JP5155142B2 - Paper container - Google Patents

Paper container Download PDF

Info

Publication number
JP5155142B2
JP5155142B2 JP2008333618A JP2008333618A JP5155142B2 JP 5155142 B2 JP5155142 B2 JP 5155142B2 JP 2008333618 A JP2008333618 A JP 2008333618A JP 2008333618 A JP2008333618 A JP 2008333618A JP 5155142 B2 JP5155142 B2 JP 5155142B2
Authority
JP
Japan
Prior art keywords
laminate
layer
gas barrier
compound
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008333618A
Other languages
Japanese (ja)
Other versions
JP2010155614A (en
Inventor
学 柴田
竜也 尾下
航 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2008333618A priority Critical patent/JP5155142B2/en
Publication of JP2010155614A publication Critical patent/JP2010155614A/en
Application granted granted Critical
Publication of JP5155142B2 publication Critical patent/JP5155142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cartons (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、ガスバリア性に優れる紙容器に関する。   The present invention relates to a paper container excellent in gas barrier properties.

熱接着性や耐水性などを有する低密度ポリエチレンを紙層上に積層した積層体が、紙容器の製造に使用されている。レトルト殺菌処理が施される場合、低密度ポリエチレンの代わりに、耐熱性が高く熱接着性を有する耐熱性ポリオレフィン(たとえば、線状低密度ポリエチレン系樹脂、高密度ポリエチレン系樹脂およびポリプロピレン系樹脂等)が用いられる。   A laminate in which low-density polyethylene having thermal adhesiveness and water resistance is laminated on a paper layer is used for manufacturing a paper container. When retort sterilization is performed, instead of low-density polyethylene, heat-resistant polyolefin with high heat resistance and heat adhesion (for example, linear low-density polyethylene resin, high-density polyethylene resin, and polypropylene resin) Is used.

紙容器にガスバリア性が要求される場合、ガスバリア層として、アルミニウム箔、酸化アルミニウム・コーティング、シリカ・コーティング、金属化延伸ポリエステル、金属化延伸ポリプロピレン、エチレン/ビニルアルコール共重合体、ポリビニルアルコールを包含する積層材が特許文献1に記載されている。   When gas barrier properties are required for paper containers, the gas barrier layer includes aluminum foil, aluminum oxide coating, silica coating, metallized stretched polyester, metallized stretched polypropylene, ethylene / vinyl alcohol copolymer, polyvinyl alcohol. A laminated material is described in Patent Document 1.

しかし、エチレン/ビニルアルコール共重合体、ポリビニルアルコール等をガスバリア層として使用した積層体では、湿潤状態ではガスバリア性が低下するため、レトルト処理のような熱水処理が施された場合に、充分なガスバリア性が発揮されない傾向がある。   However, in a laminate using an ethylene / vinyl alcohol copolymer, polyvinyl alcohol or the like as a gas barrier layer, the gas barrier property is lowered in a wet state, so that it is sufficient when a hot water treatment such as a retort treatment is performed. There is a tendency that gas barrier properties are not exhibited.

また、アルミニウム箔層、酸化アルミニウム・コーティング層、シリカ・コーティング層、金属化延伸ポリエステル層、および金属化延伸ポリプロピレン層は、折り曲げ加工に対して充分な耐屈曲性を有さない。そのため、これらの層をガスバリア層として用いた積層体は、紙容器の製造工程などにおいてピンホールが発生し易く、ガスバリア性が損なわれ易いという問題がある。   In addition, the aluminum foil layer, the aluminum oxide coating layer, the silica coating layer, the metallized stretched polyester layer, and the metallized stretched polypropylene layer do not have sufficient bending resistance to bending. Therefore, a laminate using these layers as a gas barrier layer has a problem in that pinholes are easily generated in a manufacturing process of a paper container and gas barrier properties are easily impaired.

上記問題に対応するため、本件発明者等は、高い酸素バリア性を有する紙容器を提案している(特許文献2)。また、特許文献3には、ガスバリア層の厚さを適度に薄くすることによって、使用時の折り曲げ等によるクラックが発生しにくくなり、高い酸素バリア性が保持されることが開示されている。   In order to deal with the above problem, the present inventors have proposed a paper container having a high oxygen barrier property (Patent Document 2). Patent Document 3 discloses that by appropriately reducing the thickness of the gas barrier layer, cracks due to bending or the like during use are less likely to occur, and high oxygen barrier properties are maintained.

特表平11−508502号公報Japanese National Patent Publication No. 11-508502 特開2006−297925号公報JP 2006-297925 A 特開2002−46208号公報JP 2002-46208 A

しかし、商品の高付加価値化を目的として品質保持期間の更なる延長に対する要望が高まっている。その要望に応えるためには、折り曲げ等に対するガスバリア層の耐久性を高めることが必要である。   However, there is an increasing demand for further extension of the quality retention period for the purpose of increasing the added value of products. In order to meet the demand, it is necessary to enhance the durability of the gas barrier layer against bending and the like.

上記特許文献2に記載の紙容器についても、ガスバリア層を薄くすることによって、折り曲げに対するガスバリア層の耐久性を向上できることが期待される。しかし、特許文献2に記載の紙容器では、ガスバリア層を薄くすると、指数関数的に酸素バリア性が低下することがあった。および容器の作製後の酸素バリア性をより向上させることが求められている。   Also about the paper container of the said patent document 2, it is anticipated that the durability of a gas barrier layer with respect to bending can be improved by making a gas barrier layer thin. However, in the paper container described in Patent Document 2, when the gas barrier layer is thinned, the oxygen barrier property may decrease exponentially. Further, there is a demand for further improving the oxygen barrier property after the production of the container.

紙容器の一例として、内容物を目視するための窓を備える紙容器がある。窓を形成することによって、内容物の保存状態を確認したり、購入者の購買意欲を増進させたりすることができる。窓の部分は紙層が除去されており、ガスバリア層を通して内容物が目視される。そのため、窓付き紙容器では、ガスバリア層の透明性が重要である。しかし、特許文献2に記載の紙容器では、過酷な条件でレトルト処理を行うと、外観が悪くなることがあった。   As an example of a paper container, there is a paper container having a window for viewing contents. By forming the window, the storage state of the contents can be confirmed, and the purchase intention of the purchaser can be promoted. The window layer has the paper layer removed, and the contents can be seen through the gas barrier layer. Therefore, in the paper container with a window, the transparency of the gas barrier layer is important. However, in the paper container described in Patent Document 2, when the retort process is performed under severe conditions, the appearance may be deteriorated.

このような状況において、本発明は、折り曲げ加工やレトルト処理を行っても酸素バリア性の低下が少なく、レトルト処理後も外観が良好な紙容器を提供することを目的の1つとする。   In such a situation, an object of the present invention is to provide a paper container that has little deterioration in oxygen barrier properties even after performing a bending process or a retort process and that has a good appearance even after the retort process.

上記目的を達成すべく鋭意検討した結果、本発明者らは、特定のガスバリア性積層体を用いることによって上記目的を達成できることを見出した。本発明はこの新たな知見に基づくものである。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by using a specific gas barrier laminate. The present invention is based on this new finding.

本発明の紙容器は、ガスバリア性積層体を用いて形成された紙容器である。前記ガスバリア性積層体は、紙層と、前記紙層に積層された少なくとも1つのガスバリア性を有する層とを含む。そのガスバリア性を有する層は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)とを含む組成物からなる。前記化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含む。前記重合体(X)の前記官能基に含まれる−COO−基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されている。前記重合体(X)の前記官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されている。前記組成物において、[前記化合物(P)に含まれるアミノ基の当量]/[前記重合体(X)の前記官能基に含まれる−COO−基の当量]の比が0.2/100〜20.0/100の範囲にある。   The paper container of the present invention is a paper container formed using a gas barrier laminate. The gas barrier laminate includes a paper layer and at least one gas barrier property layer laminated on the paper layer. The layer having the gas barrier property includes a hydrolysis condensate of at least one compound (L) containing a hydrolyzable characteristic group, and at least one functional group selected from a carboxyl group and a carboxylic anhydride group. It consists of a composition containing polymer (X) to contain. The compound (L) includes at least one compound (A) containing a metal atom to which a hydrolyzable characteristic group is bonded. At least a part of —COO— group contained in the functional group of the polymer (X) is neutralized and / or reacted with a compound (P) containing two or more amino groups. At least a part of the —COO— group contained in the functional group of the polymer (X) is neutralized with a divalent or higher valent metal ion. In the composition, a ratio of [equivalent of amino group contained in the compound (P)] / [equivalent of -COO-group contained in the functional group of the polymer (X)] is 0.2 / 100 to It is in the range of 20.0 / 100.

本発明の紙容器は、折り曲げ加工やレトルト処理を行っても酸素バリア性の低下が少ない。また、レトルト処理後もガスバリア層の透明性が良好であるため、窓付き容器に好ましく用いられる。   The paper container of the present invention has little decrease in oxygen barrier properties even when bending or retorting is performed. Moreover, since the transparency of the gas barrier layer is good even after the retort treatment, it is preferably used for a container with a window.

以下、本発明の実施の形態について説明する。なお、以下の説明において特定の機能を発現する物質として具体的な化合物を例示する場合があるが、本発明はこれに限定されない。また、例示される材料は、特に記載がない限り、単独で用いてもよいし、組み合わせて用いてもよい。   Embodiments of the present invention will be described below. In the following description, a specific compound may be exemplified as a substance that exhibits a specific function, but the present invention is not limited to this. In addition, the materials exemplified may be used alone or in combination unless otherwise specified.

[紙容器]
本発明の紙容器は、特定の積層体(以下、「ガスバリア性積層体」という場合がある)を用いて形成される。すなわち、本発明の紙容器はガスバリア性積層体を含む。なお、紙容器のすべてがガスバリア性積層体を用いて形成されてもよいし、一部がガスバリア性積層体以外の材料によって形成されていてもよい。紙容器を展開したときの面積のたとえば50%以上、60%以上、70%以上、80%以上、90%以上、または100%には、ガスバリア性積層体が用いられる。
[Paper container]
The paper container of the present invention is formed using a specific laminate (hereinafter sometimes referred to as “gas barrier laminate”). That is, the paper container of the present invention includes a gas barrier laminate. Note that all of the paper containers may be formed using a gas barrier laminate, or a part thereof may be formed of a material other than the gas barrier laminate. For example, the gas barrier laminate is used for 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% of the area when the paper container is developed.

ガスバリア性積層体は、紙層と、紙層に積層された少なくとも1つのガスバリア性を有する層(以下、「ガスバリア層」という場合がある)とを含む。   The gas barrier laminate includes a paper layer and at least one gas barrier property layer (hereinafter sometimes referred to as “gas barrier layer”) laminated on the paper layer.

本発明の紙容器の種類は特に限定されない。本発明の紙容器は、例えば、シングル・ボードタイプのゲーベル・トップ型、レンガ(ブリック)型、直方体型、円錐型の紙容器であってもよい。また、本発明の紙容器は、カップタイプの紙容器、スパイラルタイプの紙容器、インサート成形タイプの紙容器であってもよい。   The kind of the paper container of the present invention is not particularly limited. The paper container of the present invention may be, for example, a single board type gobber top type, brick (brick) type, rectangular parallelepiped type, or conical type paper container. The paper container of the present invention may be a cup type paper container, a spiral type paper container, or an insert molding type paper container.

ガスバリア性積層体の基材は紙層であってもよい。あるいは、ガスバリア性積層体は、ガスバリア層が積層される基材を、紙層とは別に含んでもよい。その場合、ガスバリア性積層体は、紙層と、基材と、基材に積層された少なくとも1つのガスバリア層とを含む。その場合、紙層には、基材およびガスバリア層が積層される。   The base material of the gas barrier laminate may be a paper layer. Alternatively, the gas barrier laminate may include a substrate on which the gas barrier layer is laminated separately from the paper layer. In that case, the gas barrier laminate includes a paper layer, a base material, and at least one gas barrier layer laminated on the base material. In that case, a base material and a gas barrier layer are laminated | stacked on a paper layer.

[紙層]
ガスバリア性積層体を構成する紙層は、保形性を維持する層である。紙層には、たとえば、白板紙、マニラボール、ミルクカートン原紙、カップ原紙、アイボリー紙等を使用できる。
[Paper layer]
The paper layer constituting the gas barrier laminate is a layer that maintains shape retention. For the paper layer, for example, white paperboard, Manila ball, milk carton base paper, cup base paper, ivory paper, etc. can be used.

[耐熱性ポリオレフィン層]
ガスバリア性積層体は、耐熱性ポリオレフィン層を含んでもよい。耐熱性ポリオレフィン層に用いられる樹脂としては、線状低密度ポリエチレン系樹脂、高密度ポリエチレン系樹脂およびポリプロピレン系樹脂が挙げられる。耐熱性ポリオレフィン層の融点は、100℃以上、好ましくは120℃以上、さらに好ましくは130℃以上である。ポリプロピレンは、耐熱性が高い点で好ましい。ポリプロピレンは、ポリプロピレンのホモポリマーであってもよいし、プロピレンと1種類以上の他のモノマーが共重合されたランダムコポリマーやブロックコポリマーであってもよいし、ポリプロピレンに1種類以上の他のモノマーがグラフト重合されたポリマーであってもよい。また、ポリプロピレンの立体規則性に限定はなく、アイソタクティック、アタクチック、シンジオタクチックなどのいずれであってもよい。
[Heat-resistant polyolefin layer]
The gas barrier laminate may include a heat resistant polyolefin layer. Examples of the resin used for the heat resistant polyolefin layer include a linear low density polyethylene resin, a high density polyethylene resin, and a polypropylene resin. The melting point of the heat-resistant polyolefin layer is 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher. Polypropylene is preferable because of its high heat resistance. Polypropylene may be a homopolymer of polypropylene, a random copolymer or a block copolymer obtained by copolymerizing propylene and one or more other monomers, or one or more other monomers in polypropylene. It may be a graft polymerized polymer. Further, the stereoregularity of polypropylene is not limited, and any of isotactic, atactic, syndiotactic and the like may be used.

プロピレンと共重合してもよいモノマーとしては、エチレン、1−ブテン、1−ペンタン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、2,2,4−トリメチルペンテン等が挙げられる。   Monomers that may be copolymerized with propylene include ethylene, 1-butene, 1-pentane, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 3-methyl- Examples include 1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2,2,4-trimethylpentene, and the like.

ポリプロピレンにグラフト重合されてもよいモノマーとしては、アクリル酸、メタアクリル酸、メタクリル酸グリシジル、アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、マレイン酸ジエチル、マレイン酸モノエチル、マレイン酸ジ−n−ブチル、マレイン酸、マレイン酸無水物、フマル酸、イタコン酸、イタコン酸無水物、5−ノルボルネン−2,3−無水物、シトラコン酸、シトラコン酸無水物、クロトン酸、クロトン酸無水物、アクリロニトリル、メタクリロニトリル、アクリル酸ナトリウム、アクリル酸カルシウム、アクリル酸マグネシウムなどが挙げられる。   Monomers that may be graft polymerized to polypropylene include acrylic acid, methacrylic acid, glycidyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diethyl maleate, monoethyl maleate, di-n maleate -Butyl, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, 5-norbornene-2,3-anhydride, citraconic acid, citraconic anhydride, crotonic acid, crotonic acid anhydride, acrylonitrile Methacrylonitrile, sodium acrylate, calcium acrylate, magnesium acrylate and the like.

ガスバリア性積層体の製造において、耐熱性ポリオレフィン層(たとえば、無延伸耐熱性ポリオレフィンフィルムまたは延伸耐熱性ポリオレフィンフィルム)と他のフィルムとを、周知の方法(ドライラミネーション法、ウエットラミネーション法、ホットメルトラミネーション法等)によって貼り合わせてもよい。また、周知のTダイ押出し法等によって、他のフィルム上に耐熱性ポリオレフィン層を形成してもよい。また、耐熱性ポリオレフィン層と他の層との間に、必要に応じて接着層を配置してもよい。接着層は、アンカーコート剤、接着剤、接着性樹脂などを用いて形成される。耐熱性ポリオレフィン層の厚さは、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、10μm〜200μmの範囲にあることが好ましく、20μm〜150μmの範囲にあることがより好ましい。   In the production of a gas barrier laminate, a heat-resistant polyolefin layer (for example, an unstretched heat-resistant polyolefin film or a stretched heat-resistant polyolefin film) and another film are combined with a known method (dry lamination method, wet lamination method, hot melt lamination). May be attached by a method, etc.). Moreover, you may form a heat resistant polyolefin layer on another film by the well-known T-die extrusion method etc. Moreover, you may arrange | position an adhesive layer between a heat resistant polyolefin layer and another layer as needed. The adhesive layer is formed using an anchor coat agent, an adhesive, an adhesive resin, or the like. The thickness of the heat-resistant polyolefin layer is preferably in the range of 10 μm to 200 μm, more preferably in the range of 20 μm to 150 μm, from the viewpoint of mechanical toughness, impact resistance, puncture resistance, and the like.

[ガスバリア層]
ガスバリア層は、特定の組成物からなる。その組成物は、化合物(L)の加水分解縮合物と、重合体(X)とを含む組成物からなる。化合物(L)は、加水分解性を有する特性基を含有する少なくとも1種の化合物であり、典型的には、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物である。重合体(X)は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体である。以下、重合体(X)に含まれる、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を「官能基(F)」という場合がある。重合体(X)の官能基(F)に含まれる−COO−基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)で中和および/または反応されている。さらに官能基(F)に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されている。換言すれば、上記官能基の少なくとも一部が2価以上の金属イオンと塩を構成している。上記組成物において、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる−COO−基の当量]の比は、0.2/100〜20.0/100の範囲にある。なお、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる−COO−基の当量]は、「化合物(P)に含まれるアミノ基のモル数]/[重合体(X)の官能基に含まれる−COO−基のモル数]と読み替えることが可能である。
[Gas barrier layer]
The gas barrier layer is made of a specific composition. The composition consists of a composition containing the hydrolysis condensate of compound (L) and polymer (X). The compound (L) is at least one compound containing a hydrolyzable characteristic group, and is typically at least one compound containing a metal atom to which the hydrolyzable characteristic group is bonded. . The polymer (X) is a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group. Hereinafter, at least one functional group selected from a carboxyl group and a carboxylic anhydride group contained in the polymer (X) may be referred to as “functional group (F)”. At least a part of —COO— group contained in the functional group (F) of the polymer (X) is neutralized and / or reacted with the compound (P) containing two or more amino groups. Further, at least a part of the —COO— group contained in the functional group (F) is neutralized with a divalent or higher metal ion. In other words, at least a part of the functional group constitutes a salt with a divalent or higher valent metal ion. In the composition, the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO- group contained in functional group of polymer (X)] is 0.2 / 100 to 20. It is in the range of 0/100. In addition, [equivalent of amino group contained in compound (P)] / [equivalent of -COO- group contained in functional group of polymer (X)] is "number of moles of amino group contained in compound (P)". ] / [Number of moles of —COO— group contained in the functional group of the polymer (X)].

ガスバリア層は、基材の少なくとも一方の面に積層されている。ガスバリア層は、基材の片面のみに積層されてもよいし、基材の両面に積層されてもよい。本発明で用いられるガスバリア性積層体は、ガスバリア層以外の層を含んでもよい。   The gas barrier layer is laminated on at least one surface of the substrate. A gas barrier layer may be laminated | stacked only on the single side | surface of a base material, and may be laminated | stacked on both surfaces of a base material. The gas barrier laminate used in the present invention may include layers other than the gas barrier layer.

化合物(L)の加水分解縮合物および重合体(X)が組成物に占める割合は、たとえば50重量%以上、70重量%以上、80重量%以上、90重量%以上、95重量%以上、または98重量%以上である。   The proportion of the hydrolyzed condensate of the compound (L) and the polymer (X) in the composition is, for example, 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 98% by weight or more.

[加水分解縮合物]
ガスバリア層を構成する組成物は、化合物(L)の加水分解縮合物を含む。化合物(L)が加水分解されることによって、化合物(L)の特性基の少なくとも一部が水酸基に置換される。さらに、その加水分解物が縮合することによって、金属原子が酸素を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物となる。ここで、この加水分解・縮合が起こるためには、化合物(L)が加水分解性を有する特性基(官能基)を含有していることが重要であり、それらの基が結合していない場合、加水分解、縮合反応が起こらないか極めて緩慢である。そのため、その場合には本発明の効果を得ることは困難である。なお、Siは、半金属元素に分類される場合があるが、この明細書では、Siを金属として説明する。
[Hydrolysis condensate]
The composition which comprises a gas barrier layer contains the hydrolysis-condensation product of a compound (L). By hydrolyzing the compound (L), at least a part of the characteristic group of the compound (L) is substituted with a hydroxyl group. Furthermore, the hydrolyzate condenses to form a compound in which metal atoms are bonded through oxygen. When this condensation is repeated, it becomes a compound that can be regarded as a metal oxide substantially. Here, in order for this hydrolysis and condensation to occur, it is important that the compound (L) contains a hydrolyzable characteristic group (functional group), and these groups are not bonded. , Hydrolysis and condensation reactions do not occur or are very slow. Therefore, in that case, it is difficult to obtain the effect of the present invention. Si may be classified as a metalloid element, but in this specification, Si is described as a metal.

該加水分解縮合物は、たとえば、公知のゾルゲル法で用いられる手法を用いて特定の原料から製造できる。該原料には、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解・縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものが用いられる。これらの原料は、公知の方法で製造してもよいし、市販されているものを用いてもよい。特に限定はないが、たとえば2〜10個程度の分子が加水分解・縮合することによって得られる縮合物を、原料として用いることができる。具体的には、たとえば、テトラメトキシシランを加水分解・縮合させて、2〜10量体の線状縮合物としたものを原料として用いることができる。   This hydrolysis-condensation product can be manufactured from a specific raw material using the method used by the well-known sol-gel method, for example. The raw materials include compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed / condensed, A compound in which the compound (L) is completely hydrolyzed and partly condensed, or a combination thereof is used. These raw materials may be produced by a known method, or commercially available ones may be used. Although there is no particular limitation, for example, a condensate obtained by hydrolysis and condensation of about 2 to 10 molecules can be used as a raw material. Specifically, for example, a material obtained by hydrolyzing and condensing tetramethoxysilane into a dimer to 10-mer linear condensate can be used as a raw material.

加水分解性を有する特性基の例としては、以下の式(I)のOR1、X1として例示される基が挙げられる。 Examples of the characteristic group having hydrolyzability include groups exemplified as OR 1 and X 1 in the following formula (I).

化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含む。典型的な化合物(A)は、以下の式(I)で表される少なくとも1種の化合物である。
1(OR1q2 p-q-r1 r・・・(I)
[式(I)中、M1はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R1はアルキル基を表す。R2はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X1はハロゲン原子を表す。pはM1の原子価と等しい。qは0〜pの整数を表す。rは0〜pの整数を表す。1≦q+r≦pである。]
The compound (L) includes at least one compound (A) including a metal atom to which a hydrolyzable characteristic group is bonded. A typical compound (A) is at least one compound represented by the following formula (I).
M 1 (OR 1 ) q R 2 pqr X 1 r (I)
[In Formula (I), M 1 represents Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, or Nd. R 1 represents an alkyl group. R 2 represents an alkyl group, an aralkyl group, an aryl group or an alkenyl group. X 1 represents a halogen atom. p is equal to the valence of M 1 . q represents an integer of 0 to p. r represents an integer of 0 to p. 1 ≦ q + r ≦ p. ]

式中、M1は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaおよびNdから選択される原子を表すが、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSi、AlまたはTiである。また、R1が表すアルキル基は、例えばメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などが挙げられ、好ましくは、メチル基またはエチル基である。X2が表すハロゲン原子としては塩素原子、臭素原子、ヨウ素原子などが挙げられ、塩素原子が好ましい。また、R2が表すアルキル基としては、例えばメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−オクチル基などが挙げられ、アラルキル基としては、例えばベンジル基、フェネチル基、トリチル基などが挙げられる。また、R2が表すアリール基としては、例えばフェニル基、ナフチル基、トリル基、キシリル基、メシチル基などが挙げられ、アルケニル基としては、例えばビニル基、アリル基などが挙げられる。 In the formula, M 1 represents an atom selected from Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, and Nd. Of these, Si, Al, Ti or Zr is preferable, and Si, Al or Ti is particularly preferable. Examples of the alkyl group represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, and the like, preferably a methyl group or an ethyl group. is there. Examples of the halogen atom represented by X 2 include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable. Examples of the alkyl group represented by R 2 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, and an n-octyl group. Examples include benzyl group, phenethyl group, and trityl group. In addition, examples of the aryl group represented by R 2 include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, and a mesityl group. Examples of the alkenyl group include a vinyl group and an allyl group.

式(I)で表される化合物の具体例には、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、オクチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、クロロトリメトキシシラン、クロロトリエトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン等のシランアルコキシド;ビニルトリクロロシラン、テトラクロロシラン、テトラブロモシラン等のハロゲン化シラン;チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンメチルトリイソプロポキシド等のアルコキシチタン化合物;テトラクロロチタン等のハロゲン化チタン;アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリイソプロポキシド、アルミニウムメチルジイソプロポキシド、アルミニウムトリブトキシド、ジエトキシアルミニウムクロリド等のアルコキシアルミニウム化合物;ジルコニウムテトラエトキシド、ジルコニウムテトライソプロポキシド、ジルコニウムメチルトリイソプロポキシド等のアルコキシジルコニウム化合物等が挙げられる。式(I)で表される化合物(A)の好ましい例には、テトラメトキシシランおよびテトラエトキシシランが含まれる。   Specific examples of the compound represented by the formula (I) include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, octyltrimethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane. Silane alkoxides such as ethoxysilane, chlorotrimethoxysilane, chlorotriethoxysilane, dichlorodimethoxysilane, dichlorodiethoxysilane, trichloromethoxysilane, and trichloroethoxysilane; halogenated silanes such as vinyltrichlorosilane, tetrachlorosilane, and tetrabromosilane; Alkoxy titanium compounds such as titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, titanium methyltriisopropoxide; Titanium genide; alkoxyaluminum compounds such as aluminum trimethoxide, aluminum triethoxide, aluminum triisopropoxide, aluminum methyldiisopropoxide, aluminum tributoxide, diethoxyaluminum chloride; zirconium tetraethoxide, zirconium tetraisopropoxy And alkoxyzirconium compounds such as zirconium methyltriisopropoxide. Preferred examples of the compound (A) represented by the formula (I) include tetramethoxysilane and tetraethoxysilane.

化合物(L)は、加水分解性を有する特性基と、カルボキシル基との反応性を有する官能基で置換されたアルキル基とが結合している金属原子を含む少なくとも1種の化合物(B)を含んでもよい。典型的な化合物(B)は、以下の式(II)で表される少なくとも1種の化合物である。化合物(B)を含有させることによって、ボイル処理前後やレトルト処理前後における、ガスバリア性積層体の酸素バリア性や透明性などの変化が更に少なくなる。
2(OR3n2 k2 m-n-k・・・(II)
[式(II)中、M2はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R3はアルキル基を表す。X2はハロゲン原子を表す。Z2は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。mはM2の原子価と等しい。nは0〜(m−1)の整数を表す。kは0〜(m−1)の整数を表す。1≦n+k≦(m−1)である。]
Compound (L) comprises at least one compound (B) containing a metal atom in which a hydrolyzable characteristic group and an alkyl group substituted with a functional group having reactivity with a carboxyl group are bonded. May be included. A typical compound (B) is at least one compound represented by the following formula (II). By containing the compound (B), changes such as oxygen barrier properties and transparency of the gas barrier laminate before and after the boil treatment and before and after the retort treatment are further reduced.
M 2 (OR 3 ) n X 2 k Z 2 mnk (II)
[In Formula (II), M 2 represents Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, or Nd. R 3 represents an alkyl group. X 2 represents a halogen atom. Z 2 represents an alkyl group substituted with a functional group having reactivity with a carboxyl group. m is equal to the valence of M 2 . n represents an integer of 0 to (m-1). k represents an integer of 0 to (m−1). 1 ≦ n + k ≦ (m−1). ]

式(II)中、M2は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaおよびNdから選択される原子を表す。M2は、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSiである。また、R3が表すアルキル基としては、例えばメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などが挙げられ、好ましくはメチル基またはエチル基である。X2が表すハロゲン原子としては、例えば塩素原子、臭素原子、ヨウ素原子などが挙げられ、塩素原子が好ましい。また、Z2が有する、カルボキシル基との反応性を有する官能基としては、エポキシ基、アミノ基、水酸基、ハロゲン原子、メルカプト基、イソシアネート基、ウレイド基、オキサゾリン基またはカルボジイミド基などが挙げられ、エポキシ基、アミノ基、イソシアネート基、ウレイド基またはハロゲン原子が好ましく、例えばエポキシ基、アミノ基およびイソシアネート基から選ばれる少なくとも1種がより好ましい。このような官能基で置換されるアルキル基としては、R3について例示したものが挙げられる。 In formula (II), M 2 is selected from Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La and Nd. Represents an atom. M 2 is preferably Si, Al, Ti or Zr, and particularly preferably Si. Examples of the alkyl group represented by R 3 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, and a t-butyl group, preferably a methyl group or an ethyl group. is there. Examples of the halogen atom represented by X 2 include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable. Examples of the functional group having reactivity with a carboxyl group that Z 2 has include an epoxy group, an amino group, a hydroxyl group, a halogen atom, a mercapto group, an isocyanate group, a ureido group, an oxazoline group, or a carbodiimide group. An epoxy group, an amino group, an isocyanate group, a ureido group or a halogen atom is preferred, and for example, at least one selected from an epoxy group, an amino group and an isocyanate group is more preferred. Examples of the alkyl group substituted with such a functional group include those exemplified for R 3 .

式(II)で表される化合物の具体例には、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリクロロシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリクロロシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリクロロシラン、γ−ブロモプロピルトリメトキシシラン、γ−ブロモプロピルトリエトキシシラン、γ−ブロモプロピルトリクロロシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルトリクロロシラン、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルトリクロロシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリクロロシランなどが含まれる。式(II)で表される化合物の好ましい例は、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシランである。   Specific examples of the compound represented by the formula (II) include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrichlorosilane, γ-aminopropyltrisilane. Methoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrichlorosilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltrichlorosilane, γ-bromopropyltrimethoxysilane, γ -Bromopropyltriethoxysilane, γ-bromopropyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropyltrichlorosilane, γ-isocyanatopropyltrimethoxysilane, γ Isocyanatopropyltriethoxysilane, .gamma. isocyanate propyl trichlorosilane, .gamma.-ureidopropyltrimethoxysilane, .gamma.-ureidopropyltriethoxysilane, and the like .gamma. ureidopropyltrimethoxysilane trichlorosilane. Preferred examples of the compound represented by the formula (II) include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane.

化合物(L)が上記式(I)で表される少なくとも1種の化合物(A)と上記式(II)で表される少なくとも1種の化合物(B)とを含む場合、組成物において、[式(I)で表される化合物に由来するM1原子のモル数]/[式(II)で表される化合物に由来するM2原子のモル数]の比が、99.5/0.5〜80.0/20.0の範囲にあることが好ましい。この比が、99.5/0.5より大きくなると、ガスバリア性積層体の耐熱水性が低下する場合がある。また、この比が80.0/20.0より小さくなると、ガスバリア性積層体のガスバリア性が低下する場合がある。この比は、98.0/2.0〜89.9/10.1の範囲にあることがより好ましい。 In the case where the compound (L) includes at least one compound (A) represented by the above formula (I) and at least one compound (B) represented by the above formula (II), The ratio of [number of moles of M 1 atom derived from the compound represented by formula (I)] / [number of moles of M 2 atom derived from the compound represented by formula (II)] was 99.5 / 0. It is preferable that it exists in the range of 5-80.0 / 20.0. When this ratio is larger than 99.5 / 0.5, the hot water resistance of the gas barrier laminate may be lowered. Moreover, when this ratio becomes smaller than 80.0 / 20.0, the gas barrier property of the gas barrier laminate may be deteriorated. This ratio is more preferably in the range of 98.0 / 2.0 to 89.9 / 10.1.

なお、[式(I)で表される化合物に由来するM1原子のモル数]は加水分解縮合物の生成に用いた[式(I)で表される化合物のモル数]に実質的に等しく、[式(II)で表される化合物に由来するM2原子のモル数]は、加水分解縮合物の生成に用いた[式(II)で表される化合物のモル数]に実質的に等しい。そのため、以下の説明では、上記比を、[式(I)で表される化合物のモル数]/[式(II)で表される化合物のモル数]に置き換えて説明する場合がある。 In addition, [the number of moles of M 1 atom derived from the compound represented by formula (I)] is substantially the same as the [number of moles of the compound represented by formula (I)] used for generating the hydrolysis condensate. Equally, [the number of moles of M 2 atom derived from the compound represented by the formula (II)] is substantially equal to the [number of moles of the compound represented by the formula (II)] used for the production of the hydrolysis condensate. be equivalent to. Therefore, in the following description, the ratio may be replaced with [number of moles of compound represented by formula (I)] / [number of moles of compound represented by formula (II)].

化合物(L)に占める、式(I)で表される化合物および式(II)で表される化合物の割合(式(II)で表される化合物を含まない場合には、式(I)で表される化合物の割合)は、たとえば80モル%以上、90モル%以上、95モル%以上、95モル%以上、98モル%以上、99モル%以上、または100モル%である。   Ratio of the compound represented by formula (I) and the compound represented by formula (II) in the compound (L) (in the case where the compound represented by formula (II) is not included, in the formula (I) The proportion of the compound represented) is, for example, 80 mol% or more, 90 mol% or more, 95 mol% or more, 95 mol% or more, 98 mol% or more, 99 mol% or more, or 100 mol%.

化合物(L)の加水分解縮合物において縮合される分子の数は、加水分解・縮合に際して使用する、水の量、触媒の種類や濃度、加水分解縮合を行う温度などによって制御できる。   The number of molecules condensed in the hydrolysis condensate of the compound (L) can be controlled by the amount of water, the type and concentration of the catalyst used at the time of hydrolysis / condensation, the temperature at which the hydrolysis condensation is performed, and the like.

ガスバリア層を構成する組成物では、ガスバリア性積層体のガスバリア性がより良好となる観点から、[化合物(L)に由来する無機成分の重量]/[化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計]の比が20.0/80.0〜80.0/20.0の範囲にあることが好ましく、30.0/70.0〜69.9/30.1の範囲にあることがより好ましい。   In the composition constituting the gas barrier layer, [weight of inorganic component derived from compound (L)] / [weight of organic component derived from compound (L) from the viewpoint of better gas barrier properties of the gas barrier laminate. And the sum of the weight of the organic component derived from the polymer (X)] is preferably in the range of 20.0 / 80.0 to 80.0 / 20.0. 30.0 / 70.0 More preferably, it is in the range of ˜69.9 / 30.1.

化合物(L)に由来する無機成分の重量は、該組成物を調製する際に使用する原料の重量から算出することができる。すなわち、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものなどが完全に加水分解・縮合して金属酸化物になったと仮定し、その金属酸化物の重量を化合物(L)に由来する無機成分の重量とみなす。   The weight of the inorganic component derived from the compound (L) can be calculated from the weight of the raw material used when preparing the composition. That is, compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed, compound (L) Assuming that the product is completely hydrolyzed and partly condensed, or a combination of these, is completely hydrolyzed and condensed into a metal oxide, and the weight of the metal oxide is calculated as compound (L). It is regarded as the weight of the inorganic component derived from.

金属酸化物の重量の算出をより具体的に説明すると、式(I)で表される化合物(A)がR2を含まない場合、それが完全に加水分解・縮合したときには、組成式が、M1p/2で表される化合物となる。また、式(I)で表される化合物(A)がR2を含む場合、それが完全に加水分解・縮合したときには、組成式が、M1(q+r)/22 (p-q-r)で表される化合物となる。この化合物のうちM1(q+r)/2の部分が金属酸化物である。R2については、化合物(L)に由来する有機成分とする。また、化合物(B)についても同様に算出する。このとき、Z2については、化合物(L)に由来する有機成分とする。 More specifically describing the calculation of the weight of the metal oxide, when the compound (A) represented by the formula (I) does not contain R 2 , when it is completely hydrolyzed and condensed, the composition formula is A compound represented by M 1 O p / 2 is obtained. Further, when the compound (A) represented by the formula (I) contains R 2 , when it is completely hydrolyzed and condensed, the composition formula is M 1 O (q + r) / 2 R 2 (pqr ) . Of this compound, the portion of M 1 O (q + r) / 2 is a metal oxide. R 2 is an organic component derived from the compound (L). Moreover, it calculates similarly about a compound (B). At this time, Z 2 is an organic component derived from the compound (L).

なお、金属イオンを含まないイオン(たとえばアンモニウムイオン)によって重合体(X)が中和されている場合、そのイオン(たとえばアンモニウムイオン)の重量も、重合体(X)に由来する有機成分の重量に加えられる。   When the polymer (X) is neutralized by ions not containing metal ions (for example, ammonium ions), the weight of the ions (for example, ammonium ions) is also the weight of the organic component derived from the polymer (X). Added to.

[化合物(P)]
2つ以上のアミノ基を含有する化合物(P)は、化合物(L)および重合体(X)とは異なる化合物である。化合物(P)の具体例には、アルキレンジアミン類、ポリアルキレンポリアミン類、脂環族ポリアミン類、芳香族ポリアミン類、ポリビニルアミン類等が含まれるが、ガスバリア性積層体のガスバリア性がより良好となる観点からアルキレンジアミンが好ましい。
[Compound (P)]
The compound (P) containing two or more amino groups is a compound different from the compound (L) and the polymer (X). Specific examples of the compound (P) include alkylene diamines, polyalkylene polyamines, alicyclic polyamines, aromatic polyamines, polyvinylamines, etc., and the gas barrier property of the gas barrier laminate is better. From the viewpoint of, alkylene diamine is preferable.

化合物(P)の具体例には、ヒドラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルメタン、1,3−ジアミノシクロヘキサン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、キシリレンジアミン、キトサン、ポリアリルアミン、ポリビニルアミン等が含まれる。化合物(P)は、ガスバリア性積層体のガスバリア性がより良好となる観点から、好ましくはエチレンジアミン、プロピレンジアミンおよびキトサンからなる群より選ばれる少なくとも1つであり、たとえばそれらのいずれか1つである。   Specific examples of the compound (P) include hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, diaminodiphenylmethane, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane. Xylylenediamine, chitosan, polyallylamine, polyvinylamine and the like. The compound (P) is preferably at least one selected from the group consisting of ethylenediamine, propylenediamine, and chitosan, for example, from the viewpoint that the gas barrier properties of the gas barrier laminate are improved. .

ガスバリア層を構成する組成物において、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる−COO−基の当量]の比は、0.2/100〜20.0/100の範囲(たとえば0.2/100〜19.4/100の範囲)にある。この範囲では、ガスバリア性積層体が良好なガスバリア性を示す。上記比が0.2/100より小さいと、ガスバリア性積層体の耐熱水性が低くなり、レトルト後のガスバリア性が低下する。一方、上記比が20.0/100より大きいと、ガスバリア性積層体のレトルト処理前後のガスバリア性が低下する。上記比は、前記した理由から、好ましくは1.0/100〜4.9/100の範囲にある。   In the composition constituting the gas barrier layer, the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO-group contained in functional group of polymer (X)] was 0.2 / It exists in the range of 100-20.0 / 100 (for example, the range of 0.2 / 100-19.4 / 100). In this range, the gas barrier laminate exhibits good gas barrier properties. When the ratio is smaller than 0.2 / 100, the hot water resistance of the gas barrier laminate is lowered, and the gas barrier property after retorting is lowered. On the other hand, when the ratio is larger than 20.0 / 100, the gas barrier properties before and after the retort treatment of the gas barrier laminate are deteriorated. The above ratio is preferably in the range of 1.0 / 100 to 4.9 / 100 for the reason described above.

[化合物(Q)]
ガスバリア層を構成する組成物は、2つ以上の水酸基を含有する化合物(Q)を含んでもよい。この構成によれば、ガスバリア性積層体の、伸長後のガスバリア性が向上する。より具体的には、化合物(Q)を添加することによって、ガスバリア性積層体が伸長されてもガスバリア層がダメージを受けにくくなり、その結果、伸長された後でも高いガスバリア性を保持し、印刷、ラミネートなどの加工時のテンションによる伸長、食品が充填された紙容器が落下した時の伸長などが起きた後の状態においても、ガスバリア性積層体のガスバリア性が低下しにくくなる。
[Compound (Q)]
The composition constituting the gas barrier layer may contain a compound (Q) containing two or more hydroxyl groups. According to this configuration, the gas barrier property after elongation of the gas barrier laminate is improved. More specifically, by adding the compound (Q), even if the gas barrier laminate is stretched, the gas barrier layer is less likely to be damaged, and as a result, the gas barrier layer retains high gas barrier properties even after being stretched. The gas barrier property of the gas barrier laminate is hardly lowered even in a state after elongation due to tension at the time of processing such as laminating or elongation when a paper container filled with food is dropped.

化合物(Q)は、化合物(L)および重合体(X)とは異なる化合物である。化合物(Q)には、低分子量の化合物および高分子量の化合物が含まれる。化合物(Q)の好ましい例には、ポリビニルアルコール、ポリ酢酸ビニルの部分けん化物、エチレン−ビニルアルコール共重合体、ポリエチレングリコール、ポリヒドロキシエチル(メタ)アクリレート、でんぷんなどの多糖類、でんぷんなどの多糖類から誘導される多糖類誘導体、といった高分子化合物が含まれる。   Compound (Q) is a compound different from compound (L) and polymer (X). The compound (Q) includes a low molecular weight compound and a high molecular weight compound. Preferred examples of the compound (Q) include polyvinyl alcohol, partially saponified polyvinyl acetate, ethylene-vinyl alcohol copolymer, polyethylene glycol, polyhydroxyethyl (meth) acrylate, polysaccharides such as starch, and starches. Polymer compounds such as polysaccharide derivatives derived from saccharides are included.

[カルボン酸含有重合体(重合体(X))]
ガスバリア層を構成する組成物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物を含む。その重合体(重合体(X))を、以下、「カルボン酸含有重合体」という場合がある。
[Carboxylic acid-containing polymer (polymer (X))]
The composition constituting the gas barrier layer includes a neutralized product of a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group. Hereinafter, the polymer (polymer (X)) may be referred to as a “carboxylic acid-containing polymer”.

カルボン酸含有重合体の中和物は、カルボン酸含有重合体の官能基に含まれる−COO−基の少なくとも一部を2価以上の金属イオンで中和することによって得られる。カルボン酸含有重合体は、重合体1分子中に、2個以上のカルボキシル基または1個以上のカルボン酸無水物基を有する。具体的には、アクリル酸単位、メタクリル酸単位、マレイン酸単位、イタコン酸単位などの、カルボキシル基を1個以上有する構成単位を重合体1分子中に2個以上含有する重合体を用いることができる。また、無水マレイン酸単位や無水フタル酸単位などのカルボン酸無水物の構造を有する構成単位を含有する重合体を用いることもできる。カルボキシル基を1個以上有する構成単位および/またはカルボン酸無水物の構造を有する構成単位(以下、両者をまとめて「カルボン酸含有単位(G)」という場合がある)は、1種類または2種類以上がカルボン酸含有重合体に含まれていてもよい。   The neutralized product of the carboxylic acid-containing polymer can be obtained by neutralizing at least a part of the —COO— group contained in the functional group of the carboxylic acid-containing polymer with a divalent or higher metal ion. The carboxylic acid-containing polymer has two or more carboxyl groups or one or more carboxylic anhydride groups in one polymer molecule. Specifically, a polymer containing two or more structural units having one or more carboxyl groups such as an acrylic acid unit, a methacrylic acid unit, a maleic acid unit, and an itaconic acid unit in one molecule of the polymer is used. it can. Moreover, the polymer containing the structural unit which has the structure of carboxylic anhydrides, such as a maleic anhydride unit and a phthalic anhydride unit, can also be used. One type or two types of structural units having one or more carboxyl groups and / or structural units having a structure of carboxylic anhydride (hereinafter, these may be collectively referred to as “carboxylic acid-containing units (G)”) The above may be contained in the carboxylic acid-containing polymer.

また、カルボン酸含有重合体の全構成単位に占めるカルボン酸含有単位(G)の含有率を10モル%以上とすることによって、ガスバリア性が良好なガスバリア性積層体が得られる。この含有率は、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。なお、カルボン酸含有重合体が、カルボキシル基を1個以上含有する構成単位と、カルボン酸無水物の構造を有する構成単位の両方を含む場合、両者の合計が上記の範囲であればよい。   Moreover, the gas barrier property laminated body with favorable gas barrier property is obtained by making the content rate of the carboxylic acid content unit (G) which occupies for all the structural units of a carboxylic acid containing polymer into 10 mol% or more. The content is more preferably 20 mol% or more, further preferably 40 mol% or more, and particularly preferably 70 mol% or more. In addition, when a carboxylic acid containing polymer contains both the structural unit which contains 1 or more of carboxyl groups, and the structural unit which has a structure of a carboxylic anhydride, the sum total of both should just be said range.

カルボン酸含有重合体が含有していてもよい、カルボン酸含有単位(G)以外の他の構成単位は、特に限定されないが、アクリル酸メチル単位、メタクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸エチル単位、アクリル酸ブチル単位、メタクリル酸ブチル単位等の(メタ)アクリル酸エステル類から誘導される構成単位;ギ酸ビニル単位、酢酸ビニル単位などのビニルエステル類から誘導される構成単位;スチレン単位、p−スチレンスルホン酸単位;エチレン単位、プロピレン単位、イソブチレン単位などのオレフィン類から誘導される構成単位などから選ばれる1種類以上の構成単位を挙げることができる。カルボン酸含有重合体が、2種以上の構成単位を含有する場合、該カルボン酸含有重合体は、交互共重合体の形態、ランダム共重合体の形態、ブロック共重合体の形態、さらにはテーパー型の共重合体の形態のいずれであってもよい。   Other structural units other than the carboxylic acid-containing unit (G) that may be contained in the carboxylic acid-containing polymer are not particularly limited, but are methyl acrylate units, methyl methacrylate units, ethyl acrylate units, methacrylic acid. Structural units derived from (meth) acrylic esters such as ethyl units, butyl acrylate units and butyl methacrylate units; structural units derived from vinyl esters such as vinyl formate units and vinyl acetate units; styrene units, One or more structural units selected from p-styrene sulfonic acid units; structural units derived from olefins such as ethylene units, propylene units, and isobutylene units. When the carboxylic acid-containing polymer contains two or more structural units, the carboxylic acid-containing polymer is in the form of an alternating copolymer, a random copolymer, a block copolymer, or a taper. It may be in the form of a type copolymer.

カルボン酸含有重合体の具体例としては、ポリアクリル酸、ポリメタクリル酸、ポリ(アクリル酸/メタクリル酸)を挙げることができる。カルボン酸含有重合体は、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体であってもよい。また、上記したカルボン酸含有単位(G)以外の他の構成単位を含有する場合の具体例としては、エチレン−無水マレイン酸共重合体、スチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸交互共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体のケン化物などが挙げられる。   Specific examples of the carboxylic acid-containing polymer include polyacrylic acid, polymethacrylic acid, and poly (acrylic acid / methacrylic acid). The carboxylic acid-containing polymer may be at least one polymer selected from polyacrylic acid and polymethacrylic acid. Specific examples in the case of containing other structural units other than the above-described carboxylic acid-containing unit (G) include ethylene-maleic anhydride copolymers, styrene-maleic anhydride copolymers, and isobutylene-maleic anhydride. Examples thereof include an alternating copolymer, an ethylene-acrylic acid copolymer, and a saponified ethylene-ethyl acrylate copolymer.

カルボン酸含有重合体の分子量は特に制限されないが、得られるガスバリア性積層体のガスバリア性が優れる点、および落下衝撃強さなどの力学的物性が優れる点から、数平均分子量が5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることがさらに好ましい。カルボン酸含有重合体の数平均分子量の上限は特に制限がないが、一般的には1,500,000以下である。   The molecular weight of the carboxylic acid-containing polymer is not particularly limited, but the number average molecular weight is 5,000 or more from the viewpoint of excellent gas barrier properties of the resulting gas barrier laminate and excellent mechanical properties such as drop impact strength. Preferably, it is preferably 10,000 or more, and more preferably 20,000 or more. The upper limit of the number average molecular weight of the carboxylic acid-containing polymer is not particularly limited, but is generally 1,500,000 or less.

また、カルボン酸含有重合体の分子量分布も特に制限されるものではないが、ガスバリア性積層体のヘイズなどの表面外観、および後述する溶液(U)の貯蔵安定性などが良好となる観点から、カルボン酸含有重合体の重量平均分子量/数平均分子量の比で表される分子量分布は1〜6の範囲であることが好ましく、1〜5の範囲であることがより好ましく、1〜4の範囲であることがさらに好ましい。   Further, although the molecular weight distribution of the carboxylic acid-containing polymer is not particularly limited, from the viewpoint of improving the surface appearance such as haze of the gas barrier laminate and the storage stability of the solution (U) described later, The molecular weight distribution represented by the weight average molecular weight / number average molecular weight ratio of the carboxylic acid-containing polymer is preferably in the range of 1-6, more preferably in the range of 1-5, and in the range of 1-4. More preferably.

[中和(イオン化)]
カルボン酸含有重合体の中和物は、カルボン酸含有重合体のカルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基(官能基(F))の少なくとも一部を2価以上の金属イオンで中和することによって得られる。換言すれば、この重合体は、2価以上の金属イオンで中和されたカルボキシル基を含む。
[Neutralization (ionization)]
The neutralized product of the carboxylic acid-containing polymer is a divalent or higher-valent metal having at least a part of at least one functional group (functional group (F)) selected from the carboxyl group and carboxylic anhydride group of the carboxylic acid-containing polymer. Obtained by neutralization with ions. In other words, this polymer contains a carboxyl group neutralized with a divalent or higher metal ion.

官能基(F)を中和する金属イオンは2価以上であることが重要である。官能基(F))が未中和または1価のイオンのみによって中和されている場合には、良好なガスバリア性を有する積層体が得られない。2価以上の金属イオンの具体例としてはカルシウムイオン、マグネシウムイオン、2価の鉄イオン、3価の鉄イオン、亜鉛イオン、2価の銅イオン、鉛イオン、2価の水銀イオン、バリウムイオン、ニッケルイオン、ジルコニウムイオン、アルミニウムイオン、チタンイオンなどを挙げることができる。たとえば、2価以上の金属イオンは、カルシウムイオン、マグネシウムイオン、バリウムイオン、亜鉛イオン、鉄イオンおよびアルミニウムイオンからなる群より選ばれる少なくとも1つのイオンであってもよい。   It is important that the metal ion neutralizing the functional group (F) is divalent or higher. When the functional group (F)) is not neutralized or neutralized only by monovalent ions, a laminate having good gas barrier properties cannot be obtained. Specific examples of divalent or higher metal ions include calcium ions, magnesium ions, divalent iron ions, trivalent iron ions, zinc ions, divalent copper ions, lead ions, divalent mercury ions, barium ions, A nickel ion, a zirconium ion, an aluminum ion, a titanium ion, etc. can be mentioned. For example, the divalent or higher valent metal ion may be at least one ion selected from the group consisting of calcium ion, magnesium ion, barium ion, zinc ion, iron ion and aluminum ion.

カルボン酸重合体の官能基(F)に含まれる−COO−基は、たとえば10モル%以上(たとえば15モル%以上)が2価以上の金属イオンで中和されている。カルボン酸含有重合体中のカルボキシル基および/またはカルボン酸無水物基が2価以上の金属イオンで中和されることによって、本発明で用いられるガスバリア性積層体は、良好なガスバリア性を示す。   For example, 10 mol% or more (for example, 15 mol% or more) of the —COO— group contained in the functional group (F) of the carboxylic acid polymer is neutralized with a divalent metal ion or more. When the carboxyl group and / or carboxylic anhydride group in the carboxylic acid-containing polymer is neutralized with a metal ion having a valence of 2 or more, the gas barrier laminate used in the present invention exhibits good gas barrier properties.

なお、カルボン酸無水物基は、−COO−基を2つ含んでいるとみなす。すなわち、aモルのカルボキシル基とbモルのカルボン酸無水物基とが存在する場合、それに含まれる−COO−基は、全体で(a+2b)モルである。官能基(F)に含まれる−COO−基のうち、2価以上の金属イオンで中和されている割合は、好ましくは60モル%以上100モル%以下であり、より好ましくは70モル%以上であり、さらに好ましくは80モル%以上である。中和されている割合を高めることによって、より高いガスバリア性を実現できる。   Note that the carboxylic anhydride group is considered to contain two —COO— groups. That is, when there are a moles of carboxyl groups and b moles of carboxylic anhydride groups, the total number of —COO— groups contained is (a + 2b) moles. The proportion of the -COO- group contained in the functional group (F) that is neutralized with a divalent or higher metal ion is preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol% or more. More preferably, it is 80 mol% or more. By increasing the proportion of neutralization, higher gas barrier properties can be realized.

官能基(F)の中和度(イオン化度)は、ガスバリア性積層体の赤外吸収スペクトルをATR法(全反射測定法)で測定するか、または、ガスバリア性積層体からガスバリア層をかきとり、その赤外吸収スペクトルをKBr法で測定することによって求めることができる。また、蛍光X線測定によるイオン化に用いた金属元素の蛍光X線強度の値によっても求めることができる。   The degree of neutralization (ionization degree) of the functional group (F) is determined by measuring the infrared absorption spectrum of the gas barrier laminate by the ATR method (total reflection measurement method) or scraping the gas barrier layer from the gas barrier laminate, The infrared absorption spectrum can be obtained by measuring by the KBr method. It can also be obtained from the value of the fluorescent X-ray intensity of the metal element used for ionization by fluorescent X-ray measurement.

赤外吸収スペクトルでは中和前(イオン化前)のカルボキシル基またはカルボン酸無水物基のC=O伸縮振動に帰属されるピークは1600cm-1〜1850cm-1の範囲に観察され、中和(イオン化)された後のカルボキシル基のC=O伸縮振動は1500cm-1〜1600cm-1の範囲に観察されるため、赤外吸収スペクトルにおいて両者を分離して評価することができる。具体的には、それぞれの範囲における最大の吸光度からその比を求め、予め作成した検量線を用いてガスバリア性積層体におけるガスバリア層を構成する重合体のイオン化度を算出することができる。なお、検量線は、中和度が異なる複数の標準サンプルについて赤外吸収スペクトルを測定することによって作成できる。 The infrared absorption spectrum peak attributed to C = O stretching vibration of the carboxyl group or carboxylic anhydride group before the neutralization (ionization front) is observed in the range of 1600cm -1 ~1850cm -1, neutralization (ionization ), The C═O stretching vibration of the carboxyl group is observed in the range of 1500 cm −1 to 1600 cm −1 , so that both can be separated and evaluated in the infrared absorption spectrum. Specifically, the ratio is obtained from the maximum absorbance in each range, and the ionization degree of the polymer constituting the gas barrier layer in the gas barrier laminate can be calculated using a calibration curve prepared in advance. A calibration curve can be created by measuring infrared absorption spectra for a plurality of standard samples having different degrees of neutralization.

ガスバリア層の膜厚が1μm以下であり、かつ基材がエステル結合を含む場合、ATR法による赤外吸収スペクトルでは基材のエステル結合のピークが検出され、ガスバリア層を構成するカルボン酸含有重合体(=重合体(X))の−COO−のピークと重なるため、イオン化度を正確に求めることができない。そこで、膜厚が1μm以下のガスバリア層を構成する重合体(X)のイオン化度は、蛍光X線測定の結果に基いて算出する。   When the film thickness of the gas barrier layer is 1 μm or less and the substrate contains an ester bond, the ester bond peak of the substrate is detected in the infrared absorption spectrum by the ATR method, and the carboxylic acid-containing polymer constituting the gas barrier layer Since it overlaps with the —COO— peak of (= polymer (X)), the degree of ionization cannot be determined accurately. Therefore, the ionization degree of the polymer (X) constituting the gas barrier layer having a film thickness of 1 μm or less is calculated based on the result of the fluorescent X-ray measurement.

具体的には、エステル結合を含まない基材上に積層したガスバリア層を構成する重合体(X)のイオン化度を、赤外吸収スペクトルによって測定する。次に、イオン化度が測定された積層体について、蛍光X線測定によって、イオン化に用いた金属元素の蛍光X線強度を求める。続いて、イオン化度のみが異なる積層体について同様の測定を実施する。イオン化度と、イオン化に用いた金属元素の蛍光X線強度との相関を求め、検量線を作成する。そして、エステル結合を含む基材を用いたガスバリア性積層体について蛍光X線測定を行い、イオン化に用いた金属元素の蛍光X線強度から、上記検量線に基づいてイオン化度を求める。   Specifically, the ionization degree of the polymer (X) constituting the gas barrier layer laminated on the substrate not containing an ester bond is measured by an infrared absorption spectrum. Next, the fluorescence X-ray intensity of the metal element used for ionization is determined by fluorescent X-ray measurement for the laminate in which the degree of ionization is measured. Then, the same measurement is implemented about the laminated body from which only an ionization degree differs. A correlation between the degree of ionization and the fluorescent X-ray intensity of the metal element used for ionization is obtained, and a calibration curve is created. And X-ray fluorescence measurement is performed about the gas-barrier laminated body using the base material containing an ester bond, and an ionization degree is calculated | required based on the said calibration curve from the fluorescence X-ray intensity of the metal element used for ionization.

また、ガスバリア層を構成する組成物は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含有していてもよい。また、ガスバリア層を構成する組成物は、金属酸化物の微粉末やシリカ微粉末などを含有していてもよい。   Further, the composition constituting the gas barrier layer may be carbonate, hydrochloride, nitrate, hydrogen carbonate, sulfate, hydrogen sulfate, phosphate, boric acid within the range not impairing the effects of the present invention. Salts, inorganic acid metal salts such as aluminate; organic acid metal salts such as oxalate, acetate, tartrate, stearate; acetylacetonate metal complexes such as aluminum acetylacetonate, titanocene, etc. Metal complexes such as cyclopentadienyl metal complexes and cyano metal complexes; layered clay compounds, crosslinking agents, plasticizers, antioxidants, ultraviolet absorbers, flame retardants and the like may be contained. The composition constituting the gas barrier layer may contain a metal oxide fine powder, a silica fine powder, and the like.

[基材]
ガスバリア性積層体で用いられる基材としては、熱可塑性樹脂フィルムや熱硬化性樹脂フィルム等の様々な材料からなる基材を用いることができる。たとえば、熱可塑性樹脂フィルムや熱硬化性樹脂フィルムといったフィルム;布帛や紙類等の繊維集合体;木材;金属酸化物などからなる所定形状のフィルムを用いることができる。中でも、熱可塑性樹脂フィルムは、食品包装材料に用いられるガスバリア性積層体の基材として特に有用である。また、基材は紙層を含んでもよい。なお、基材は複数の材料からなる多層構成のものであってもよい。
[Base material]
As the base material used in the gas barrier laminate, base materials made of various materials such as a thermoplastic resin film and a thermosetting resin film can be used. For example, a film having a predetermined shape made of a film such as a thermoplastic resin film or a thermosetting resin film; a fiber aggregate such as fabric or paper; wood; a metal oxide or the like can be used. Especially, a thermoplastic resin film is especially useful as a base material of the gas-barrier laminated body used for food packaging materials. The substrate may also include a paper layer. The base material may have a multilayer structure composed of a plurality of materials.

熱可塑性樹脂フィルムとしては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートやこれらの共重合体などのポリエステル系樹脂;ナイロン6、ナイロン66、ナイロン12などのポリアミド系樹脂;ポリスチレン、ポリ(メタ)アクリル酸エステル、ポリアクリロニトリル、ポリ酢酸ビニル、ポリカーボネート、ポリアリレート、再生セルロース、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、アイオノマー樹脂等を成形加工したフィルムを挙げることができる。食品包装材料に用いられる積層体の基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン6、またはナイロン66からなるフィルムが好ましい。   Examples of the thermoplastic resin film include polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate and copolymers thereof; nylon 6, nylon 66, Polyamide resins such as nylon 12; polystyrene, poly (meth) acrylate, polyacrylonitrile, polyvinyl acetate, polycarbonate, polyarylate, regenerated cellulose, polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone And a film obtained by molding an ionomer resin or the like. As the base material of the laminate used for the food packaging material, a film made of polyethylene, polypropylene, polyethylene terephthalate, nylon 6 or nylon 66 is preferable.

前記熱可塑性樹脂フィルムは、延伸フィルムであってもよいし、無延伸フィルムであってもよいが、ガスバリア性積層体の印刷、ラミネートなどの加工適正が優れていることから、延伸フィルム、特に二軸延伸フィルムであることが好ましい。二軸延伸フィルムとしては、同時二軸延伸法、逐次二軸延伸法、チューブラ延伸法のいずれの方法で製造された二軸延伸フィルムであってもよい。   The thermoplastic resin film may be a stretched film or an unstretched film. However, the thermoplastic resin film is excellent in processing suitability for printing, laminating and the like of the gas barrier laminate, so that it is particularly suitable for stretched films. An axially stretched film is preferred. The biaxially stretched film may be a biaxially stretched film produced by any of the simultaneous biaxial stretching method, the sequential biaxial stretching method, and the tubular stretching method.

また、ガスバリア性積層体は、基材とガスバリア層との間に配置された接着層(H)をさらに含んでもよい。この構成によれば、基材とガスバリア層との接着性を高めることができる。接着性樹脂からなる接着層(H)は、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗工することで形成できる。様々な接着性樹脂について検討した結果、ウレタン結合を含有し、窒素原子(ウレタン結合の窒素原子)が樹脂全体に占める割合が0.5〜12重量%の範囲である接着性樹脂が好ましいことを見出した。そのような接着性樹脂を用いることによって、基材とガスバリア層との接着性を特に高めることができる。基材とガスバリア層とを接着層(H)を介して強く接着することによって、本発明で用いられるガスバリア性積層体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観が悪化することを抑制できる。接着性樹脂に含まれる窒素原子(ウレタン結合の窒素原子)の含有率として2〜11重量%の範囲であることがより好ましく、3〜8重量%の範囲であることがさらに好ましい。   Further, the gas barrier laminate may further include an adhesive layer (H) disposed between the base material and the gas barrier layer. According to this structure, the adhesiveness of a base material and a gas barrier layer can be improved. The adhesive layer (H) made of an adhesive resin can be formed by treating the surface of the substrate with a known anchor coating agent or applying a known adhesive to the surface of the substrate. As a result of examining various adhesive resins, it is preferable that an adhesive resin containing a urethane bond and having a nitrogen atom (a nitrogen atom of the urethane bond) occupying the entire resin is in the range of 0.5 to 12% by weight. I found it. By using such an adhesive resin, the adhesion between the substrate and the gas barrier layer can be particularly enhanced. When the base material and the gas barrier layer are strongly bonded via the adhesive layer (H), the gas barrier property and the appearance are deteriorated when the gas barrier laminate used in the present invention is subjected to processing such as printing or lamination. Can be suppressed. The content of nitrogen atoms (nitrogen atoms of urethane bonds) contained in the adhesive resin is more preferably in the range of 2 to 11% by weight, and further preferably in the range of 3 to 8% by weight.

ウレタン結合を含有する接着性樹脂としては、ポリイソシアネート成分とポリオール成分とを混合し反応させる二液反応型ポリレタン系接着剤が好ましい。   As the adhesive resin containing a urethane bond, a two-component reaction type polyretane-based adhesive in which a polyisocyanate component and a polyol component are mixed and reacted is preferable.

接着層(H)を厚くすることによってガスバリア性積層体の強度を高めることができる。しかし、接着層(H)を厚くしすぎると、外観が悪化する。接着層(H)の厚さは、0.03μm〜0.18μmの範囲にあることが好ましい。この構成によれば、本発明で用いられるガスバリア性積層体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観が悪化することを抑制でき、さらに、本発明で用いられるガスバリア性積層体を用いた包装材の落下強度を高めることができる。接着層(H)の厚さは、0.04μm〜0.14μmの範囲にあることがより好ましく、0.05μm〜0.10μmの範囲にあることがさらに好ましい。   By increasing the thickness of the adhesive layer (H), the strength of the gas barrier laminate can be increased. However, when the adhesive layer (H) is too thick, the appearance deteriorates. The thickness of the adhesive layer (H) is preferably in the range of 0.03 μm to 0.18 μm. According to this configuration, when processing such as printing or laminating is performed on the gas barrier laminate used in the present invention, deterioration of the gas barrier property and appearance can be suppressed, and further, the gas barrier property used in the present invention. The drop strength of the packaging material using the laminate can be increased. The thickness of the adhesive layer (H) is more preferably in the range of 0.04 μm to 0.14 μm, and still more preferably in the range of 0.05 μm to 0.10 μm.

本発明で用いられるガスバリア性積層体では、積層体に含まれるガスバリア層の厚さの合計が、1.0μm以下であることが好ましく、たとえば0.9μm以下である。ガスバリア層を薄くすることによって、印刷、ラミネートなどの加工時におけるガスバリア性積層体の寸法変化を低く抑えることができる。また、ガスバリア層を薄くすることによって、ガスバリア性積層体の柔軟性が増し、ガスバリア性積層体の力学的特性を、基材に用いているフィルム自体の力学的特性に近づけることができる。本発明で用いられるガスバリア性積層体では、積層体に含まれるガスバリア層の厚さの合計が、1.0μm以下(たとえば0.9μm以下)の場合でも、20℃で85%RH雰囲気における酸素透過度を、1.1cm3/(m2・day・atm)以下(たとえば1.0cm3/(m2・day・atm)以下)とすることが可能である。ガスバリア層の1層の厚さは、ガスバリア性積層体のガスバリア性が良好となる観点から、0.05μm以上(たとえば0.15μm以上)であることが好ましい。また、ガスバリア層の合計の厚さは0.1μm以上(たとえば0.2μm以上)であることがさらに好ましい。ガスバリア層の厚さは、ガスバリア層の形成に用いられる溶液の濃度や、塗工方法によって制御できる。 In the gas barrier laminate used in the present invention, the total thickness of the gas barrier layers contained in the laminate is preferably 1.0 μm or less, for example 0.9 μm or less. By reducing the thickness of the gas barrier layer, the dimensional change of the gas barrier laminate during processing such as printing and laminating can be suppressed low. Further, by making the gas barrier layer thin, the flexibility of the gas barrier laminate is increased, and the mechanical properties of the gas barrier laminate can be brought close to the mechanical properties of the film itself used for the substrate. In the gas barrier laminate used in the present invention, even when the total thickness of the gas barrier layers contained in the laminate is 1.0 μm or less (for example, 0.9 μm or less), oxygen permeation in an 85% RH atmosphere at 20 ° C. The degree can be set to 1.1 cm 3 / (m 2 · day · atm) or less (for example, 1.0 cm 3 / (m 2 · day · atm) or less). The thickness of one gas barrier layer is preferably 0.05 μm or more (for example, 0.15 μm or more) from the viewpoint of improving the gas barrier property of the gas barrier laminate. Further, the total thickness of the gas barrier layer is more preferably 0.1 μm or more (for example, 0.2 μm or more). The thickness of the gas barrier layer can be controlled by the concentration of the solution used for forming the gas barrier layer and the coating method.

また、本発明の積層体は、基材とガスバリア層との間に、無機物からなる層(以下、「無機層」という場合がある)を含んでもよい。無機層は、無機酸化物などの無機物で形成できる。無機層は、蒸着法などの気相成膜法で形成できる。   In addition, the laminate of the present invention may include a layer made of an inorganic material (hereinafter sometimes referred to as “inorganic layer”) between the base material and the gas barrier layer. The inorganic layer can be formed of an inorganic material such as an inorganic oxide. The inorganic layer can be formed by a vapor deposition method such as a vapor deposition method.

無機層を構成する無機物は、酸素や水蒸気などに対するガスバリア性を有するものであればよく、好ましくは透明性を有するものである。たとえば、酸化アルミニウム、酸化珪素、酸窒化珪素、酸化マグネシウム、酸化錫、またはそれらの混合物といった無機酸化物で無機層を形成できる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウムは、酸素や水蒸気などのガスに対するバリア性が優れる観点から好ましく用いることができる。   The inorganic substance which comprises an inorganic layer should just have gas barrier property with respect to oxygen, water vapor | steam, etc., Preferably it has transparency. For example, the inorganic layer can be formed using an inorganic oxide such as aluminum oxide, silicon oxide, silicon oxynitride, magnesium oxide, tin oxide, or a mixture thereof. Among these, aluminum oxide, silicon oxide, and magnesium oxide can be preferably used from the viewpoint of excellent barrier properties against gases such as oxygen and water vapor.

無機層の好ましい厚さは、無機層を構成する無機酸化物の種類によって異なるが、通常、2nm〜500nmの範囲である。この範囲で、ガスバリア性積層体のガスバリア性や機械的物性が良好となる厚さを選択すればよい。無機層の厚さが2nm未満である場合、酸素や水蒸気などのガスに対する無機層のバリア性の発現に再現性がなく、無機層が充分なガスバリア性を発現しない場合がある。無機層の厚さが500nmを超える場合は、ガスバリア性積層体を引っ張ったり屈曲させたりした場合にガスバリア性が低下し易くなる。無機層の厚さは、好ましくは5〜200nmの範囲であり、さらに好ましくは10〜100nmの範囲である。   Although the preferable thickness of an inorganic layer changes with kinds of inorganic oxide which comprises an inorganic layer, it is the range of 2 nm-500 nm normally. Within this range, a thickness that provides good gas barrier properties and mechanical properties of the gas barrier laminate may be selected. When the thickness of the inorganic layer is less than 2 nm, the expression of the barrier property of the inorganic layer with respect to a gas such as oxygen or water vapor is not reproducible, and the inorganic layer may not exhibit a sufficient gas barrier property. When the thickness of the inorganic layer exceeds 500 nm, the gas barrier property tends to be lowered when the gas barrier laminate is pulled or bent. The thickness of the inorganic layer is preferably in the range of 5 to 200 nm, more preferably in the range of 10 to 100 nm.

無機層は、基材上に無機酸化物を堆積させることによって形成できる。形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを挙げることができる。これらの中でも、真空蒸着法は、生産性の観点から好ましく用いることができる。真空蒸着を行う際の加熱方法としては、電子線加熱方式、抵抗加熱方式および誘導加熱方式のいずれかが好ましい。また、無機層と基材との密着性および無機層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いて蒸着してもよい。また、無機層の透明性を上げるために、蒸着の際、酸素ガスなどを吹き込んで反応を生じさせる反応蒸着法を採用してもよい。   The inorganic layer can be formed by depositing an inorganic oxide on the substrate. Examples of the forming method include a vacuum deposition method, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), and the like. Among these, the vacuum evaporation method can be preferably used from the viewpoint of productivity. As a heating method in performing vacuum deposition, any of an electron beam heating method, a resistance heating method, and an induction heating method is preferable. Moreover, in order to improve the adhesiveness of an inorganic layer and a base material, and the denseness of an inorganic layer, you may vapor-deposit using a plasma assist method or an ion beam assist method. Moreover, in order to raise the transparency of an inorganic layer, you may employ | adopt the reactive vapor deposition method which blows in oxygen gas etc. and produces a reaction in the case of vapor deposition.

ガスバリア層の微細構造は特に限定されるものではないが、ガスバリア層が以下に記載する微細構造を有する場合には、ガスバリア性積層体を伸長した際におけるガスバリア性の低下などが抑えられるため好ましい。好ましい微細構造としては、海相(α)および島相(β)からなる海島構造である。島相(β)は、海相(α)に比べて、化合物(L)の加水分解縮合物の割合が高い領域である。   The fine structure of the gas barrier layer is not particularly limited. However, when the gas barrier layer has the fine structure described below, it is preferable because a decrease in gas barrier properties when the gas barrier laminate is stretched can be suppressed. A preferable fine structure is a sea-island structure composed of a sea phase (α) and an island phase (β). The island phase (β) is a region where the ratio of the hydrolysis condensate of the compound (L) is higher than that of the sea phase (α).

海相(α)と島相(β)とは、それぞれ、さらに微細構造を有することが好ましい。たとえば、海相(α)は、主にカルボン酸含有重合体の中和物からなる海相(α1)と、主に化合物(L)の加水分解縮合物からなる島相(α2)とによって構成される海島構造をさらに形成していてもよい。また、島相(β)は、主にカルボン酸含有重合体の中和物からなる海相(β1)と、主に化合物(L)の加水分解縮合物からなる島相(β2)とによって構成される海島構造をさらに形成していてもよい。島相(β)中における[島相(β2)/海相(β1)]の比率(体積比)は、海相(α)中における[島相(α2)/海相(α1)]の比率よりも大きいことが好ましい。島相(β)の径は、好ましくは30nm〜1200nmの範囲であり、より好ましくは50〜500nmの範囲であり、さらに好ましくは50nm〜400nmの範囲である。島相(β2)および島相(α2)の径は、好ましくは50nm以下であり、より好ましくは30nm以下であり、さらに好ましくは20nm以下である。   Each of the sea phase (α) and the island phase (β) preferably further has a fine structure. For example, the sea phase (α) is composed of a sea phase (α1) mainly composed of a neutralized product of a carboxylic acid-containing polymer and an island phase (α2) mainly composed of a hydrolysis condensate of the compound (L). The sea island structure to be formed may be further formed. The island phase (β) is composed of a sea phase (β1) mainly composed of a neutralized product of a carboxylic acid-containing polymer and an island phase (β2) mainly composed of a hydrolysis condensate of the compound (L). The sea island structure to be formed may be further formed. The ratio (volume ratio) of [island phase (β2) / sea phase (β1)] in the island phase (β) is the ratio of [island phase (α2) / sea phase (α1)] in the sea phase (α). Is preferably larger. The diameter of the island phase (β) is preferably in the range of 30 nm to 1200 nm, more preferably in the range of 50 to 500 nm, and still more preferably in the range of 50 nm to 400 nm. The diameter of the island phase (β2) and the island phase (α2) is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less.

上記のような構造を得るためには、化合物(L)とカルボン酸含有重合体との架橋反応に優先して、化合物(L)の適切な加水分解縮合が起こる必要がある。そのために、特定の化合物(L)をカルボン酸含有重合体と適切な比率で使用する、化合物(L)をカルボン酸含有重合体と混合する前に予め加水分解縮合させておく、適切な加水分解縮合触媒を使用する、などの方法を取るなどの方法が採用できる。   In order to obtain the structure as described above, it is necessary that the appropriate hydrolysis condensation of the compound (L) occurs in preference to the crosslinking reaction between the compound (L) and the carboxylic acid-containing polymer. For this purpose, the specific compound (L) is used in an appropriate ratio with the carboxylic acid-containing polymer, and the compound (L) is preliminarily hydrolyzed and condensed before mixing with the carboxylic acid-containing polymer. A method such as using a condensation catalyst can be employed.

また、特定の製造条件を選択すると、化合物(L)の加水分解縮合物の割合が高い領域がガスバリア層の表面に層状に形成されることが見出された。以下、ガスバリア層表面に形成された化合物(L)の加水分解縮合物の層を「スキン層」ということがある。スキン層が形成されることによって、ガスバリア層表面の耐水性が向上する。化合物(L)の加水分解縮合物からなるスキン層は、疎水的な特性をガスバリア層表面に付与し、水に濡れた状態のガスバリア層同士を重ねてもそれらが膠着しない特性をガスバリア性積層体に付与する。さらに驚くことに、疎水的な特性を有するスキン層がガスバリア層の表面に形成されても、その表面に対する印刷用インクなどの濡れ性は良好である。製造条件によって、ガスバリア層のスキン層の有無、あるいは形成されるスキン層の状態が異なる。鋭意検討した結果、本発明者らは、ガスバリア層と水との接触角と、好ましいスキン層との間に相関があり、その接触角が以下の条件を満たすときに、好ましいスキン層が形成されることを見出した。ガスバリア層と水との接触角が20°未満のときはスキン層の形成が不充分なことがある。この場合、ガスバリア層の表面が水によって膨潤しやすくなり、水に濡れた状態で積層体同士を重ねておくと、まれにそれらが膠着する場合がある。また、接触角が20°以上のときはスキン層形成が充分であり、ガスバリア層の表面は水によって膨潤しないため、膠着は起きない。ガスバリア層と水との接触角は好ましくは、24°以上であり、さらに好ましくは26°以上である。また、接触角が65゜より大きいとスキン層が厚くなりすぎ、ガスバリア性積層体の透明性が低下する。したがって、接触角は65゜以下であることが好ましく、60゜以下であることがより好ましく、58゜以下であることがさらに好ましい。   Moreover, when specific manufacturing conditions were selected, it was found that a region where the ratio of the hydrolysis condensate of compound (L) is high is formed in a layered manner on the surface of the gas barrier layer. Hereinafter, the layer of the hydrolytic condensate of compound (L) formed on the surface of the gas barrier layer may be referred to as “skin layer”. By forming the skin layer, the water resistance of the gas barrier layer surface is improved. The skin layer made of the hydrolyzed condensate of compound (L) has a characteristic that the hydrophobic property is imparted to the surface of the gas barrier layer, and the gas barrier layer does not stick even when the gas barrier layers wet with water are stacked. To grant. Surprisingly, even when a skin layer having hydrophobic characteristics is formed on the surface of the gas barrier layer, the wettability of the printing ink or the like to the surface is good. The presence or absence of the skin layer of the gas barrier layer or the state of the formed skin layer varies depending on the production conditions. As a result of intensive studies, the present inventors have found that there is a correlation between the contact angle between the gas barrier layer and water and the preferred skin layer, and the preferred skin layer is formed when the contact angle satisfies the following conditions. I found out. When the contact angle between the gas barrier layer and water is less than 20 °, the skin layer may not be sufficiently formed. In this case, the surface of the gas barrier layer easily swells with water, and if the laminates are stacked in a wet state, they may rarely stick together. Further, when the contact angle is 20 ° or more, the skin layer is sufficiently formed, and the surface of the gas barrier layer does not swell with water, so that no sticking occurs. The contact angle between the gas barrier layer and water is preferably 24 ° or more, and more preferably 26 ° or more. On the other hand, when the contact angle is larger than 65 °, the skin layer becomes too thick and the transparency of the gas barrier laminate is lowered. Therefore, the contact angle is preferably 65 ° or less, more preferably 60 ° or less, and still more preferably 58 ° or less.

ガスバリア性積層体は、様々な積層構造を有してもよい。以下の説明では、紙層以外の基材と、その基材上に形成されたガスバリア層とを含む多層膜を、「ガスバリア性多層膜」という場合がある。ガスバリア性積層体は、以下の積層構造を有してもよい。   The gas barrier laminate may have various laminate structures. In the following description, a multilayer film including a base material other than the paper layer and a gas barrier layer formed on the base material may be referred to as a “gas barrier multilayer film”. The gas barrier laminate may have the following laminate structure.

(1)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層、
(2)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/水酸基含有ポリマー層、
(3)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリエステル層、
(4)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリアミド層、
(5)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層、
(6)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/水酸基含有ポリマー層、
(7)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリエステル層、
(8)耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリアミド層、
(9)紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層、
紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/水酸基含有ポリマー層、
(10)紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリエステル層、
(11)紙層/耐熱性ポリオレフィン層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリアミド層、
(12)耐熱性ポリオレフィン層/紙層/ガスバリア性多層膜/耐熱性ポリオレフィン層、
(13)耐熱性ポリオレフィン層/紙層/ガスバリア性多層膜/耐熱性ポリオレフィン層/水酸基含有ポリマー層、
(14)耐熱性ポリオレフィン層/紙層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリエステル層、
(15)紙層/ガスバリア性多層膜/耐熱性ポリオレフィン層/ポリアミド層、
(16)ガスバリア性多層膜/紙層/耐熱性ポリオレフィン層、
(17)ガスバリア性多層膜/紙層/耐熱性ポリオレフィン層/水酸基含有ポリマー層、
(18)ガスバリア性多層膜/紙層/耐熱性ポリオレフィン層/ポリエステル層、
(19)ガスバリア性多層膜/紙層/耐熱性ポリオレフィン層/ポリアミド層。
(1) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer,
(2) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / hydroxyl group-containing polymer layer,
(3) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / polyester layer,
(4) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / polyamide layer,
(5) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / biaxially stretched heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer,
(6) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / biaxially stretched heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / hydroxyl group-containing polymer layer,
(7) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / biaxially stretched heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / polyester layer,
(8) Heat-resistant polyolefin layer / paper layer / heat-resistant polyolefin layer / biaxially stretched heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / polyamide layer,
(9) Paper layer / Heat resistant polyolefin layer / Gas barrier multilayer film / Heat resistant polyolefin layer,
Paper layer / heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / hydroxyl group-containing polymer layer,
(10) Paper layer / heat-resistant polyolefin layer / gas barrier multilayer film / heat-resistant polyolefin layer / polyester layer,
(11) Paper layer / heat resistant polyolefin layer / gas barrier multilayer film / heat resistant polyolefin layer / polyamide layer,
(12) Heat resistant polyolefin layer / paper layer / gas barrier multilayer film / heat resistant polyolefin layer,
(13) Heat-resistant polyolefin layer / paper layer / gas barrier multilayer film / heat-resistant polyolefin layer / hydroxyl group-containing polymer layer,
(14) Heat-resistant polyolefin layer / paper layer / gas barrier multilayer film / heat-resistant polyolefin layer / polyester layer,
(15) Paper layer / Gas barrier multilayer film / Heat resistant polyolefin layer / Polyamide layer,
(16) Gas barrier multilayer film / paper layer / heat-resistant polyolefin layer,
(17) Gas barrier multilayer film / paper layer / heat resistant polyolefin layer / hydroxyl group-containing polymer layer,
(18) Gas barrier multilayer film / paper layer / heat resistant polyolefin layer / polyester layer,
(19) Gas barrier multilayer film / paper layer / heat-resistant polyolefin layer / polyamide layer.

層と層との間には接着層を配置してもよい。上記の例において、耐熱性ポリオレフィン層は、2軸延伸耐熱性ポリオレフィンフィルムまたは無延伸耐熱性ポリオレフィンフィルムのいずれかで構成される。   An adhesive layer may be disposed between the layers. In the above example, the heat-resistant polyolefin layer is composed of either a biaxially stretched heat-resistant polyolefin film or an unstretched heat-resistant polyolefin film.

成型加工の容易さの観点から、ガスバリア性積層体の最外層に配置される耐熱性ポリオレフィン層は無延伸ポリプロピレンフィルムであることが好ましい。同様に、ガスバリア性積層体の最外層よりも内側に配置される耐熱性ポリオレフィン層は無延伸ポリプロピレンフィルムであることが好ましい。好ましい一例では、ガスバリア性積層体を構成するすべての耐熱性ポリオレフィン層が、無延伸ポリプロピレンフィルムである。   From the viewpoint of ease of molding, the heat-resistant polyolefin layer disposed in the outermost layer of the gas barrier laminate is preferably an unstretched polypropylene film. Similarly, the heat-resistant polyolefin layer disposed inside the outermost layer of the gas barrier laminate is preferably an unstretched polypropylene film. In a preferred example, all the heat resistant polyolefin layers constituting the gas barrier laminate are unstretched polypropylene films.

上記水酸基含有ポリマー層としては、エチレン/ビニルアルコール共重合体を押し出して得られるフィルムを用いることができる。水酸基含有ポリマー層は、一軸延伸フィルム、二軸延伸フィルム、または無延伸フィルムのいずれでもよいが、二軸延伸フィルムが好ましい。水酸基含有ポリマー層の厚さは特に限定されないが、ガスバリア性、機械的強靭性、加工適性等の観点から、5μm〜200μmの範囲にあることが好ましく、5μm〜100μmの範囲にあることがより好ましい。   As the hydroxyl group-containing polymer layer, a film obtained by extruding an ethylene / vinyl alcohol copolymer can be used. The hydroxyl group-containing polymer layer may be a uniaxially stretched film, a biaxially stretched film, or an unstretched film, but a biaxially stretched film is preferred. The thickness of the hydroxyl group-containing polymer layer is not particularly limited, but is preferably in the range of 5 μm to 200 μm, and more preferably in the range of 5 μm to 100 μm, from the viewpoints of gas barrier properties, mechanical toughness, workability, and the like. .

また、本発明の紙容器は、紙層を含まない窓部を備えてもよい。窓部は、ガスバリア性積層体の一部の紙層を切り欠くことによって形成できる。窓部は、紙層以外の層を含む積層体で構成される。窓部は、少なくともガスバリア層を含んでおり、たとえばガスバリア性多層膜(基材とガスバリア層とを含む多層膜)である。   Moreover, the paper container of this invention may be provided with the window part which does not contain a paper layer. The window can be formed by cutting out a part of the paper layer of the gas barrier laminate. A window part is comprised by the laminated body containing layers other than a paper layer. The window portion includes at least a gas barrier layer, and is, for example, a gas barrier multilayer film (a multilayer film including a base material and a gas barrier layer).

窓部(紙層の切り欠き部)を覆うように配置される積層体は、紙容器を構成するガスバリア性積層体の一部の紙層(または紙層と他の層)を切り欠くことによって形成してもよい。また、窓部(紙層の切り欠き部)を覆うように、容器の外側または容器の内側から、もしくは容器の両側からガスバリア性多層膜を貼り付けてもよい。   The laminated body arranged to cover the window (the cutout portion of the paper layer) is formed by cutting out some paper layers (or the paper layer and other layers) of the gas barrier laminate constituting the paper container. It may be formed. Moreover, you may affix a gas barrier multilayer film from the outer side or inner side of a container, or both sides of a container so that a window part (notch part of a paper layer) may be covered.

紙層の切り欠き部を覆うように、容器の外側または容器の内側から、もしくは容器の外側および容器の内側の両方から貼り付けられた、ガスバリア性多層膜を含む積層体について、以下に説明する。   A laminate including a gas barrier multilayer film attached from the outside of the container, the inside of the container, or both the outside of the container and the inside of the container so as to cover the notch portion of the paper layer will be described below. .

紙層の切り欠き部を覆う、ガスバリア性積層体を含む積層体の積層構造としては、例えば、ポリオレフィン層/ガスバリア性多層膜/ポリオレフィン層、ガスバリア性多層膜/ポリオレフィン層が挙げられる。ポリオレフィン層とガスバリア性積層体の間には適宜接着層を設けることができる。   Examples of the laminate structure of the laminate including the gas barrier laminate covering the notch portion of the paper layer include polyolefin layer / gas barrier multilayer film / polyolefin layer, gas barrier multilayer film / polyolefin layer. An adhesive layer can be appropriately provided between the polyolefin layer and the gas barrier laminate.

該ポリオレフィン層としては、紙層を有する積層体で例示したポリオレフィン層と同様のものを挙げることができる。   As this polyolefin layer, the thing similar to the polyolefin layer illustrated by the laminated body which has a paper layer can be mentioned.

上記ポリオレフィン層は、耐熱性の観点から、直鎖状低密度ポリエチレンまたはポリプロピレンであることが好ましい。上記ポリオレフィン層は、成型加工の容易さの観点から、無延伸直鎖状低密度ポリエチレン、無延伸ポリプロピレンであることが好ましく、無延伸ポリプロピレンであることがさらに好ましい。ポリプロピレン層の厚さは、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、10μm〜200μmの範囲にあることが好ましく、20μm〜150μmの範囲にあることがより好ましい。   The polyolefin layer is preferably linear low density polyethylene or polypropylene from the viewpoint of heat resistance. The polyolefin layer is preferably unstretched linear low-density polyethylene or unstretched polypropylene, more preferably unstretched polypropylene, from the viewpoint of ease of molding. The thickness of the polypropylene layer is preferably in the range of 10 μm to 200 μm, more preferably in the range of 20 μm to 150 μm, from the viewpoint of mechanical toughness, impact resistance, puncture resistance and the like.

また、ポリオレフィン(PO)層(たとえば、無延伸ポリオレフィンフィルムや延伸ポリオレフィンフィルム)は、他の層を構成するフィルムと周知のドライラミネーション法、ウエットラミネーション法、ホットメルトラミネーション法等によって貼り合わせてもよい。また、他の層を構成するフィルム上に、周知のTダイ押出し法等によってポリオレフィン層を形成してもよい。ポリオレフィン層と他の層との間には、接着層を配置してもよい。接着層は、アンカーコート剤、接着剤、接着性樹脂などを用いて形成できる。接着層の材料は、ポリオレフィン層の種類に応じて選択すればよい。   A polyolefin (PO) layer (for example, an unstretched polyolefin film or a stretched polyolefin film) may be bonded to a film constituting another layer by a known dry lamination method, wet lamination method, hot melt lamination method, or the like. . Moreover, you may form a polyolefin layer on the film which comprises another layer by the well-known T-die extrusion method etc. An adhesive layer may be disposed between the polyolefin layer and other layers. The adhesive layer can be formed using an anchor coating agent, an adhesive, an adhesive resin, or the like. What is necessary is just to select the material of an contact bonding layer according to the kind of polyolefin layer.

紙層の切り欠き部には、紙層の端部が現れる。その端部が露出している場合、紙層の端部から紙容器が損傷を受けることがある。また、この端部が容器内の液状の内容物と接触する場合には、紙層の端部から水分が浸入する。従って、紙層の端部を樹脂などで覆うことが好ましい。紙層の端部を覆う方法としては、例えば以下のような方法が採用できる。まず、切り欠き部を設けた紙(紙層)を用意し、押出しラミネーション法によって、ポリエチレン(PE)層/紙層/PE層という構成を有する積層体を作製する。PEが固化する前に積層体を押圧することによって、紙層の切り欠き部において、紙層の両側に存在する2つのPE層を接着させる。その後、紙層の端部が現れないように、紙層の切り欠き部のPE層/PE層を切り欠くことによって、紙層の端部が剥き出しにならない窓部を作製できる。   The end of the paper layer appears at the notch of the paper layer. If the edge is exposed, the paper container may be damaged from the edge of the paper layer. Further, when this end comes into contact with the liquid contents in the container, moisture enters from the end of the paper layer. Therefore, it is preferable to cover the end of the paper layer with a resin or the like. As a method for covering the end of the paper layer, for example, the following method can be employed. First, paper (paper layer) provided with a notch is prepared, and a laminate having a configuration of polyethylene (PE) layer / paper layer / PE layer is produced by an extrusion lamination method. By pressing the laminate before the PE is solidified, the two PE layers existing on both sides of the paper layer are bonded to each other at the notch portion of the paper layer. Thereafter, by cutting out the PE layer / PE layer in the cutout portion of the paper layer so that the end portion of the paper layer does not appear, a window portion in which the end portion of the paper layer is not exposed can be produced.

同様に、切り欠き部を設けた紙(紙層)を用意し、ホットメルト接着剤をグラビア法によって紙層の両面に塗布したのち、紙層とポリエチレン(PE)フィルムとを貼り合わることによって、ポリエチレン(PE)層/紙層/PE層という構成を有する積層体を作製する。その後、紙層の端部が現れないように、紙層の切り欠き部内のPE層を切り欠くことによって、紙層の端部が剥き出しにならない窓部を作製できる。   Similarly, by preparing paper (paper layer) provided with notches, applying hot melt adhesive on both sides of the paper layer by gravure method, and then bonding the paper layer and polyethylene (PE) film together A laminate having a configuration of polyethylene (PE) layer / paper layer / PE layer is prepared. After that, by cutting out the PE layer in the cutout portion of the paper layer so that the end portion of the paper layer does not appear, a window portion where the end portion of the paper layer is not exposed can be produced.

ガスバリア性積層体は、最外層よりも内側に配置された無延伸の耐熱性ポリオレフィン層を含んでもよい。また、ガスバリア性積層体は、ガスバリア層が積層されている基材を含んでもよい。そして、無機層が、その基材とガスバリア層との間に配置されていてもよい。また、ガスバリア性積層体は、少なくとも2つの耐熱性ポリオレフィン層を含んでもよく、ガスバリア層の両面のそれぞれに耐熱性ポリオレフィン層が積層されていてもよい。その耐熱性ポリオレフィン層は、ポリプロピレン層であってもよい。また、本発明の容器は、紙層を含まず且つガスバリア層を含む窓部を備えてもよい。窓部には紙層が存在しないため、窓部を通して内容物を目視することが可能である。   The gas barrier laminate may include an unstretched heat-resistant polyolefin layer disposed inside the outermost layer. The gas barrier laminate may include a substrate on which a gas barrier layer is laminated. And the inorganic layer may be arrange | positioned between the base material and the gas barrier layer. The gas barrier laminate may include at least two heat resistant polyolefin layers, and the heat resistant polyolefin layers may be laminated on both sides of the gas barrier layer. The heat resistant polyolefin layer may be a polypropylene layer. Moreover, the container of this invention may be provided with the window part which does not contain a paper layer and contains a gas barrier layer. Since there is no paper layer in the window, the contents can be visually observed through the window.

[ガスバリア性積層体の製造方法]
以下、本発明で用いられるガスバリア性積層体を製造するための方法について説明する。この方法によれば、本発明で用いられるガスバリア性積層体を容易に製造できる。本発明の製造方法に用いられる材料、および積層体の構成は、上述したものと同様であるので、重複する部分については説明を省略する場合がある。
[Method for producing gas barrier laminate]
Hereinafter, a method for producing the gas barrier laminate used in the present invention will be described. According to this method, the gas barrier laminate used in the present invention can be easily produced. Since the materials used in the manufacturing method of the present invention and the configuration of the laminate are the same as those described above, description of overlapping portions may be omitted.

本発明の製造方法は、工程(i)および(ii)を含む。   The production method of the present invention includes steps (i) and (ii).

工程(i)は、重合体(X)と、化合物(L)の加水分解縮合物とを含む組成物からなる層を基材上に形成する工程である。その層は、基材上に直接形成されるか、または他の層を介して基材上に形成される。その組成物において、重合体(X)の官能基(F)に含まれる−COO−基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されている。その組成物において、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基(F)に含まれる−COO−基の当量]の比は、0.2/100〜20.0/100の範囲にある。   Step (i) is a step of forming a layer comprising a composition containing the polymer (X) and the hydrolysis condensate of the compound (L) on a substrate. The layer is formed directly on the substrate or is formed on the substrate via another layer. In the composition, at least a part of —COO— group contained in the functional group (F) of the polymer (X) is neutralized and / or reacted with the compound (P) containing two or more amino groups. ing. In the composition, the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO-group contained in functional group (F) of polymer (X)] was 0.2 / 100. It is in the range of ~ 20.0 / 100.

化合物(L)に含まれる化合物、およびそれらの化合物の割合については、ガスバリア層を構成する組成物について説明したものと同様である。   About the compound contained in a compound (L), and the ratio of those compounds, it is the same as that of what was demonstrated about the composition which comprises a gas barrier layer.

工程(ii)は、2価以上の金属イオンを含む溶液に、工程(i)で形成された層を接触させる工程である(以下、この工程をイオン化工程という場合がある)。たとえば、形成した層に2価以上の金属イオンを含む溶液を吹きつけたり、基材と基材上の層とをともに2価以上の金属イオンを含む溶液に浸漬したりすることによって行うことができる。工程(ii)によって、重合体(X)の官能基(F)に含まれる−COO−基の少なくとも一部が中和される。   Step (ii) is a step of bringing the layer formed in step (i) into contact with a solution containing divalent or higher valent metal ions (hereinafter, this step may be referred to as an ionization step). For example, it can be performed by spraying a solution containing divalent or higher metal ions on the formed layer, or immersing both the base material and the layer on the base material in a solution containing divalent or higher metal ions. . By step (ii), at least a part of the —COO— group contained in the functional group (F) of the polymer (X) is neutralized.

以下、工程(i)について詳細に説明する。なお、化合物(P)とカルボン酸含有重合体とを混合すると、両者が反応してしまい溶液(U)の塗工が困難になることがあるため、工程(i)は、化合物(P)と酸(R)とを含む溶液(S)を調製する工程(i−a)を含むことが好ましい。溶液(U)の調整方法としては、溶液(U)が塗工できれば特に制限されるものではないが、例えば以下の方法を挙げることができる。   Hereinafter, step (i) will be described in detail. In addition, since mixing of a compound (P) and a carboxylic acid containing polymer may cause both to react and the coating of a solution (U) may become difficult, a process (i) is compound (P) and It is preferable to include the process (ia) which prepares the solution (S) containing an acid (R). The method for adjusting the solution (U) is not particularly limited as long as the solution (U) can be applied, and examples thereof include the following methods.

方法(1)として、重合体(X)を溶解させた溶液に、化合物(L)、溶液(S)および必要に応じて溶媒を添加して混合する方法を採用できる。また、方法(2)として、溶媒存在下または無溶媒下で化合物(L)からオリゴマー(V)(加水分解縮合物の1種)を調製し、オリゴマー(V)に重合体(X)を溶解させた溶液および溶液(S)を混合する方法も採用することができる。なお、化合物(L)やオリゴマー(V)は、単独で溶液に加えてもよいし、それらを溶解させた溶液の形態で溶媒に加えてもよい。   As the method (1), a method of adding and mixing the compound (L), the solution (S) and, if necessary, a solvent to the solution in which the polymer (X) is dissolved can be employed. Moreover, as a method (2), an oligomer (V) (one kind of hydrolysis condensate) is prepared from the compound (L) in the presence or absence of a solvent, and the polymer (X) is dissolved in the oligomer (V). A method of mixing the prepared solution and the solution (S) can also be employed. In addition, a compound (L) and an oligomer (V) may be added to a solution independently, and may be added to a solvent with the form of the solution which dissolved them.

溶液(U)の調整方法としては、上記(2)の方法を用いることによって、ガスバリア性が特に優れたガスバリア性積層体が得られる。以下、(2)の方法について、より具体的に説明する。   As a method for preparing the solution (U), a gas barrier laminate having particularly excellent gas barrier properties can be obtained by using the method (2). Hereinafter, the method (2) will be described more specifically.

上記(2)の方法において、工程(i)は、(i−a)化合物(P)と酸(R)とを含む溶液(S)を調製する工程と、(i−b)化合物(L)を加水分解、縮合して得られるオリゴマーを含む溶液(T)を調製する工程と、(i−c)溶液(S)と溶液(T)と重合体(X)とを含む溶液(U)を調製する工程と、(i−d)溶液(U)を基材に塗工して乾燥させることによって上記の層を形成する工程と、を含んでもよい。工程(i−a)と工程(i−b)とは、どちらを先に行ってもよいし、同時に行ってもよい。   In the method of (2) above, the step (i) includes (ia) a step of preparing a solution (S) containing the compound (P) and the acid (R), and (ib) the compound (L). A step of preparing a solution (T) containing an oligomer obtained by hydrolysis and condensation, and (ic) a solution (U) containing the solution (S), the solution (T) and the polymer (X). A step of preparing, and (id) a step of forming the layer by applying the solution (U) to a substrate and drying it. Either step (ia) or step (ib) may be performed first or at the same time.

工程(i−a)では、化合物(P)と酸(R)とを含む溶液(S)を調製する。化合物(P)のアミノ基を酸(R)で中和しておくことによって、カルボン酸含有重合体と混合してもゲル化しないようになる。化合物(P)のアミノ基と酸(R)とからなる塩と、カルボン酸重合体の−COO−基との交換反応で生成した酸(R)は、工程(i−d)の乾燥工程においてガスバリア層から取り除かれることが好ましい。交換反応の結果、化合物(P)のアミノ基とカルボン酸含有重合体の−COO−基とで中和反応が起こり、中和された塩の一部は引き続きアミド化反応によりアミド基になる。これらの中和反応およびアミド化反応によってカルボン酸含有重合体は架橋され、耐熱水性が発現される。   In step (ia), a solution (S) containing compound (P) and acid (R) is prepared. By neutralizing the amino group of the compound (P) with an acid (R), it does not gel when mixed with a carboxylic acid-containing polymer. In the drying step of step (id), the acid (R) produced by the exchange reaction between the salt of the amino group of compound (P) and acid (R) and the —COO— group of the carboxylic acid polymer is used. It is preferably removed from the gas barrier layer. As a result of the exchange reaction, a neutralization reaction occurs between the amino group of compound (P) and the —COO— group of the carboxylic acid-containing polymer, and a part of the neutralized salt subsequently becomes an amide group by the amidation reaction. By these neutralization reaction and amidation reaction, the carboxylic acid-containing polymer is cross-linked and exhibits hot water resistance.

酸(R)は特に限定されないが、工程(i−d)の乾燥工程においてガスバリア層から取り除き易いという観点から、好ましい酸(R)として、例えば塩酸、硝酸、炭酸、酢酸などを挙げることができ、中でも塩酸が好ましい。溶液(S)における酸(R)の使用量は、[酸(R)の当量]/[化合物(P)のアミノ基の当量]の比が、0.5/1以上となる量であればよい。0.5/1以上の条件を満たせばカルボン酸含有重合体との混合時のゲル化を防ぐことができる。ガスバリア性積層体のガスバリア性がより良好となる観点から、[酸(R)の当量]/[化合物(P)のアミノ基の当量]の比は、0.5/1〜10/1の範囲にあることが好ましく、0.7/1〜5/1の範囲にあることがより好ましく、0.7/1〜2/1の範囲にあることがさらに好ましい。   Although acid (R) is not particularly limited, examples of preferable acid (R) include hydrochloric acid, nitric acid, carbonic acid, and acetic acid from the viewpoint of easy removal from the gas barrier layer in the drying step of step (id). Of these, hydrochloric acid is preferred. The amount of acid (R) used in solution (S) is such that the ratio of [equivalent of acid (R)] / [equivalent of amino group of compound (P)] is 0.5 / 1 or more. Good. If the conditions of 0.5 / 1 or more are satisfied, gelation at the time of mixing with the carboxylic acid-containing polymer can be prevented. From the viewpoint of better gas barrier properties of the gas barrier laminate, the ratio of [Equivalent of acid (R)] / [Equivalent of amino group of compound (P)] is in the range of 0.5 / 1 to 10/1. Preferably, it is in the range of 0.7 / 1 to 5/1, more preferably in the range of 0.7 / 1 to 2/1.

工程(i−b)は、たとえば、化合物(A)、または化合物(A)および化合物(B)を含む化合物(L)を、加水分解、縮合して得られるオリゴマー(V)を含む溶液(T)を調製する工程である。化合物(L)、酸触媒、水、および必要に応じて有機溶媒を含む反応系中において、化合物(L)を加水分解、縮合させることによってオリゴマー(V)を得ることが好ましい。具体的には、公知のゾルゲル法で用いられている手法を適用できる。化合物(L)としては、化合物(L)が予め加水分解、縮合されているものでもよい。以下、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、および化合物(L)が完全に加水分解しその一部が縮合したものから選ばれる少なくとも1つの化合物を、「化合物(L)系成分」という場合がある。   Step (ib) includes, for example, a solution (T) containing an oligomer (V) obtained by hydrolysis and condensation of compound (A) or compound (L) containing compound (A) and compound (B). ). It is preferable to obtain oligomer (V) by hydrolyzing and condensing compound (L) in a reaction system containing compound (L), an acid catalyst, water, and if necessary, an organic solvent. Specifically, a technique used in a known sol-gel method can be applied. As the compound (L), the compound (L) may be previously hydrolyzed and condensed. Hereinafter, compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed and condensed, and compound (L ) May be referred to as “compound (L) -based component”.

工程(i−b)で用いる酸触媒としては、公知の酸を用いることができ、例えば塩酸、硫酸、硝酸、p−トルエンスルホン酸、安息香酸、酢酸、乳酸、酪酸、炭酸、シュウ酸、マレイン酸等が挙げられる。それらの中でも、塩酸、硫酸、硝酸、酢酸、乳酸、酪酸が特に好ましい。酸触媒の好ましい使用量は、使用する酸の種類によって異なるが、化合物(L)の金属原子1モルに対して、1×10-5〜10モルの範囲にあることが好ましく、1×10-4〜5モルの範囲にあることがより好ましく、5×10-4〜1モルの範囲にあることがさらに好ましい。酸触媒の使用量がこの範囲にある場合、ガスバリア性が高いガスバリア性積層体が得られる。 As the acid catalyst used in the step (ib), a known acid can be used. For example, hydrochloric acid, sulfuric acid, nitric acid, p-toluenesulfonic acid, benzoic acid, acetic acid, lactic acid, butyric acid, carbonic acid, oxalic acid, malein An acid etc. are mentioned. Among these, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, lactic acid, and butyric acid are particularly preferable. Preferred amount of acid catalyst may vary depending on the type of acid used, the metal atom to 1 mol of the compound (L), is preferably in the range of 1 × 10 -5 to 10 mol, 1 × 10 - It is more preferably in the range of 4 to 5 mol, and further preferably in the range of 5 × 10 −4 to 1 mol. When the amount of the acid catalyst used is within this range, a gas barrier laminate having a high gas barrier property can be obtained.

また、工程(i−b)で用いる水の使用量は、化合物(L)の種類によって異なるが、化合物(L)の加水分解性を有する特性基1当量に対して、0.05〜10当量の範囲にあることが好ましく、0.1〜5当量の範囲にあることがより好ましく、0.2〜3当量の範囲にあることがさらに好ましい。水の使用量がこの範囲にある場合、ガスバリア性が特に優れるガスバリア性積層体が得られる。なお、工程(i−b)において、塩酸のように水を含有する成分を使用する場合には、その成分によって導入される水の量も考慮して水の使用量を決定することが好ましい。   Moreover, although the usage-amount of the water used by process (ib) changes with kinds of compound (L), it is 0.05-10 equivalent with respect to 1 equivalent of characteristic groups which have the hydrolyzability of a compound (L). Preferably, it is in the range of 0.1 to 5 equivalents, more preferably in the range of 0.2 to 3 equivalents. When the amount of water used is in this range, a gas barrier laminate having particularly excellent gas barrier properties can be obtained. In addition, when using the component containing water like hydrochloric acid in process (ib), it is preferable to determine the usage-amount of water also considering the quantity of the water introduce | transduced by the component.

さらに、工程(i−b)の反応系においては、必要に応じて有機溶媒を使用してもよい。使用される有機溶媒は化合物(L)が溶解する溶媒であれば特に限定されない。たとえば、有機溶媒として、メタノール、エタノール、イソプロパノール、ノルマルプロパノール等のアルコール類が好適に用いられ、化合物(L)が含有するアルコキシ基と同種の分子構造(アルコキシ成分)を有するアルコールがより好適に用いられる。具体的には、テトラメトキシシランに対してはメタノールが好ましく、テトラエトキシシランに対してはエタノールが好ましい。有機溶媒の使用量は特に限定されないが、化合物(L)の濃度が好ましくは1〜90重量%、より好ましくは10〜80重量%、さらに好ましくは10〜60重量%となる量であることが好ましい。   Furthermore, in the reaction system of the step (ib), an organic solvent may be used as necessary. The organic solvent used will not be specifically limited if it is a solvent in which compound (L) dissolves. For example, alcohols such as methanol, ethanol, isopropanol, and normal propanol are preferably used as the organic solvent, and alcohols having the same molecular structure (alkoxy component) as the alkoxy group contained in the compound (L) are more preferably used. It is done. Specifically, methanol is preferred for tetramethoxysilane and ethanol is preferred for tetraethoxysilane. The amount of the organic solvent used is not particularly limited, but the concentration of the compound (L) is preferably 1 to 90% by weight, more preferably 10 to 80% by weight, and still more preferably 10 to 60% by weight. preferable.

工程(i−b)において、反応系中において化合物(L)の加水分解、縮合を行う際に、反応系の温度は必ずしも限定されないが、通常2〜100℃の範囲であり、好ましくは4〜60℃の範囲であり、さらに好ましくは6〜50℃の範囲である。反応時間は触媒の量、種類等の反応条件に応じて相違するが、通常0.01〜60時間の範囲であり、好ましくは0.1〜12時間の範囲であり、より好ましくは0.1〜6時間の範囲である。また、反応は、空気、二酸化炭素、窒素、アルゴンといった各種の気体の雰囲気下で行うことができる。   In the step (ib), when the hydrolysis and condensation of the compound (L) is performed in the reaction system, the temperature of the reaction system is not necessarily limited, but is usually in the range of 2 to 100 ° C., preferably 4 to It is the range of 60 degreeC, More preferably, it is the range of 6-50 degreeC. The reaction time varies depending on the reaction conditions such as the amount and type of the catalyst, but is usually in the range of 0.01 to 60 hours, preferably in the range of 0.1 to 12 hours, more preferably 0.1. It is in the range of ~ 6 hours. In addition, the reaction can be performed in an atmosphere of various gases such as air, carbon dioxide, nitrogen, and argon.

工程(i−b)において、化合物(L)は、全量を一度に反応系に添加してもよいし、少量ずつ何回かに分けて反応系に添加してもよい。いずれの場合でも、化合物(L)の使用量の合計が、上記の好適な範囲を満たしていることが好ましい。   In step (ib), the entire amount of compound (L) may be added to the reaction system at once, or may be added to the reaction system in small portions several times. In any case, it is preferable that the total amount of the compound (L) used satisfies the above preferable range.

工程(i−c)は、工程(i−b)で得られたオリゴマー(V)を含む溶液(T)と、工程(i−a)で調製した溶液(S)と、重合体(X)と、を含む溶液(U)を調製する工程である。溶液(U)は、溶液(T)、重合体(X)(=カルボン酸含有重合体)、溶液(S)、および必要に応じて水および/または有機溶剤を用いて調製することができる。たとえば、(1)カルボン酸含有重合体を溶解させた溶液に溶液(S)を混合し、その後溶液(T)を添加して混合する方法を採用できる。また、(2)カルボン酸含有重合体を溶解させた溶液に溶液(S)を混合し、その溶液を溶液(T)に添加して混合する方法も採用できる。さらに、(3)カルボン酸含有重合体を溶解させた溶液を、溶液(T)に添加して混合した後に、溶液(S)を添加して混合する方法も採用できる。   In the step (ic), the solution (T) containing the oligomer (V) obtained in the step (ib), the solution (S) prepared in the step (ia), and the polymer (X) And preparing a solution (U) containing The solution (U) can be prepared using the solution (T), the polymer (X) (= carboxylic acid-containing polymer), the solution (S), and, if necessary, water and / or an organic solvent. For example, it is possible to employ a method of (1) mixing the solution (S) with a solution in which the carboxylic acid-containing polymer is dissolved, and then adding and mixing the solution (T). Moreover, the method of mixing (2) the solution (S) with the solution in which the carboxylic acid-containing polymer is dissolved, and adding the solution to the solution (T) and mixing can also be employed. Furthermore, (3) a method in which a solution in which a carboxylic acid-containing polymer is dissolved is added to and mixed with the solution (T), and then the solution (S) is added and mixed.

上記した(1)、(2)、(3)の各方法において、添加する溶液(T)、カルボン酸含有重合体を溶解させた溶液、溶液(S)は、一度に添加しても良いし、分割して添加しても良い。   In the above methods (1), (2), and (3), the solution (T) to be added, the solution in which the carboxylic acid-containing polymer is dissolved, and the solution (S) may be added at once. These may be added in divided portions.

工程(i−c)における、カルボン酸含有重合体を溶解させた溶液は以下の方法により調製できる。使用する溶媒は、カルボン酸含有重合体の種類に応じて選択すればよい。たとえば、ポリアクリル酸やポリメタクリル酸などの水溶性の重合体の場合には、水が好適である。イソブチレン−無水マレイン酸共重合体やスチレン−無水マレイン酸共重合体などの重合体の場合には、アンモニア、水酸化ナトリウムや水酸化カリウムなどのアルカリ性物質を含有する水が好適である。また、カルボン酸含有重合体の溶解の妨げにならない限り、メタノール、エタノール等のアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどを併用することも可能である。   The solution in which the carboxylic acid-containing polymer is dissolved in the step (ic) can be prepared by the following method. What is necessary is just to select the solvent to be used according to the kind of carboxylic acid containing polymer. For example, in the case of a water-soluble polymer such as polyacrylic acid or polymethacrylic acid, water is suitable. In the case of a polymer such as an isobutylene-maleic anhydride copolymer or a styrene-maleic anhydride copolymer, water containing an alkaline substance such as ammonia, sodium hydroxide, or potassium hydroxide is preferred. In addition, alcohols such as methanol and ethanol; ethers such as tetrahydrofuran, dioxane and trioxane; ketones such as acetone and methyl ethyl ketone; glycols such as ethylene glycol and propylene glycol; methyl cellosolve; Glycol derivatives such as ethyl cellosolve and n-butyl cellosolve; glycerin; acetonitrile, dimethylformamide, dimethyl sulfoxide, sulfolane, dimethoxyethane and the like can be used in combination.

溶液(U)に含まれるカルボン酸含有重合体においては、官能基(F)に含まれる−COO−基の一部(たとえば0.1〜10モル%)が1価のイオンによって中和されていてもよい。1価イオンによる官能基(F)の中和度は、ガスバリア性積層体の透明性が良好となる観点から、0.5〜5モル%の範囲にあることがより好ましく、0.7〜3モル%の範囲にあることがさらに好ましい。1価のイオンとしては、たとえば、アンモニウムイオン、ピリジニウムイオン、ナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられ、アンモニウムイオンが好ましい。   In the carboxylic acid-containing polymer contained in the solution (U), a part of the —COO— group (eg, 0.1 to 10 mol%) contained in the functional group (F) is neutralized by monovalent ions. May be. The degree of neutralization of the functional group (F) with monovalent ions is more preferably in the range of 0.5 to 5 mol% from the viewpoint of improving the transparency of the gas barrier laminate, and 0.7 to 3 More preferably, it is in the range of mol%. Examples of monovalent ions include ammonium ions, pyridinium ions, sodium ions, potassium ions, and lithium ions, with ammonium ions being preferred.

溶液(U)における溶液(T)、重合体(X)(=カルボン酸含有重合体)、溶液(S)の混合比率は、得られるガスバリア層の組成物が前記した組成に関する要件を満たしていれば特に制限はない。   The mixing ratio of the solution (T), the polymer (X) (= carboxylic acid-containing polymer), and the solution (S) in the solution (U) is such that the composition of the obtained gas barrier layer satisfies the above-described requirements regarding the composition. There are no particular restrictions.

溶液(U)の固形分濃度は、溶液(U)の保存安定性、および溶液(U)の基材に対する塗工性の観点から、3重量%〜20重量%の範囲にあることが好ましく、4重量%〜15重量%の範囲にあることがより好ましく、5重量%〜12重量%の範囲にあることがさらに好ましい。   The solid content concentration of the solution (U) is preferably in the range of 3% by weight to 20% by weight from the viewpoint of the storage stability of the solution (U) and the coating property of the solution (U) on the base material. It is more preferably in the range of 4% to 15% by weight, and still more preferably in the range of 5% to 12% by weight.

溶液(U)の保存安定性、およびガスバリア性積層体のガスバリア性の観点から、溶液(U)のpHは、1.0〜7.0の範囲にあることが好ましく、1.0〜6.0の範囲にあることがより好ましく、1.5〜4.0の範囲にあることがさらに好ましい。   From the viewpoint of storage stability of the solution (U) and gas barrier properties of the gas barrier laminate, the pH of the solution (U) is preferably in the range of 1.0 to 7.0, and preferably 1.0 to 6. More preferably, it is in the range of 0, and more preferably in the range of 1.5 to 4.0.

溶液(U)のpHは、公知の方法で調整でき、たとえば、塩酸、硝酸、硫酸、リン酸、酢酸、酪酸、硫酸アンモニウムといった酸性化合物や、水酸化ナトリウム、水酸化カリウム、アンモニア、トリメチルアミン、ピリジン、炭酸ナトリウム、酢酸ナトリウムといった塩基性化合物を添加することによって調整できる。このとき、溶液中に1価の陽イオンをもたらす塩基性化合物を用いると、カルボン酸含有重合体のカルボキシル基および/またはカルボン酸無水物基の一部を1価のイオンで中和することができる。   The pH of the solution (U) can be adjusted by a known method. For example, acidic compounds such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, butyric acid, ammonium sulfate, sodium hydroxide, potassium hydroxide, ammonia, trimethylamine, pyridine, It can adjust by adding basic compounds, such as sodium carbonate and sodium acetate. At this time, if a basic compound that provides a monovalent cation is used in the solution, a part of the carboxyl group and / or carboxylic anhydride group of the carboxylic acid-containing polymer may be neutralized with a monovalent ion. it can.

工程(i−d)について説明する。工程(i−c)で調製される溶液(U)は、時間の経過とともに状態が変化し、最終的にはゲル状の組成物となる。溶液(U)がゲル状になるまでの時間は、溶液(U)の組成に依存する。基材に溶液(U)を安定的に塗工するためには、溶液(U)は、長時間にわたってその粘度が安定し、その後、徐々に粘度上昇するようなものであることが好ましい。溶液(U)は、化合物(L)系成分の全量を添加した時を基準として、25℃で2日間静置した後においても、ブルックフィールド粘度計(B型粘度計:60rpm)で測定した粘度が1N・s/m2以下(より好ましくは0.5N・s/m2以下で、特に好ましくは0.2N・s/m2以下)となるように組成を調整することが好ましい。また、溶液(U)は、25℃で10日間静置した後においても、その粘度が1N・s/m2以下(より好ましくは0.1N・s/m2以下で、特に好ましくは0.05N・s/m2以下)となるように組成を調整することがより好ましい。また、溶液(U)は、50℃で10日間静置した後においても、その粘度が1N・s/m2以下(より好ましくは0.1N・s/m2以下で、特に好ましくは0.05N・s/m2以下)となるように組成を調整することがさらに好ましい。溶液(U)の粘度が上記の範囲にある場合、貯蔵安定性に優れるとともに、得られるガスバリア性積層体のガスバリア性がより良好になることが多い。 Step (id) will be described. The state of the solution (U) prepared in the step (ic) changes with time, and finally becomes a gel-like composition. The time until the solution (U) becomes gelled depends on the composition of the solution (U). In order to stably apply the solution (U) to the substrate, it is preferable that the solution (U) has a stable viscosity over a long period of time and then gradually increases in viscosity. The solution (U) was measured with a Brookfield viscometer (B-type viscometer: 60 rpm) even after standing at 25 ° C. for 2 days, based on the total amount of the compound (L) component. Is preferably adjusted to be 1 N · s / m 2 or less (more preferably 0.5 N · s / m 2 or less, particularly preferably 0.2 N · s / m 2 or less). The solution (U) has a viscosity of 1 N · s / m 2 or less (more preferably 0.1 N · s / m 2 or less, particularly preferably 0. It is more preferable to adjust the composition so as to be 05 N · s / m 2 or less. The solution (U) has a viscosity of 1 N · s / m 2 or less (more preferably 0.1 N · s / m 2 or less, particularly preferably 0. More preferably, the composition is adjusted to be 05 N · s / m 2 or less. When the viscosity of the solution (U) is in the above range, the storage stability is excellent and the gas barrier property of the obtained gas barrier laminate is often improved.

溶液(U)の粘度が上記範囲内になるように調整するには、例えば、固形分の濃度を調整する、pHを調整する、カルボキシメチルセルロース、でんぷん、ベントナイト、トラガカントゴム、ステアリン酸塩、アルギン酸塩、メタノール、エタノール、n−プロパノール、イソプロパノールなどの粘度調節剤を添加するといった方法を用いることができる。   In order to adjust the viscosity of the solution (U) to be within the above range, for example, adjusting the concentration of solids, adjusting pH, carboxymethylcellulose, starch, bentonite, tragacanth gum, stearate, alginate, A method of adding a viscosity modifier such as methanol, ethanol, n-propanol, or isopropanol can be used.

また、基材への溶液(U)の塗工を容易にするために、溶液(U)の安定性が阻害されない範囲で、溶液(U)に均一に混合することができる有機溶剤を添加してもよい。添加可能な有機溶剤としては、たとえば、メタノール、エタノール、n−プロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどが挙げられる。   In addition, in order to facilitate the application of the solution (U) to the base material, an organic solvent that can be uniformly mixed with the solution (U) is added so long as the stability of the solution (U) is not hindered. May be. Examples of organic solvents that can be added include alcohols such as methanol, ethanol, n-propanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and trioxane; ketones such as acetone, methyl ethyl ketone, methyl vinyl ketone, and methyl isopropyl ketone; ethylene glycol, Glycols such as propylene glycol; glycol derivatives such as methyl cellosolve, ethyl cellosolve, n-butyl cellosolve; glycerin; acetonitrile, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, dimethoxyethane and the like.

また、溶液(U)は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、上述したアミノ基を二つ以上含む化合物(P)、上述した水酸基を二つ以上含む化合物(Q)、及びそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含んでいてもよい。また、溶液(U)は、金属酸化物の微粉末やシリカ微粉末などを含んでいてもよい。   In addition, the solution (U) may be carbonate, hydrochloride, nitrate, hydrogen carbonate, sulfate, hydrogen sulfate, phosphate, borate, alumina as long as it does not impair the effects of the present invention. Inorganic acid metal salts such as acid salts; organic acid metal salts such as oxalate, acetate, tartrate and stearate; acetylacetonate metal complexes such as aluminum acetylacetonate; cyclopentadiene such as titanocene Metal complexes such as enyl metal complexes and cyano metal complexes; layered clay compounds, crosslinking agents, compounds containing two or more amino groups as described above (P), compounds containing two or more hydroxyl groups as described above (Q), and other It may contain a polymer compound, a plasticizer, an antioxidant, an ultraviolet absorber, a flame retardant and the like. The solution (U) may contain fine metal oxide powder or fine silica powder.

工程(i−c)で調製された溶液(U)は、工程(i−d)において基材の少なくとも一方の面に塗工される。溶液(U)を塗工する前に、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗布してもよい。溶液(U)を基材に塗工する方法は、特に限定されず、公知の方法を用いることができる。好ましい方法としては、たとえば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キスコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法などが挙げられる。   The solution (U) prepared in the step (ic) is applied to at least one surface of the substrate in the step (id). Before applying the solution (U), the surface of the substrate may be treated with a known anchor coating agent, or a known adhesive may be applied to the surface of the substrate. The method for applying the solution (U) to the substrate is not particularly limited, and a known method can be used. Preferred methods include, for example, a casting method, a dipping method, a roll coating method, a gravure coating method, a screen printing method, a reverse coating method, a spray coating method, a kiss coating method, a die coating method, a metering bar coating method, and a chamber doctor combined coating method. And curtain coating method.

工程(i−d)で溶液(U)を基材上に塗工した後、溶液(U)に含まれる溶媒を除去することによって、イオン化工程前の積層体(積層体(I))が得られる。溶媒の除去の方法は特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法などの方法を単独で、または組み合わせて適用できる。乾燥温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、70℃〜200℃の範囲にあることが好ましく、80〜180℃の範囲にあることがより好ましく、90〜160℃の範囲にあることがさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。   After applying the solution (U) on the substrate in the step (id), the solvent contained in the solution (U) is removed to obtain a laminate (laminate (I)) before the ionization step. It is done. The method for removing the solvent is not particularly limited, and a known method can be applied. Specifically, methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied alone or in combination. A drying temperature will not be restrict | limited especially if it is 15-20 degreeC or more lower than the flow start temperature of a base material, and 15-20 degreeC or more lower than the thermal decomposition start temperature of a carboxylic acid containing polymer. The drying temperature is preferably in the range of 70 ° C to 200 ° C, more preferably in the range of 80 to 180 ° C, and further preferably in the range of 90 to 160 ° C. The removal of the solvent may be carried out under normal pressure or reduced pressure.

本発明で用いられるガスバリア性積層体では、ガスバリア層の表面に、化合物(L)の加水分解性縮合物からなるスキン層が形成されていることが好ましい。また、前記したように、スキン層が厚くなりすぎることは、ガスバリア性積層体の透明性が低下するために好ましくない。適度の厚さを有するスキン層を形成する方法について、以下に記載する。本発明者らが鋭意検討した結果によれば、スキン層の形成の有無、およびスキン層の形成の状態は、化合物(L)の加水分解性縮合物の反応度、化合物(L)の組成、溶液(U)に使用されている溶媒、溶液(U)を基材に塗工した後の溶液(U)の乾燥される速度などに依存する。例えば、ガスバリア層表面に対する水の接触角を測定し、接触角が前記した所定の範囲より小さい場合には、工程(i−b)、工程(i−c)の反応時間を長くすることによって、接触角を大きくすること(すなわち適切なスキン層を形成すること)が可能である。逆に接触角が前記した所定の範囲より大きい場合には、工程(i−b)、工程(i−c)の反応時間を短くすることによって、接触角を小さくすることが可能である。   In the gas barrier laminate used in the present invention, a skin layer made of a hydrolyzable condensate of compound (L) is preferably formed on the surface of the gas barrier layer. Further, as described above, it is not preferable that the skin layer becomes too thick because the transparency of the gas barrier laminate is lowered. A method for forming a skin layer having an appropriate thickness will be described below. According to the results of intensive studies by the present inventors, the presence or absence of the skin layer and the state of the skin layer formation are determined by the reactivity of the hydrolyzable condensate of the compound (L), the composition of the compound (L), It depends on the solvent used in the solution (U), the drying speed of the solution (U) after the solution (U) is applied to the substrate, and the like. For example, when the contact angle of water with respect to the gas barrier layer surface is measured and the contact angle is smaller than the above-described predetermined range, by increasing the reaction time of the step (ib) and the step (ic), It is possible to increase the contact angle (that is, to form an appropriate skin layer). On the contrary, when the contact angle is larger than the predetermined range, it is possible to reduce the contact angle by shortening the reaction time of the step (ib) and the step (ic).

工程(ii)において、上記の工程によって得られる積層体(I)を、2価以上の金属イオンを含む溶液(以下、溶液(IW)という場合がある)に接触させること(イオン化工程)によって、ガスバリア性積層体(積層体(II))が得られる。なお、イオン化工程は、本発明の効果を損なわない限り、どのような段階で行ってもよい。たとえば、イオン化工程は、包装材料の形態に加工する前あるいは加工した後に行ってもよいし、さらに包装材料中に内容物を充填して密封した後に行ってもよい。   In the step (ii), the laminate (I) obtained by the above step is brought into contact with a solution containing metal ions having a valence of 2 or more (hereinafter sometimes referred to as solution (IW)) (ionization step), A gas barrier laminate (laminate (II)) is obtained. The ionization process may be performed at any stage as long as the effects of the present invention are not impaired. For example, the ionization step may be performed before or after being processed into the form of the packaging material, or may be performed after the packaging material is filled with the contents and sealed.

溶液(IW)は、溶解によって2価以上の金属イオンを放出する化合物(多価金属化合物)を、溶媒に溶解させることによって調製できる。溶液(IW)を調製する際に使用する溶媒としては、水を使用することが望ましいが、水と混和しうる有機溶媒と水との混合物であってもよい。そのような有機溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタン等の有機溶媒が挙げられる。   The solution (IW) can be prepared by dissolving, in a solvent, a compound that releases a divalent or higher valent metal ion (polyvalent metal compound) upon dissolution. As a solvent used in preparing the solution (IW), it is desirable to use water, but it may be a mixture of an organic solvent miscible with water and water. Examples of such organic solvents include alcohols such as methanol, ethanol, n-propanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and trioxane; ketones such as acetone, methyl ethyl ketone, methyl vinyl ketone, and methyl isopropyl ketone; ethylene glycol, propylene glycol Glycols such as methyl cellosolve, ethyl cellosolve, and n-butyl cellosolve; glycerin; organic solvents such as acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, and dimethoxyethane.

多価金属化合物としては、ガスバリア性積層体に関して例示した金属イオン(すなわち2価以上の金属イオン)を放出する化合物を用いることができる。たとえば、酢酸カルシウム、水酸化カルシウム、水酸化バリウム、塩化カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸マグネシウム、水酸化マグネシウム、塩化マグネシウム、炭酸マグネシム、酢酸鉄(II)、塩化鉄(II)、酢酸鉄(III)、塩化鉄(III)、酢酸亜鉛、塩化亜鉛、酢酸銅(II)、酢酸銅(III)、酢酸鉛、酢酸水銀(II)、酢酸バリウム、酢酸ジルコニウム、塩化バリウム、硫酸バリウム、硫酸ニッケル、硫酸鉛、塩化ジルコニウム、硝酸ジルコニウム、硫酸アルミニウム、カリウムミョウバン(KAl(SO42)、硫酸チタン(IV)などを用いることができる。多価金属化合物は、1種類のみを用いても、2種類以上を組み合わせて用いてもよい。好ましい多価金属化合物としては、酢酸カルシウム、水酸化カルシウム、酢酸マグネシウム、酢酸亜鉛が挙げられる。なお、これらの多価金属化合物は、水和物の形態で用いてもよい。 As the polyvalent metal compound, compounds capable of releasing the metal ions exemplified for the gas barrier laminate (that is, divalent or higher metal ions) can be used. For example, calcium acetate, calcium hydroxide, barium hydroxide, calcium chloride, calcium nitrate, calcium carbonate, magnesium acetate, magnesium hydroxide, magnesium chloride, magnesium carbonate, iron (II) acetate, iron (II) chloride, iron acetate ( III), iron chloride (III), zinc acetate, zinc chloride, copper acetate (II), copper acetate (III), lead acetate, mercury acetate (II), barium acetate, zirconium acetate, barium chloride, barium sulfate, nickel sulfate Lead sulfate, zirconium chloride, zirconium nitrate, aluminum sulfate, potassium alum (KAl (SO 4 ) 2 ), titanium (IV) sulfate, and the like can be used. Only one type of polyvalent metal compound may be used, or two or more types may be used in combination. Preferred polyvalent metal compounds include calcium acetate, calcium hydroxide, magnesium acetate, and zinc acetate. In addition, you may use these polyvalent metal compounds in the form of a hydrate.

溶液(IW)における多価金属化合物の濃度は、特に制限されないが、好ましくは5×10-4重量%〜50重量%の範囲にあり、より好ましくは1×10-2重量%〜30重量%の範囲にあり、さらに好ましくは1重量%〜20重量%の範囲にある。 The concentration of the polyvalent metal compound in the solution (IW) is not particularly limited, but is preferably in the range of 5 × 10 −4 wt% to 50 wt%, more preferably 1 × 10 −2 wt% to 30 wt%. More preferably, it is in the range of 1 to 20% by weight.

溶液(IW)に積層体(I)を接触させる際において、溶液(IW)の温度は、特に制限されないが、温度が高いほどカルボキシル基含有重合体のイオン化速度が速い。その温度は、たとえば30〜140℃の範囲にあり、好ましくは40℃〜120℃の範囲にあり、さらに好ましくは50℃〜100℃の範囲にある。   When the laminate (I) is brought into contact with the solution (IW), the temperature of the solution (IW) is not particularly limited, but the higher the temperature, the faster the ionization rate of the carboxyl group-containing polymer. The temperature is, for example, in the range of 30 to 140 ° C, preferably in the range of 40 ° C to 120 ° C, and more preferably in the range of 50 ° C to 100 ° C.

溶液(IW)に積層体(I)を接触させた後、その積層体に残留した溶媒を除去することが望ましい。溶媒の除去の方法は、特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法といった乾燥法を単独で、または2種以上を組み合わせて適用できる。溶媒の除去を行う温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、好ましくは40〜200℃の範囲にあり、より好ましくは60〜150℃の範囲にあり、さらに好ましくは80〜130℃の範囲にある。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。   It is desirable to remove the solvent remaining in the laminate after contacting the laminate (I) with the solution (IW). The method for removing the solvent is not particularly limited, and a known method can be applied. Specifically, drying methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied singly or in combination of two or more. The temperature at which the solvent is removed is not particularly limited as long as it is 15 to 20 ° C. or more lower than the flow start temperature of the substrate and 15 to 20 ° C. or lower than the thermal decomposition start temperature of the carboxylic acid-containing polymer. The drying temperature is preferably in the range of 40 to 200 ° C, more preferably in the range of 60 to 150 ° C, and still more preferably in the range of 80 to 130 ° C. The removal of the solvent may be carried out under normal pressure or reduced pressure.

また、ガスバリア性積層体の表面の外観を損なわないためには、溶媒の除去を行う前または後に、積層体の表面に付着した過剰の多価金属化合物を除去することが好ましい。多価金属化合物を除去する方法としては、多価金属化合物が溶解していく溶剤を用いた洗浄が好ましい。多価金属化合物が溶解していく溶剤としては、溶液(IW)に用いることができる溶媒を用いることができ、溶液(IW)の溶媒と同一のものを用いることが好ましい。   In order not to impair the appearance of the surface of the gas barrier laminate, it is preferable to remove excess polyvalent metal compound adhering to the surface of the laminate before or after removing the solvent. As a method for removing the polyvalent metal compound, washing using a solvent in which the polyvalent metal compound dissolves is preferable. As the solvent in which the polyvalent metal compound dissolves, a solvent that can be used for the solution (IW) can be used, and the same solvent as the solvent for the solution (IW) is preferably used.

本発明の製造方法では、工程(i)の後であって工程(ii)の前および/または後に、工程(i)で形成された層を120〜240℃の温度で熱処理する工程をさらに含んでもよい。すなわち、積層体(I)または積層体(II)に対して熱処理を施してもよい。熱処理は、塗工された溶液(U)の溶媒の除去がほぼ終了した後であれば、どの段階で行ってもよいが、イオン化工程を行う前の積層体(すなわち積層体(I))を熱処理することによって、表面の外観が良好なガスバリア性積層体が得られる。熱処理の温度は、好ましくは120℃〜240℃の範囲にあり、より好ましくは140〜240℃の範囲にあり、さらに好ましくは160℃〜220℃の範囲にある。熱処理は、空気中、窒素雰囲気下、アルゴン雰囲気下などで実施することができる。熱処理を施すことによって、化合物(P)のアミノ基とカルボン酸含有重合体の−COO−基とのアミド化反応がより進行する。その結果、ボイル処理後やレトルト処理後における酸素バリア性および外観(透明性など)により優れ、苛酷なレトルト条件でレトルト処理した後も良好な酸素バリア性および外観(透明性など)を示すガスバリア性積層体が得られる。   The production method of the present invention further includes a step of heat-treating the layer formed in step (i) at a temperature of 120 to 240 ° C. after step (i) and before and / or after step (ii). But you can. That is, you may heat-process with respect to laminated body (I) or laminated body (II). The heat treatment may be performed at any stage as long as the removal of the solvent of the coated solution (U) is almost completed, but the layered product (that is, the layered product (I)) before the ionization step is performed. By performing the heat treatment, a gas barrier laminate having a good surface appearance can be obtained. The temperature of the heat treatment is preferably in the range of 120 ° C to 240 ° C, more preferably in the range of 140 to 240 ° C, and still more preferably in the range of 160 ° C to 220 ° C. The heat treatment can be performed in air, under a nitrogen atmosphere, under an argon atmosphere, or the like. By performing the heat treatment, the amidation reaction of the amino group of the compound (P) and the —COO— group of the carboxylic acid-containing polymer further proceeds. As a result, the oxygen barrier properties and appearance (transparency, etc.) after boil treatment and retort treatment are superior, and the gas barrier properties exhibit good oxygen barrier properties and appearance (transparency, etc.) even after retorting under severe retort conditions. A laminate is obtained.

また、本発明の製造方法では、積層体(I)または(II)に、紫外線を照射してもよい。紫外線照射は、塗工された溶液(U)の溶媒の除去がほぼ終了した後であれば、いつ行ってもよい。その方法は、特に限定されず、公知の方法を適用できる。照射する紫外線の波長は、170〜250nmの範囲にあることが好ましく、170〜190nmの範囲及び/又は230〜250nmの範囲にあることがより好ましい。また、紫外線照射に代えて、電子線やγ線などの放射線の照射を行ってもよい。   In the production method of the present invention, the laminate (I) or (II) may be irradiated with ultraviolet rays. The ultraviolet irradiation may be performed any time after the removal of the solvent of the coated solution (U) is almost completed. The method is not particularly limited, and a known method can be applied. The wavelength of the ultraviolet rays to be irradiated is preferably in the range of 170 to 250 nm, more preferably in the range of 170 to 190 nm and / or in the range of 230 to 250 nm. Further, instead of ultraviolet irradiation, radiation such as an electron beam or γ-ray may be irradiated.

熱処理と紫外線照射は、どちらか一方のみを行ってもよいし、両者を併用してもよい。熱処理及び/又は紫外線照射を行うことによって、積層体のガスバリア性能がより高度に発現する場合がある。   Only one of heat treatment and ultraviolet irradiation may be performed, or both may be used in combination. By performing heat treatment and / or ultraviolet irradiation, the gas barrier performance of the laminate may be expressed to a higher degree.

基材とガスバリア層との間に接着層(G)を配置するために、溶液(U)の塗工前に、基材の表面に処理(アンカーコーティング剤による処理、または接着剤の塗布)を施してもよい。その場合、工程(i)(溶液(U)の塗工)の後であって上記熱処理および工程(ii)(イオン化工程)の前に、溶液(U)が塗工された基材を、比較的低温下に長時間放置する熟成処理を行うことが好ましい。熟成処理の温度は、30〜200℃の範囲にあることが好ましく、30〜150℃の範囲にあることがより好ましく、30〜120℃の範囲にあることがさらに好ましい。熟成処理の時間は、0.5〜10日の範囲にあることが好ましく、1〜7日の範囲にあることがより好ましく、1〜5日の範囲にあることがさらに好ましい。このような熟成処理を行うことによって、基材とガスバリア層との間の接着力がより強固となる。この熟成処理ののちに、さらに上記熱処理(120℃〜240℃の熱処理)を行うことが好ましい。   In order to dispose the adhesive layer (G) between the base material and the gas barrier layer, the surface of the base material is treated (treatment with an anchor coating agent or application of an adhesive) before application of the solution (U). You may give it. In that case, after the step (i) (application of the solution (U)) and before the heat treatment and the step (ii) (ionization step), the substrate coated with the solution (U) is compared. It is preferable to perform an aging treatment that is allowed to stand at a low temperature for a long time. The temperature of the aging treatment is preferably in the range of 30 to 200 ° C, more preferably in the range of 30 to 150 ° C, and further preferably in the range of 30 to 120 ° C. The aging time is preferably in the range of 0.5 to 10 days, more preferably in the range of 1 to 7 days, and still more preferably in the range of 1 to 5 days. By performing such an aging treatment, the adhesive force between the base material and the gas barrier layer becomes stronger. After the aging treatment, it is preferable to perform the above heat treatment (heat treatment at 120 ° C. to 240 ° C.).

以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって限定されない。なお、以下の実施例において積層体の層構成を表記する際に、物質名のみを表記し、「層」の表記を省略することがある。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following examples, when describing the layer structure of the laminate, only the substance name may be described, and the “layer” may be omitted.

[積層体およびラミネート体の作製および評価]
以下で述べる積層体およびラミネート体を作製して評価した。評価は、以下の(1)〜(8)の方法で行った。
[Production and evaluation of laminates and laminates]
The laminates and laminates described below were prepared and evaluated. Evaluation was performed by the following methods (1) to (8).

(1)レトルト処理前の酸素バリア性
酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて酸素透過度を測定した。温度20℃、酸素圧1気圧、キャリアガス圧力1気圧の条件下で、酸素透過度(単位:cc/m2/day/atm)を測定した(cc=cm3)。キャリアガスとしては2体積%の水素ガスを含む窒素ガスを使用した。このとき、湿度を85%RHとし、酸素供給側とキャリアガス側とを同一の湿度とした。基材の片面のみにガスバリア層を形成した積層体については、酸素供給側にガスバリア層が向きキャリアガス側に基材が向くように積層体をセットした。
(1) Oxygen barrier property before retort treatment Oxygen permeability was measured using an oxygen permeation measuring device ("MOCON OX-TRAN 2/20" manufactured by Modern Control). The oxygen permeability (unit: cc / m 2 / day / atm) was measured under the conditions of a temperature of 20 ° C., an oxygen pressure of 1 atm, and a carrier gas pressure of 1 atm (cc = cm 3 ). Nitrogen gas containing 2% by volume of hydrogen gas was used as the carrier gas. At this time, the humidity was set to 85% RH, and the oxygen supply side and the carrier gas side were set to the same humidity. For the laminate in which the gas barrier layer was formed only on one side of the substrate, the laminate was set so that the gas barrier layer was directed to the oxygen supply side and the substrate was directed to the carrier gas side.

(2)10%伸長後でレトルト処理前の酸素バリア性
まず、積層体を30cm×21cmに切り出した。次に、切り出した積層体を、23℃、50%RHの条件で手動伸長装置を用いて10%伸長し、伸長状態で5分間保持した。その後、上記と同様の手法で酸素透過度を測定した。
(2) Oxygen barrier property after 10% elongation and before retort treatment First, the laminate was cut into 30 cm × 21 cm. Next, the cut-out laminate was stretched by 10% using a manual stretching device under the conditions of 23 ° C. and 50% RH, and held for 5 minutes in the stretched state. Thereafter, the oxygen permeability was measured by the same method as described above.

(3)接触角
積層体を温度20℃、湿度65%RHの条件下で24時間調湿を行った。その後、自動接触角計(協和界面科学製、DM500)を用いて、温度20℃、湿度65%RHの条件で2μLの水をガスバリア層上に滴下した。そして、日本工業規格(JIS)−R3257に準拠した方法で、ガスバリア層と水との接触角を測定した。
(3) Contact angle The laminate was conditioned for 24 hours under conditions of a temperature of 20 ° C and a humidity of 65% RH. Thereafter, 2 μL of water was dropped onto the gas barrier layer using an automatic contact angle meter (manufactured by Kyowa Interface Science, DM500) under conditions of a temperature of 20 ° C. and a humidity of 65% RH. And the contact angle of a gas barrier layer and water was measured by the method based on Japanese Industrial Standard (JIS) -R3257.

(4)引っ張り強伸度、ヤング率
積層体を温度23℃、湿度50%RHの条件下で24時間調湿を行った。その後、積層体を、MD方向およびTD方向に対して15cm×15mmに切り出した。切り出した積層体について、温度23℃、湿度50%RHの条件で、JIS−K7127に準拠した方法によって、引っ張り強伸度およびヤング率を測定した。
(4) Tensile strength and elongation, Young's modulus The laminate was conditioned for 24 hours under conditions of a temperature of 23 ° C and a humidity of 50% RH. Thereafter, the laminate was cut into 15 cm × 15 mm with respect to the MD direction and the TD direction. About the cut-out laminated body, tensile strength and Young's modulus were measured by the method based on JIS-K7127 on the conditions of temperature 23 degreeC and humidity 50% RH.

(5)乾熱収縮率
積層体を10cm×10cmに切り出し、MDおよびTDにおける長さをノギスで測定した。この積層体を、乾燥機中において80℃で5分間加熱し、加熱後のMDおよびTDにおける長さを測定した。そして、以下の式から乾熱収縮率を測定した。
乾熱収縮率(%)=(la−lb)×100/lb
[式中、lbは加熱前の長さを表す。laは加熱後の長さを表す。]
(5) Dry heat shrinkage The laminate was cut into 10 cm × 10 cm, and the length in MD and TD was measured with calipers. This laminate was heated in a dryer at 80 ° C. for 5 minutes, and the length in MD and TD after heating was measured. And the dry heat shrinkage rate was measured from the following formula.
Dry heat shrinkage (%) = (l a −l b ) × 100 / l b
[Wherein lb represents a length before heating. l a represents the length after heating. ]

(6)金属イオンによるカルボキシル基の中和度(イオン化度)
[FT−IRによるイオン化度の算出]
数平均分子量150,000のポリアクリル酸を蒸留水に溶解し、所定量の水酸化ナトリウムでカルボキシル基を中和した。得られたポリアクリル酸の中和物の水溶液を、基材上に、イオン化度の測定の対象となる積層体のガスバリア層と同じ厚さになるようにコートし、乾燥させた。基材には、2液型のアンカーコート剤(三井武田ケミカル株式会社製、タケラック626(商品名)およびタケネートA50(商品名)、以下「AC」と略記することがある)を表面にコートした延伸ポリアミドフィルム(ユニチカ株式会社製、エンブレム ON−BC(商品名)、厚さ15μm、以下「OPA」と略記することがある)を用いた。このようにして、カルボキシル基の中和度が、0、25、50、75、80、90モル%の標準サンプル[積層体(ポリアクリル酸の中和物からなる層/AC/OPA)]を作製した。これらのサンプルについて、フーリエ変換赤外分光光度計(Perkin Elmer製、Spectrum One)を用いて、ATR(全反射測定)のモードで、赤外吸収スペクトルを測定した。そして、ポリアクリル酸の中和物からなる層に含まれるC=O伸縮振動に対応する2つのピーク、すなわち、1600cm-1〜1850cm-1の範囲に観察されるピークと1500cm-1〜1600cm-1の範囲に観察されるピークとについて、吸光度の最大値の比を算出した。そして、算出した比と、各標準サンプルのイオン化度とを用いて検量線1を作成した。
(6) Degree of neutralization of carboxyl groups by metal ions (degree of ionization)
[Calculation of ionization degree by FT-IR]
Polyacrylic acid having a number average molecular weight of 150,000 was dissolved in distilled water, and the carboxyl group was neutralized with a predetermined amount of sodium hydroxide. The obtained aqueous solution of neutralized polyacrylic acid was coated on a substrate so as to have the same thickness as the gas barrier layer of the laminate to be measured for ionization degree, and dried. The substrate was coated on the surface with a two-component anchor coating agent (Mitsui Takeda Chemical Co., Ltd., Takelac 626 (trade name) and Takenate A50 (trade name), hereinafter abbreviated as “AC”). A stretched polyamide film (manufactured by Unitika Ltd., Emblem ON-BC (trade name), thickness 15 μm, hereinafter sometimes abbreviated as “OPA”) was used. In this way, a standard sample [laminated body (layer made of neutralized polyacrylic acid / AC / OPA)] having a carboxyl group neutralization degree of 0, 25, 50, 75, 80, and 90 mol% was prepared. Produced. About these samples, the infrared absorption spectrum was measured in the mode of ATR (total reflection measurement) using the Fourier-transform infrared spectrophotometer (The product made from Perkin Elmer, Spectrum One). The two peaks corresponding to the C = O stretching vibration in the layer consisting of neutralized product of polyacrylic acid, i.e., a peak observed in the range of 1600cm -1 ~1850cm -1 and 1500cm -1 ~1600cm - The ratio of the maximum absorbance was calculated for the peak observed in the range of 1 . And the calibration curve 1 was created using the calculated ratio and the ionization degree of each standard sample.

基材として延伸ポリアミドフィルム(上記「OPA」)を用いた積層体について、フーリエ変換赤外分光光度計(Perkin Elmer製、Spectrum One)を用いて、ATR(全反射測定)のモードで、ガスバリア層に含まれるC=O伸縮振動のピークを観察した。イオン化前のカルボン酸含有重合体のカルボキシル基のC=O伸縮振動に帰属されるピークは、1600cm-1〜1850cm-1の範囲に観察された。また、イオン化された後のカルボキシル基のC=O伸縮振動は1500cm-1〜1600cm-1の範囲に観察された。そして、それぞれの範囲における最大の吸光度からその比を算出し、その比と上記検量線1とを用いてイオン化度を求めた。 For a laminate using a stretched polyamide film (“OPA” above) as a substrate, a gas barrier layer in a mode of ATR (total reflection measurement) using a Fourier transform infrared spectrophotometer (Perkin Elmer, Spectrum One) The peak of the C═O stretching vibration contained in was observed. Peak attributed to C = O stretching vibration of the carboxyl group of the ionization front of a carboxylic acid-containing polymer, was observed in the range of 1600cm -1 ~1850cm -1. Furthermore, C = O stretching vibration of the carboxyl group after being ionized was observed in the range of 1500cm -1 ~1600cm -1. Then, the ratio was calculated from the maximum absorbance in each range, and the degree of ionization was determined using the ratio and the calibration curve 1.

[蛍光X線によるイオン化度の算出]
基材として前述したOPAを用いた積層体について、FT−IRの測定よりイオン化度の異なる標準サンプルを作製した。具体的には、イオン化度(イオン:カルシウムイオン)が0〜100モル%間で約10モル%ずつ異なる11種類の標準サンプルを作製した。各々のサンプルについて、波長分散型蛍光X線装置(株式会社リガク製、ZSXminiII)を用いて、カルシウム元素の蛍光X線強度を測定し、予めFT−IRで測定したイオン化度から検量線2を作成した。得られた検量線2を用いて、各種条件で作製した積層体のカルシウムイオン化度を算出した。
[Calculation of ionization degree by fluorescent X-ray]
About the laminated body using OPA mentioned above as a base material, the standard sample from which the degree of ionization differs was measured from the measurement of FT-IR. Specifically, eleven types of standard samples having different degrees of ionization (ions: calcium ions) of about 10 mol% between 0 to 100 mol% were prepared. For each sample, the fluorescence X-ray intensity of calcium element was measured using a wavelength dispersion type fluorescent X-ray apparatus (manufactured by Rigaku Corporation, ZSXmini II), and a calibration curve 2 was created from the degree of ionization measured in advance by FT-IR. did. Using the obtained calibration curve 2, the degree of calcium ionization of the laminate produced under various conditions was calculated.

他の金属イオン(マグネシウムイオンや亜鉛イオン等)でイオン化する場合に関しても、上記と同様の方法で検量線2を作成し、イオン化度を算出した。   Also in the case of ionization with other metal ions (magnesium ion, zinc ion, etc.), the calibration curve 2 was created by the same method as described above, and the degree of ionization was calculated.

OPA以外の基材を用いた積層体(PETなど)についても、蛍光X線強度測定により得られた検量線2を用いて、イオン化度を算出した。   For a laminate (such as PET) using a substrate other than OPA, the degree of ionization was calculated using the calibration curve 2 obtained by fluorescent X-ray intensity measurement.

(7)加水分解縮合物および重合体(X)の重量
上述した方法によって、化合物(L)に由来する無機成分の重量、および、化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計を算出した。
(7) Weight of hydrolysis condensate and polymer (X) By the method described above, the weight of the inorganic component derived from compound (L) and the weight of the organic component derived from compound (L) and polymer (X ) And the total weight of the organic components derived from it were calculated.

(8)レトルト処理後の酸素バリア性
ラミネート体(サイズ:12cm×12cm)を2枚作製した。そして、その2枚を、無延伸ポリプロピレンフィルム(トーセロ株式会社製、RXC−18(商品名)、厚さ50μm、以下「CPP」と略記することがある)が内側になるように重ねあわせたのち、ラミネート体の3辺をその端から5mmまでヒートシールした。ヒートシールされた2枚のラミネート体の間に蒸留水80gを注入したのち、残された第4辺を同様にヒートシールした。このようにして、蒸留水が中に入ったパウチを作製した。
(8) Oxygen barrier property after retorting Two laminates (size: 12 cm × 12 cm) were produced. Then, the two sheets were laminated so that the unstretched polypropylene film (Tosero Co., Ltd., RXC-18 (trade name), thickness 50 μm, hereinafter abbreviated as “CPP”) might be inside. The three sides of the laminate were heat sealed to 5 mm from the end. After injecting 80 g of distilled water between the two heat-sealed laminates, the remaining fourth side was similarly heat-sealed. In this way, a pouch containing distilled water was produced.

次に、そのパウチをレトルト処理装置(日阪製作所製、フレーバーエース RCS−60)に入れ、120℃、30分、0.15MPaの条件でレトルト処理を施した。レトルト処理後、加熱を停止し、レトルト処理装置の内部温度が60℃になった時点で、レトルト処理装置からパウチを取り出した。そして、20℃、65%RHの室内でパウチを1時間放置した。その後、ヒートシールされた部分をはさみで切り取り、ラミネート体の表面に付着した水を、紙タオルを軽く押し付けることによって拭き取った。その後、20℃、85%RHに調整したデシケータ内にパウチを1日以上放置した。このようなレトルト処理がされたラミネート体の酸素透過度を測定することによって、レトルト処理後の酸素バリア性を評価した。   Next, the pouch was put into a retort treatment device (manufactured by Nisaka Seisakusho, Flavor Ace RCS-60), and retort treatment was performed under the conditions of 120 ° C., 30 minutes, and 0.15 MPa. After the retort treatment, heating was stopped, and the pouch was taken out from the retort treatment device when the internal temperature of the retort treatment device reached 60 ° C. Then, the pouch was left for 1 hour in a room at 20 ° C. and 65% RH. Thereafter, the heat-sealed portion was cut off with scissors, and the water adhering to the surface of the laminate was wiped off by lightly pressing a paper towel. Thereafter, the pouch was left in a desiccator adjusted to 20 ° C. and 85% RH for one day or longer. The oxygen barrier property after the retort treatment was evaluated by measuring the oxygen permeability of the laminate subjected to such a retort treatment.

酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて測定した。具体的には、酸素供給側にガスバリア層が向きキャリアガス側にCPPが向くように積層体をセットし、温度20℃、酸素供給側の湿度85%RH、キャリアガス側の湿度85%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で酸素透過度(単位:cc/m2/day/atm)を測定した。 The oxygen transmission rate was measured using an oxygen transmission amount measuring device ("MOCON OX-TRAN 2/20" manufactured by Modern Control). Specifically, the laminate is set so that the gas barrier layer faces the oxygen supply side and the CPP faces the carrier gas side, the temperature is 20 ° C., the humidity is 85% RH on the oxygen supply side, the humidity is 85% RH on the carrier gas side, The oxygen permeability (unit: cc / m 2 / day / atm) was measured under conditions of an oxygen pressure of 1 atm and a carrier gas pressure of 1 atm.

<積層体(1)>
数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、水溶液中の固形分濃度が13重量%であるPAA水溶液を得た。続いて、このPAA水溶液に、13%アンモニア水溶液を加え、PAAのカルボキシル基の1モル%を中和して、PAAの部分中和水溶液を得た。
<Laminated body (1)>
Polyacrylic acid (PAA) having a number average molecular weight of 150,000 was dissolved in distilled water to obtain a PAA aqueous solution having a solid content concentration of 13% by weight in the aqueous solution. Subsequently, 13% ammonia aqueous solution was added to this PAA aqueous solution to neutralize 1 mol% of the carboxyl group of PAA, thereby obtaining a partially neutralized aqueous solution of PAA.

また、[エチレンジアミン(EDA)に含まれるアミノ基]/[HCl]の当量比が1/1となるように、EDAに1N−HClを加え、EDA塩酸塩水溶液(S1)を得た。   Moreover, 1N-HCl was added to EDA so that the equivalent ratio of [amino group contained in ethylenediamine (EDA)] / [HCl] was 1/1, to obtain an EDA hydrochloride aqueous solution (S1).

続いて、[テトラメトキシシラン(TMOS)に由来する無機成分の重量]/[PAAの部分中和物の重量]の比が30.0/70.0となり、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が0.2/100となるように、混合液(U1)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解した。続いて、これにTMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で1時間、加水分解および縮合反応を行い、混合液(T1)を得た。次に、混合液(T1)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)354重量部を速やかに添加し、さらに上記EDA塩酸塩水溶液(S1)1.27重量部を加え、固形分濃度が5重量%の混合液(U1)を得た。   Subsequently, the ratio of [weight of inorganic component derived from tetramethoxysilane (TMOS)] / [weight of partially neutralized PAA] was 30.0 / 70.0, and [amino group of EDA] / [PAA The mixed solution (U1) was prepared so that the equivalent ratio of [carboxyl group] was 0.2 / 100. Specifically, first, 50 parts by weight of TMOS was dissolved in 50 parts by weight of methanol. Subsequently, 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid were added so that the ratio of water to TMOS was 1.95 molar equivalent, and hydrolysis was performed at 10 ° C. for 1 hour. Then, a condensation reaction was performed to obtain a mixed liquid (T1). Next, after diluting the mixed liquid (T1) with 567 parts by weight of distilled water and 283 parts by weight of methanol, 354 parts by weight of an aqueous solution of a partially neutralized product of PAA (concentration 13% by weight) was rapidly added while stirring. Furthermore, 1.27 parts by weight of the above-mentioned EDA hydrochloride aqueous solution (S1) was added to obtain a mixed solution (U1) having a solid content concentration of 5% by weight.

一方、酢酸エチル67重量部に溶解させた2液型のアンカーコート剤(三井武田ケミカル株式会社製:タケラックA−626(商品名)1重量部およびタケネートA−50(商品名)2重量部)を、延伸ポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラーP60(商品名)、厚さ12μm、以下「PET」と略記することがある)上にコートし、乾燥させることによってアンカーコート層を有する基材(AC/PET)を作製した。この基材のアンカーコート層上に、乾燥後の厚さが0.4μmとなるようにバーコータによって混合液(U1)をコートし120℃で5分間乾燥した。続いて、同様の手順で基材の反対側の面にも塗工を行った。得られた積層体を、40℃で3日間エージングを行なった。次に、乾燥機を用い180℃で5分間、積層体に熱処理を施した。次に、積層体を、2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬し、その後、110℃で1分乾燥を行った。このようにして、ガスバリア層(0.4μm)/AC(0.1μm)/PET(12μm)/AC(0.1μm)/ガスバリア層(0.4μm)という構造を有する積層体(1)を得た。   On the other hand, a two-component anchor coating agent dissolved in 67 parts by weight of ethyl acetate (Mitsui Takeda Chemical Co., Ltd .: Takelac A-626 (trade name) 1 part by weight and Takenate A-50 (trade name) 2 parts by weight) Is coated on a stretched polyethylene terephthalate film (manufactured by Toray Industries, Inc., Lumirror P60 (trade name), thickness 12 μm, hereinafter sometimes abbreviated as “PET”), and dried to form a base material having an anchor coat layer (AC / PET) was prepared. The mixed solution (U1) was coated on the anchor coat layer of the base material with a bar coater so that the thickness after drying was 0.4 μm, and dried at 120 ° C. for 5 minutes. Subsequently, coating was also performed on the opposite surface of the substrate in the same procedure. The obtained laminate was aged at 40 ° C. for 3 days. Next, the laminate was heat-treated at 180 ° C. for 5 minutes using a dryer. Next, the laminate was immersed in a 2 wt% aqueous calcium acetate solution (85 ° C.) for 12 seconds, and then dried at 110 ° C. for 1 minute. In this way, a laminate (1) having a structure of gas barrier layer (0.4 μm) / AC (0.1 μm) / PET (12 μm) / AC (0.1 μm) / gas barrier layer (0.4 μm) is obtained. It was.

<積層体(2)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が1.0/100となるようにした以外は積層体(1)と同様の仕込み比で、混合液(U2)を調製した。具体的には、まず、積層体(1)の混合液(T1)と同様の組成および方法で調製した混合液(T2)を蒸留水567重量部、メタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S2)6.3重量部を加え、固形分濃度が5重量%の混合液(U2)を得た。
<Laminated body (2)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). A mixed liquid (U2) was prepared at the same charging ratio as that of the laminate (1) except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 1.0 / 100. did. Specifically, first, the mixture (T2) prepared by the same composition and method as the mixture (T1) of the laminate (1) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred. 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was quickly added, and 6.3 parts by weight of an aqueous EDA hydrochloride solution (S2) was further added. U2) was obtained.

混合液(U2)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(2)を得た。   Using the mixed solution (U2), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (2).

<積層体(3)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、積層体(1)と同様の仕込み比で、反応時間のみを変えて、混合液(U3)を調製した。
<Laminated body (3)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). And the liquid mixture (U3) was prepared by changing only reaction time by the preparation ratio similar to a laminated body (1).

具体的には、まず、TMOS50重量部をメタノール50重量部に溶解した。そこへTMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T3)を得た。次に、混合液(T3)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S3)1.27重量部を加え、固形分濃度5重量%の混合液(U3)を得た。   Specifically, first, 50 parts by weight of TMOS was dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to TMOS was 1.95 molar equivalents, and hydrolysis and condensation reaction at 10 ° C. for 5 hours. And a liquid mixture (T3) was obtained. Next, after the mixed liquid (T3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 1.27 parts by weight of an EDA hydrochloride aqueous solution (S3) was added to obtain a mixed liquid (U3) having a solid content concentration of 5% by weight.

混合液(U3)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、ガスバリア性積層体(3)を得た。   Using the mixed solution (U3), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a gas barrier laminate (3).

<積層体(4)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が19.4/100となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U4)を調製した。具体的には、まず、積層体(3)の混合液(T3)と同様の組成および方法で調製した混合液(T4)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S4)127重量部を加え、固形分濃度5重量%の混合液(U4)を得た。
<Laminated body (4)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). A mixed liquid (U4) was prepared at the same charging ratio as that of the laminate (3) except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 19.4 / 100. did. Specifically, first, the mixture (T4) prepared by the same composition and method as the mixture (T3) of the laminate (3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred. While adding 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight), 127 parts by weight of an aqueous EDA hydrochloride solution (S4) was further added, and a mixed liquid (U4) having a solid content concentration of 5% by weight. Got.

混合液(U4)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(4)を得た。   Using the mixed solution (U4), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (4).

<積層体(5)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が4.9/100となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U5)を調製した。具体的には、まず、積層体(3)の混合液(T3)と同様の組成および方法で調製した混合液(T5)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、EDA塩酸塩水溶液(S5)32重量部を加え、固形分濃度5重量%の混合液(U5)を得た。
<Laminated body (5)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). A mixed liquid (U5) was prepared at the same charging ratio as that of the laminate (3) except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 4.9 / 100. did. Specifically, first, the mixture (T5) prepared by the same composition and method as the mixture (T3) of the laminate (3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred. While quickly adding 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight), 32 parts by weight of an EDA hydrochloride aqueous solution (S5) was added, and a mixed liquid (U5) having a solid content concentration of 5% by weight was added. Obtained.

混合液(U5)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、ガスバリア性積層体(5)を得た。   Using the mixed solution (U5), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a gas barrier laminate (5).

<積層体(6)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が1.0/100となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U6)を調製した。具体的には、まず、積層体(3)の混合液(T3)と同様の組成および方法で調製した混合液(T6)を蒸留水567重量部、メタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S6)6.3重量部を加え、固形分濃度5重量%の混合液(U6)を得た。
<Laminated body (6)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). Then, a mixed liquid (U6) was prepared with the same charging ratio as that of the laminate (3) except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 1.0 / 100. did. Specifically, first, the mixture (T6) prepared by the same composition and method as the mixture (T3) of the laminate (3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred. While adding 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight), 6.3 parts by weight of an aqueous EDA hydrochloride solution (S6) was further added, and a mixed liquid (U6 )

混合液(U6)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(6)を得た。   Using the mixed solution (U6), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (6).

<積層体(7)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。続いて、[TMOS]/[γ−グリシドキシドキシプロピルトリメトキシシラン(GPTMOS)]のモル比が99.5/0.5、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が30.0/70.0、[EDAのアミノ基]/[PAAのカルボキシル基]のモル比が1.0/100となるように、混合液(U7)を調製した。具体的には、まず、TMOS49.6重量部およびGPTMOS0.4重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう、蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T7)を得た。続いて、混合液(T7)を、蒸留水566重量部およびメタノール284重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)352重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S7)6.3重量部を加え、固形分濃度5重量%の混合液(U7)を得た。
<Laminated body (7)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). Subsequently, the molar ratio of [TMOS] / [γ-glycidoxydoxypropyltrimethoxysilane (GPTMOS)] is 99.5 / 0.5, [inorganic component derived from TMOS and GPTMOS] / [organic component of GPTMOS) And a partially neutralized product of PAA] in a mixed solution (so that the molar ratio of 30.0 / 70.0 and [amino group of EDA] / [carboxyl group of PAA] is 1.0 / 100) U7) was prepared. Specifically, first, 49.6 parts by weight of TMOS and 0.4 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, and 5 hours at 10 ° C. Hydrolysis and condensation reaction were performed to obtain a mixed solution (T7). Subsequently, after the mixed solution (T7) was diluted with 566 parts by weight of distilled water and 284 parts by weight of methanol, 352 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 6.3 parts by weight of an EDA hydrochloride aqueous solution (S7) was added to obtain a mixed solution (U7) having a solid content concentration of 5% by weight.

混合液(U7)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(7)を得た。   Using the mixed solution (U7), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (7).

<積層体(8)>
TMOS/GPTMOSのモル比が80.0/20.0となるようにした以外は積層体(7)と同様の仕込み比で、混合液(U8)を調製した。具体的には、まず、TMOS36重量部およびGPTMOS14重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.0重量部と0.1Nの塩酸7.4重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T8)を得た。続いて、混合液(T8)を、蒸留水520重量部およびメタノール301重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)267重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S8)4.8重量部を加え、固形分濃度5重量%の混合液(U8)を得た。
<Laminated body (8)>
A mixed solution (U8) was prepared with the same charging ratio as that of the laminate (7) except that the molar ratio of TMOS / GPTMOS was 80.0 / 20.0. Specifically, first, 36 parts by weight of TMOS and 14 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.0 parts by weight of distilled water and 7.4 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents. Decomposition | disassembly and condensation reaction were performed and the liquid mixture (T8) was obtained. Subsequently, after the mixed liquid (T8) was diluted with 520 parts by weight of distilled water and 301 parts by weight of methanol, 267 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 4.8 parts by weight of an EDA hydrochloride aqueous solution (S8) was added to obtain a mixed solution (U8) having a solid content concentration of 5% by weight.

混合液(U8)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(8)を得た。   Using the mixed solution (U8), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (8).

<積層体(9)>
TMOS/GPTMOSのモル比が89.9/10.1となるようにした以外は積層体(7)と同様の仕込み比で、混合液(U9)を調製した。具体的には、まず、TMOS42.6重量部およびGPTMOS7.4重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.2重量部と0.1Nの塩酸7.8重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T9)を得た。続いて、混合液(T9)を、蒸留水542重量部およびメタノール293重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S9)5.5重量部を加え、固形分濃度5重量%の混合液(U9)を得た。
<Laminated body (9)>
A mixed solution (U9) was prepared with the same charging ratio as that of the laminate (7) except that the molar ratio of TMOS / GPTMOS was 89.9 / 10.1. Specifically, first, 42.6 parts by weight of TMOS and 7.4 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.2 parts by weight of distilled water and 7.8 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalent, and the mixture was hydrolyzed at 10 ° C for 5 hours. Decomposition | disassembly and condensation reaction were performed and the liquid mixture (T9) was obtained. Subsequently, after the mixture (T9) was diluted with 542 parts by weight of distilled water and 293 parts by weight of methanol, 308 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Furthermore, 5.5 parts by weight of an EDA hydrochloride aqueous solution (S9) was added to obtain a mixed solution (U9) having a solid content concentration of 5% by weight.

混合液(U9)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(9)を得た。   Using the mixed solution (U9), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (9).

<積層体(10)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。続いて、[TMOS]/[GPTMOS]のモル比が98.0/2.0となり、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が32.4/67.6となり、[EDAのアミノ基]/[PAAのカルボキシル基]のモル比が1.1/100となるように、混合液(U10)を調製した。具体的には、まず、TMOS48.5重量部およびGPTMOS1.5重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T10)を得た。続いて、混合液(T10)を、蒸留水562重量部およびメタノール293重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S10)6.2重量部を加え、固形分濃度5重量%の混合液(U10)を得た。
<Laminated body (10)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). Subsequently, the molar ratio of [TMOS] / [GPTMOS] was 98.0 / 2.0, and the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA]. Was 32.4 / 67.6, and a mixed solution (U10) was prepared so that the molar ratio of [amino group of EDA] / [carboxyl group of PAA] was 1.1 / 100. Specifically, first, 48.5 parts by weight of TMOS and 1.5 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, and the mixture was hydrolyzed at 10 ° C. for 5 hours. Decomposition and condensation reactions were performed to obtain a mixed solution (T10). Subsequently, after the mixed liquid (T10) was diluted with 562 parts by weight of distilled water and 293 parts by weight of methanol, 308 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 6.2 parts by weight of an EDA hydrochloride aqueous solution (S10) was added to obtain a mixed solution (U10) having a solid content concentration of 5% by weight.

混合液(U10)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(10)を得た。   Using the mixed solution (U10), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (10).

<積層体(11)>
TMOSとGPTMOSのモル比が99.9/0.1となるようにした以外は積層体(7)と同様の仕込み比で、混合液(U11)を得た。具体的には、まず、TMOS49.9重量部およびGPTMOS0.1重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T11)を得た。続いて、混合液(T11)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S11)6.3重量部を加え、固形分濃度5重量%の混合液(U11)を得た。
<Laminated body (11)>
A mixed solution (U11) was obtained with the same charging ratio as that of the laminate (7) except that the molar ratio of TMOS to GPTMOS was 99.9 / 0.1. Specifically, first, 49.9 parts by weight of TMOS and 0.1 part by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, and the mixture was hydrolyzed at 10 ° C. for 5 hours. Decomposition | disassembly and condensation reaction were performed and the liquid mixture (T11) was obtained. Subsequently, after the mixture (T11) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 6.3 parts by weight of an EDA hydrochloride aqueous solution (S11) was added to obtain a mixed solution (U11) having a solid content concentration of 5% by weight.

混合液(U11)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(11)を得た。   Using the mixed solution (U11), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (11).

<積層体(12)>
TMOS/GPTMOSのモル比が70.0/30.0となるようにした以外は積層体(7)と同様の仕込み比で、混合液(U12)を調製した。具体的には、まず、TMOS30重量部およびGPTMOS20重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を2.9重量部と0.1Nの塩酸7.0重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T12)を得た。続いて、混合液(T12)を、蒸留水500重量部およびメタノール310重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)229重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S12)4.1重量部を加え、固形分濃度5重量%の混合液(U12)を得た。
<Laminated body (12)>
A mixed solution (U12) was prepared with the same charging ratio as that of the laminate (7) except that the molar ratio of TMOS / GPTMOS was 70.0 / 30.0. Specifically, first, 30 parts by weight of TMOS and 20 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 2.9 parts by weight of distilled water and 7.0 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, Decomposition and condensation reactions were performed to obtain a mixed solution (T12). Subsequently, after the mixed solution (T12) was diluted with 500 parts by weight of distilled water and 310 parts by weight of methanol, 229 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Furthermore, 4.1 parts by weight of an EDA hydrochloride aqueous solution (S12) was added to obtain a mixed solution (U12) having a solid content concentration of 5% by weight.

混合液(U12)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(12)を得た。   Using the mixed solution (U12), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (12).

<積層体(13)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が20.0/80.0となるようにした以外は積層体(10)と同様の仕込み比で、混合液(U13)を調製した。具体的には、まず、積層体(10)の混合液(T10)と同様の組成および方法で混合液(T13)を得た。続いて、混合液(T13)を、蒸留水842重量部およびメタノール405重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)595重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S13)10.6重量部を加え、固形分濃度5重量%の混合液(U13)を得た。
<Laminated body (13)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). The laminate (10) except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 20.0 / 80.0. A mixed solution (U13) was prepared at the same charging ratio. Specifically, first, a mixed solution (T13) was obtained by the same composition and method as the mixed solution (T10) of the laminate (10). Subsequently, after the mixture (T13) was diluted with 842 parts by weight of distilled water and 405 parts by weight of methanol, 595 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Furthermore, 10.6 parts by weight of an EDA hydrochloride aqueous solution (S13) was added to obtain a mixed solution (U13) having a solid content concentration of 5% by weight.

混合液(U13)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(13)を得た。   Using the mixed solution (U13), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (13).

<積層体(14)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が80.0/20.0となるようにした以外は積層体(10)と同様の仕込み比で、混合液(U14)を調製した。具体的には、まず、積層体(10)の混合液(T10)と同様の組成および方法で混合液(T14)を得た。続いて、混合液(T14)を、蒸留水211重量部およびメタノール135重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)32重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S14)0.6重量部を加え、固形分濃度5重量%の混合液(U14)を得た。
<Laminated body (14)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). The laminated body (10) except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 80.0 / 20.0. A mixed solution (U14) was prepared at the same charging ratio. Specifically, first, a mixed solution (T14) was obtained by the same composition and method as the mixed solution (T10) of the laminate (10). Subsequently, after the mixture (T14) was diluted with 211 parts by weight of distilled water and 135 parts by weight of methanol, 32 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 0.6 part by weight of an EDA hydrochloride aqueous solution (S14) was added to obtain a mixed solution (U14) having a solid content concentration of 5% by weight.

混合液(U14)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(14)を得た。   Using the mixed solution (U14), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (14).

<積層体(15)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が69.9/30.1となるようにした以外は積層体(10)と同様の仕込み比で、混合液(U15)を得た。具体的には、まず、積層体(10)の混合液(T10)と同様の組成および方法で混合液(T15)を得た。続いて、混合液(T15)を、蒸留水241重量部およびメタノール148重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)59重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S15)1.0重量部を加え、固形分濃度5重量%の混合液(U15)を得た。
<Laminated body (15)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). The laminate (10) except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 69.9 / 30.1 A mixed liquid (U15) was obtained with the same charging ratio. Specifically, first, a mixed solution (T15) was obtained by the same composition and method as the mixed solution (T10) of the laminate (10). Subsequently, after the mixture (T15) was diluted with 241 parts by weight of distilled water and 148 parts by weight of methanol, 59 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Furthermore, 1.0 part by weight of an EDA hydrochloride aqueous solution (S15) was added to obtain a mixed liquid (U15) having a solid content concentration of 5% by weight.

混合液(U15)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(15)を得た。   Using the mixed solution (U15), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (15).

<積層体(16)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が10.0/90.0となるようにした以外は積層体(10)と同様の仕込み比で、混合液(U16)を得た。具体的には、まず、積層体(10)の混合液(T10)と同様の組成および方法で混合液(T16)を得た。続いて、混合液(T16)を、蒸留水1683重量部およびメタノール766重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)1346重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S16)24重量部を加え、固形分濃度5重量%の混合液(U16)を得た。
<Laminated body (16)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). The laminate (10) except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 10.0 / 90.0. A mixed solution (U16) was obtained with the same charging ratio. Specifically, first, a mixed solution (T16) was obtained by the same composition and method as the mixed solution (T10) of the laminate (10). Subsequently, after the mixture (T16) was diluted with 1683 parts by weight of distilled water and 766 parts by weight of methanol, 1346 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 24 parts by weight of an EDA hydrochloride aqueous solution (S16) was added to obtain a mixed solution (U16) having a solid content concentration of 5% by weight.

混合液(U16)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(16)を得た。   Using the mixed solution (U16), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (16).

<積層体(17)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が90.0/10.0となるようにした以外は積層体(10)と同様の仕込み比で、混合液(U17)を得た。具体的には、まず、積層体(10)の混合液(T10)と同様の組成および方法で混合液(T17)を得た。続いて、混合液(T17)を、蒸留水188重量部およびメタノール125重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)11重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S17)0.2重量部を加え、固形分濃度5重量%の混合液(U17)を得た。
<Laminated body (17)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). The laminate (10) except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 90.0 / 10.0. A mixed liquid (U17) was obtained with the same charging ratio. Specifically, first, a mixed solution (T17) was obtained by the same composition and method as the mixed solution (T10) of the laminate (10). Subsequently, after the mixture (T17) was diluted with 188 parts by weight of distilled water and 125 parts by weight of methanol, 11 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 0.2 part by weight of an EDA hydrochloride aqueous solution (S17) was added to obtain a mixed solution (U17) having a solid content concentration of 5% by weight.

混合液(U17)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(17)を得た。   Using the mixed solution (U17), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (17).

<積層体(18)>
[プロピレンジアミン(PDA)に含まれるアミノ基]/[HCl]の当量比が1/1となるようPDAに1N−HClを加え、PDA塩酸塩水溶液(S18)を得た。EDA塩酸塩水溶液をPDA塩酸塩水溶液(S18)に変えた以外は積層体(10)の混合液(U10)と同様の組成および方法で、混合液(U18)を得た。
<Laminated body (18)>
1N-HCl was added to PDA so that the equivalent ratio of [amino group contained in propylenediamine (PDA)] / [HCl] was 1/1 to obtain PDA hydrochloride aqueous solution (S18). A mixed solution (U18) was obtained by the same composition and method as the mixed solution (U10) of the laminate (10) except that the EDA hydrochloride aqueous solution was changed to the PDA hydrochloride aqueous solution (S18).

混合液(U18)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(18)を得た。   Using the mixed solution (U18), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (18).

<積層体(19)>
[キトサンに含まれるアミノ基]/[HCl]の当量比が1/1となるようキトサンに1N−HClを加え、キトサン塩酸塩水溶液(S19)を得た。EDA塩酸塩水溶液をキトサン塩酸塩水溶液(S19)に変えた以外は積層体(10)の混合液(U10)と同様の組成および方法で、混合液(U19)を得た。
<Laminated body (19)>
1N-HCl was added to chitosan so that the equivalent ratio of [amino group contained in chitosan] / [HCl] was 1/1 to obtain an aqueous chitosan hydrochloride solution (S19). A mixed solution (U19) was obtained by the same composition and method as the mixed solution (U10) of the laminate (10) except that the EDA hydrochloride aqueous solution was changed to a chitosan hydrochloride aqueous solution (S19).

混合液(U19)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(19)を得た。   Using the mixed solution (U19), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (19).

<積層体(20)>
[ヘキサメチレンジアミン(HMDA)に含まれるアミノ基]/[HCl]の当量比が1/1となるようHMDAに1N−HClを加え、HMDA塩酸塩水溶液(S20)を得た。EDA塩酸塩水溶液をHMDA塩酸塩水溶液(S20)に変えた以外は積層体(10)の混合液(U10)と同様の組成および方法で、混合液(U20)を得た。
<Laminated body (20)>
1N-HCl was added to HMDA so that the equivalent ratio of [amino group contained in hexamethylenediamine (HMDA)] / [HCl] was 1/1 to obtain an aqueous HMDA hydrochloride (S20). A mixed solution (U20) was obtained by the same composition and method as the mixed solution (U10) of the laminate (10) except that the EDA hydrochloride aqueous solution was changed to the HMDA hydrochloride aqueous solution (S20).

混合液(U20)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(20)を得た。   Using the mixed solution (U20), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (20).

<積層体(21)>
積層体(21)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U21)を使用した。
<Laminated body (21)>
For the production of the laminate (21), a mixture (U21) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used.

混合液(U21)を用い、積層体(1)と同様にコート、熱処理を行い、積層体を得た。この積層体を0.1重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を積層体(1)と同様に乾燥することによって、積層体(21)を得た。   Using the mixed solution (U21), coating and heat treatment were performed in the same manner as in the laminate (1) to obtain a laminate. Ionization was performed by immersing this laminate in a 0.1 wt% aqueous calcium acetate solution (85 ° C.) for 12 seconds. Next, the laminate (21) was obtained by drying the laminate in the same manner as the laminate (1).

<積層体(22)>
積層体(22)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U22)を使用した。
<Laminated body (22)>
For the production of the laminate (22), a mixture (U22) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used.

混合液(U22)を用い、積層体(1)と同様にコート、熱処理を行い、積層体を得た。この積層体を0.2重量%の酢酸カルシウム水溶液(85℃)に6秒間浸漬することによって、イオン化を行った。次に、この積層体を積層体(1)と同様に乾燥することによって、積層体(22)を得た。   Using the mixed solution (U22), coating and heat treatment were performed in the same manner as in the laminate (1) to obtain a laminate. Ionization was performed by immersing this laminate in a 0.2 wt% calcium acetate aqueous solution (85 ° C.) for 6 seconds. Next, this laminate was dried in the same manner as the laminate (1) to obtain a laminate (22).

<積層体(23)>
積層体(23)の作製には、積層体(10)で得られた混合液(U10)と同様の組成および方法で得た混合液(U23)を使用した。
<Laminated body (23)>
For the production of the laminate (23), a mixture (U23) obtained by the same composition and method as the mixture (U10) obtained from the laminate (10) was used.

混合液(U23)を用い、積層体(1)と同様にコート、熱処理を行い、積層体を得た。この積層体を0.2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を積層体(1)と同様に乾燥することによって、積層体(23)を得た。   Using the mixed solution (U23), coating and heat treatment were performed in the same manner as in the laminate (1) to obtain a laminate. Ionization was performed by immersing this laminate in a 0.2 wt% aqueous calcium acetate solution (85 ° C.) for 12 seconds. Next, the laminate (23) was obtained by drying the laminate in the same manner as the laminate (1).

<積層体(24)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。一方、ポリビニルアルコール(株式会社クラレ製、PVA117(商品名)、以下、「PVA」と略記する場合がある)を10重量%となるよう蒸留水に加え、85℃で3時間加熱することによってPVA水溶液を得た。
<Laminated body (24)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). On the other hand, polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA117 (trade name), hereinafter sometimes abbreviated as “PVA”) is added to distilled water so as to be 10% by weight, and heated at 85 ° C. for 3 hours. An aqueous solution was obtained.

[PVAの水酸基]/[PAAのカルボキシル基]の当量比が18.2/100となるようにPVA水溶液を加えた以外は積層体(6)と同様の仕込み比で、混合液(U24)を得た。   The mixed solution (U24) was prepared at the same charging ratio as the laminate (6) except that the PVA aqueous solution was added so that the equivalent ratio of [hydroxyl group of PVA] / [carboxyl group of PAA] was 18.2 / 100. Obtained.

具体的には、まず、積層体(6)の混合液(T6)と同様の組成および方法で得られた混合液(T24)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S24)6.3重量部を加え、続いて上記10重量%PVA水溶液51重量部を加えた。このようにして、固形分濃度5重量%の混合液(U24)を得た。   Specifically, first, after the liquid mixture (T24) obtained by the same composition and method as the liquid mixture (T6) of the laminate (6) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, While stirring, 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added, and further 6.3 parts by weight of an aqueous EDA hydrochloride solution (S24) was added, followed by the above-mentioned 10% by weight PVA aqueous solution 51 Part by weight was added. In this way, a liquid mixture (U24) having a solid content concentration of 5% by weight was obtained.

混合液(U24)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(24)を得た。   Using the mixed solution (U24), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (24).

<積層体(25)>
積層体(25)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U25)を使用した。混合液(U25)を用い、積層体(1)と同様にコート、熱処理を行い、積層体を得た。この積層体を2重量%の酢酸マグネシウム水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を、積層体(1)と同様に乾燥することによって、積層体(25)を得た。
<Laminated body (25)>
For the production of the laminate (25), a mixture (U25) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used. Using the mixed solution (U25), coating and heat treatment were performed in the same manner as in the laminate (1) to obtain a laminate. Ionization was performed by immersing this laminate in a 2 wt% magnesium acetate aqueous solution (85 ° C.) for 12 seconds. Next, the laminate (25) was obtained by drying the laminate in the same manner as the laminate (1).

<積層体(26)>
積層体(26)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U26)を使用した。混合液(U26)を用い、積層体(1)と同様にコート、熱処理を行い、積層体を得た。この積層体を2重量%の酢酸亜鉛水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を、積層体(1)と同様に乾燥することによって、積層体(26)を得た。
<Laminated body (26)>
For the production of the laminate (26), a mixture (U26) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used. Using the mixed solution (U26), coating and heat treatment were performed in the same manner as in the laminate (1) to obtain a laminate. Ionization was performed by immersing this laminate in a 2 wt% zinc acetate aqueous solution (85 ° C.) for 12 seconds. Next, the laminate (26) was obtained by drying the laminate in the same manner as the laminate (1).

<積層体(27)>
積層体(27)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U27)を使用した。混合液(U27)を用いることおよびコートを片面のみにしたこと以外は積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(27)を得た。
<Laminated body (27)>
For the production of the laminate (27), a mixed solution (U27) obtained by the same composition and method as the mixed solution (U10) of the laminate (10) was used. Coating, heat treatment, ionization and drying were carried out in the same manner as in the laminate (1) except that the mixed liquid (U27) was used and the coating was made only on one side to obtain a laminate (27).

<積層体(28)>
積層体(28)の作製には、積層体(6)の混合液(U6)と同様の組成および方法で得た混合液(U28)を使用した。混合液(U28)を用いることおよび基材を延伸ポリアミドフィルム(上記「OPA」)にした以外は積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(28)を得た。
<Laminated body (28)>
For the production of the laminate (28), a mixture (U28) obtained by the same composition and method as the mixture (U6) of the laminate (6) was used. Coating, heat treatment, ionization, and drying are performed in the same manner as in the laminate (1) except that the mixed liquid (U28) is used and the base material is a stretched polyamide film (“OPA” above) to obtain a laminate (28). It was.

<積層体(29)>
積層体(29)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U29)を使用した。
<Laminated body (29)>
For the production of the laminate (29), a mixture (U29) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used.

混合液(U29)を用いること以外は積層体(28)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(29)を得た。   Except for using the mixed solution (U29), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (28) to obtain a laminate (29).

<積層体(30)>
積層体(30)の作製には、積層体(6)の混合液(U6)と同様の組成および方法で得た混合液(U30)を使用した。混合液(U30)を用い、積層体(28)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(30)を得た。
<Laminated body (30)>
For the production of the laminate (30), a mixture (U30) obtained by the same composition and method as the mixture (U6) of the laminate (6) was used. Using the mixed solution (U30), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (28) to obtain a laminate (30).

<積層体(31)>
積層体(31)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U31)を使用した。
<Laminated body (31)>
For the production of the laminate (31), a mixture (U31) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used.

混合液(U31)を用いること以外は積層体(28)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(31)を得た。   Except for using the mixed solution (U31), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (28) to obtain a laminate (31).

<積層体(32)>
積層体(32)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U32)を使用した。混合液(U32)を用いることおよびコートを片面のみにしたこと以外は積層体(28)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(32)を得た。
<Laminated body (32)>
For the production of the laminate (32), a mixture (U32) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used. Coating, heat treatment, ionization, and drying were carried out in the same manner as in the laminate (28) except that the mixed liquid (U32) was used and the coating was made only on one side to obtain a laminate (32).

<積層体(33)>
PAAの部分中和物の水溶液は、積層体(1)と同様に調製した。続いて、TMOS/GPTMOSのモル比が89.9/10.1、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が31.5/68.5となるように、混合液(U33)を調製した。具体的には、まず、TMOS46重量部およびGPTMOS8重量部を、メタノール50重量部に溶解した。続いて、TMOSに対する水の割合が1.95モル当量となりpHが2以下となるよう蒸留水を3.2重量部と0.1Nの塩酸7.8重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T33)を得た。続いて、混合液(T33)を、蒸留水61重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、固形分濃度13重量%の混合液(U33)を得た。
<Laminated body (33)>
An aqueous solution of a partially neutralized product of PAA was prepared in the same manner as in the laminate (1). Subsequently, the molar ratio of TMOS / GPTMOS was 89.9 / 10.1, the [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 31.5 / A mixed solution (U33) was prepared so as to be 68.5. Specifically, first, 46 parts by weight of TMOS and 8 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Subsequently, 3.2 parts by weight of distilled water and 7.8 parts by weight of 0.1N hydrochloric acid were added so that the ratio of water to TMOS was 1.95 molar equivalent and the pH was 2 or less. Then, hydrolysis and condensation reaction were performed to obtain a mixed solution (T33). Subsequently, after the mixed solution (T33) was diluted with 61 parts by weight of distilled water, 308 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring to obtain a solid concentration of 13% by weight. % Mixed liquid (U33) was obtained.

一方、酢酸エチル67重量部に溶解させた2液型のアンカーコート剤(三井武田ケミカル株式会社製:タケラックA−626(商品名)1重量部およびタケネートA−50(商品名)2重量部)を、延伸ポリエチレンテレフタレートフィルム(上記「PET」)上にコートし、乾燥させることによってアンカーコート層を有する基材(AC(0.1μm)/PET(12μm))を作製した。この基材のアンカーコート層上に、乾燥後の厚さが1.0μmとなるようにバーコータによって混合液(U33)をコートし、120℃で5分間乾燥した。同様の手順で、基材の他方の面にもコートを行った。得られた積層体について、40℃で3日間エージングを行った。次に、その積層体に対し、乾燥機を用い180℃で5分間熱処理を施した。次に、その積層体を2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬することによってイオン化を行い、その後、50℃で5分間乾燥した。このようにして、ガスバリア層(1.0μm)/AC(0.1μm)/PET(12μm)/AC(0.1μm)/ガスバリア層(1.0μm)という構造を有する積層体(33)を得た。   On the other hand, a two-component anchor coating agent dissolved in 67 parts by weight of ethyl acetate (Mitsui Takeda Chemical Co., Ltd .: Takelac A-626 (trade name) 1 part by weight and Takenate A-50 (trade name) 2 parts by weight) Was coated on a stretched polyethylene terephthalate film (the above “PET”) and dried to prepare a base material (AC (0.1 μm) / PET (12 μm)) having an anchor coat layer. The mixed solution (U33) was coated on the anchor coat layer of the base material with a bar coater so that the thickness after drying was 1.0 μm, and dried at 120 ° C. for 5 minutes. In the same procedure, the other side of the substrate was also coated. The obtained laminate was aged at 40 ° C. for 3 days. Next, the laminate was heat-treated at 180 ° C. for 5 minutes using a dryer. Next, the laminate was ionized by immersing it in a 2% by weight calcium acetate aqueous solution (85 ° C.) for 12 seconds, and then dried at 50 ° C. for 5 minutes. In this way, a laminate (33) having a structure of gas barrier layer (1.0 μm) / AC (0.1 μm) / PET (12 μm) / AC (0.1 μm) / gas barrier layer (1.0 μm) is obtained. It was.

<積層体(34)>
積層体(34)の作製には、積層体(33)の混合液(U33)と同様の組成および方法で得た混合液(U34)を使用した。また、基材をOPAにした以外は、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(34)を得た。
<Laminated body (34)>
For the production of the laminate (34), a mixture (U34) obtained by the same composition and method as the mixture (U33) of the laminate (33) was used. Also, except that the base material was OPA, coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (34).

<積層体(35)>
固形分濃度を5重量%にした以外は積層体(33)の混合液(U33)と同様の組成および方法で混合液(U35)を得た。具体的には、まず、積層体(33)の混合液(T33)と同様の組成および方法で調製した混合液(T35)を、蒸留水542重量部およびメタノール293重量部で希釈した。得られた混合液を攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、固形分濃度5重量%の混合液(U35)を得た。
<Laminated body (35)>
A mixed liquid (U35) was obtained by the same composition and method as the mixed liquid (U33) of the laminate (33) except that the solid content concentration was 5% by weight. Specifically, first, a mixed solution (T35) prepared by the same composition and method as the mixed solution (T33) of the laminate (33) was diluted with 542 parts by weight of distilled water and 293 parts by weight of methanol. While stirring the obtained mixed solution, 308 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was quickly added thereto to obtain a mixed solution (U35) having a solid content concentration of 5% by weight.

混合液(U35)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(35)を得た。   Using the mixed solution (U35), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (35).

<積層体(36)>
積層体(35)の混合液(U35)と同様の組成および方法で混合液(U36)を得た。混合液(U36)を用いること以外は積層体(28)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(36)を得た。
<Laminated body (36)>
A mixed solution (U36) was obtained by the same composition and method as the mixed solution (U35) of the laminate (35). Except for using the mixed solution (U36), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (28) to obtain a laminate (36).

<積層体(37)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。一方、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が0.1/100となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U37)を調製した。具体的には、まず、積層体(3)の混合液(T3)と同様の組成および方法で調製した混合液(T37)を、蒸留水567重量部およびメタノール283重量部で希釈した。得られた混合液を攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S37)0.6重量部を加え、固形分濃度5重量%の混合液(U37)を得た。
<Laminated body (37)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). On the other hand, a mixed solution (U37) was prepared with the same charging ratio as the laminate (3) except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 0.1 / 100. did. Specifically, first, a mixed solution (T37) prepared by the same composition and method as the mixed solution (T3) of the laminate (3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol. While stirring the resulting mixture, 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was quickly added thereto, and 0.6 part by weight of an EDA hydrochloride aqueous solution (S37) was further added. A liquid mixture (U37) having a solid content concentration of 5% by weight was obtained.

混合液(U37)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(37)を得た。   Using the mixed solution (U37), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (37).

<積層体(38)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。一方、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が29.0/100となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U38)を調製した。具体的には、まず、積層体(3)の混合液(T3)と同様の組成および方法で調製した混合液(T38)を、蒸留水567重量部およびメタノール283重量部で希釈した。得られた混合液を攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S38)190重量部を加え、固形分濃度5重量%の混合液(U38)を得た。
<Laminated body (38)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). On the other hand, a mixed liquid (U38) was prepared with the same charging ratio as that of the laminate (3) except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 29.0 / 100. did. Specifically, first, a mixed solution (T38) prepared by the same composition and method as the mixed solution (T3) of the laminate (3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol. While stirring the resulting mixture, 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was quickly added thereto, and 190 parts by weight of an aqueous EDA hydrochloride solution (S38) was further added. A mixed solution (U38) having a concentration of 5% by weight was obtained.

混合液(U38)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(38)を得た。   Using the mixed solution (U38), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (38).

<積層体(39)>
積層体(38)と同様の仕込みで反応時間のみを変えて、混合液(U39)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解した。続いて、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で1時間、加水分解および縮合反応を行い、混合液(T39)を得た。得られた混合液(T39)を蒸留水567重量部およびメタノール283重量部で希釈した後に、攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S38)190重量部を加え、固形分濃度5重量%の混合液(U39)を得た。
<Laminated body (39)>
A mixed solution (U39) was prepared by changing the reaction time only in the same manner as in the laminate (38). Specifically, first, 50 parts by weight of TMOS was dissolved in 50 parts by weight of methanol. Subsequently, 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid were added so that the ratio of water to TMOS was 1.95 molar equivalent, and hydrolysis and condensation were carried out at 10 ° C. for 1 hour. Reaction was performed and the liquid mixture (T39) was obtained. The obtained mixed liquid (T39) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added thereto while stirring. Further, 190 parts by weight of an EDA hydrochloride aqueous solution (S38) was added to obtain a mixed solution (U39) having a solid content concentration of 5% by weight.

混合液(U39)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(39)を得た。   Using the mixed solution (U39), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (39).

<積層体(40)>
積層体(40)の作製には、積層体(10)の混合液(U10)と同様の組成および方法で得た混合液(U40)を使用した。
<Laminated body (40)>
For the production of the laminate (40), a mixture (U40) obtained by the same composition and method as the mixture (U10) of the laminate (10) was used.

混合液(U40)を用い、積層体(1)と同様にコート、熱処理を行って積層体(40)を得た。この積層体(40)に対して、イオン化および乾燥は行わなかった。   Using the mixed solution (U40), coating and heat treatment were performed in the same manner as in the laminate (1) to obtain a laminate (40). This laminate (40) was not ionized and dried.

<積層体(41)>
PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、積層体(1)と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が20.0/100となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U41)を調製した。具体的には、まず、積層体(3)の混合液(T3)と同様の組成および方法で調製した混合液(T41)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S41)131重量部を加え、固形分濃度5重量%の混合液(U41)を得た。
<Laminated body (41)>
A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in the laminate (1). Then, a mixed liquid (U41) was prepared with the same charging ratio as that of the laminate (3) except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 20.0 / 100. did. Specifically, first, a mixed solution (T41) prepared by the same composition and method as the mixed solution (T3) of the laminate (3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred. 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was quickly added, and 131 parts by weight of an aqueous EDA hydrochloride solution (S41) was further added, and a mixed liquid (U41) having a solid content concentration of 5% by weight. Got.

混合液(U41)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(41)を得た。   Using the mixed solution (U41), coating, heat treatment, ionization and drying were performed in the same manner as in the laminate (1) to obtain a laminate (41).

[積層体の評価結果]
作製した積層体を、上述した方法によって評価した。また、積層体の基材として用いた、延伸ポリエチレンテレフタレートフィルム(PET)および延伸ポリアミドフィルム(OPA)について、積層体と同様の評価を行った。積層体の作製条件を表1に示す。
[Evaluation results of laminate]
The produced laminate was evaluated by the method described above. The stretched polyethylene terephthalate film (PET) and stretched polyamide film (OPA) used as the substrate of the laminate were evaluated in the same manner as the laminate. The production conditions for the laminate are shown in Table 1.

Figure 0005155142
Figure 0005155142

積層体および基材の評価結果を表2に示す。   Table 2 shows the evaluation results of the laminate and the substrate.

Figure 0005155142
Figure 0005155142

積層体(34)のガスバリア層の合計の厚さは2.0μmである。このようにガスバリア層の合計の厚さが厚い(たとえば1.0μmより大きい)と、積層体の物理的特性が、基材(PET)の物理的特性とは大きく異なり、加工性が低下してしまう。そのため、ガスバリア層を厚くすると、生産性が低下してしまうという問題が生じる。一方、積層体(1)〜(27)および(41)のように、ガスバリア層の合計の厚さが薄い積層体は、基材(PET)に近い物理的特性を示し、加工性が良好である。また、後述するように、曲げに対するガスバリア層の耐久性を高めるには、ガスバリア層を薄くすることが必要である。   The total thickness of the gas barrier layers of the laminate (34) is 2.0 μm. Thus, when the total thickness of the gas barrier layer is large (for example, larger than 1.0 μm), the physical properties of the laminate are greatly different from the physical properties of the base material (PET), and the workability is reduced. End up. Therefore, when the gas barrier layer is made thick, there arises a problem that productivity is lowered. On the other hand, a laminate having a thin total gas barrier layer, such as laminates (1) to (27) and (41), exhibits physical properties close to that of the base material (PET) and has good workability. is there. Further, as will be described later, in order to increase the durability of the gas barrier layer against bending, it is necessary to make the gas barrier layer thin.

[ラミネート体の作製]
積層体(1)を用いて、ラミネート体を作製した。まず、延伸ポリアミドフィルム(OPA)、及び無延伸ポリプロピレンフィルム(CPP)のそれぞれの上に、2液型の接着剤(三井武田ケミカル株式会社製、A−385(商品名)およびA−50(商品名))をコートして乾燥させた。そして、これらと積層体(1)とをラミネートした。このようにして、積層体(1)/接着剤/OPA/接着剤/CPPという構造を有するラミネート体(1)を得た。また、他の積層体についても、ラミネート体(1)と同様にラミネート体を作製して評価した。ラミネート体の作製に用いた積層体と、ラミネート体の評価結果について、表3に示す。
[Production of laminate]
A laminate was produced using the laminate (1). First, on each of the stretched polyamide film (OPA) and the unstretched polypropylene film (CPP), a two-pack type adhesive (Mitsui Takeda Chemical Co., Ltd., A-385 (trade name) and A-50 (product) Name)) was coated and dried. And these and a laminated body (1) were laminated. Thus, a laminate (1) having a structure of laminate (1) / adhesive / OPA / adhesive / CPP was obtained. In addition, other laminates were produced and evaluated in the same manner as the laminate (1). Table 3 shows the laminate used for the production of the laminate and the evaluation results of the laminate.

Figure 0005155142
Figure 0005155142

[紙容器の作製および評価]
上述した積層体を用いてブリック型およびゲーブルトップ型の紙容器(内容量500ml)を作製し、それらについて評価した。作製したゲーブルトップ型の紙容器の外観を、図1に示す。図1の紙容器10は、側面に窓部11を有する。紙容器の評価は、以下の方法(1)〜(3)によって実施した。
[Production and evaluation of paper containers]
Brick type and gable top type paper containers (with an internal volume of 500 ml) were prepared using the laminates described above and evaluated. The appearance of the manufactured gable top type paper container is shown in FIG. The paper container 10 of FIG. 1 has a window portion 11 on the side surface. The paper container was evaluated by the following methods (1) to (3).

(1)平坦部のレトルト処理後の酸素透過度
ブリック型の紙容器(内容量500ml)に蒸留水500gを注入した後、120℃、30分、0.15MPaの条件でレトルト処理を施した。レトルト処理後、紙容器を取り出し、20℃で85%RHに保たれた部屋に1週間放置した。その後、紙容器の水を抜き、試料を切り出してレトルト処理後の酸素バリア性を評価した。測定には、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN10/50」)を用いた。具体的には、まず、ブリック型の紙容器の側面から、折り曲げ部分を含まない円形の試料(直径:6.5cm)を切り出した。次に、その円形の試料を、10cm四方のアルミ箔(厚さ30μm)に開けた直径4.5cmの円の上に置き、試料とアルミ箔との間を2液硬化型エポキシ系接着剤で封止した。このようにして得られた測定試料を測定装置にセットし、温度20℃、酸素圧1気圧、キャリアガス圧力1気圧の条件下で、酸素透過度(単位:cm3/(m2・day・atm))を測定した。このとき、酸素供給側の湿度とキャリアガス側の湿度とをともに85%RHとした。
(1) Oxygen permeability after retorting of flat portion After injecting 500 g of distilled water into a brick type paper container (internal volume 500 ml), retorting was performed under the conditions of 120 ° C., 30 minutes, 0.15 MPa. After the retort treatment, the paper container was taken out and left for 1 week in a room maintained at 20 ° C. and 85% RH. Thereafter, the water in the paper container was drained, the sample was cut out, and the oxygen barrier property after the retort treatment was evaluated. For the measurement, an oxygen permeation measuring device (“MOCON OX-TRAN10 / 50” manufactured by Modern Control) was used. Specifically, first, a circular sample (diameter: 6.5 cm) not including a bent portion was cut out from the side surface of the brick-type paper container. Next, the circular sample is placed on a circle having a diameter of 4.5 cm opened in a 10 cm square aluminum foil (thickness 30 μm), and a two-component curing type epoxy adhesive is used between the sample and the aluminum foil. Sealed. The measurement sample thus obtained was set in a measuring apparatus, and the oxygen permeability (unit: cm 3 / (m 2 · day · atm)). At this time, the humidity on the oxygen supply side and the humidity on the carrier gas side were both set to 85% RH.

(2)折り曲げ部分のレトルト処理後の酸素透過度
レトルト処理後の紙容器から円形の試料(直径:6.5cm)を切り出す際に、折り曲げ部を含む部分を切り出すことを除いて、上記「(1)レトルト処理後の酸素透過度」と同様の方法および条件によって、折り曲げ部分のレトルト処理後の酸素透過度を測定した。
(2) Oxygen permeability after retorting of bent portion When cutting out a circular sample (diameter: 6.5 cm) from a paper container after retorting, the above-mentioned "(" 1) Oxygen permeability after retorting of the bent portion was measured by the same method and conditions as in “1) Oxygen permeability after retorting”.

(3)レトルト処理後の外観観察
ゲーブルトップ型の窓付き紙容器に蒸留水500gを注入して密封後、135℃、60分の条件でレトルト処理を施した。レトルト処理後、紙容器を取り出し、20℃で65%RHの室内に1時間放置した。
(3) Appearance observation after retort treatment 500 g of distilled water was poured into a gable-top paper container and sealed, and then retort treatment was performed at 135 ° C. for 60 minutes. After the retort treatment, the paper container was taken out and left at 20 ° C. in a 65% RH room for 1 hour.

その後、窓部の外観を観察した。レトルト処理前と同様に窓部に曇りがない場合を「非常に良好(◎)」、やや曇りがあるが実用上問題がない場合は「良好(○)」、レトルト処理前と比べて明らかに曇りがある場合については「不良(×)」と判定した。   Then, the external appearance of the window part was observed. As in the case before retort processing, when the window is not cloudy, it is “very good (◎)”, and when it is slightly cloudy but there is no practical problem, it is “good (○)”. When it was cloudy, it was determined as “bad (×)”.

<実施例1>
400g/m2の板紙の両面に接着剤を塗布した後、その両面にポリプロピレン樹脂(PP)を押出ラミネートすることによって、板紙の両面にPP層(厚さ各20μm)を形成した。その後、一方のPP層の表面に接着剤を塗布し、その上に積層体(3)をラミネートした。次に、積層体(3)の表面に接着剤を塗布し、積層体(3)と無延伸ポリプロピレンフィルム(東セロ株式会社製、トーセロCP RXC−18、厚さ50μm、上記CPP)を貼り合わせた。このようにして、PP/板紙/PP/積層体(3)/CPPという構成を有するラミネート体(1A)を作製した。ラミネート体(1A)の作製において、必要に応じてアンカーコート剤を用いた。ラミネート体(1A)を用いてブリック型の紙容器を作製した。
<Example 1>
An adhesive was applied to both sides of a 400 g / m 2 board, and a polypropylene resin (PP) was extrusion laminated on both sides to form PP layers (20 μm in thickness each) on both sides of the board. Thereafter, an adhesive was applied to the surface of one PP layer, and the laminate (3) was laminated thereon. Next, an adhesive was applied to the surface of the laminate (3), and the laminate (3) and an unstretched polypropylene film (manufactured by Tosero Co., Ltd., Tosero CP RXC-18, thickness 50 μm, CPP) were bonded together. . In this way, a laminate (1A) having a configuration of PP / paperboard / PP / laminate (3) / CPP was produced. In the production of the laminate (1A), an anchor coating agent was used as necessary. A brick-type paper container was produced using the laminate (1A).

400g/m2の板紙の両面に、ポリプロピレン樹脂(PP)を押出しコーティングすることによって、板紙の両面にPP層(厚さ各25μm)を形成した。次に、窓部となる部分の板紙を切り取った。次に、一方のPP層の表面に接着剤を塗布し、その上に積層体(3)をラミネートした。次に、積層体(3)の表面にポリプロピレン樹脂(PP)を押出コーティングすることによって、PP層(厚さ40μm)を形成した。このようにして、PP/板紙/PP/積層体(3)/PPという構成を有するラミネート体(1B)を作製した。ラミネート体(1B)の作製において、必要に応じてアンカーコート剤を用いた。ラミネート体(1B)を用いて、ゲーブルトップ型の窓付き紙容器を作製した。作製したゲーブルトップ型の紙容器の外観を、図1に示す。図1の紙容器10は、側面に窓部11を有する。 PP layers (thickness 25 μm each) were formed on both sides of the paperboard by extrusion coating polypropylene resin (PP) on both sides of the 400 g / m 2 paperboard. Next, the paperboard of the part used as a window part was cut off. Next, an adhesive was applied to the surface of one PP layer, and the laminate (3) was laminated thereon. Next, a PP layer (thickness 40 μm) was formed by extrusion coating a polypropylene resin (PP) on the surface of the laminate (3). In this way, a laminate (1B) having a configuration of PP / paperboard / PP / laminate (3) / PP was produced. In the production of the laminate (1B), an anchor coating agent was used as necessary. Using the laminate (1B), a gable-top windowed paper container was prepared. The appearance of the manufactured gable top type paper container is shown in FIG. The paper container 10 of FIG. 1 has a window portion 11 on the side surface.

<実施例2〜17および比較例1〜7>
積層体(3)の代わりに他の積層体を用いることを除いて実施例1と同様の方法で、PP/板紙/PP/積層体/CPPという積層構造を有するラミネート体を作製した。作製したラミネート体をラミネート体(1A)の代わりに用いることを除いて、実施例1と同様の方法でブリック型の紙容器を作製した。
<Examples 2 to 17 and Comparative Examples 1 to 7>
A laminate having a laminated structure of PP / paperboard / PP / laminate / CPP was produced in the same manner as in Example 1 except that another laminate was used instead of the laminate (3). A brick-type paper container was produced in the same manner as in Example 1 except that the produced laminate was used instead of the laminate (1A).

積層体(3)の代わりに他の積層体を用いることを除いて実施例1と同様の方法で、PP/板紙/PP/積層体/PPという積層構造を有するラミネート体を作製した。作製したラミネート体をラミネート体(1B)の代わりに用いることを除いて、実施例1と同様の方法でゲーブルトップ型の窓付き紙容器を作製した。   A laminate having a laminated structure of PP / paperboard / PP / laminate / PP was produced in the same manner as in Example 1 except that another laminate was used instead of the laminate (3). A gable top-type paper container with a window was produced in the same manner as in Example 1 except that the produced laminate was used instead of the laminate (1B).

実施例および比較例の紙容器で用いた積層体の番号、およびその積層体の作製条件について、表4に示す。   Table 4 shows the numbers of the laminates used in the paper containers of Examples and Comparative Examples, and the conditions for producing the laminates.

Figure 0005155142
Figure 0005155142

実施例および比較例の紙容器の評価結果を表5に示す。   Table 5 shows the evaluation results of the paper containers of Examples and Comparative Examples.

Figure 0005155142
Figure 0005155142

実施例の紙容器は、折り曲げ部であるか否かに拘わらず、レトルト処理後でも良好な酸素バリア性を示した。また、実施例の紙容器の窓部は、135℃で60分という過酷な条件でのレトルト処理を行っても、外観が良好であった。   The paper container of the example showed a good oxygen barrier property even after the retort treatment regardless of whether it was a bent portion or not. In addition, the window portion of the paper container of the example had a good appearance even when retorting was performed under severe conditions of 135 minutes at 135 ° C.

実施例は、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる−COO−基の当量]の比が0.2/100〜20.0/100の範囲にあることが好ましく、1.0/100〜4.9/100の範囲にあることがさらに好ましいことを示した。   In the examples, the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO-group contained in functional group of polymer (X)] was 0.2 / 100 to 20.0 /. It was shown that it was preferably in the range of 100 and more preferably in the range of 1.0 / 100 to 4.9 / 100.

実施例は、[式(I)で表される化合物に由来するM1原子のモル数]/[式(II)で表される化合物に由来するM2原子のモル数]の比が、99.5/0.5〜80.0/20.0の範囲にあることが好ましく、98.0/2.0〜89.9/10.1の範囲にあることがより好ましいことを示した。 In the examples, the ratio of [number of moles of M 1 atom derived from the compound represented by formula (I)] / [number of moles of M 2 atom derived from the compound represented by formula (II)] was 99. It was shown that it was preferably in the range of 0.5 / 0.5 to 80.0 / 20.0, and more preferably in the range of 98.0 / 2.0 to 89.9 / 10.1.

実施例は、[化合物(L)に由来する無機成分の重量]/[化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計]の比が20.0/80.0〜80.0/20.0の範囲にあることが好ましく、30.0/70.0〜69.9/30.1の範囲にあることがより好ましいことを示した。   In the examples, the ratio of [weight of inorganic component derived from compound (L)] / [total weight of organic component derived from compound (L) and weight of organic component derived from polymer (X)] is It was shown that it is preferably in the range of 20.0 / 80.0 to 80.0 / 20.0, and more preferably in the range of 30.0 / 70.0 to 69.9 / 30.1. .

比較例1および2の紙容器は、レトルト処理前後の酸素バリア性が比較的良好であった。しかし、これは、比較例1および2のガスバリア層の合計が2μmと厚いためである。ガスバリア層が厚い比較例1および2では、屈曲に対するガスバリア層の耐久性が低く、屈曲試験によって酸素バリア性が大きく低下した。   The paper containers of Comparative Examples 1 and 2 had relatively good oxygen barrier properties before and after the retort treatment. However, this is because the sum of the gas barrier layers of Comparative Examples 1 and 2 is as thick as 2 μm. In Comparative Examples 1 and 2 where the gas barrier layer is thick, the durability of the gas barrier layer against bending is low, and the oxygen barrier property is greatly reduced by the bending test.

ガスバリア層の厚さが実施例と同じである比較例3〜7では、レトルト処理前、レトルト処理後、屈曲試験後のいずれの段階でも、酸素バリア性が低かった。また、比較例の紙容器の窓部は、135℃で60分のレトルト処理によって外観が低下した。   In Comparative Examples 3 to 7, in which the thickness of the gas barrier layer was the same as that of the example, the oxygen barrier property was low at any stage before the retort treatment, after the retort treatment, and after the bending test. In addition, the appearance of the window portion of the paper container of the comparative example was deteriorated by retorting at 135 ° C. for 60 minutes.

以上のように、ガスバリア性積層体単独の評価と同様に、所定のガスバリア層を用いた本発明の紙容器は、優れた特性を示した。   As described above, similarly to the evaluation of the gas barrier laminate alone, the paper container of the present invention using a predetermined gas barrier layer exhibited excellent characteristics.

本発明は、紙容器に利用できる。本発明の紙容器は、レトルト処理に耐える耐熱性を備え、レトルト処理後の外観も良好であり、ガスバリア性に優れる。本発明の紙容器は、電子レンジによる加熱にも適している。   The present invention can be used for paper containers. The paper container of the present invention has heat resistance that can withstand retort treatment, has a good appearance after retort treatment, and is excellent in gas barrier properties. The paper container of the present invention is also suitable for heating by a microwave oven.

実施例で作製したゲーブルトップ型の紙容器の外観を示す斜視図である。It is a perspective view which shows the external appearance of the gable top type paper container produced in the Example.

符号の説明Explanation of symbols

10 紙容器
11 窓部
10 Paper container 11 Window

Claims (13)

ガスバリア性積層体を用いて形成された紙容器であって、
前記ガスバリア性積層体は、紙層と、前記紙層に積層された少なくとも1つのガスバリア性を有する層とを含み、
前記層は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)とを含む組成物からなり、
前記化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含み、
前記重合体(X)の前記官能基に含まれる−COO−基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されており、
前記重合体(X)の前記官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されており、
前記組成物において、[前記化合物(P)に含まれるアミノ基の当量]/[前記重合体(X)の前記官能基に含まれる−COO−基の当量]の比が0.2/100〜20.0/100の範囲にある、紙容器。
A paper container formed using a gas barrier laminate,
The gas barrier laminate includes a paper layer and at least one gas barrier layer laminated on the paper layer,
The layer comprises a hydrolysis condensate of at least one compound (L) containing a hydrolyzable characteristic group, and a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group. A composition comprising (X),
The compound (L) includes at least one compound (A) containing a metal atom to which a hydrolyzable characteristic group is bonded,
At least a part of —COO— group contained in the functional group of the polymer (X) is neutralized and / or reacted with a compound (P) containing two or more amino groups,
At least a part of —COO— group contained in the functional group of the polymer (X) is neutralized with a divalent or higher metal ion,
In the composition, a ratio of [equivalent of amino group contained in the compound (P)] / [equivalent of -COO-group contained in the functional group of the polymer (X)] is 0.2 / 100 to Paper container in the range of 20.0 / 100.
前記化合物(A)が、以下の式(I)で表される少なくとも1種の化合物である、請求項1に記載の紙容器。
1(OR1q2 p-q-r1 r・・・(I)
[式(I)中、M1はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R1はアルキル基を表す。R2はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X1はハロゲン原子を表す。pはM1の原子価と等しい。qは0〜pの整数を表す。rは0〜pの整数を表す。1≦q+r≦pである。]
The paper container according to claim 1, wherein the compound (A) is at least one compound represented by the following formula (I).
M 1 (OR 1 ) q R 2 pqr X 1 r (I)
[In Formula (I), M 1 represents Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, or Nd. R 1 represents an alkyl group. R 2 represents an alkyl group, an aralkyl group, an aryl group or an alkenyl group. X 1 represents a halogen atom. p is equal to the valence of M 1 . q represents an integer of 0 to p. r represents an integer of 0 to p. 1 ≦ q + r ≦ p. ]
前記化合物(L)は、加水分解性を有する特性基と、カルボキシル基との反応性を有する官能基で置換されたアルキル基とが結合している金属原子を含む少なくとも1種の化合物(B)を含む、請求項1または2に記載の紙容器。   The compound (L) is at least one compound (B) containing a metal atom in which a hydrolyzable characteristic group and an alkyl group substituted with a functional group having reactivity with a carboxyl group are bonded. The paper container of Claim 1 or 2 containing this. 前記化合物(B)が、以下の式(II)で表される少なくとも1種の化合物であり、
[前記式(I)で表される化合物に由来するM1原子のモル数]/[前記式(II)で表される化合物に由来するM2原子のモル数]の比が、99.5/0.5〜80.0/20.0の範囲にある、請求項3に記載の紙容器。
2(OR3n2 k2 m-n-k・・・(II)
[式(II)中、M2はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R3はアルキル基を表す。X2はハロゲン原子を表す。Z2は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。mはM2の原子価と等しい。nは0〜(m−1)の整数を表す。kは0〜(m−1)の整数を表す。1≦n+k≦(m−1)である。]
The compound (B) is at least one compound represented by the following formula (II):
The ratio of [number of moles of M 1 atom derived from the compound represented by the formula (I)] / [number of moles of M 2 atom derived from the compound represented by the formula (II)] was 99.5. The paper container of Claim 3 which exists in the range of /0.5-80.0 / 20.0.
M 2 (OR 3 ) n X 2 k Z 2 mnk (II)
[In Formula (II), M 2 represents Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, or Nd. R 3 represents an alkyl group. X 2 represents a halogen atom. Z 2 represents an alkyl group substituted with a functional group having reactivity with a carboxyl group. m is equal to the valence of M 2 . n represents an integer of 0 to (m-1). k represents an integer of 0 to (m−1). 1 ≦ n + k ≦ (m−1). ]
[前記化合物(L)に由来する無機成分の重量]/[前記化合物(L)に由来する有機成分の重量と前記重合体(X)に由来する有機成分の重量との合計]の比が、20.0/80.0〜80.0/20.0の範囲にある、請求項1〜4のいずれか1項に記載の紙容器。   The ratio of [weight of inorganic component derived from the compound (L)] / [total weight of organic component derived from the compound (L) and weight of organic component derived from the polymer (X)] is: The paper container of any one of Claims 1-4 which exists in the range of 20.0 / 80.0-80.0 / 20.0. 前記化合物(P)が、エチレンジアミン、プロピレンジアミンおよびキトサンからなる群より選ばれる少なくとも1つである、請求項1〜5のいずれか1項に記載の紙容器。   The paper container according to any one of claims 1 to 5, wherein the compound (P) is at least one selected from the group consisting of ethylenediamine, propylenediamine, and chitosan. 前記重合体(X)の前記官能基に含まれる−COO−基の60モル%以上が前記金属イオンによって中和されている請求項1〜7のいずれか1項に記載の紙容器。   The paper container according to any one of claims 1 to 7, wherein 60 mol% or more of -COO- groups contained in the functional group of the polymer (X) are neutralized by the metal ions. 前記ガスバリア性積層体は、最外層よりも内側に配置された無延伸の耐熱性ポリオレフィン層を含む、請求項1〜7のいずれか1項に記載の紙容器。   The paper container according to any one of claims 1 to 7, wherein the gas barrier laminate includes an unstretched heat-resistant polyolefin layer disposed inside the outermost layer. 前記ガスバリア性積層体は、蒸着法で形成された無機層を含む、請求項1〜8のいずれか1項に記載の紙容器。   The paper container according to claim 1, wherein the gas barrier laminate includes an inorganic layer formed by a vapor deposition method. 前記ガスバリア性積層体は、前記ガスバリア性を有する層が積層されている基材を含み、
前記無機層が、前記基材と前記ガスバリア性を有する層との間に配置されている、請求項9に記載の紙容器。
The gas barrier laminate includes a substrate on which the gas barrier layer is laminated,
The paper container according to claim 9, wherein the inorganic layer is disposed between the base material and the layer having gas barrier properties.
前記ガスバリア性積層体は、少なくとも2つの耐熱性ポリオレフィン層を含み、
前記ガスバリア性を有する層の両面のそれぞれに前記耐熱性ポリオレフィン層が積層されている、請求項1〜10のいずれか1項に記載の紙容器。
The gas barrier laminate includes at least two heat resistant polyolefin layers,
The paper container according to any one of claims 1 to 10, wherein the heat-resistant polyolefin layer is laminated on each of both surfaces of the layer having gas barrier properties.
前記耐熱性ポリオレフィン層がポリプロピレン層である、請求項11に記載の紙容器。   The paper container according to claim 11, wherein the heat-resistant polyolefin layer is a polypropylene layer. 前記紙層を含まず且つ前記ガスバリア性を有する層を含む窓部を備える、請求項1〜12のいずれか1項に記載の紙容器。   The paper container of any one of Claims 1-12 provided with the window part which does not contain the said paper layer and contains the layer which has the said gas-barrier property.
JP2008333618A 2008-12-26 2008-12-26 Paper container Active JP5155142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333618A JP5155142B2 (en) 2008-12-26 2008-12-26 Paper container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333618A JP5155142B2 (en) 2008-12-26 2008-12-26 Paper container

Publications (2)

Publication Number Publication Date
JP2010155614A JP2010155614A (en) 2010-07-15
JP5155142B2 true JP5155142B2 (en) 2013-02-27

Family

ID=42573843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333618A Active JP5155142B2 (en) 2008-12-26 2008-12-26 Paper container

Country Status (1)

Country Link
JP (1) JP5155142B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171419A (en) * 2001-12-04 2003-06-20 Rengo Co Ltd Gas barrier resin composition and gas barrier film formed from the same
JP2005096777A (en) * 2003-09-22 2005-04-14 Toppan Printing Co Ltd Paper-made liquid container
AU2004294417B2 (en) * 2003-12-03 2009-12-10 Kuraray Co., Ltd. Gas barrier layered product and packaging medium, and method for producing gas barrier layered product
JP2008234875A (en) * 2007-03-16 2008-10-02 Toshiba Lighting & Technology Corp Discharge lamp lighting device

Also Published As

Publication number Publication date
JP2010155614A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP4486705B2 (en) Gas barrier laminate and method for producing the same
JP4463876B2 (en) Gas barrier laminate and method for producing the same
JP5139964B2 (en) Infusion bag
JP5366751B2 (en) Paper container
JP5280166B2 (en) Vacuum packaging bag
JP5081139B2 (en) Laminated tube container
JP5241583B2 (en) Vacuum insulation
JP5292085B2 (en) Pouch with spout
JP5436128B2 (en) Pouch with spout
JP5366750B2 (en) Laminated tube container
JP5155142B2 (en) Paper container
JP4974557B2 (en) Retort processing paper container
JP5442382B2 (en) container
JP5330179B2 (en) Vacuum insulation
JP5155102B2 (en) Vertical bag filling and sealing bag
JP4828280B2 (en) Container lid
JP5481147B2 (en) Infusion bag
JP5280275B2 (en) Gasoline tank
JP5155122B2 (en) Container lid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150