JP5154771B2 - Biogas generation system and method - Google Patents

Biogas generation system and method Download PDF

Info

Publication number
JP5154771B2
JP5154771B2 JP2006185646A JP2006185646A JP5154771B2 JP 5154771 B2 JP5154771 B2 JP 5154771B2 JP 2006185646 A JP2006185646 A JP 2006185646A JP 2006185646 A JP2006185646 A JP 2006185646A JP 5154771 B2 JP5154771 B2 JP 5154771B2
Authority
JP
Japan
Prior art keywords
biogas
carbon dioxide
gas
liquid
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006185646A
Other languages
Japanese (ja)
Other versions
JP2008013649A (en
Inventor
潤一 高橋
一孝 梅津
賢二 青木
隆樹 山城
修 濱本
隆之 丸本
卓也 三崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen Environment Engineering Corp
Original Assignee
Mitsui Zosen Environment Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen Environment Engineering Corp filed Critical Mitsui Zosen Environment Engineering Corp
Priority to JP2006185646A priority Critical patent/JP5154771B2/en
Publication of JP2008013649A publication Critical patent/JP2008013649A/en
Application granted granted Critical
Publication of JP5154771B2 publication Critical patent/JP5154771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、有機性廃棄物のメタン発酵等により得られるバイオガスを処理して可燃性成分であるメタンガス成分等の有効成分の含有量を高めるように精製するバイオガス生成システム及びバイオガス生成方法に関するものである。   The present invention relates to a biogas generation system and a biogas generation method for treating a biogas obtained by methane fermentation of organic waste and purifying it so as to increase the content of an active component such as a flammable component methane gas component. It is about.

有機性廃棄物をメタン発酵することにより得られるバイオガスは、主にメタンガスと二酸化炭素を含んでおり、その割合は有機性廃棄物の性状によって異なるが、通常、メタンガスを50〜60体積%程度、二酸化炭素を40〜50体積%程度含有するものである。その他に硫化水素が約0.2体積%含まれている。このようにバイオガスに二酸化炭素が高濃度で含まれていることにより、バイオガスの燃料としての利用価値を低下させてしまっている。例えば、ガスエンジンを利用して発電を行う場合には、無処理のバイオガスでは二酸化炭素の含有量が多いためガスエンジンを安定して駆動させることができず、信頼性の点で問題があった。そのため、バイオガスを燃料として高効率・高信頼性の発電を行うためには二酸化炭素を低減除去することによりメタンガス成分の濃度を高め、バイオガスの高カロリー化を図ることが有効である。   The biogas obtained by methane fermentation of organic waste mainly contains methane gas and carbon dioxide, and the ratio varies depending on the properties of the organic waste, but usually about 50-60% by volume of methane gas. Carbon dioxide is contained in an amount of about 40 to 50% by volume. In addition, about 0.2% by volume of hydrogen sulfide is contained. Thus, the biogas contains a high concentration of carbon dioxide, which reduces the utility value of biogas as a fuel. For example, when power generation is performed using a gas engine, untreated biogas has a high carbon dioxide content, so the gas engine cannot be driven stably, and there is a problem in terms of reliability. It was. Therefore, in order to perform high-efficiency and high-reliability power generation using biogas as a fuel, it is effective to increase the concentration of methane gas components by reducing and removing carbon dioxide and to increase the calorie of biogas.

二酸化炭素の除去方法(脱炭酸方法)としては、吸収剤を用いるPSA法のほか、二酸化炭素を吸収剤に吸収させる吸収処理方法が一般的に知られている。吸収剤には、塩基性に調整された液状の吸収液や二酸化炭素を選択的に吸着する固体状の吸収剤が用いられる。これらの吸収処理方法は、多量の吸収剤や副資材を必要とするため高コストであるとともに、設備が大型化するという問題がある。また、PSA法も設備費、運転費が安価ではなく、実用的ではない。   As a carbon dioxide removal method (decarbonation method), in addition to the PSA method using an absorbent, an absorption treatment method in which carbon dioxide is absorbed by the absorbent is generally known. As the absorbent, a liquid absorbent adjusted to basicity or a solid absorbent that selectively adsorbs carbon dioxide is used. These absorption treatment methods are expensive because they require a large amount of absorbent and auxiliary materials, and there is a problem that the equipment is enlarged. The PSA method is also not practical because the equipment cost and operation cost are not low.

また、二酸化炭素を放出することで再生可能な溶媒を吸収液として用いることにより、吸収液を循環再利用させることによって液使用量を削減することができる二酸化炭素の除去方法が報告されている(例えば、特許文献1参照)。しかし、この二酸化炭素除去方法においても除去工程では一定量の吸収液が常に必要であるとともに、二酸化炭素を吸収した後の吸収液から二酸化炭素を脱気させる工程としての減圧脱気処理装置が別途必要であり、設備の複雑化、高コスト化を招いていた。   In addition, a method of removing carbon dioxide has been reported that can reduce the amount of liquid used by circulating and reusing the absorbing liquid by using a solvent that can be regenerated by releasing carbon dioxide as the absorbing liquid ( For example, see Patent Document 1). However, in this carbon dioxide removal method, a certain amount of absorption liquid is always required in the removal process, and a vacuum degassing treatment apparatus is separately provided as a process for degassing carbon dioxide from the absorption liquid after absorbing carbon dioxide. Necessary, resulting in complicated equipment and high costs.

また、二酸化炭素を選択的に吸着し、かつ再生可能な分子ふるい炭を吸収剤として用いてバイオガスから二酸化炭素を選択的に吸着除去する精製工程と、分子ふるい炭を再生する再生工程とを相互に実施するメタンガス精製方法が報告されている(例えば、特許文献2参照)。しかし、この精製方法では、二酸化炭素を吸着した分子ふるい炭を再生させる再生工程が別途必要であり、設備が複雑になってしまっていた。   In addition, a purification process that selectively adsorbs and removes carbon dioxide from biogas using a molecular sieve charcoal that selectively adsorbs carbon dioxide and can be regenerated as an absorbent, and a regeneration process that regenerates the molecular sieve charcoal. A methane gas purification method that is carried out mutually has been reported (see, for example, Patent Document 2). However, this refining method requires a separate regeneration step for regenerating the molecular sieving carbon adsorbed with carbon dioxide, which complicates the equipment.

特開2003−230810号公報Japanese Patent Laid-Open No. 2003-230810 特開2001−170695号公報JP 2001-170695 A

本発明は、このような実状に鑑みなされたものであり、その目的は、簡易、かつ低コストでバイオガス中の二酸化炭素を取り除くことによって、メタンガス成分等の有効成分の含有量を高める(精製する)ことができるバイオガス生成システムおよびバイオガス生成方法を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to increase the content of an effective component such as a methane gas component by removing carbon dioxide in biogas easily and at low cost (purification). It is to provide a biogas generation system and a biogas generation method that can be performed.

上記目的を達成するため、本発明の第1の態様に係るバイオガス生成システムは、有機性廃棄物を発酵させてバイオガスを生成する発酵槽と、前記発酵槽より一部取り出した発酵液中の溶存二酸化炭素ガスを低減処理する発酵液ガス低減処理手段と、該発酵液ガス低減処理手段により処理されたガス低減発酵液を、前記バイオガスと気液接触させてバイオガス中の二酸化炭素を該ガス低減発酵液中に吸収させる気液接触手段と、を備えているものである。   In order to achieve the above object, a biogas generation system according to the first aspect of the present invention includes a fermenter that ferments organic waste to generate biogas, and a fermentation liquid that is partially extracted from the fermenter. The fermentation liquor gas reduction treatment means for reducing the dissolved carbon dioxide gas, and the gas reduction fermentation liquor treated by the fermentation liquor gas reduction treatment means are brought into gas-liquid contact with the biogas so that carbon dioxide in the biogas is obtained. Gas-liquid contact means to be absorbed in the gas-reduced fermentation broth.

本発明によれば、発酵槽より一部取り出した発酵液中の溶存二酸化炭素ガスを低減処理する。そして、溶存二酸化炭素が低減された発酵液である「ガス低減発酵液」を前記バイオガスと気液接触させて、バイオガス中の二酸化炭素を気液間の溶解平衡によって、当該「ガス低減発酵液」中に吸収させるように構成されている。従って、二酸化炭素吸収用の吸収剤などを用いること無く、発酵液自体を利用してバイオガス中の二酸化炭素を簡易、かつ低コストで取り除くことでき、以て有用成分の濃度を高めたバイオガスに精製することができる。   According to the present invention, the dissolved carbon dioxide gas in the fermentation liquor partially taken out from the fermenter is reduced. Then, the “gas-reducing fermentation liquor”, which is a fermentation liquor in which dissolved carbon dioxide is reduced, is brought into gas-liquid contact with the biogas, and the carbon dioxide in the biogas is dissolved in the gas-liquid by the dissolution equilibrium. It is configured to be absorbed in the “liquid”. Therefore, it is possible to remove the carbon dioxide in the biogas easily and at low cost by using the fermentation broth without using an absorbent for absorbing carbon dioxide, etc., so that the concentration of useful components is increased. Can be purified.

本発明の第2の態様に係るバイオガス生成システムは、有機性廃棄物を発酵させてバイオガスを生成する発酵槽と、該発酵槽から前記バイオガスが送られ、該バイオガスに対して脱硫処理を行う生物脱硫塔と、を備えたバイオガス生成システムであって、発酵槽より一部取り出した発酵液であって、生物脱硫塔内の温度より高い温度の発酵液中の溶存二酸化炭素ガスを低減処理する発酵液ガス低減処理手段を更に備え、該発酵液ガス低減処理手段により処理されたガス低減発酵液を前記生物脱硫塔に導入するように構成されているものである。   The biogas generation system according to the second aspect of the present invention includes a fermenter for fermenting organic waste to generate biogas, and the biogas is sent from the fermenter, and desulfurized with respect to the biogas. A biogas generation system comprising a biological desulfurization tower for performing treatment, wherein the dissolved carbon dioxide gas in the fermentation liquor is partly removed from the fermenter and is higher than the temperature in the biological desulfurization tower. Is further configured to introduce a gas-reduced fermentation broth treated by the fermentation liquor gas reduction treatment means into the biological desulfurization tower.

生物脱硫塔は、発酵槽で生成されたバイオガス中に含まれる硫化水素を、該生物脱硫塔内の担持部に担持されている硫黄酸化細菌と中性領域付近で接触させて硫酸にまで酸化して除く役割を成す。硫黄酸化細菌は水分、低次硫黄酸化物と養分の供給を得て活性化する。本発明は、硫黄酸化細菌を活性化するために供給する水分等として発酵液を利用すると共に、この発酵液を脱硫塔に供給するに際して二酸化炭素吸収能を高めた「ガス低減発酵液」として送ることで、バイオガス中の二酸化炭素を該「ガス低減発酵液」中に吸収して取り込めるようにしたものである。   The biodesulfurization tower oxidizes hydrogen sulfide contained in the biogas produced in the fermenter to sulfuric acid by bringing it into contact with the sulfur-oxidizing bacteria supported on the support in the biodesulfurization tower in the vicinity of the neutral region. And remove the role. Sulfur-oxidizing bacteria are activated by supplying water, low-order sulfur oxides and nutrients. The present invention uses a fermented liquid as moisture supplied to activate sulfur-oxidizing bacteria, and sends this fermented liquid as a “gas-reduced fermented liquid” with increased carbon dioxide absorption capacity when supplying the fermented liquid to the desulfurization tower. In this way, carbon dioxide in biogas is absorbed and taken into the “gas-reducing fermentation liquor”.

すなわち本発明によれば、発酵槽より一部取り出した発酵液であって、生物脱硫塔内の温度より高い温度の該発酵液中の溶存二酸化炭素ガスを低減処理して二酸化炭素吸収能を高めている。このように二酸化炭素吸収能を高められたガス低減発酵液が生物脱硫塔に導入されると、その水分によって硫黄酸化細菌を活性化して発酵槽から送られたバイオガス中の硫化水素を硫酸にまで酸化すると同時に、該バイオガス中の二酸化炭素と気液接触して該二酸化炭素を当該ガス低減発酵液中に確実に吸収する。これにより、バイオガス中の二酸化炭素の含有量が減り、メタンガス等の有効成分の割合を簡単に高めることができる。
このように本発明によれば、二酸化炭素吸収用の吸収剤などを用いること無く、発酵液自体を利用してバイオガス中の二酸化炭素を簡易、かつ低コストで取り除くことでき、以て有用成分の濃度を高めたバイオガスに精製することができる。
That is, according to the present invention, a fermentation liquid partially taken out from the fermenter, and the dissolved carbon dioxide gas in the fermentation liquid at a temperature higher than the temperature in the biological desulfurization tower is reduced to increase the carbon dioxide absorption capacity. ing. When the gas-reducing fermentation liquor with increased carbon dioxide absorption capacity is introduced into the biological desulfurization tower, hydrogen sulfide in the biogas sent from the fermenter is activated to sulfuric acid by activating sulfur-oxidizing bacteria with its moisture. At the same time, the carbon dioxide in the biogas is brought into gas-liquid contact, and the carbon dioxide is reliably absorbed into the gas-reduced fermentation broth. Thereby, the content of carbon dioxide in the biogas is reduced, and the proportion of active ingredients such as methane gas can be easily increased.
Thus, according to the present invention, carbon dioxide in biogas can be removed easily and at low cost by using the fermentation broth itself without using an absorbent for absorbing carbon dioxide and the like, and thus useful components. It can be purified to biogas with increased concentration.

本発明の第3の態様に係るバイオガス生成システムは、第1の態様又は第2の態様において、前記発酵液ガス低減処理手段は、一部取り出した発酵液から二酸化炭素を放散させる放散手段を備えていることを特徴とするものである。
これにより、発酵液ガス低減処理手段の構造を平易化して容易に発酵液中に溶存する二酸化炭素の含有量を低減することができる。
The biogas generation system according to a third aspect of the present invention is the biogas generation system according to the first aspect or the second aspect, wherein the fermentation liquid gas reduction processing means includes a diffusion means for releasing carbon dioxide from the partially extracted fermentation liquid. It is characterized by having.
Thereby, the structure of the fermentation liquor gas reduction processing means can be simplified, and the content of carbon dioxide dissolved in the fermentation liquor can be easily reduced.

本発明の第4の態様に係るバイオガス生成システムは、第3の態様において、前記発酵液ガス低減処理手段は、前記発酵液を加熱して昇温する加熱手段を更に備えていることを特徴とするものである。
これにより、発酵液ガス低減処理手段による発酵液ガス低減処理において、効率的且つ確実に発酵液中に溶存する二酸化炭素の含有量を低減することができる。
The biogas generation system according to a fourth aspect of the present invention is characterized in that, in the third aspect, the fermentation gas reduction processing means further comprises heating means for heating the fermentation liquid to raise the temperature. It is what.
Thereby, in the fermentation liquid gas reduction process by the fermentation liquid gas reduction processing means, the content of carbon dioxide dissolved in the fermentation liquid can be reduced efficiently and reliably.

本発明の第5の態様に係るバイオガス生成システムは、第1の態様から第4の態様のいずれかの態様において、前記発酵液ガス低減処理手段は、発酵液に対して滅菌効果を発揮する温度以上で所定時間保持する構成を備えていることを特徴とするものである。
発酵液を液肥に利用する場合、該発酵液を70℃で1時間或いは55℃で6時間といった条件で加熱して滅菌処理する。本発明によれば、この滅菌処理の為の加熱工程を発酵液中の溶存二酸化炭素を低減する為の上記加熱工程に兼用することが可能であり、効率的である。
The biogas generation system according to the fifth aspect of the present invention is the biogas generation system according to any one of the first to fourth aspects, wherein the fermentation solution gas reduction processing means exerts a sterilization effect on the fermentation solution. It is characterized by having a configuration for holding for a predetermined time at a temperature or higher.
When the fermented liquid is used for liquid fertilizer, the fermented liquid is sterilized by heating at 70 ° C. for 1 hour or 55 ° C. for 6 hours. According to the present invention, the heating step for sterilization can be combined with the heating step for reducing dissolved carbon dioxide in the fermentation broth, which is efficient.

本発明の第6の態様に係るバイオガス生成方法は、有機性廃棄物を発酵槽で発酵させてバイオガスを生成し、前記発酵槽より一部取り出した発酵液中の溶存二酸化炭素ガスを低減処理し、該低減処理されたガス低減発酵液を、前記バイオガスと気液接触させてバイオガス中の二酸化炭素を該ガス低減発酵液中に吸収させて精製バイオガスを生成するものである。これにより第1の態様と同様の作用効果を得ることができる。   In the biogas production method according to the sixth aspect of the present invention, biogas is produced by fermenting organic waste in a fermenter, and the dissolved carbon dioxide gas in the fermentation liquor partially taken out from the fermenter is reduced. The gas-reduced fermentation liquor that has been treated and brought into gas-liquid contact with the biogas is made to absorb carbon dioxide in the biogas into the gas-reduced fermentation liquor to produce purified biogas. Thereby, the same effect as a 1st aspect can be acquired.

本発明の第7の態様に係るバイオガス生成方法は、有機性廃棄物を発酵槽で発酵させてバイオガスを生成し、該バイオガスを生物脱硫塔に通して脱硫処理を行って精製バイオガスを生成するバイオガス生成方法であって、発酵槽より一部取り出した発酵液であって、生物脱硫塔内の温度より高い温度の発酵液を脱二酸化炭素処理した後、前記生物脱硫塔に導入するものである。これにより第2の態様と同様の作用効果を得ることができる。   In the biogas production method according to the seventh aspect of the present invention, a biogas is produced by fermenting organic waste in a fermenter, and the biogas is passed through a biological desulfurization tower to perform a desulfurization treatment, thereby purifying biogas. Is a fermentation liquid extracted partially from the fermenter, and after the carbon dioxide treatment of the fermentation liquid at a temperature higher than the temperature in the biological desulfurization tower, it is introduced into the biological desulfurization tower To do. Thereby, the same effect as the 2nd mode can be obtained.

本発明によれば、二酸化炭素吸収用の吸収剤などを用いること無く、発酵液自体を利用してバイオガス中の二酸化炭素を簡易、かつ低コストで取り除くことでき、以て有用成分の濃度を高めたバイオガスに精製することができる。   According to the present invention, carbon dioxide in biogas can be removed easily and at low cost by using the fermentation broth itself without using an absorbent for absorbing carbon dioxide and the like, thereby reducing the concentration of useful components. It can be refined to enhanced biogas.

本発明に係るバイオガス生成システムの一実施形態を図1及び図2に基づいて詳細に説明する。図1は、本発明に係るバイオガス生成システムの一態様を示す概略構成図であり、図2は発酵液ガス低減処理装置の構成図である。
バイオガスには、メタン発酵によるもの、水素発酵によるもの等があるが、本発明はこれらの各発酵に同様に適用することができる。以下の説明ではメタン発酵によるバイオガス生成システムについて説明するが、水素発酵によるバイオガス生成システムの場合も、ほぼ同様のプロセス又はシステムとなる。
An embodiment of a biogas generation system according to the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a schematic configuration diagram showing an aspect of a biogas generation system according to the present invention, and FIG. 2 is a configuration diagram of a fermentation liquor gas reduction processing apparatus.
Biogas includes methane fermentation and hydrogen fermentation, and the present invention can be similarly applied to each of these fermentations. In the following description, a biogas generation system based on methane fermentation will be described. However, a biogas generation system based on hydrogen fermentation is almost the same process or system.

図1のバイオガス生成システムは、主要な構成要素として、バイオマスすなわち有機性廃棄物が送られて該有機性廃棄物を発酵させてバイオガス1と発酵液2を生成する発酵槽3と、該発酵槽3からバイオガスライン4を介して前記バイオガス1がその下部に送られ、該バイオガス1を硫黄酸化細菌と接触させて脱硫処理を行う生物脱硫塔5とを備えている。   The biogas generation system of FIG. 1 includes, as main components, a fermenter 3 in which biomass, that is, organic waste, is sent to ferment the organic waste to produce biogas 1 and fermentation broth 2, The biogas 1 is sent from the fermenter 3 through the biogas line 4 to the lower part thereof, and a biodesulfurization tower 5 that performs desulfurization treatment by bringing the biogas 1 into contact with sulfur-oxidizing bacteria is provided.

更に、発酵槽3より取り出しライン6を介して一部取り出した発酵液7を、生物脱硫塔5内の温度より高い温度の発酵液中の溶存二酸化炭素ガスを低減処理する発酵液ガス低減処理装置8を備えている。該発酵液ガス低減処理装置8により処理されたガス低減発酵液9は、送りライン10を介して循環液タンク11に送られる。   Furthermore, the fermented liquid gas reduction processing apparatus which carries out the reduction processing of the dissolved carbon dioxide gas in the fermented liquid of the temperature higher than the temperature in the biological desulfurization tower 5 from the fermenter 3 through the extracting line 6 from the fermenter 3. 8 is provided. The gas reduced fermentation liquor 9 processed by the fermentation liquor gas reduction processing device 8 is sent to the circulating liquid tank 11 via the feed line 10.

該循環液タンク11内のガス低減発酵液9は、導入ライン12Aを介して前記生物脱硫塔5内の上部の散液部13に送られ、この散液部13から塔内に散液され、その一部は戻りライン12Bを介して循環液タンク11に戻される。図1において符合30は循環用ポンプ、符合31は撹拌機を示す。このようにガス低減発酵液9は、循環液となって生物脱硫塔5内を循環し、担持部40に担持されている硫黄酸化細菌41と連続的に接触する。これにより、硫黄酸化細菌41は活性化され、前記バイオガスライン4から塔内に送られるバイオガス1中の硫化水素に作用してそれを硫酸にまで酸化する。   The gas-reduced fermentation broth 9 in the circulating liquid tank 11 is sent to the upper spraying section 13 in the biological desulfurization tower 5 via the introduction line 12A, and is sprayed into the tower from the spraying section 13; A part of it is returned to the circulating fluid tank 11 via the return line 12B. In FIG. 1, reference numeral 30 indicates a circulation pump, and reference numeral 31 indicates a stirrer. Thus, the gas-reduced fermentation broth 9 circulates in the biological desulfurization tower 5 as a circulating liquid, and continuously contacts the sulfur-oxidizing bacteria 41 supported on the support 40. As a result, the sulfur-oxidizing bacteria 41 are activated and act on the hydrogen sulfide in the biogas 1 sent from the biogas line 4 into the tower to oxidize it to sulfuric acid.

同時に、散液部13から塔内に散液されたガス低減発酵液9は、前記バイオガスライン4から塔内に送られるバイオガス1と気液接触する。これにより、バイオガス1中に含まれている二酸化炭素が二酸化炭素吸収能の高められた状態の当該ガス低減発酵液9中に吸収され、バイオガス1中の二酸化炭素の含有量が減り、メタンガス等の有効成分の含有量を高めた精製バイオガスを得ることができる。   At the same time, the gas-reduced fermentation broth 9 sprayed into the tower from the spray section 13 comes into gas-liquid contact with the biogas 1 sent from the biogas line 4 into the tower. Thereby, the carbon dioxide contained in the biogas 1 is absorbed into the gas-reducing fermentation liquid 9 in a state in which the carbon dioxide absorption capacity is increased, and the content of carbon dioxide in the biogas 1 is reduced. A purified biogas with an increased content of active ingredients such as can be obtained.

具体的には、バイオガス1は生物脱硫塔5内に1分間以上好ましくは3分間以上保持され、バイオガス1の供給流量G(m)に対するガス低減発酵液の流量L(リットル)のL/G値は、0.1〜100、好ましくは1〜50に設定されている。尚、生物脱硫塔5は公知の充填塔又は棚段塔構造である。 Specifically, the biogas 1 is held in the biological desulfurization tower 5 for 1 minute or more, preferably 3 minutes or more, and L of the flow rate L (liter) of the gas-reducing fermentation liquid with respect to the supply flow rate G (m 3 ) of the biogas 1. The / G value is set to 0.1 to 100, preferably 1 to 50. The biological desulfurization tower 5 has a known packed tower or plate tower structure.

循環液となったガス低減発酵液9の一部は、抜き出しライン50を介して生物脱硫塔5の底部からスラリータンク60内に抜き出されるようになっている。これにより上記硫酸も抜き出される。また、発酵液2のほとんども発酵槽3の底部から抜き出しライン55を介してスラリータンク60内に送られ、数ヶ月間貯留されるようになっている。   A part of the gas-reducing fermentation liquor 9 that has become the circulating liquid is extracted from the bottom of the biological desulfurization tower 5 into the slurry tank 60 via the extraction line 50. Thereby, the sulfuric acid is also extracted. Moreover, most of the fermentation liquor 2 is extracted from the bottom of the fermenter 3 via the line 55 and sent into the slurry tank 60, where it is stored for several months.

尚、生物脱硫塔5内に散液されたガス低減発酵液9は、循環液タンク11による循環をせずに、生物脱硫塔5内の散液された後、該塔の底部から全量をスラリータンク60に送るようにすることも可能である。これにより、二酸化炭素吸収能を常に高い状態にしておくことが出来る。この場合、循環液タンク11は単なる一時的な貯留タンクになり、戻りライン12Bは不要である。   The gas-reduced fermentation liquor 9 sprayed in the biological desulfurization tower 5 is not circulated in the circulating liquid tank 11, but is dispersed in the biological desulfurization tower 5, and then the whole amount is slurried from the bottom of the tower. It is also possible to send it to the tank 60. Thereby, a carbon dioxide absorption ability can always be made into a high state. In this case, the circulating fluid tank 11 is merely a temporary storage tank, and the return line 12B is unnecessary.

次に、図2に基づいて本実施例の発酵液ガス低減処理装置8の構造を詳しく説明する。本実施例の発酵液ガス低減処理装置8は、前記発酵液7を加熱して昇温する加熱装置14と、生物脱硫塔内の温度より高い温度の発酵液17から二酸化炭素を放散させてガス低減発酵液9とする放散装置15を備えている。更に加熱装置14と放散装置15の間にライン16を介して設けられて加熱装置14で加熱された状態の発酵液17を一定時間保持する貯液タンク18を備えている。該貯液タンク18は発酵液に対して滅菌効果を発揮する温度以上で所定時間保持するように構成されている。   Next, based on FIG. 2, the structure of the fermented liquid gas reduction processing apparatus 8 of a present Example is demonstrated in detail. The fermented liquor gas reduction processing device 8 of the present embodiment is configured to emit carbon dioxide from a heating device 14 that heats the fermented broth 7 and raises the temperature thereof, and a fermented liquor 17 that has a temperature higher than that in the biological desulfurization tower. A diffusion device 15 for reducing fermentation broth 9 is provided. Further, a storage tank 18 is provided between the heating device 14 and the diffusion device 15 via a line 16 and holds the fermentation broth 17 heated by the heating device 14 for a certain period of time. The liquid storage tank 18 is configured to be held for a predetermined time at a temperature higher than a temperature at which a sterilizing effect is exerted on the fermentation liquid.

加熱装置14は、発酵槽3より一部取り出した発酵液7を、生物脱硫塔5内の温度より高い温度に昇温するもので、前記発酵液7が生物脱硫塔5内の温度より低い場合は、該発酵液7を生物脱硫塔5内の温度より高い温度に加熱昇温し、前記発酵液7が生物脱硫塔5内の温度より高い場合は、その温度が生物脱硫塔5内の温度よりも下がらないように加熱保温するものである。該加熱装置14は、本実施例では図示しないバイオガスコージェネレーションの熱水(80℃程度)を利用した熱交換機19で構成されている。勿論この熱交換機19に限定されず、バイオガスを用いるボイラ等、他の加熱手段であってもよい。   The heating device 14 raises the temperature of the fermentation broth 7 partially taken out from the fermenter 3 to a temperature higher than the temperature in the biological desulfurization tower 5, and the fermentation liquid 7 is lower than the temperature in the biological desulfurization tower 5. Is heated to a temperature higher than the temperature in the biological desulfurization tower 5, and when the fermentation liquid 7 is higher than the temperature in the biological desulfurization tower 5, the temperature is the temperature in the biological desulfurization tower 5. It is heated and kept warm so as not to fall below. The heating device 14 is composed of a heat exchanger 19 using hot water (about 80 ° C.) of biogas cogeneration (not shown) in the present embodiment. Of course, it is not limited to this heat exchanger 19 and may be other heating means such as a boiler using biogas.

放散装置15は、生物脱硫塔内の温度より高い温度の発酵液17から溶存二酸化炭素を放散させてガス低減発酵液9を得るもので、本実施例では充填塔や棚段塔等の気液接触機能を備えた二酸化炭素放散塔20で構成されている。この二酸化炭素放散塔20は、前記発酵液17の散液部21とブロア22を備えており、該ブロア22から供給する空気23と散液部21から散液された高温発酵液17との気液接触による撹拌作用により、該発酵液17中の溶存二酸化炭素が液外に放散される。該放散による二酸化炭素を含んだ空気は出口部24から二酸化炭素放散塔20外に排出される。発酵液17から二酸化炭素を放散させたガス低減発酵液9は送りライン10を介して循環液タンク11に送られる。   The stripping device 15 diffuses dissolved carbon dioxide from the fermentation liquid 17 having a temperature higher than the temperature in the biological desulfurization tower to obtain a gas-reduced fermentation liquid 9. In this embodiment, the gas-liquid such as a packed tower or a plate tower is used. It is comprised with the carbon dioxide stripping tower 20 provided with the contact function. The carbon dioxide stripping tower 20 includes a sprinkling part 21 of the fermentation broth 17 and a blower 22, and air between the air 23 supplied from the blower 22 and the high-temperature fermentation liquid 17 sprinkled from the sprinkling part 21. The dissolved carbon dioxide in the fermentation broth 17 is released to the outside by the stirring action by the liquid contact. The air containing carbon dioxide due to the emission is discharged out of the carbon dioxide emission tower 20 from the outlet 24. The gas-reduced fermented liquid 9 from which carbon dioxide has been diffused from the fermented liquid 17 is sent to the circulating liquid tank 11 via the feed line 10.

具体的には、空気23は、二酸化炭素放散塔20内に1分間以上好ましくは3分間以上保持され、空気23の供給流量G(m)に対する発酵液の流量L(リットル)のL/G値は、0.1〜10に設定されている。尚、このL/G値の好ましい範囲は発酵液の種類や履歴によって異なる。 Specifically, the air 23 is held in the carbon dioxide stripping tower 20 for 1 minute or more, preferably 3 minutes or more, and L / G of the flow rate L (liter) of the fermentation liquid with respect to the supply flow rate G (m 3 ) of the air 23. The value is set to 0.1-10. In addition, the preferable range of this L / G value changes with kinds and log | history of fermentation broth.

貯液タンク18は、生物脱硫塔内の温度より高い温度の発酵液17を一定時間保持して、発酵液に対して滅菌効果を発揮するように構成されている。図示しない保温手段が設けられている。本実施例では70℃に昇温された発酵液17を1分間貯留保持できるように構成されている。尚、55℃で6時間貯留保持するようにしてもよい。該貯液タンク18の容量設定の目安は、抜き出し発酵液量の1.5〜3倍が良く、例えば抜き出し液量が30リットル/時ならば50〜90リットルである。   The liquid storage tank 18 is configured to hold a fermentation solution 17 having a temperature higher than the temperature in the biological desulfurization tower for a certain period of time and exert a sterilization effect on the fermentation solution. A heat retaining means (not shown) is provided. In this embodiment, the fermentation liquid 17 heated to 70 ° C. is configured to be stored and held for 1 minute. In addition, you may make it hold | maintain at 55 degreeC for 6 hours. The standard for setting the capacity of the liquid storage tank 18 is preferably 1.5 to 3 times the amount of the extracted fermented liquid, for example, 50 to 90 liters when the amount of the extracted liquid is 30 liters / hour.

発酵槽3は、有機性廃棄物が供給部80から槽内に供給される。有機性廃棄物は、発酵槽3内にて嫌気性雰囲気下でメタン発酵菌によってメタン発酵され、バイオガス1と発酵液2を生成する。発酵槽3内の温度は55℃に設定され、高温メタン発酵を行うようになっている。有機性廃棄物の発酵槽3での滞留時間は例えば15日間(槽容積/投入抜出量=15日)に設定される。   As for the fermenter 3, organic waste is supplied in the tank from the supply part 80. FIG. The organic waste is methane-fermented by methane-fermenting bacteria in an anaerobic atmosphere in the fermenter 3 to produce biogas 1 and fermentation broth 2. The temperature in the fermenter 3 is set to 55 ° C., and high-temperature methane fermentation is performed. The residence time of the organic waste in the fermenter 3 is set to, for example, 15 days (tank volume / injection / extraction amount = 15 days).

本発明で使用する有機性廃棄物(バイオマス)としては、例えば、生ごみ、排水処理汚泥、畜産廃棄物や緑農廃棄物などを挙げることができる。ここで、畜産廃棄物としては、家畜の糞尿や、屠体、その加工品が挙げられ、より具体的にはブタ、牛、羊、山羊、ニワトリなどの家畜の糞尿やこれらの屠体、そこから分離された骨、肉、脂肪、内臓、血液、脳、眼球、皮、蹄、角などのほか、例えば肉骨粉、肉粉、骨粉、血粉などに代表される家畜屠体の骨、肉等を破砕した破砕物や、血液などを乾燥した乾燥物も含まれる。その他の廃棄物としては、家庭の生ごみのほか、事業系生ごみとして農水産業廃棄物、食品加工廃棄物等が含まれる。なお、有機性廃棄物の状態により、必要に応じて前処理として破砕・分別工程を実施することができる。   Examples of the organic waste (biomass) used in the present invention include garbage, wastewater treatment sludge, livestock waste, and green farm waste. Here, livestock waste includes livestock manure, carcass, and processed products thereof. More specifically, livestock manure such as pigs, cattle, sheep, goats, chickens, and carcasses thereof, In addition to bone, meat, fat, internal organs, blood, brain, eyeballs, skin, hoofs, horns, etc. isolated from, such as bones, meat, etc. of livestock carcasses represented by meat and bone meal, meat meal, bone meal, blood meal Also included are crushed crushed materials and dried products obtained by drying blood and the like. Other waste includes household waste, agricultural / fishery waste, food processing waste, etc. as business waste. Depending on the state of the organic waste, a crushing / sorting step can be performed as a pretreatment if necessary.

次に、上記実施の形態の作用を説明する。
本実施の形態によれば、先ず発酵槽3より一部取り出した、生物脱硫塔5内の温度より高い温度の発酵液7を該発酵液17中の溶存二酸化炭素ガスを低減処理して二酸化炭素吸収能を高めている。このように二酸化炭素吸収能を高められたガス低減発酵液9が生物脱硫塔5に導入されると、その水分によって硫黄酸化細菌41を活性化して発酵槽3から送られたバイオガス1中の硫化水素を硫酸にまで酸化すると同時に、該バイオガス1中の二酸化炭素と気液接触して該二酸化炭素を当該ガス低減発酵液9中に確実に吸収する。これにより、バイオガス1中の二酸化炭素の含有量が減り、メタンガス等の有効成分の割合を簡単に高めることができる。
このように本実施の形態によれば、二酸化炭素吸収用の吸収剤などを用いること無く、発酵液自体を利用してバイオガス1中の二酸化炭素を簡易、かつ低コストで取り除くことでき、以て有用成分の濃度を高めたバイオガスに精製することができる。
Next, the operation of the above embodiment will be described.
According to the present embodiment, first, a part of the fermenter 3 taken out from the fermenter 3 is subjected to a treatment for reducing the dissolved carbon dioxide gas in the fermented liquid 17 by reducing the temperature of the fermented liquid 7 higher than the temperature in the biological desulfurization tower 5. Increases absorption capacity. When the gas-reducing fermentation liquor 9 having an increased carbon dioxide absorption capacity is introduced into the biological desulfurization tower 5 in this way, the sulfur-oxidizing bacteria 41 are activated by the water and the biogas 1 sent from the fermenter 3 is sent. At the same time that hydrogen sulfide is oxidized to sulfuric acid, the carbon dioxide in gas-liquid contact with the carbon dioxide in the biogas 1 is reliably absorbed into the gas-reduced fermentation broth 9. Thereby, the content of carbon dioxide in the biogas 1 is reduced, and the proportion of active ingredients such as methane gas can be easily increased.
As described above, according to the present embodiment, carbon dioxide in the biogas 1 can be removed easily and at low cost using the fermentation broth without using an absorbent for absorbing carbon dioxide. And can be purified to biogas with a high concentration of useful components.

また、発酵液ガス低減処理装置8は、発酵液7に対して滅菌効果を発揮する温度以上で所定時間保持する構成である加熱装置14と貯液タンク18を備えているので、この滅菌処理の為の加熱工程部分を発酵液中の溶存二酸化炭素を低減する為の上記加熱工程部分に兼用することが可能であり、効率的である。   Moreover, since the fermented liquid gas reduction processing apparatus 8 is equipped with the heating apparatus 14 and the liquid storage tank 18 which are the structure hold | maintained for the predetermined time above the temperature which exhibits the sterilization effect with respect to the fermented liquid 7, this sterilization processing is carried out. Therefore, it is possible to share the heating process part for the heating process part for reducing the dissolved carbon dioxide in the fermentation broth, which is efficient.

[他の実施の形態]
図3は、本発明に係るバイオガス生成システムの他の態様を示す概略構成図である。本態様では、加熱装置14は液肥を作るための専用の加熱装置である。この液肥用の専用加熱装置14で加熱された発酵液の一部を貯液タンクに送るように構成されている。その他の構成は、図1に示した態様と同様なので同一部分に同一符合を付してその説明は省略する。本態様においても図1の態様と同様の作用効果が得られる。
[Other embodiments]
FIG. 3 is a schematic configuration diagram showing another aspect of the biogas generation system according to the present invention. In this embodiment, the heating device 14 is a dedicated heating device for making liquid fertilizer. A part of the fermented liquid heated by the dedicated heating device 14 for liquid fertilizer is sent to the storage tank. Since the other configuration is the same as that shown in FIG. 1, the same reference numerals are given to the same portions and the description thereof is omitted. Also in this aspect, the same effect as the aspect of FIG. 1 is obtained.

図1及び図3に示した上記実施の形態では、二酸化炭素吸収能を高めたガス低減発酵液9を生物脱硫塔5内に導入して、該塔内でバイオガス1と気液接触させたが、生物脱硫塔とは別にバイオガス中の二酸化炭素吸収の為の専用の気液接触塔を設けて行うことも可能である。このようにするとガス低減発酵液中に硫酸が増えないので、液肥への利用がし易くなる。   In the above-described embodiment shown in FIGS. 1 and 3, the gas-reduced fermentation liquor 9 with enhanced carbon dioxide absorption capacity is introduced into the biological desulfurization tower 5 and brought into gas-liquid contact with the biogas 1 in the tower. However, in addition to the biological desulfurization tower, a dedicated gas-liquid contact tower for absorbing carbon dioxide in the biogas can be provided. If it does in this way, since sulfuric acid does not increase in a gas reduction fermentation liquid, it will become easy to use for liquid manure.

<実施例1>
搾乳牛糞尿を中心とするバイオマスを4t/日の供給量で、容量60mの発酵槽3に送り、抜き出し発酵液7の量を0.7m/日、70℃且つ1時間の加熱保持をした後、容量100リットルの循環液タンクに送り、ガス低減発酵液9を生物脱硫塔5内に、循環流量10リットル/分で循環させた。生物脱硫塔5内に送り込まれるバイオガス1(メタンガス:約50体積%、二酸化炭素:約50体積%)の流量は140m/日であった。尚、発酵槽3から容量800mのスラリータンク60に発酵液2が3.3m/日で送られた。このとき、精製バイオガス中の硫化水素濃度は0ppmであり、メタンガス濃度は約65体積%、二酸化炭素濃度は約35体積%であった。
<Example 1>
The biomass centered on milked cow manure is fed to the fermenter 3 with a capacity of 60 m 3 at a supply rate of 4 t / day, and the amount of the extracted fermentation broth 7 is 0.7 m 3 / day, kept at 70 ° C. for 1 hour. Then, it was sent to a circulating liquid tank having a capacity of 100 liters, and the gas-reduced fermentation liquid 9 was circulated in the biological desulfurization tower 5 at a circulating flow rate of 10 liters / minute. The flow rate of biogas 1 (methane gas: about 50% by volume, carbon dioxide: about 50% by volume) fed into the biological desulfurization tower 5 was 140 m 3 / day. Incidentally, the fermentation liquid 2 is sent at 3.3 m 3 / day from the fermentor 3 to the slurry tank 60 of capacity 800 m 3. At this time, the hydrogen sulfide concentration in the purified biogas was 0 ppm, the methane gas concentration was about 65% by volume, and the carbon dioxide concentration was about 35% by volume.

<実施例2>
実施例1と同じく搾乳牛糞尿を中心とする畜産廃棄物約70t/日を処理するバイオガスプラントにおいて、本発明を用いたバイオガスの脱硫および二酸化炭素を吸収する高カロリー化の試験を実施した。本プラントの発酵槽3は55℃の高温発酵方式である。
畜産廃棄物(搾乳牛糞尿)を約70t/日の供給量で、容量980mの発酵槽3に送り、抜き出し発酵液7の量を15m/日とした。該抜き出し発酵液7を55℃に保温し、大気と接触した状態で孔径約4mmのメッシュスクリーンを用いて塊状物を取り除き、抜き出し発酵液7中の溶存二酸化炭素ガスを放散させたのち、ガス低減発酵液9として容量300リットルの循環液タンクに送り、該ガス低減発酵液9を生物脱硫塔5内に循環させた。生物脱硫塔5内にガス低減発酵液9を循環させるための生物脱硫塔循環液用のポンプを、出力の異なる2種類を準備し(実施例2−1:0.25kW、実施例2−2:0.4kW)、それぞれの循環液量における精製バイオガス中の硫化水素濃度およびメタンガス濃度を測定し、バイオガスエンジンの出力の差を検討した。また、比較例では、抜き出し発酵液7を大気と接触させずに塊状物を取り除き、抜き出し発酵液7中の溶存二酸化炭素ガスを放散させていない発酵液を、生物脱硫塔5内に循環させた。生物脱硫塔5内に送り込まれるバイオガス1の流量(メタンガス:約55体積%、二酸化炭素:約45体積%、硫化水素濃度:約3000ppm)は2400m/日である。実施例2における試験結果を表1に示す。
<Example 2>
The biogas desulfurization using the present invention and the increase in calorie absorption to absorb carbon dioxide were carried out in the biogas plant for treating the livestock waste of about 70 t / day centered on milking cow manure as in Example 1. . Fermenter 3 of this plant is a 55 degreeC high temperature fermentation system.
Livestock waste (milking cow manure) was fed to the fermenter 3 with a capacity of 980 m 3 at a supply rate of about 70 t / day, and the amount of the extracted fermentation broth 7 was 15 m 3 / day. The extracted fermented broth 7 is kept at 55 ° C., removed from the lump using a mesh screen having a pore size of about 4 mm in contact with the atmosphere, and the dissolved carbon dioxide gas in the extracted fermented broth 7 is diffused to reduce the gas. The fermented liquid 9 was sent to a circulating liquid tank having a capacity of 300 liters, and the gas-reduced fermented liquid 9 was circulated in the biological desulfurization tower 5. Two types of pumps for the circulating liquid of the biological desulfurization tower for circulating the gas-reducing fermentation liquid 9 in the biological desulfurization tower 5 are prepared (Example 2-1: 0.25 kW, Example 2-2). : 0.4 kW), the hydrogen sulfide concentration and the methane gas concentration in the purified biogas at each circulating fluid amount were measured, and the difference in the output of the biogas engine was examined. Moreover, in a comparative example, the lump was removed without making the extraction fermentation liquid 7 contact with air | atmosphere, and the fermentation liquid in which the dissolved carbon dioxide gas in the extraction fermentation liquid 7 was not diffused was circulated in the biological desulfurization tower 5. . The flow rate of the biogas 1 fed into the biological desulfurization tower 5 (methane gas: about 55% by volume, carbon dioxide: about 45% by volume, hydrogen sulfide concentration: about 3000 ppm) is 2400 m 3 / day. Table 1 shows the test results in Example 2.

Figure 0005154771
Figure 0005154771

比較例において生物脱硫塔5内に循環させた、抜き出し発酵液7中の溶存二酸化炭素ガスを放散させていない発酵液は、溶存二酸化炭素濃度が飽和状態であるため、二酸化炭素吸収能がほとんど無く、生物脱硫塔5内に送り込まれたバイオガス1と、精製バイオガス中のメタン濃度と二酸化炭素濃度の割合はほとんど変化しない。比較例1の精製バイオガスを用いたガスエンジン平均出力は約160kWであった。   In the comparative example, the fermented liquid that has been circulated in the biological desulfurization tower 5 and does not dissipate the dissolved carbon dioxide gas in the extracted fermented liquid 7 has almost no carbon dioxide absorption capacity because the dissolved carbon dioxide concentration is saturated. The ratio of the methane concentration and the carbon dioxide concentration in the biogas 1 sent into the biological desulfurization tower 5 and the purified biogas hardly changes. The average output of the gas engine using the purified biogas of Comparative Example 1 was about 160 kW.

比較例と同量のガス低減発酵液9を生物脱硫塔5内に循環させた実施例2−1では、バイオガス1中の二酸化炭素が該ガス低減発酵液9に吸収されることによって、精製バイオガス中のメタン濃度は約65体積%まで高められ、ガスエンジン平均出力は比較例よりも3kW向上した。   In Example 2-1, in which the same amount of gas-reduced fermentation liquor 9 as in the comparative example was circulated in the biological desulfurization tower 5, carbon dioxide in the biogas 1 was absorbed by the gas-reduced fermentation liquor 9, thereby purifying. The methane concentration in the biogas was increased to about 65% by volume, and the average output of the gas engine was improved by 3 kW from the comparative example.

実施例2−1よりも高出力のポンプを用い、生物脱硫塔5内に送るガス低減発酵液9量を増加した実施例2−2では、ガス低減発酵液9によって吸収される二酸化炭素量も多くなり、精製バイオガス中のメタン濃度は更に高められ、メタン濃度が約80体積%の精製バイオガスが得られた。実施例2−2で得られた精製バイオガスのガスエンジン平均出力は約166kWであり、比較例よりも高出力のポンプ(0.4kW)を用いたことによる消費エネルギー増加分(+0.15kW)を差し引いても、約5.85kWのガスエンジン平均出力が増加する。
尚、精製バイオガス中のメタン濃度を約80体積%以上に高めても、ガスエンジン平均出力の増加は収束するため、メタン濃度が約80体積%の精製バイオガスが効率よく得られるように生物脱硫塔5内に送るガス低減発酵液9量を設定すれば、エネルギー効率がよい。
In Example 2-2 in which the amount of gas-reducing fermentation liquor 9 sent to the biological desulfurization tower 5 was increased using a pump having a higher output than that of Example 2-1, the amount of carbon dioxide absorbed by the gas-reducing fermentation liquor 9 was also increased. The methane concentration in the purified biogas was further increased, and a purified biogas having a methane concentration of about 80% by volume was obtained. The gas engine average output of the purified biogas obtained in Example 2-2 is about 166 kW, and an increase in energy consumption (+0.15 kW) due to the use of a pump (0.4 kW) having a higher output than the comparative example. Even if is subtracted, the average power output of the gas engine of about 5.85 kW increases.
Even if the methane concentration in the purified biogas is increased to about 80% by volume or more, the increase in the average output of the gas engine converges, so that the purified biogas having a methane concentration of about 80% by volume can be obtained efficiently. If the amount of gas-reducing fermentation liquor 9 sent into the desulfurization tower 5 is set, energy efficiency is good.

本発明は、有機性廃棄物のメタン発酵等により得られるバイオガスを処理して可燃性成分であるメタンガス成分等の有効成分の含有量を高めるように精製するバイオガス生成システム及びバイオガス生成方法に利用可能である。   The present invention relates to a biogas generation system and a biogas generation method for treating a biogas obtained by methane fermentation of organic waste and purifying it so as to increase the content of an active component such as a flammable component methane gas component. Is available.

本発明の一実施の形態に係るバイオガス生成システムを示す概略構成図である。It is a schematic block diagram which shows the biogas production | generation system which concerns on one embodiment of this invention. 本発明に係る発酵液ガス低減処理装置の構成図である。It is a block diagram of the fermented liquor gas reduction processing apparatus which concerns on this invention. 本発明の他の実施の形態に係るバイオガス生成システムを示す概略構成図である。It is a schematic block diagram which shows the biogas production | generation system which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 バイオガス
2 発酵液
3 発酵槽
4 バイオガスライン
5 生物脱硫塔
7 一部取り出した発酵液
8 発酵液ガス低減処理装置
9 ガス低減発酵液
11 循環液タンク
13 散液部
14 加熱装置
15 放散装置
17 高温発酵液
18 貯液タンク
20 二酸化炭素放散塔
DESCRIPTION OF SYMBOLS 1 Biogas 2 Fermentation liquid 3 Fermenter 4 Biogas line 5 Biological desulfurization tower 7 Fermentation liquid 8 taken out partly Fermentation liquid gas reduction processing apparatus 9 Gas reduction fermentation liquid 11 Circulating liquid tank 13 Sprinkling part 14 Heating apparatus 15 Radiation apparatus 17 High-temperature fermentation liquid 18 Storage tank 20 Carbon dioxide stripping tower

Claims (1)

有機性廃棄物を発酵させてバイオガスを生成する発酵槽より一部取り出した発酵液を加熱して該発酵液中の溶存二酸化炭素ガスを低減する加熱処理を行い、Heating the fermentation liquor partially taken out from the fermenter that ferments organic waste to produce biogas, and performs heat treatment to reduce dissolved carbon dioxide gas in the fermentation liquor,
前記加熱処理後の発酵液の一部を液肥に利用すると共に、While utilizing a part of the fermented liquid after the heat treatment for liquid fertilizer,
前記加熱処理後の発酵液の他の一部を、バイオガスに対して脱硫処理を行う生物脱硫塔内の担持部に担持されている硫黄酸化細菌に供給して発酵液を利用することを特徴とするバイオガス生成方法。The other part of the fermented liquid after the heat treatment is supplied to sulfur-oxidizing bacteria supported on a supporting part in a biological desulfurization tower that performs a desulfurization process on biogas, and the fermented liquid is used. A biogas production method.
JP2006185646A 2006-07-05 2006-07-05 Biogas generation system and method Active JP5154771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185646A JP5154771B2 (en) 2006-07-05 2006-07-05 Biogas generation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185646A JP5154771B2 (en) 2006-07-05 2006-07-05 Biogas generation system and method

Publications (2)

Publication Number Publication Date
JP2008013649A JP2008013649A (en) 2008-01-24
JP5154771B2 true JP5154771B2 (en) 2013-02-27

Family

ID=39070986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185646A Active JP5154771B2 (en) 2006-07-05 2006-07-05 Biogas generation system and method

Country Status (1)

Country Link
JP (1) JP5154771B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083901B2 (en) * 2008-07-18 2012-11-28 東京瓦斯株式会社 Off-gas combustion device
JP5761922B2 (en) * 2010-03-31 2015-08-12 三井造船環境エンジニアリング株式会社 Methane fermentation system
JP5630839B2 (en) * 2012-08-08 2014-11-26 東京瓦斯株式会社 Off-gas combustion device
JP5630838B2 (en) * 2012-08-08 2014-11-26 東京瓦斯株式会社 Off-gas combustion device
CN118389183B (en) * 2024-06-28 2024-09-20 潍坊金信达生物化工有限公司 Natural gas extraction method based on kitchen waste

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3554689B2 (en) * 1999-11-11 2004-08-18 アタカ工業株式会社 Waste disposal method
JP2002079294A (en) * 2000-09-08 2002-03-19 Kurita Water Ind Ltd Biological desulfurization method and apparatus
JP2002079034A (en) * 2000-09-08 2002-03-19 Kurita Water Ind Ltd Biological desulfurization method and apparatus
JP2003055080A (en) * 2001-08-22 2003-02-26 Nikki-Bioscan Co Ltd Method of manufacturing slow-release nitrogen fertilizer, slow-release nitrogen fertilizer, ridging raw material, ridging for rearing of seedling for horticulture and ridging for rearing of seedling for paddy
JP2003230810A (en) * 2002-02-07 2003-08-19 Ebara Corp Method and apparatus for removing carbon dioxide in digestion gas
JP2004057859A (en) * 2002-07-25 2004-02-26 Fuji Electric Holdings Co Ltd Treatment method of methane fermentation residue and equipment therefor
JP2004298688A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Method for treating organic waste, biogas system and method for producing methane fermentation residual liquid concentrate
JP2005013909A (en) * 2003-06-27 2005-01-20 Junichi Takahashi Method of treating fermented product derived from organic waste and method of producing fodder
JP2005087978A (en) * 2003-09-22 2005-04-07 Mitsui Eng & Shipbuild Co Ltd Organic waste treatment method and biogas system
JP2005255700A (en) * 2004-03-09 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Biogas purification method and biogas purification system
JP4439961B2 (en) * 2004-03-23 2010-03-24 パナソニック株式会社 Manufacturing method of exhaust gas purification material
JP4488794B2 (en) * 2004-05-24 2010-06-23 三井造船株式会社 Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid
JP2006036961A (en) * 2004-07-28 2006-02-09 Mitsui Eng & Shipbuild Co Ltd Biological desulfurization process
JP2006167512A (en) * 2004-12-13 2006-06-29 Tokyo Metropolitan Sewerage Service Corp Apparatus and method for treating methane fermented substance

Also Published As

Publication number Publication date
JP2008013649A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
EP1528953B8 (en) Method and device for stripping ammonia from liquids
CA2420064A1 (en) Concept for slurry separation and biogas production
Lien et al. Water scrubbing for removal of hydrogen sulfide (H2S) inbiogas from hog farms
KR100792166B1 (en) Waste and waste treatment methods containing organic matter
JP2004506487A5 (en)
AU2001281754A1 (en) Concept for slurry separation and biogas production
JP5154771B2 (en) Biogas generation system and method
JP2010005601A (en) Circulation type treatment method and system for waste in environment area including cowhouse
CN108863475A (en) The method for preparing selenium-enriched liquid organic fertilizer using the waste water and swine excrement in slaughterhouse
JP5491046B2 (en) Methane fermentation system and fertilizer production equipment using the same
JP5221841B2 (en) Biogas generation system and method
JP5484606B2 (en) Biogas generation system
JP2005255700A (en) Biogas purification method and biogas purification system
JP5063269B2 (en) Biogas system
JP3303905B2 (en) Anaerobic digestion of livestock manure
CN115055483B (en) Kitchen waste treatment process
JP2008012422A (en) Leaf and stalk-treating method using organic waste
WO2010052805A1 (en) System and method for treating organic waste and method of modifying fermentation liquid derived from organic waste
JP3868168B2 (en) Odor gas deodorization method and apparatus
CN203846018U (en) Breeding farm waste recycling system for generating biogas
TWI809847B (en) Method for removing odor of biological waste
JP5523168B2 (en) Processing method of solid biomass
EP4186968A1 (en) Fat rendering
WO2009119120A1 (en) Methane fermentation system, feed production apparatus and feed production method
JP2006021192A (en) Method and apparatus for manufacturing biogas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350