,000,
(C) The ratio (Mw / Mn) of Mw to number average molecular weight (Mn) is 2 or more and 20 or less,
(D) A method for producing polyethylene having a long chain branching number of from 0.01 to 3 per 1,000 carbon atoms, the production method comprising the following general formula (1)
Figure 0005158304
[Wherein M 1 is a zirconium atom, and X 1 is independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, a carbon number 1 to 20 nitrogen atom-containing hydrocarbon group or oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms, and R 1 and R 2 are represented by the following general formula (2):
Figure 0005158304
(Wherein R 4 is independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom-containing hydrocarbon having 1 to 20 carbon atoms) Group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms. )
Wherein R 1 and R 2 form a sandwich structure with M 1 , and R 3 is represented by the following general formula (5)
Figure 0005158304
(Wherein R 5 is independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom-containing hydrocarbon having 1 to 20 carbon atoms. Group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms , and Y 1 is a carbon atom or a silicon atom.)
And acts to crosslink R 1 and R 2 , where l is an integer from 1 to 5. ]
A transition metal compound (component (a)) represented by the following general formula (6)
Figure 0005158304
[Wherein M 2 is a zirconium atom, and each X 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a carbon number. 1 to 20 nitrogen atom-containing hydrocarbon group or oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms, and R 7 represents the following general formula (7) or (8):
Figure 0005158304
(Wherein R 10 is independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom-containing hydrocarbon having 1 to 20 carbon atoms. Group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms.)
R 8 is represented by the following general formula (10)
Figure 0005158304
(Wherein R 11 is independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom-containing hydrocarbon having 1 to 20 carbon atoms. Group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms.)
Wherein R 7 and R 8 form a sandwich structure with M 2 , and R 9 is represented by the following general formula (11):
Figure 0005158304
(Wherein R 12 is independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, or a nitrogen atom-containing hydrocarbon having 1 to 20 carbon atoms. Group or an oxygen atom-containing hydrocarbon group having 1 to 20 carbon atoms.)
In which R 7 and R 8 are cross-linked and m is an integer from 1 to 5. ]
A transition metal compound (component (b)) represented by the following general formula (13):
[R 14 R 15 y-1 M 3 H] a [A] b (13)
(In the formula, [R 14 R 15 y-1 M 3 H] is a cation, M 3 is an element selected from Group 15 or Group 16 of the periodic table, and R 14 has 1 to 30 carbon atoms. Each of R 15 is independently a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, y is y = 3 when M 3 is a Group 15 element, and M 3 is a 16th group. (When a group element, y = 2, [A] is an anion, and a and b are integers selected so that charges are balanced.)
Modified clay mineral (component (c)) treated with an organic compound represented by the formula:
AlR 13 3 (12)
(In the formula, R 13 is a hydrocarbon group having 1 to 20 carbon atoms.)
A process for producing polyethylene as described above, wherein ethylene or ethylene and 1-butene are polymerized using a catalyst comprising an organoaluminum compound represented by formula (component (d)) .
エチレン、またはエチレンおよび1−ブテンをスラリー状態で重合することを特徴とする請求項1に記載のポリエチレンの製造方法。 The method for producing polyethylene according to claim 1, wherein ethylene or ethylene and 1-butene are polymerized in a slurry state . (E)粉体嵩密度が0.15g/cm以上0.70g/cm以下である粒子状ポリエチレンの製造方法であることを特徴とする請求項1又は2に記載のポリエチレンの製造方法。 (E) The method for producing polyethylene according to claim 1 or 2, wherein the method is a method for producing particulate polyethylene having a powder bulk density of 0.15 g / cm 3 or more and 0.70 g / cm 3 or less. (E)粉体嵩密度が0.15g/cm以上0.50g/cm以下である粒子状ポリエチレンの製造方法であることを特徴とする請求項3に記載のポリエチレンの製造方法。 (E) The method for producing polyethylene according to claim 3, which is a method for producing particulate polyethylene having a powder bulk density of 0.15 g / cm 3 or more and 0.50 g / cm 3 or less.
JP2006117425A 2005-04-21 2006-04-21 Method for producing polyethylene Expired - Fee Related JP5158304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117425A JP5158304B2 (en) 2005-04-21 2006-04-21 Method for producing polyethylene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005123845 2005-04-21
JP2005123845 2005-04-21
JP2006117425A JP5158304B2 (en) 2005-04-21 2006-04-21 Method for producing polyethylene

Publications (2)

Publication Number Publication Date
JP2006321991A JP2006321991A (en) 2006-11-30
JP5158304B2 true JP5158304B2 (en) 2013-03-06

Family

ID=37541890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117425A Expired - Fee Related JP5158304B2 (en) 2005-04-21 2006-04-21 Method for producing polyethylene

Country Status (1)

Country Link
JP (1) JP5158304B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140280A2 (en) 2007-05-16 2008-11-20 Lg Chem, Ltd. Long chain-branched ethylene-alpha olefin copolymer
JP2009040894A (en) * 2007-08-09 2009-02-26 Tosoh Corp Ethylene polymer and film comprising the same
EP2172493A1 (en) * 2008-10-02 2010-04-07 Total Petrochemicals Research Feluy Activating supports based on perfluorinated boronic acids
US8299194B2 (en) 2009-05-29 2012-10-30 Sumitomo Chemical Company, Limited Ethylene-α-olefin copolymer and article
JP2010280590A (en) * 2009-06-03 2010-12-16 Tosoh Corp Organic transition metal compound, olefin polymerization catalyst using the same and method for preparing polyolefin
JP5365396B2 (en) * 2009-07-27 2013-12-11 東ソー株式会社 Foamed hollow molding
JP5365395B2 (en) * 2009-07-27 2013-12-11 東ソー株式会社 Foamed hollow molding
DE112011100914T5 (en) 2010-03-15 2013-01-03 Sumitomo Chemical Co., Ltd. Ethylene-α-olefin copolymer and molded part
JP5648463B2 (en) * 2010-12-17 2015-01-07 東ソー株式会社 Polyethylene pipe
US9309340B2 (en) 2011-03-30 2016-04-12 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
JP2013053308A (en) * 2011-08-11 2013-03-21 Sumitomo Chemical Co Ltd Olefin polymer producing method, ethylene polymer and mold product
JP6190594B2 (en) * 2012-03-21 2017-08-30 三井化学株式会社 Process for producing olefin polymerization catalyst and process for producing ethylene polymer using olefin polymerization catalyst obtained thereby
JP6303720B2 (en) * 2014-03-31 2018-04-04 日本ポリエチレン株式会社 Olefin polymerization catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3466880D1 (en) * 1983-06-06 1987-11-26 Exxon Research Engineering Co Process and catalyst for producing reactor blend polyolefins
US4530914A (en) * 1983-06-06 1985-07-23 Exxon Research & Engineering Co. Process and catalyst for producing polyethylene having a broad molecular weight distribution
JP3110156B2 (en) * 1991-09-17 2000-11-20 三井化学株式会社 Olefin polymerization catalyst and olefin polymerization method
JPH05155933A (en) * 1991-09-17 1993-06-22 Mitsui Petrochem Ind Ltd Catalyst for polymerization of olefin and polymerization of olefin
JP3160067B2 (en) * 1992-01-16 2001-04-23 三井化学株式会社 Olefin polymerization catalyst and olefin polymerization method
JP2000038418A (en) * 1998-07-24 2000-02-08 Idemitsu Petrochem Co Ltd Production of polyolefin
JP2002105132A (en) * 2000-07-26 2002-04-10 Mitsui Chemicals Inc Polymer and method for producing the same

Also Published As

Publication number Publication date
JP2006321991A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP5158304B2 (en) Method for producing polyethylene
EP1964860B1 (en) Ethylene polymer, catalyst for production of ethylene polymer, and process for production of ethylene polymer
KR101124271B1 (en) Polyethylene composition and process for producing same
JP4940649B2 (en) Catalyst for producing ethylene polymer and method for producing ethylene polymer
JP4886952B2 (en) Aggregated metal oxide / clay support-metallocene and constrained geometric catalyst systems using activators and methods for their production
JP5387325B2 (en) Olefin polymerization catalyst and method for producing polyolefin
EP1392741B1 (en) Process for preparing supported transition metal catalyst systems and catalyst systems prepared thereby
JP4491669B2 (en) Method for producing polyethylene
JP5124938B2 (en) Olefin polymerization catalyst and process for producing olefin polymer
JP4696453B2 (en) Particulate polyethylene and method for producing the same
JP5123460B2 (en) Polyethylene and method for producing the same
JP5428399B2 (en) Olefin polymerization catalyst and process for producing olefin polymer
JP5587556B2 (en) Ethylene polymer, thermoplastic resin composition containing the ethylene polymer, and molded product obtained therefrom
JP5396773B2 (en) Olefin polymerization catalyst and process for producing olefin polymer
JP5810880B2 (en) Ethylene polymer and process for producing the same
JP2000038418A (en) Production of polyolefin
JP2009197226A (en) Ethylene copolymer, thermoplastic resin composition containing the ethylene copolymer, and molded product obtained from them
JP5123464B2 (en) Catalyst for producing particulate macromonomer and method for producing particulate macromonomer
JP2011225670A (en) Olefin polymerization catalyst and method for producing olefin polymer
JP2003128719A (en) Method of producing olefin-based polymer
JP5470745B2 (en) Modified clay mineral, catalyst for olefin polymerization, and method for producing polyolefin
JP2000038411A (en) Catalyst for olefin polymerization and production of polyolefin
JP2006028326A (en) Method for producing catalyst for producing macromonomer, and method for producing macromonomer
JP6506950B2 (en) Olefin polymerization catalyst and olefin polymerization method using the same
JP2011225669A (en) Olefin polymerization catalyst and method for producing olefin polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R151 Written notification of patent or utility model registration

Ref document number: 5158304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees