JP5156171B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP5156171B2
JP5156171B2 JP2004095037A JP2004095037A JP5156171B2 JP 5156171 B2 JP5156171 B2 JP 5156171B2 JP 2004095037 A JP2004095037 A JP 2004095037A JP 2004095037 A JP2004095037 A JP 2004095037A JP 5156171 B2 JP5156171 B2 JP 5156171B2
Authority
JP
Japan
Prior art keywords
value
gas supply
provisional
supply amount
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004095037A
Other languages
Japanese (ja)
Other versions
JP2005285433A (en
Inventor
孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004095037A priority Critical patent/JP5156171B2/en
Publication of JP2005285433A publication Critical patent/JP2005285433A/en
Application granted granted Critical
Publication of JP5156171B2 publication Critical patent/JP5156171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、複数個の燃料電池を含む燃料電池組立体に燃料ガスと酸素含有ガスとを供給して発電する燃料電池システムに関する。   The present invention relates to a fuel cell system that generates power by supplying a fuel gas and an oxygen-containing gas to a fuel cell assembly including a plurality of fuel cells.

次世代エネルギーとして、近年、固体高分子型、リン酸型、溶融炭素塩型及び固体電解質型等の種々の型の燃料電池システムが提案されている。特に、固体電解質型燃料電池システムは、作動温度が約1000℃と高いが、発電効率が高い、排熱が利用できる等の利点を有しており、研究開発が推し進められている。   In recent years, various types of fuel cell systems such as solid polymer type, phosphoric acid type, molten carbon salt type, and solid electrolyte type have been proposed as next-generation energy. In particular, although the solid oxide fuel cell system has an operating temperature as high as about 1000 ° C., it has advantages such as high power generation efficiency and use of exhaust heat, and research and development are being promoted.

燃料電池発電システムの典型例は、下記特許文献1に開示されている如く、発電・燃焼室を規定しているハウジングと、発電・燃焼室内に配設された複数個の燃料電池とを含む燃料電池組立体を備えている。燃料電池組立体には、燃料電池に燃料ガスを供給するための燃料ガス供給手段と、燃料電池に酸素含有ガスを供給するための酸素含有ガス供給手段とが付設されている。通常、燃料ガス供給手段は、都市ガスでよい被改質ガスの供給源、上水でよい水供給源、被改質ガス供給量調節手段、水供給量調節手段及び改質手段を含んでいる。改質手段には適宜の被改質触媒が収容されており、水と共に供給される被改質ガスが改質手段において水素リッチな燃料ガスに改質される。酸素含有ガス供給手段は、空気でよい酸素含有ガス供給源と酸素含有ガス供給量調節手段とを含んでいる。燃料電池システムには、更に、要求電力量に応じて、燃料ガス供給量と酸素含有ガス供給量を制御して発電を制御する発電制御手段も配設されている。
特開2000−149976号公報
A typical example of a fuel cell power generation system is a fuel including a housing defining a power generation / combustion chamber and a plurality of fuel cells disposed in the power generation / combustion chamber, as disclosed in Patent Document 1 below. A battery assembly is provided. The fuel cell assembly is provided with fuel gas supply means for supplying fuel gas to the fuel cell and oxygen-containing gas supply means for supplying oxygen-containing gas to the fuel cell. Usually, the fuel gas supply means includes a supply source of the reformed gas that may be city gas, a water supply source that may be clean water, a reformed gas supply amount adjusting means, a water supply amount adjusting means, and a reforming means. . An appropriate reforming catalyst is accommodated in the reforming means, and the to-be-reformed gas supplied together with water is reformed into hydrogen-rich fuel gas in the reforming means. The oxygen-containing gas supply means includes an oxygen-containing gas supply source that may be air and an oxygen-containing gas supply amount adjusting means. The fuel cell system further includes power generation control means for controlling power generation by controlling the fuel gas supply amount and the oxygen-containing gas supply amount in accordance with the required power amount.
JP 2000-149976 A

要求電力量に応じて発電を制御する様式としては、燃料電池による発電量即ち電流値と電圧値とは発電・燃焼室内の温度に依存する事実に鑑み、発電・燃焼室内の温度を実質上一定に維持しておいて、燃料電池の電流−電圧特性を基準として要求電力値に対応した電流値になるように燃料ガスの供給量(即ち被改質ガス供給量と水供給量)及び酸素含有ガス供給量を制御することが意図され得る。しかしながら、かような制御様式を採用する場合には、発電・燃焼室内の温度を実質上一定に維持するための、ガス燃焼式或いは電気式等の適宜の加熱手段を燃料電池とは別個に配設することが必要であり、かかる加熱手段に起因して燃料電池システムの初期設備コストが相当増大し、そしてまた運転コストも増大する。   As a mode of controlling the power generation according to the required power amount, the temperature in the power generation / combustion chamber is substantially constant in view of the fact that the amount of power generated by the fuel cell, that is, the current value and voltage value depends on the temperature in the power generation / combustion chamber. The fuel gas supply amount (that is, the reformed gas supply amount and the water supply amount) and the oxygen content so that the current value corresponds to the required power value on the basis of the current-voltage characteristics of the fuel cell. It can be intended to control the gas supply. However, when such a control mode is adopted, appropriate heating means such as a gas combustion type or an electric type for maintaining the temperature in the power generation / combustion chamber substantially constant is arranged separately from the fuel cell. The initial installation cost of the fuel cell system is considerably increased due to such heating means, and the operation cost is also increased.

本発明は上記事実に鑑みてなされたものであり、その主たる技術的課題は、発電・燃焼室内の温度を実質上一定に維持するための加熱手段を配設することなく、従って初期設備コスト及び運転コストを徒に増大せしめることなく、要求電力値に応じて燃料ガス供給量及び酸素ガス供給量を充分適切に制御して発電を制御することができる、新規且つ改良された燃料電池発電システムを提供することである。   The present invention has been made in view of the above-mentioned facts, and the main technical problem thereof is that there is no heating means for maintaining the temperature in the power generation / combustion chamber substantially constant, and therefore the initial equipment cost and A new and improved fuel cell power generation system capable of controlling power generation by adequately controlling the fuel gas supply amount and the oxygen gas supply amount according to the required power value without increasing the operation cost. Is to provide.

本発明においては、要求電力値に応じて暫定電流値又は暫定電圧値を算出し、そしてかかる暫定電流値又は暫定電圧値に設定した後に実効電力値が要求電力値に充分適切に対応しているか否かを判別し、充分適切に対応していない場合には暫定電流値を適宜に増大或いは減少せしめる、所謂収束型要求電力追従方式を採用することによって、上記主たる技術的課題を達成する。   In the present invention, the provisional current value or provisional voltage value is calculated according to the required power value, and after setting the provisional current value or provisional voltage value, the effective power value sufficiently corresponds to the request power value. The main technical problem described above is achieved by adopting a so-called convergent required power follow-up method that determines whether or not to adequately increase or decrease the provisional current value when it is not sufficiently adequate.

即ち、本発明によれば、複数個の燃料電池を含む燃料電池組立体と、該燃料電池組立体に燃料ガスを供給するための、燃料ガス供給量調節手段を含む燃料ガス供給手段と、該燃料電池組立体に酸素含有ガスを供給するための、酸素含有ガス供給量調節手段を含む酸素含有ガス供給手段と、発電制御手段とを具備する、燃料電池システムにおいて、
該発電制御手段は、
(a)要求電力値が変動した場合、該要求電力値に基いて暫定電流値又は暫定電圧値を算出し、
(b)該暫定電流値と実効電流値又は該暫定電圧値と実効電圧値とを比較し、該暫定電流値が該実効電流値よりも許容誤差を超えて小さい場合又は該暫定電圧値が該実効電圧値よりも許容誤差を超えて小さい場合には、該暫定電流値と実効電流値との差又は該暫定電圧値と実効電圧値との差に基づいて、該燃料ガス供給量調節手段を制御して燃料ガス供給量を減少し且つ該酸素含有ガス供給量調節手段を制御して酸素含有ガス供給量を設定し、該暫定電流値が該実効電流値よりも許容誤差を超えて大きい場合又は該暫定電圧値が該実効電圧値よりも許容誤差を超えて大きい場合には、該暫定電流値と実効電流値との差又は該暫定電圧値と実効電圧値との差に基づいて、該燃料ガス供給量調節手段を制御して燃料ガス供給量を増大し且つ該酸素含有ガス供給量調節手段を制御して酸素含有ガス供給量を設定し、該燃料ガス供給量調節手段及び該酸素含有ガス供給量調節手段を制御して燃料ガス供給量及び酸素含有ガス供給量を変更した後の実効電力値が要求電力値よりも所定値以上大きい場合には該暫定電流値又は該暫定電圧値を所定値だけ減少せしめ、該実効電力値が要求電力値よりも所定値以上小さい場合には該暫定電流値又は該暫定電圧値を所定値だけ増大せしめる該(b)を繰り返す手段であり、該要求電力値が所定最小電力値以下の場合には、該要求電力値を該最小電力値として該暫定電流値又は暫定電圧値を算出する、ことを特徴とする燃料電池システムが提供される。
That is, according to the present invention, a fuel cell assembly including a plurality of fuel cells, a fuel gas supply means including a fuel gas supply amount adjusting means for supplying fuel gas to the fuel cell assembly, In a fuel cell system comprising: an oxygen-containing gas supply means including an oxygen-containing gas supply amount adjusting means for supplying an oxygen-containing gas to a fuel cell assembly; and a power generation control means.
The power generation control means includes
(A) When the required power value fluctuates, a temporary current value or a temporary voltage value is calculated based on the required power value,
(B) The provisional current value and the effective current value or the provisional voltage value and the effective voltage value are compared, and when the provisional current value is smaller than the effective current value by an allowable error or the provisional voltage value is If the effective voltage value is smaller than the allowable error, the fuel gas supply amount adjusting means is adjusted based on the difference between the provisional current value and the effective current value or the difference between the provisional voltage value and the effective voltage value. When the fuel gas supply amount is reduced by control and the oxygen-containing gas supply amount adjusting means is controlled to set the oxygen-containing gas supply amount, and the provisional current value is larger than the effective current value and exceeds the allowable error Or when the provisional voltage value is larger than the effective voltage value exceeding an allowable error, based on the difference between the provisional current value and the effective current value or the difference between the provisional voltage value and the effective voltage value, The fuel gas supply amount adjusting means is controlled to increase the fuel gas supply amount and the oxygen Yu gas supply amount regulation means controlled by setting the oxygen-containing gas supply amount, the fuel gas supply amount regulation means and the fuel gas supply amount by controlling the oxygen-containing gas supply amount regulation means and an oxygen-containing gas supply amount When the changed effective power value is larger than the required power value by a predetermined value or more, the provisional current value or the provisional voltage value is decreased by a predetermined value, and the effective power value is smaller than the required power value by a predetermined value or more. In this case, it is means for repeating the step (b) of increasing the provisional current value or the provisional voltage value by a predetermined value. When the required power value is not more than a predetermined minimum power value, the required power value is reduced to the minimum value. A fuel cell system is provided, wherein the provisional current value or provisional voltage value is calculated as a power value.

好ましくは該要求電力値が所定最大電力値以上の場合には、該要求電力値を該最大電力値として該暫定電流値又は該暫定電圧値を算出するのが好適である。 Preferably , when the required power value is equal to or greater than a predetermined maximum power value, the provisional current value or the provisional voltage value is calculated using the request power value as the maximum power value.

本発明の燃料電池システムにおいては、要求電力値に応じて暫定電流値又は暫定電圧値を算出し、そしてかかる暫定電流値又は暫定電圧値に設定した後に実効電力値が要求電力値に充分適切に対応しているか否かを判別し、充分適切に対応していない場合には暫定電流値又は暫定電圧値を適宜に増大或いは減少せしめる、所謂収束型要求電力追従方式を採用し、かくして発電・燃焼室内の温度を実質上一定に維持する必要性を回避しており、かくして燃料電池システムの初期設備コスト及び運転コストの増大を回避している。   In the fuel cell system of the present invention, the provisional current value or provisional voltage value is calculated according to the required power value, and after setting the provisional current value or provisional voltage value, the effective power value is sufficiently appropriate for the required power value. It is determined whether or not it is compatible, and if it is not sufficiently appropriate, a so-called convergent required power tracking method is adopted to increase or decrease the provisional current value or provisional voltage value accordingly, thus generating and burning power The need to maintain the room temperature substantially constant is avoided, thus avoiding an increase in initial equipment costs and operating costs of the fuel cell system.

以下、添付図面を参照して、本発明に従って構成された燃料電池システムの好適実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a fuel cell system configured according to the present invention will be described in detail with reference to the accompanying drawings.

図1と共に図2を参照して説明すると、燃料電池は燃料電池組立体6を具備しており、この燃料電池組立体6は略直方体形状のハウジング8を含んでいる。ハウジング8は耐熱金属板から形成された外枠体10とこの外枠体10の内面に配設された断熱材層12とから構成されている。断熱材層12は適宜のセラミックから形成することができる。ハウジング8の下部には実質上水平に延在する仕切壁14が配設されており、ハウジング8は仕切壁14よりも上方の発電・燃焼室16と仕切壁14よりも下方の付属室18とに気密に区画されている。発電・燃焼室16内には3個の燃料電池スタック20a、20b及び20cが並列配置されている。付属室18内には燃料ガスタンク21が配設されている。   Referring to FIG. 2 together with FIG. 1, the fuel cell includes a fuel cell assembly 6, and the fuel cell assembly 6 includes a substantially rectangular parallelepiped housing 8. The housing 8 includes an outer frame body 10 formed from a heat-resistant metal plate and a heat insulating material layer 12 disposed on the inner surface of the outer frame body 10. The heat insulating material layer 12 can be formed from an appropriate ceramic. A partition wall 14 extending substantially horizontally is disposed at a lower portion of the housing 8, and the housing 8 includes a power generation / combustion chamber 16 above the partition wall 14 and an attached chamber 18 below the partition wall 14. It is airtightly partitioned. In the power generation / combustion chamber 16, three fuel cell stacks 20a, 20b and 20c are arranged in parallel. A fuel gas tank 21 is disposed in the attached chamber 18.

図2と共に図3を参照して説明を続けると、燃料電池スタック20a、20b及び20cの各々は、鉛直方向、即ち図2において上下方向、図3において紙面に垂直な方向、に細長く延在する固体電解質型燃料電池22を図2において紙面に垂直な方向、図3において上下方向に複数個(図示の場合は5個)配置して構成されている。図3に明確に図示する如く、燃料電池22の各々は、電極支持基板24、内側電極層である燃料極層26、固体電解質層28、外側電極層である酸素極層30及びインターコネクタ32から構成されている。図2から理解される如く、燃料電池22の各々は仕切壁14上に直立せしめられており、発電・燃焼室16の上下方向中間部よりも幾分上方まで延びている。電極支持基板24は鉛直方向に細長く延びる板状片であり、平坦な両面と半円形状の両側面とを有する。電極支持基板24にはこれを鉛直方向に貫通する複数個(図示の場合は4個)のガス通路34が形成されている。かような電極支持基板24の各々は上記仕切壁14上に、例えば耐熱性に優れたセラミック接着剤によって接合される。仕切壁14には図2おいて左右方向及び紙面に垂直な方向に間隔をおいて左右方向に延びる複数個(図示の場合は15個)のスリット(図示していない)が形成されており、電極支持基板24の各々に形成されているガス通路34がスリットの各々に連通せしめられている。ハウジング8の下端部に区画されている付属室18に配設されている上記燃料ガスタンク21の上壁は仕切壁14によって規定されており、従って燃料ガスタンク21内は仕切壁14に形成されている上記スリットによって電極支持基板24の各々に形成されているガス通路34に連通せしめられている。インターコネクタ32は電極支持基板24の片面(図3の燃料電池スタック20aにおいて上面)上に配設されている。燃料極層26は電極支持基板24の他面(図3の燃料電池スタック20aにおいて下面)及び両側面に配設されており、その両端はインターコネクタ32の両端に接合せしめられている。固体電解質層28は燃料極層26の全体を覆うように配設され、その両端はインターコネクタ32の両端に接合せしめられている。酸素極層30は、固体電解質層28の主部上、即ち電極支持基板24の上記他面を覆う部分上、に配置され、電極支持基板板24を挟んでインターコネクタ32に対向して位置せしめられている。   2 and FIG. 3, each of the fuel cell stacks 20a, 20b and 20c extends in the vertical direction, that is, the vertical direction in FIG. 2 and the direction perpendicular to the paper surface in FIG. A plurality of solid oxide fuel cells 22 are arranged in the direction perpendicular to the paper surface in FIG. 2 and the vertical direction in FIG. 3 (five in the case of illustration). As clearly shown in FIG. 3, each of the fuel cells 22 includes an electrode support substrate 24, a fuel electrode layer 26 that is an inner electrode layer, a solid electrolyte layer 28, an oxygen electrode layer 30 that is an outer electrode layer, and an interconnector 32. It is configured. As can be understood from FIG. 2, each of the fuel cells 22 is made to stand upright on the partition wall 14 and extends somewhat above the middle portion in the vertical direction of the power generation / combustion chamber 16. The electrode support substrate 24 is a plate-like piece that is elongated in the vertical direction, and has both flat surfaces and both sides of a semicircular shape. A plurality (four in the illustrated example) of gas passages 34 are formed in the electrode support substrate 24 so as to penetrate the electrode support substrate 24 in the vertical direction. Each of the electrode support substrates 24 is bonded onto the partition wall 14 by, for example, a ceramic adhesive having excellent heat resistance. The partition wall 14 is formed with a plurality of slits (not shown) (not shown) extending in the left-right direction at intervals in the left-right direction and the direction perpendicular to the paper surface in FIG. A gas passage 34 formed in each electrode support substrate 24 is communicated with each slit. The upper wall of the fuel gas tank 21 disposed in the attached chamber 18 defined at the lower end of the housing 8 is defined by the partition wall 14, and therefore the interior of the fuel gas tank 21 is formed in the partition wall 14. The slits communicate with gas passages 34 formed in each of the electrode support substrates 24. The interconnector 32 is disposed on one surface of the electrode support substrate 24 (the upper surface in the fuel cell stack 20a in FIG. 3). The fuel electrode layer 26 is disposed on the other surface (the lower surface in the fuel cell stack 20a of FIG. 3) and both side surfaces of the electrode support substrate 24, and both ends thereof are joined to both ends of the interconnector 32. The solid electrolyte layer 28 is disposed so as to cover the entire fuel electrode layer 26, and both ends thereof are joined to both ends of the interconnector 32. The oxygen electrode layer 30 is disposed on the main portion of the solid electrolyte layer 28, that is, on the portion covering the other surface of the electrode support substrate 24, and is positioned facing the interconnector 32 with the electrode support substrate plate 24 interposed therebetween. It has been.

電池スタック20a、20b及び20cの各々における隣接する燃料電池22間には集電部材36が配設されており、一方の燃料電池22のインターコネクタ32と他方の燃料電池22の酸素極層30とを接続している。電池スタック20a、20b及び20cの各々において両端、即ち図3において上端及び下端に位置する燃料電池22の片面及び他面にも集電部材36が配設されている。そして、電池スタック20a及び20bの、図3において下端に配設された集電部材36は導電部材38によって接続され、電池スタック20b及び20cの、図3において上端に配設された集電部材36も導電部材38によって接続されている。更に、電池スタック20aの、図3において上端に配設された集電部材36には端子部材40が接続され、電池スタック20cの、図3において下端に配設された集電部材36にも端子部材40が接続されている。かくして、全ての燃料電池22が電気的に直列接続され、直列接続の両端には端子部材40が存在する。   A current collecting member 36 is disposed between adjacent fuel cells 22 in each of the cell stacks 20a, 20b, and 20c. The interconnector 32 of one fuel cell 22 and the oxygen electrode layer 30 of the other fuel cell 22 are arranged. Is connected. Current collecting members 36 are also arranged on both sides of each of the battery stacks 20a, 20b and 20c, that is, on one side and the other side of the fuel cell 22 located at the upper end and the lower end in FIG. The current collecting member 36 disposed at the lower end in FIG. 3 of the battery stacks 20a and 20b is connected by the conductive member 38, and the current collecting member 36 disposed at the upper end in FIG. 3 of the battery stacks 20b and 20c. Are also connected by a conductive member 38. Further, a terminal member 40 is connected to the current collecting member 36 disposed at the upper end in FIG. 3 of the battery stack 20a, and the terminal is also connected to the current collecting member 36 disposed at the lower end in FIG. 3 of the battery stack 20c. The member 40 is connected. Thus, all the fuel cells 22 are electrically connected in series, and the terminal members 40 exist at both ends of the series connection.

燃料電池22について更に詳述すると、電極支持基板24は燃料ガスを燃料極層26まで透過させるためにガス透過性であること、そしてまたインターコネクタ32を介して集電するために導電性であることが要求され、かかる要求を満足する多孔質の導電性セラミック(若しくはサーメット)から形成することができる。燃料極層26及び/又は固体電解質層28との同時焼成により電極支持基板24を製造するためには、鉄属金属成分と特定希土類酸化物とから電極支持基板24を形成することが好ましい。所要ガス透過性を備えるために開気孔率が30%以上、特に35乃至50%の範囲にあるのが好適であり、そしてまたその導電率は300S/cm以上、特に440C/cm以上であるのが好ましい。燃料極層26は多孔質の導電性セラミック、例えば希土類元素が固溶しているZrO(安定化ジルコニアを称されている)とNi及び/又はNiOとから形成することができる。固体電解質層28は、電極間の電子の橋渡しをする電解質としての機能を有していると同時に、燃料ガスと酸素含有ガスとのリークを防止するためにガス遮断性を有するものであることが必要であり、通常、3〜15モル%の希土類元素が固溶したZrOから形成されている。酸素極層30は所謂ABO型のペロブスカイト型酸化物からなる導電性セラミックから形成することができる。酸素極層30はガス透過性を有していることが必要であり、開気孔率が20%以上、特に30乃至50%の範囲にあることが好ましい。インターコネクタ32は導電性セラミックから形成することができるが、水素リッチなガスでよい燃料ガス及び空気でよい酸素含有ガスと接触するため、耐還元性及び耐酸化性を有することが必要であり、このためにランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)が好適に使用される。インターコネクタ32は電極支持基板24に形成された燃料通路34を通る燃料ガス及び電極支持基板24の外側を流動する酸素含有ガスのリークを防止するために緻密質でなければならず、93%以上、特に95%以上の相対密度を有していることが望まれる。集電部材36は弾性を有する金属又は合金から形成された適宜の形状の部材或いは金属繊維又は合金繊維から成るフェルトに所要表面処理を加えた部材から構成することができる。導電部材38及び端子部材40は適宜の金属又は合金から形成することができる。 More specifically about the fuel cell 22, the electrode support substrate 24 is gas permeable to allow fuel gas to permeate to the fuel electrode layer 26, and is also conductive to collect current through the interconnector 32. It can be formed from a porous conductive ceramic (or cermet) that satisfies such a requirement. In order to manufacture the electrode support substrate 24 by simultaneous firing with the fuel electrode layer 26 and / or the solid electrolyte layer 28, it is preferable to form the electrode support substrate 24 from an iron group metal component and a specific rare earth oxide. In order to provide the required gas permeability, it is preferable that the open porosity is in the range of 30% or more, in particular 35 to 50%, and the conductivity is also 300 S / cm or more, in particular 440 C / cm or more. Is preferred. The fuel electrode layer 26 can be formed of a porous conductive ceramic, for example, ZrO 2 (referred to as stabilized zirconia) in which a rare earth element is dissolved and Ni and / or NiO. The solid electrolyte layer 28 has a function as an electrolyte for bridging electrons between electrodes, and at the same time has a gas barrier property to prevent leakage between the fuel gas and the oxygen-containing gas. It is necessary and is usually formed from ZrO 2 in which 3 to 15 mol% of a rare earth element is dissolved. The oxygen electrode layer 30 can be formed of a conductive ceramic made of a so-called ABO 3 type perovskite oxide. The oxygen electrode layer 30 is required to have gas permeability and preferably has an open porosity of 20% or more, particularly 30 to 50%. The interconnector 32 can be formed from a conductive ceramic, but it needs to have reduction resistance and oxidation resistance because it is in contact with a fuel gas that may be a hydrogen-rich gas and an oxygen-containing gas that may be air. For this purpose, lanthanum chromite-based perovskite oxides (LaCrO 3 -based oxides) are preferably used. The interconnector 32 must be dense in order to prevent leakage of the fuel gas passing through the fuel passage 34 formed in the electrode support substrate 24 and the oxygen-containing gas flowing outside the electrode support substrate 24, and is 93% or more In particular, it is desirable to have a relative density of 95% or more. The current collecting member 36 can be composed of a member having an appropriate shape formed from an elastic metal or alloy, or a member obtained by adding a required surface treatment to a felt made of metal fiber or alloy fiber. The conductive member 38 and the terminal member 40 can be formed from an appropriate metal or alloy.

図1及び図2を参照して説明を続けると、燃料電池システムは 、更に、燃料電池組立体6に燃料ガスを供給するための燃料ガス供給手段42、燃料電池組立体6に酸素含有ガスを供給するための酸素含有ガス供給手段44、及び燃料電池組立体6のハウジング8内に区画されている発電・燃焼室16内から排ガスを排出するための排ガス排出手段46を具備している。   1 and 2, the fuel cell system further includes a fuel gas supply means 42 for supplying fuel gas to the fuel cell assembly 6, and an oxygen-containing gas to the fuel cell assembly 6. Oxygen-containing gas supply means 44 for supply and exhaust gas discharge means 46 for discharging exhaust gas from the power generation / combustion chamber 16 defined in the housing 8 of the fuel cell assembly 6 are provided.

燃料ガス供給手段42は、都市ガスの供給ライン或いはプロパンガスボンベでよい被改質ガス供給源48に接続された供給ライン50を含んでおり、この供給ライン50には切断弁51及び流量制御手段52が配設されている。燃料ガス供給手段42は、上記燃料電池組立体6のハウジング8内に区画されている発電・燃焼室16の上端部に配置された改質手段54及び気化手段56も含んでいる(図2においては改質手段54及び気化手段56はブロックで簡略に図示している)。改質手段54は、被改質ガスの改質に必要なそれ自体は周知の触媒を収容した改質室(図示していない)を有する。上記供給ライン50は発電・燃焼室16内に延び、改質手段54の入口に接続されている。改質手段54の出口はハウジング8の側壁内に形成されている連通路58及び接続管59を介して上記燃料ガスタンク21に接続されている。上記流量制御手段52の下流側において、上記供給ライン50には切断弁60を介して送風手段62が接続されている。燃料ガス供給手段42は、更に、上水供給ラインでよい水供給源64に接続された供給ライン66を含んでおり、この供給ライン66には切断弁68、浄水手段70及び流量制御手段72が配設されている。供給ライン66も発電・燃焼室16内に延びており、上記気化手段56の入口に接続されている。気化手段56の出口は改質手段54の上流側において上記供給ライン50に接続、従って供給ライン50を介して改質手段54に接続されている。後に更に言及する如く、供給ライン50を通して改質手段54に都市ガス或いはプロパンガスでよい被改質ガスが供給され、改質手段54において水素リッチな燃料ガスに改質された後に燃料ガスタンク21に供給され、そして燃料電池22、更に詳細にはその電極支持基板24に形成されているガス通路34に供給される。後に更に言及する如く、上記流量制御手段52及び72は燃料ガス供給量調節手段を構成する。送風手段62は、例えば起動時等に必要に応じて作動されて(更に詳しくは、ハウジング8内に区画されている発電・燃焼室16内の温度が充分に上昇して気化手段56が所要気化を遂行し得る状態になるまでの間に作動されて)改質手段54に空気を供給する。燃料電池システム2の正常運転時(即ちハウジング8内に区画されている発電・燃焼室16内の温度が充分に上昇して気化手段56が所要気化を遂行し得る状態の時)には、上水でよい水が浄水手段70によって所要浄化処理を受けた後に気化手段56に供給され、気化手段56においては水蒸気が生成され、かかる水蒸気が改質手段54に供給される。   The fuel gas supply means 42 includes a supply line 50 connected to a reformed gas supply source 48, which may be a city gas supply line or a propane gas cylinder. The supply line 50 includes a cutting valve 51 and a flow rate control means 52. Is arranged. The fuel gas supply means 42 also includes a reforming means 54 and a vaporizing means 56 disposed at the upper end of the power generation / combustion chamber 16 defined in the housing 8 of the fuel cell assembly 6 (in FIG. 2). The reforming means 54 and the vaporizing means 56 are simply shown in blocks). The reforming means 54 has a reforming chamber (not shown) containing a catalyst known per se necessary for reforming the gas to be reformed. The supply line 50 extends into the power generation / combustion chamber 16 and is connected to the inlet of the reforming means 54. The outlet of the reforming means 54 is connected to the fuel gas tank 21 through a communication path 58 and a connection pipe 59 formed in the side wall of the housing 8. On the downstream side of the flow rate control means 52, a blowing means 62 is connected to the supply line 50 via a cutoff valve 60. The fuel gas supply means 42 further includes a supply line 66 connected to a water supply source 64, which may be a clean water supply line. The supply line 66 includes a cutting valve 68, a water purification means 70, and a flow rate control means 72. It is arranged. The supply line 66 also extends into the power generation / combustion chamber 16 and is connected to the inlet of the vaporizing means 56. The outlet of the vaporizing means 56 is connected to the supply line 50 on the upstream side of the reforming means 54, and is thus connected to the reforming means 54 via the supply line 50. As will be further described later, a reformed gas, which may be city gas or propane gas, is supplied to the reforming means 54 through the supply line 50, and is reformed into hydrogen-rich fuel gas by the reforming means 54. Then, the gas is supplied to the fuel cell 22 and, more specifically, to the gas passage 34 formed in the electrode support substrate 24. As will be described later, the flow rate control means 52 and 72 constitute fuel gas supply amount adjusting means. The air blowing means 62 is operated as necessary, for example, at the time of start-up (more specifically, the temperature in the power generation / combustion chamber 16 partitioned in the housing 8 is sufficiently increased, and the vaporization means 56 is vaporized as required. Air is supplied to the reforming means 54). During normal operation of the fuel cell system 2 (that is, when the temperature in the power generation / combustion chamber 16 partitioned in the housing 8 is sufficiently raised and the vaporizing means 56 can perform the required vaporization) Water, which may be water, is supplied to the vaporizing means 56 after undergoing a required purification process by the water purifying means 70, steam is generated in the vaporizing means 56, and the steam is supplied to the reforming means 54.

酸素含有ガス供給手段44は、燃料電池組立体6のハウジング8の側壁を貫通して発電・燃焼室16の下部に延びる酸素含有ガス導入管72まで延在する供給ライン74を含んでいる。供給ライン74の上流端には送風手段76が配設されている。供給ライン74には、更に、流量制御手段78及び熱交換手段80が配設されている。後に更に言及する如く、流量制御手段78は酸素含有ガス供給量調節手段を構成する。送風手段76が作動せしめられると、空気でよい酸素含有ガスが供給ライン74を通して流動せしめられて発電・燃焼室8内に流入せしめられ、燃料電池22に供給される。   The oxygen-containing gas supply means 44 includes a supply line 74 that extends through a side wall of the housing 8 of the fuel cell assembly 6 to an oxygen-containing gas introduction pipe 72 that extends to the lower part of the power generation / combustion chamber 16. A blowing means 76 is disposed at the upstream end of the supply line 74. The supply line 74 is further provided with a flow rate control means 78 and a heat exchange means 80. As will be further described later, the flow rate control means 78 constitutes an oxygen-containing gas supply amount adjusting means. When the air blowing means 76 is operated, an oxygen-containing gas, which may be air, is caused to flow through the supply line 74, flows into the power generation / combustion chamber 8, and is supplied to the fuel cell 22.

主として図2及び図3を参照して説明を続けると、後に更に言及するとおり、例えば燃料ガスを発電・燃焼室16内で燃焼せしめることによって発電・燃焼室16内の温度が所要温度以上になると、水素リッチな燃料ガスが燃料ガスタンク21から燃料電池22における電極支持基板24のガス通路34に供給されてガス通路34を上昇し、そしてまた酸素含有ガスが酸素含有ガス導入管72を通して発電・燃焼室16内に導入せしめられることに起因して、燃料電池22の各々においては、酸素極層30で下記式(1)の電極反応が生成され、また燃料極層26では下記式(2)の電極反応が生成されて発電される。そして、生成された電力は一対の端子部材40を通して取り出される。   The description will be continued mainly with reference to FIG. 2 and FIG. 3. As will be further described later, for example, when the temperature in the power generation / combustion chamber 16 exceeds the required temperature by burning fuel gas in the power generation / combustion chamber 16, for example. Hydrogen-rich fuel gas is supplied from the fuel gas tank 21 to the gas passage 34 of the electrode support substrate 24 in the fuel cell 22 to ascend the gas passage 34, and the oxygen-containing gas is generated and burned through the oxygen-containing gas introduction pipe 72. Due to the introduction into the chamber 16, in each of the fuel cells 22, an electrode reaction of the following formula (1) is generated in the oxygen electrode layer 30, and the following formula (2) is generated in the fuel electrode layer 26. An electrode reaction is generated and power is generated. The generated electric power is taken out through the pair of terminal members 40.

酸素極: 1/2O+2e→ O2−(固体電解質) ・・・(1)
燃料極: O2−(固体電解質)+H→ HO+2e・・・(2)
Oxygen electrode: 1 / 2O 2 + 2e → O 2− (solid electrolyte) (1)
Fuel electrode: O 2− (solid electrolyte) + H 2 → H 2 O + 2e (2)

燃料電池22における電極支持基板24のガス通路34を流動する燃料ガスの、電極反応に使用されなかった燃料ガスは、電極支持基板24の上端から発電・燃焼室16内に流出せしめられ、流出と同時に燃焼せしめられる。酸素含有ガス導入管72を通して発電・燃焼室16に導入された酸素含有ガス中の酸素で電極反応に使用されなかったものは燃焼に利用される。発電・燃焼室16内は、燃料電池22での発電及び燃焼ガスの燃焼に起因して例えば1000℃程度の高温になる。   The fuel gas that has not been used for the electrode reaction of the fuel gas flowing through the gas passage 34 of the electrode support substrate 24 in the fuel cell 22 is caused to flow out into the power generation / combustion chamber 16 from the upper end of the electrode support substrate 24. It can be burned at the same time. Oxygen in the oxygen-containing gas introduced into the power generation / combustion chamber 16 through the oxygen-containing gas introduction pipe 72 is used for combustion. The inside of the power generation / combustion chamber 16 becomes a high temperature of, for example, about 1000 ° C. due to power generation in the fuel cell 22 and combustion of combustion gas.

図1及び図2を参照して説明すると、上記排ガス排出手段46は、ハウジング8の側壁の上端部を貫通して延びる排ガス導出管84及びこの排ガス導出管84から延びる排出ライン86を含んでいる。排出ライン86は上記熱交換手段80を通って延びる。熱交換手段80においては排ガスの熱が発電・燃焼室16に供給される酸素含有ガスに伝導される。排出ライン86を通して排出される排ガスの熱は、更に、給湯システム(図示していない)における水の加熱に利用することができる。   Referring to FIGS. 1 and 2, the exhaust gas discharge means 46 includes an exhaust gas outlet pipe 84 extending through the upper end of the side wall of the housing 8 and an exhaust line 86 extending from the exhaust gas outlet pipe 84. . A discharge line 86 extends through the heat exchange means 80. In the heat exchange means 80, the heat of the exhaust gas is conducted to the oxygen-containing gas supplied to the power generation / combustion chamber 16. The heat of the exhaust gas discharged through the discharge line 86 can be further used for heating water in a hot water supply system (not shown).

図4は燃料電池システムに配設されている電気的構成要素を簡略に図示している。燃料電池スタック20a、20b及び20cは、昇圧チョッパ90、インバータ92及び連係リレー94を介して、商用電源システム96と並列的に例えば家庭の電力負荷に接続されている。商用電源システム96と負荷との間には、商用電源システムス96から負荷に供給されている電力量を計測するための電流変換器95が配設されている。また、図示の実施形態においては、燃料電池スタック20a、20b及び20cには降圧チョッパ98及び充電器100を介して蓄電器102も接続されている。この蓄電器102は昇圧チョッパ103及び上記昇圧チョッパ90を介して上記インバータ92に接続されている。燃料電池システムには種々の交流駆動機器及び直流駆動機器が配設されているが、図4においては説明の便宜上種々の交流駆動機器を一括して番号104で示し、種々の直流駆動機器を一括して番号106で示している。直流駆動機器106には平滑回路108が付設されている。燃料電池システムの起動時には、交流駆動機器104には商用電源システム96から直接交流を供給し、直流駆動機器106には蓄電池102から或いは電値商用電源システム96からの交流を平滑回路108を介して供給する。燃料電池スタック20a、20b及び20cにおいて発電が開始されると、発電された電気を昇圧チョッパ90にて昇圧し、インバータ92によって交流に変換し連係リレー94を介して負荷に供給する。負荷に対して発電量が不充分である場合には、商用電源システム96からも負荷に電力供給される。また、蓄電器102が充分に充電されていない時には、発電された電気の少なくとも一部を降圧チョッパ98にて降圧して充電器100に供給し、蓄電器102を充電する。燃料電池スタック20a、20b及び20cが発電している時には、直流駆動機器106には発電された電気を降圧チョッパ98を介して供給し、交流駆動機器104には発電された電気を昇圧チョッパ90及びインバータ92を介して供給する。蓄電器102は非常用であり、例えば発電システム2の起動時に商用電源システム96が停電した場合には、直流駆動機器106には蓄電器102から直接的に直流を供給し、交流駆動機器104には昇圧チョッパ103、昇圧チョッパ90及びインバータ92を介して交流を供給する。   FIG. 4 schematically illustrates the electrical components disposed in the fuel cell system. The fuel cell stacks 20a, 20b, and 20c are connected to, for example, a household power load in parallel with the commercial power supply system 96 via a boost chopper 90, an inverter 92, and a linkage relay 94. Between the commercial power supply system 96 and the load, a current converter 95 for measuring the amount of power supplied from the commercial power supply system 96 to the load is disposed. In the illustrated embodiment, a battery 102 is also connected to the fuel cell stacks 20a, 20b and 20c via a step-down chopper 98 and a charger 100. The battery 102 is connected to the inverter 92 via the boost chopper 103 and the boost chopper 90. In the fuel cell system, various AC drive devices and DC drive devices are arranged. In FIG. 4, for convenience of explanation, various AC drive devices are collectively indicated by numeral 104, and the various DC drive devices are collectively displayed. This is indicated by reference numeral 106. The DC drive device 106 is provided with a smoothing circuit 108. At the start of the fuel cell system, AC is directly supplied from the commercial power supply system 96 to the AC drive device 104, and AC from the storage battery 102 or from the commercial commercial power supply system 96 is supplied to the DC drive device 106 via the smoothing circuit 108. Supply. When power generation is started in the fuel cell stacks 20a, 20b, and 20c, the generated electricity is boosted by the boost chopper 90, converted into alternating current by the inverter 92, and supplied to the load via the linkage relay 94. When the power generation amount is insufficient with respect to the load, power is also supplied from the commercial power supply system 96 to the load. When the battery 102 is not sufficiently charged, at least a part of the generated electricity is stepped down by the step-down chopper 98 and supplied to the charger 100 to charge the battery 102. When the fuel cell stacks 20a, 20b and 20c are generating power, the DC drive device 106 is supplied with the generated electricity via the step-down chopper 98, and the AC drive device 104 is supplied with the generated electricity with the boost chopper 90 and Supply via an inverter 92. For example, when the commercial power supply system 96 goes out of power when the power generation system 2 is started up, the storage battery 102 is supplied with direct current from the storage battery 102 and the AC drive apparatus 104 is boosted. Alternating current is supplied through the chopper 103, the step-up chopper 90, and the inverter 92.

本発明に従って構成された燃料電池システムにおいては、収束型要求電力追従方式で燃料電池システムの発電を制御する発電制御手段が配設されていることが重要である。図5に簡略に図示する如く、マイクロプロセッサから構成することができる発電制御手段110は、正常運転時の要求電力値W、図示の実施形態においては家庭の電力負荷に起因する必要電力と共に燃料電池システム自体における種々の交流駆動機器104及び種々の直流駆動機器106に起因する必要電力によって定まる要求電力値W、に基づいて、燃料電池組立体6に供給する燃料ガス供給量及び酸素含有ガス供給量を変動せしめて発電を制御する。   In the fuel cell system configured according to the present invention, it is important that power generation control means for controlling the power generation of the fuel cell system by the convergent required power tracking method is provided. As shown schematically in FIG. 5, the power generation control means 110, which can be constituted by a microprocessor, is a fuel cell together with a required power value W during normal operation, and in the illustrated embodiment, required power due to household power load. The fuel gas supply amount and the oxygen-containing gas supply amount supplied to the fuel cell assembly 6 based on the required power value W determined by various AC drive devices 104 and various DC drive devices 106 in the system itself. Is used to control power generation.

図6に図示するフローチャートを参照して説明を続けると、ステップn−1においては、要求電力量W1が変動したか否かが判別される。正常運転状態になり発電制御を開始する際の初期要求電力値は予め設定することができる。要求電力量W1が所定閾値を超えて変動するとステップn−2に進行し、要求電力値W1は発電システムの能力に応じて予め設定されている最大電力値以下であるか否かが判別される。要求電力値W1が最大電力値以下である場合にはステップn−3に進行し、要求電力値W1は発電システムの能力に応じて予め設定される最小電力値以上であるか否かが判別される。要求電力値W1が最大電力値以下であり且つ最小電力値以上である場合にはステップn−4に進行し、暫定電流I1を算出する。かかる暫定電流I1は、例えば算出時の発電・燃焼室16内の温度を検出し、かかる温度における電流−電圧特性に従って算出することができる。或いは、所定算出式を予め設定しておいて、かかる算出式に基づいて算出することもできる。上記ステップn−2において、要求電力値W1が最大電力値を超えている場合にはステップn−5に進行し、要求電力値W1を最大電力値に変更してステップn−4に進行する。また、上記ステップn−3において要求電力値W1が最小電力値未満の場合にはステップn−6に進行し、要求電力値W1を最小電力値に変更してステップn−4に進行する。   Continuing the description with reference to the flowchart shown in FIG. 6, in step n-1, it is determined whether or not the required power amount W1 has fluctuated. The initial required power value when the normal operation state is started and the power generation control is started can be set in advance. When the required power amount W1 fluctuates beyond a predetermined threshold value, the process proceeds to step n-2, and it is determined whether or not the required power value W1 is less than or equal to a preset maximum power value according to the power generation system capability. . If the required power value W1 is less than or equal to the maximum power value, the process proceeds to step n-3, and it is determined whether or not the required power value W1 is greater than or equal to a minimum power value set in advance according to the capacity of the power generation system. The When the required power value W1 is not more than the maximum power value and not less than the minimum power value, the process proceeds to step n-4 to calculate the provisional current I1. The provisional current I1 can be calculated, for example, by detecting the temperature in the power generation / combustion chamber 16 at the time of calculation and according to the current-voltage characteristics at the temperature. Alternatively, a predetermined calculation formula can be set in advance and the calculation can be performed based on the calculation formula. If the required power value W1 exceeds the maximum power value in step n-2, the process proceeds to step n-5, the required power value W1 is changed to the maximum power value, and the process proceeds to step n-4. If the required power value W1 is less than the minimum power value in step n-3, the process proceeds to step n-6, the required power value W1 is changed to the minimum power value, and the process proceeds to step n-4.

上記ステップn−4において暫定電流値I1を算出するとステップn−7に進行する。
ステップn−7においては、暫定電流値I1が現在の実効電流値I2を越えているか否かが判別される。暫定電流値I1が実効電流値I2未満の場合にはステップn−8に進行し、暫定電流値I1と実効電流値I2との差に応じて燃料ガス供給量を減少せしめる。かかる燃料ガス供給量の減少は、流量制御手段52を操作して被改質ガスの供給量を減少せしめると共に流量制御手段72を操作して上水の供給量を減少せしめることによって遂行することができる。上記ステップn−7において暫定電流値I1が実効電流値I2を超えている場合にはステップn−9に進行し、暫定電流値I1と実効電流値I2との差に応じて燃料ガス供給量を増大せしめる。かかる燃料ガス供給量の増大は、流量制御手段52を操作して被改質ガスの供給量を増大せしめると共に流量制御手段72を操作して上水の供給量を増大せしめることによって遂行することができる。ステップn−8或いはn−9に続いてステップn−10に進行し、酸素含有ガス供給量を所要値に設定する。かかる酸素含有ガス供給量の設定は、暫定電流値I1に基づいて予め設定した算出式から酸素含有ガス供給量を算出し、そして流量制御手段78を操作して酸素含有ガス供給量を増大又は減少せしめて所要算出値にせしめることによって遂行することができる。所望ならば、酸素含有ガス供給量の設定を、燃料ガス供給量の設定と同様に、暫定電流値I1と実効電流値I2との差に応じて設定することもできる。また、燃料ガス供給量の設定を、暫定電流値I1に基づいて予め設定した算出式から燃料ガス供給量を算出し、かかる算出値に基づいて設定することもできる。
When the provisional current value I1 is calculated in step n-4, the process proceeds to step n-7.
In step n-7, it is determined whether or not the provisional current value I1 exceeds the current effective current value I2. When the provisional current value I1 is less than the effective current value I2, the process proceeds to step n-8, and the fuel gas supply amount is decreased according to the difference between the provisional current value I1 and the effective current value I2. Such reduction of the fuel gas supply amount can be achieved by operating the flow rate control means 52 to reduce the supply amount of the reformed gas and operating the flow rate control means 72 to reduce the supply amount of clean water. it can. If the provisional current value I1 exceeds the effective current value I2 in step n-7, the process proceeds to step n-9, and the fuel gas supply amount is set according to the difference between the provisional current value I1 and the effective current value I2. Increase . Such an increase in the fuel gas supply amount can be achieved by operating the flow rate control means 52 to increase the supply amount of the reformed gas and operating the flow rate control means 72 to increase the supply amount of clean water. it can. Progressing to step n-10 following step n-8 or n-9, the oxygen-containing gas supply amount is set to a required value. The oxygen-containing gas supply amount is set by calculating the oxygen-containing gas supply amount from a preset calculation formula based on the provisional current value I1, and operating the flow rate control means 78 to increase or decrease the oxygen-containing gas supply amount. This can be accomplished by letting it at least the required calculated value. If desired, the oxygen-containing gas supply amount can be set according to the difference between the provisional current value I1 and the effective current value I2, similarly to the setting of the fuel gas supply amount. Alternatively, the fuel gas supply amount can be set based on a calculated value obtained by calculating the fuel gas supply amount from a preset calculation formula based on the provisional current value I1.

次いで、ステップn−11に進行し、実効電流値Iと実効電圧値とに基いて実効電力値W2を算出する。しかる後にステップn−12に進行し、実効電力値W2と要求電力値W1との差が所定範囲α未満であるか否かが判別される。実効電力値W2と要求電力値W1との差が所定範囲α未満である場合には、上記ステップn−1に戻る。実効電力値W2と要求電力値W1との差が所定範囲α以上である場合にはステップn−13に進行し、実効電力値W2が要求電力値W1よりも所定範囲α以上大きいか否かが判別される。そして、実効電力値W2が要求電力値W1よりも所定範囲α以上大きい場合にはステップn−14に進行し、暫定電流値I1を所定値βだけ低減せしめて上記ステップn−7に戻る。所定値βは燃料電池システムの特性に応じて予め設定することができる。上記ステップn−13において実効電力値W2が要求電力値W1よりも所定範囲α以上大きくない、従って実効電力値W2が要求電力値W1よりも所定範囲α以上小さい場合にはステップn−15に進行し、暫定電流値I1を所定値βだけ増大せしめて上記ステップn−7に戻る。 Then, proceed to step n-11, to calculate the effective power value W2 on the basis of the effective current value I 2 and the effective voltage value. Thereafter, the routine proceeds to step n-12, where it is determined whether or not the difference between the effective power value W2 and the required power value W1 is less than a predetermined range α. When the difference between the effective power value W2 and the required power value W1 is less than the predetermined range α, the process returns to step n-1. If the difference between the effective power value W2 and the required power value W1 is greater than or equal to the predetermined range α, the process proceeds to step n-13, and whether or not the effective power value W2 is greater than the required power value W1 by the predetermined range α or not. Determined. When the effective power value W2 is greater than the required power value W1 by a predetermined range α or more, the process proceeds to step n-14, the provisional current value I1 is reduced by the predetermined value β, and the process returns to step n-7. The predetermined value β can be set in advance according to the characteristics of the fuel cell system. If the effective power value W2 is not larger than the required power value W1 by the predetermined range α or more in the step n-13, the process proceeds to step n-15 if the effective power value W2 is smaller than the required power value W1 by the predetermined range α or more. Then, the provisional current value I1 is increased by the predetermined value β, and the process returns to step n-7.

上述した実施形態においては、要求電力値に基づいて暫定電流値を算出し、かかる暫定電流値を実効電流値と比較して発電を制御しているが、所望ならば、要求電力値に基づいて暫定電圧値を算出し、かかる暫定電圧値を実効電圧値と比較して発電を制御することもできる。   In the embodiment described above, the provisional current value is calculated based on the required power value, and power generation is controlled by comparing the provisional current value with the effective current value. It is also possible to calculate the provisional voltage value and compare the provisional voltage value with the effective voltage value to control power generation.

本発明に従って構成された燃料電池システムにおける主要構成要素を簡略に示すブロック線図。1 is a block diagram schematically showing main components in a fuel cell system configured according to the present invention. 図1の燃料電池システムにおける燃料電池組立体を一部を省略して簡略に図示する断面図。FIG. 2 is a cross-sectional view schematically showing the fuel cell assembly in the fuel cell system of FIG. 図2の燃料電池組立体に配設されている燃料電池スタックを示す断面図。FIG. 3 is a cross-sectional view showing a fuel cell stack disposed in the fuel cell assembly of FIG. 2. 図1の燃料電池システムにおける電気的構成要素を簡略に図示するブロック線図。FIG. 2 is a block diagram schematically illustrating electrical components in the fuel cell system of FIG. 1. 図1の燃料電池システムにおける発電制御関連構成を簡略に図示するブロック線図。FIG. 2 is a block diagram schematically illustrating a configuration related to power generation control in the fuel cell system of FIG. 1. 図1の燃料電池システムにおける発電制御様式を示すフローチャート。The flowchart which shows the electric power generation control style in the fuel cell system of FIG.

符号の説明Explanation of symbols

6:燃料電池組立体
8:ハウジング
16:発電・燃焼室
20a、20b、20c:燃料電池スタック
22:燃料電池
42:燃料ガス供給手段
44:酸素含有ガス供給手段
48:被改質ガス供給源
52:流量制御手段(燃料ガス供給量調節手段)
54:改質手段
56:気化手段
64:水供給源
72:流量制御手段(燃料ガス供給量調節手段)
78:流量制御手段(酸素含有ガス供給量調節手段)
110:発電制御手段
6: Fuel cell assembly 8: Housing 16: Power generation / combustion chambers 20a, 20b, 20c: Fuel cell stack 22: Fuel cell 42: Fuel gas supply means 44: Oxygen-containing gas supply means 48: Reformed gas supply source 52 : Flow rate control means (fuel gas supply amount adjustment means)
54: reforming means 56: vaporizing means 64: water supply source 72: flow rate control means (fuel gas supply amount adjusting means)
78: Flow rate control means (oxygen-containing gas supply amount adjustment means)
110: Power generation control means

Claims (2)

複数個の燃料電池を含む燃料電池組立体と、該燃料電池組立体に燃料ガスを供給するための、燃料ガス供給量調節手段を含む燃料ガス供給手段と、該燃料電池組立体に酸素含有ガスを供給するための、酸素含有ガス供給量調節手段を含む酸素含有ガス供給手段と、発電制御手段とを具備する、燃料電池システムにおいて、
該発電制御手段は、
(a)要求電力値が変動した場合、該要求電力値に基いて暫定電流値又は暫定電圧値を算出し、
(b)該暫定電流値と実効電流値又は該暫定電圧値と実効電圧値とを比較し、該暫定電流値が該実効電流値よりも許容誤差を超えて小さい場合又は該暫定電圧値が該実効電圧値よりも許容誤差を超えて小さい場合には、該暫定電流値と実効電流値との差又は該暫定電圧値と実効電圧値との差に基づいて、該燃料ガス供給量調節手段を制御して燃料ガス供給量を減少し且つ該酸素含有ガス供給量調節手段を制御して酸素含有ガス供給量を設定し、該暫定電流値が該実効電流値よりも許容誤差を超えて大きい場合又は該暫定電圧値が該実効電圧値よりも許容誤差を超えて大きい場合には、該暫定電流値と実効電流値との差又は該暫定電圧値と実効電圧値との差に基づいて、該燃料ガス供給量調節手段を制御して燃料ガス供給量を増大し且つ該酸素含有ガス供給量調節手段を制御して酸素含有ガス供給量を設定し、該燃料ガス供給量調節手段及び該酸素含有ガス供給量調節手段を制御して燃料ガス供給量及び酸素含有ガス供給量を変更した後の実効電力値が要求電力値よりも所定値以上大きい場合には該暫定電流値又は該暫定電圧値を所定値だけ減少せしめ、該実効電力値が要求電力値よりも所定値以上小さい場合には該暫定電流値又は該暫定電圧値を所定値だけ増大せしめる該(b)を繰り返す手段であり、該要求電力値が所定最小電力値以下の場合には、該要求電力値を該最小電力値として該暫定電流値又は暫定電圧値を算出する、ことを特徴とする燃料電池システム。
A fuel cell assembly including a plurality of fuel cells, a fuel gas supply means including a fuel gas supply amount adjusting means for supplying fuel gas to the fuel cell assembly, and an oxygen-containing gas in the fuel cell assembly In the fuel cell system, comprising: an oxygen-containing gas supply means including an oxygen-containing gas supply amount adjusting means, and a power generation control means.
The power generation control means includes
(A) When the required power value fluctuates, a temporary current value or a temporary voltage value is calculated based on the required power value,
(B) The provisional current value and the effective current value or the provisional voltage value and the effective voltage value are compared, and when the provisional current value is smaller than the effective current value by an allowable error or the provisional voltage value is If the effective voltage value is smaller than the allowable error, the fuel gas supply amount adjusting means is adjusted based on the difference between the provisional current value and the effective current value or the difference between the provisional voltage value and the effective voltage value. When the fuel gas supply amount is reduced by control and the oxygen-containing gas supply amount adjusting means is controlled to set the oxygen-containing gas supply amount, and the provisional current value is larger than the effective current value and exceeds the allowable error Or when the provisional voltage value is larger than the effective voltage value exceeding an allowable error, based on the difference between the provisional current value and the effective current value or the difference between the provisional voltage value and the effective voltage value, The fuel gas supply amount adjusting means is controlled to increase the fuel gas supply amount and the oxygen Yu gas supply amount regulation means controlled by setting the oxygen-containing gas supply amount, the fuel gas supply amount regulation means and the fuel gas supply amount by controlling the oxygen-containing gas supply amount regulation means and an oxygen-containing gas supply amount When the changed effective power value is larger than the required power value by a predetermined value or more, the provisional current value or the provisional voltage value is decreased by a predetermined value, and the effective power value is smaller than the required power value by a predetermined value or more. In this case, it is means for repeating the step (b) of increasing the provisional current value or the provisional voltage value by a predetermined value. When the required power value is not more than a predetermined minimum power value, the required power value is reduced to the minimum value. A fuel cell system, wherein the provisional current value or provisional voltage value is calculated as a power value.
該要求電力値が所定最大電力値以上の場合には、該要求電力値を該最大電力値として該暫定電流値又は該暫定電圧値を算出する、請求項1記載の燃料電池システム。   2. The fuel cell system according to claim 1, wherein when the required power value is equal to or greater than a predetermined maximum power value, the provisional current value or the provisional voltage value is calculated using the request power value as the maximum power value.
JP2004095037A 2004-03-29 2004-03-29 Fuel cell system Expired - Fee Related JP5156171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095037A JP5156171B2 (en) 2004-03-29 2004-03-29 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095037A JP5156171B2 (en) 2004-03-29 2004-03-29 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2005285433A JP2005285433A (en) 2005-10-13
JP5156171B2 true JP5156171B2 (en) 2013-03-06

Family

ID=35183601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095037A Expired - Fee Related JP5156171B2 (en) 2004-03-29 2004-03-29 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5156171B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179886A (en) * 2005-12-28 2007-07-12 Nippon Oil Corp Fuel cell system for coping with emergency
JP2008210629A (en) * 2007-02-26 2008-09-11 Kyocera Corp Fuel cell system
JP2009266541A (en) 2008-04-24 2009-11-12 Nippon Oil Corp Method for operating indirect internal reforming solid oxide fuel cell system
KR20110137399A (en) 2009-04-24 2011-12-22 쿄세라 코포레이션 Fuel cell device
JP2012214221A (en) * 2012-05-11 2012-11-08 Jx Nippon Oil & Energy Corp Safety operation method of emergency time coping type fuel cell system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284065A (en) * 1985-06-11 1986-12-15 Toshiba Corp Fuel cell power generating system
JPH0458463A (en) * 1990-06-25 1992-02-25 Fuji Electric Co Ltd Output control device for fuel cell power generating system
JP4438232B2 (en) * 2001-01-26 2010-03-24 株式会社エクォス・リサーチ FUEL CELL DEVICE AND CONTROL METHOD FOR FUEL CELL DEVICE
JP2003223914A (en) * 2002-01-30 2003-08-08 Toshiba Corp Fuel cell power generator

Also Published As

Publication number Publication date
JP2005285433A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4906242B2 (en) How to shut down the fuel cell
JP4585218B2 (en) Fuel cell assembly
JP6247379B2 (en) Fuel cell device
JP5258180B2 (en) Solid electrolyte fuel cell system
JP4750374B2 (en) Operation method of fuel cell structure
JP4745618B2 (en) Operation method of fuel cell structure
JP5980144B2 (en) Power generation system, power generation system operation method, and control device
JP2012079410A (en) Fuel cell device
JPWO2015012372A1 (en) Hybrid device and hybrid system
JP5208417B2 (en) Fuel cell system
US8765314B2 (en) Fuel cell system and method for stopping operation of fuel cell system
JP5156171B2 (en) Fuel cell system
JP2003109634A (en) Fuel cell system and operation method of fuel cell
JP5748055B2 (en) Solid oxide fuel cell
JP6239229B2 (en) Fuel cell system and fuel cell operating method
JP4814497B2 (en) Fuel cell
JP2004335166A (en) Solid oxide fuel cell
JP5440751B2 (en) Fuel cell system
JP5565759B2 (en) Solid oxide fuel cell
JP2011076942A (en) Solid oxide fuel cell
JP6080090B2 (en) Solid oxide fuel cell
JP5748054B2 (en) Solid oxide fuel cell
JP5926138B2 (en) Fuel cell system
JP2004288374A (en) Solid electrolyte fuel cell assembly
JPH09283165A (en) Operation method and operation device for fuel cell power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees