JP5153129B2 - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- JP5153129B2 JP5153129B2 JP2006334500A JP2006334500A JP5153129B2 JP 5153129 B2 JP5153129 B2 JP 5153129B2 JP 2006334500 A JP2006334500 A JP 2006334500A JP 2006334500 A JP2006334500 A JP 2006334500A JP 5153129 B2 JP5153129 B2 JP 5153129B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- tank
- compressed air
- anode side
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
この発明は、水素と酸素の電気化学反応を利用して発電する燃料電池システムに関する。 The present invention relates to a fuel cell system that generates power using an electrochemical reaction between hydrogen and oxygen.
従来、車両に搭載される燃料電池システムは、カソード側(酸素極側)に圧縮空気(酸素)を供給し、アノード側(水素極側)に水素を供給して、例えば高分子電解質膜型の燃料電池のように水素と酸素のガスの電気化学反応を利用して発電するものが知られている。 Conventionally, a fuel cell system mounted on a vehicle supplies compressed air (oxygen) to the cathode side (oxygen electrode side) and hydrogen to the anode side (hydrogen electrode side), for example, a polymer electrolyte membrane type A fuel cell such as a fuel cell that generates electricity using an electrochemical reaction between hydrogen and oxygen gas is known.
ところで、上記した燃料電池システムでは、その反応過程において、カソード側(酸素極側)に発生した生成水が高分子電解質膜を通してアノード側(水素極側)に逆拡散して混入する。そして、燃料電池のアノード側は、混入した生成水を放置しておくと、生成水が蓄積して水素濃度が次第に低下し、その結果、燃料電池の発電効率が低下し、さらには燃料電池の損傷を招来する。 By the way, in the fuel cell system described above, in the reaction process, the generated water generated on the cathode side (oxygen electrode side) is back-diffused and mixed into the anode side (hydrogen electrode side) through the polymer electrolyte membrane. If the mixed product water is left on the anode side of the fuel cell, the product water accumulates and the hydrogen concentration gradually decreases. As a result, the power generation efficiency of the fuel cell decreases. Causes damage.
そのため、この種の燃料電池においては、アノード側の前記生成水をどのようにして排出するのかが重要な課題の1つになっている。そこで、この課題を解決するため、本願出願人は、特願2006−074825号の出願において、以下に図3を参照して説明する技術を提案している。 Therefore, in this type of fuel cell, how to discharge the generated water on the anode side is one of the important issues. Therefore, in order to solve this problem, the applicant of the present application has proposed a technique described below with reference to FIG. 3 in the application of Japanese Patent Application No. 2006-074825.
図3は従来の燃料電池システムのブロック図である。図3において、4は燃料タンク、5はその主止弁、6、7、8は燃料タンク4から燃料電池(FC)1に至るアノード側上流の燃料ガス供給配管部9に設けられたレギュレータ、燃料である水素の供給弁、圧力センサである。 FIG. 3 is a block diagram of a conventional fuel cell system. In FIG. 3, 4 is a fuel tank, 5 is its main stop valve, 6, 7 and 8 are regulators provided in the fuel gas supply piping section 9 upstream from the fuel tank 4 to the fuel cell (FC) 1, A supply valve for hydrogen as a fuel and a pressure sensor.
また、15は燃料電池1から常閉の排出弁16に至るアノード側下流の燃料ガス排出配管部、170は燃料ガス排出配管部15に設けられた適当な大きさの矩形箱体或いは円筒体のタンクである。なお、弁5、7、16及びレギュレータ6は白抜きが開いた状態を示し、黒塗りが閉じた状態を示す。
また、22はコンプレッサ、20はコンプレッサ22によって圧縮された圧縮空気を燃料電池1のカソード側に供給するカソード側上流に設けられた空気供給配管部、21は燃料電池1から空気を排出するカソード側下流に設けられた空気排出配管部である。
Further, 22 is a compressor, 20 is an air supply piping section provided upstream of the cathode side for supplying compressed air compressed by the
そして、燃料タンク4の主止弁5を通った高圧の水素ガスは、レギュレータ6で減圧調整された後、供給弁7、圧力センサ8を通って燃料電池1のアノード側上流から下流に向かって通流し、その間に、水素と燃料電池1のカソード側に供給された酸素(圧縮空気)との高分子電解質膜を介した電気化学反応が生じて発電が行なわれる。
Then, the high-pressure hydrogen gas that has passed through the
このとき、この燃料電池システムでは、燃料電池1のアノード側の上流に供給弁7を設け、アノード側の下流にタンク170、排出弁16を設け、アノード側の生成水の排出時、供給弁7と排出弁16を閉じた状態にして燃料電池1の発電を行なった後、供給弁7を開放して生成水を排出している。
At this time, in this fuel cell system, the supply valve 7 is provided upstream of the anode side of the fuel cell 1, the
また、生成水の排出タイミングを燃料電池1のアノード側の濡れ状態、換言すれば、燃料電池1のアノード側の生成水の滞留状態から決定し、燃料電池1のアノード側の設定した濡れ状態を検出したときに供給弁7と排出弁16を閉じた状態にして前記の燃料電池1の発電を行なうようにしている。
Further, the discharge timing of the produced water is determined from the wet state on the anode side of the fuel cell 1, in other words, the accumulated state of the produced water on the anode side of the fuel cell 1, and the set wet state on the anode side of the fuel cell 1 is determined. When detected, the supply valve 7 and the
このような構成とすれば、まず、通常の発電状態において、供給弁7は開かれ、燃料タンク4からレギュレータ6、供給弁7、圧力センサ8を介して燃料電池1のアノード側に燃料の水素ガスが供給される。そして、発電に伴って生じた生成水が燃料電池1のアノード側に滞留し、アノード側の濡れ状態が進行して発電能力が次第に低下していく。 With such a configuration, first, in a normal power generation state, the supply valve 7 is opened, and fuel hydrogen is supplied from the fuel tank 4 to the anode side of the fuel cell 1 via the regulator 6, the supply valve 7, and the pressure sensor 8. Gas is supplied. Then, the generated water that accompanies the power generation stays on the anode side of the fuel cell 1, the wet state on the anode side progresses, and the power generation capacity gradually decreases.
そこで、燃料電池1のアノード側の濡れ状態を、燃料電池1の電流の積算値、電圧、或いは発電時間等の状態値から推定或いは検出し、前記状態値が実験等で設定された所定値に達して生成水の排出が必要なタイミングになると、供給弁7を閉止し、供給弁7及び排出弁16が閉じた状態で燃料電池1の発電を継続する。
Therefore, the wet state on the anode side of the fuel cell 1 is estimated or detected from a state value such as an integrated value, voltage, or power generation time of the current of the fuel cell 1, and the state value is set to a predetermined value set by an experiment or the like. When the required timing is reached and the generated water needs to be discharged, the supply valve 7 is closed, and the power generation of the fuel cell 1 is continued with the supply valve 7 and the
このとき、燃料電池1は燃料である水素ガスの供給を止めた状態で発電し、この発電によって燃料電池1内及び該燃料電池1に連通したタンク170が減圧状態になる。
At this time, the fuel cell 1 generates power in a state where supply of hydrogen gas as fuel is stopped, and the
そして、燃料電池1内が所定圧力に低下するか、燃料電池1の減圧開始からの電流量(積算値)が設定値に達するかすると、供給弁7を開き、減圧状態の燃料電池1内に水素ガスを噴入することで、燃料電池1から燃料ガス排出配管部15を介してタンク170に至る水素ガス流により燃料電池1のアノード側の生成水をタンク170に押し出して電池外部に確実に排出することができる。
When the inside of the fuel cell 1 drops to a predetermined pressure or the current amount (integrated value) from the start of the pressure reduction of the fuel cell 1 reaches a set value, the supply valve 7 is opened and the fuel cell 1 in the pressure-reduced state is opened. By injecting the hydrogen gas, the generated water on the anode side of the fuel cell 1 is pushed out to the
ところで、燃料電池1のカソード側に供給される圧縮空気はコンプレッサ22により高圧に圧縮されることで非常に高温となる。そのため、高温の圧縮空気が燃料電池1に供給されることで燃料電池が損傷するのを防止するため、当該圧縮空気を冷却する必要があった。このように圧縮空気を冷却する方法についてはその他にも様々な技術が提案されている(例えば、特許文献1参照)。
By the way, the compressed air supplied to the cathode side of the fuel cell 1 becomes very high by being compressed to a high pressure by the
特許文献1に記載の燃料電池システムでは、燃料タンクに貯蔵した圧縮水素および、コンプレッサで圧縮した圧縮空気の供給を受けて発電する燃料電池を備え、燃料電池から排出される排出水素を循環させて再度燃料電池に供給する水素循環ポンプを備えている。そして、コンプレッサと水素循環ポンプとは、空気を取り入れて空気を圧縮する第1空間と、減圧されて低温下した水素が流入する第2空間とが形成されたハウジング内に配設されている。すなわち、コンプレッサ用のモータと水素循環用のモータとからなるモータ部をハウジング内に配置し、第1空間で圧縮される高温の圧縮空気と第2空間に流入する低温の水素との間で熱交換を行って圧縮空気を冷却している。 The fuel cell system described in Patent Document 1 includes a fuel cell that generates electricity by receiving supply of compressed hydrogen stored in a fuel tank and compressed air compressed by a compressor, and circulates exhaust hydrogen discharged from the fuel cell. A hydrogen circulation pump for supplying the fuel cell again is provided. The compressor and the hydrogen circulation pump are disposed in a housing in which a first space that takes in air and compresses the air and a second space into which hydrogen that has been decompressed and lowered in temperature flows are formed. In other words, a motor unit including a compressor motor and a hydrogen circulation motor is disposed in the housing, and heat is generated between the high-temperature compressed air compressed in the first space and the low-temperature hydrogen flowing into the second space. The compressed air is cooled by replacement.
しかしながら、上記した方法では、駆動部品であるモータ部をハウジング内に配置するため、装置の構成が複雑になる。また、空気が圧縮されて高温となる第1空間と、低温の水素が供給される第2空間との間の温度差により、ハウジングを構成する材料間に熱膨張の異なる部分が発生してモータ部が誤動作を招くおそれがある。また、第1空間と第2空間に対応する部分のハウジングを別材料として、熱膨張を吸収できるように構成することも提案されているが、この場合、構成がさらに複雑となり製造コストの増大を招いてしまう。 However, in the above-described method, since the motor part which is a driving component is arranged in the housing, the configuration of the apparatus becomes complicated. In addition, the temperature difference between the first space where the air is compressed and the high temperature and the second space where the low-temperature hydrogen is supplied causes a portion having different thermal expansion between the materials constituting the housing. There is a risk that the unit may malfunction. In addition, it has been proposed to configure the housing corresponding to the first space and the second space as separate materials so that the thermal expansion can be absorbed. However, in this case, the configuration is further complicated and the manufacturing cost is increased. I will invite you.
本発明は、簡易な構成で圧縮空気を冷却して燃料電池が損傷するのを防止でき、さらに、構成部材間の熱膨張の差を原因とした誤動作を招くおそれのない燃料電池システムを提供することを目的とする。 The present invention provides a fuel cell system that can prevent the fuel cell from being damaged by cooling the compressed air with a simple configuration, and that does not cause a malfunction due to a difference in thermal expansion between the constituent members. For the purpose.
上記した目的を達成するために、本発明の燃料電池システムは、燃料電池のアノード側に水素を供給し、前記燃料電池のカソード側に圧縮空気を供給することで発電する燃料電池システムにおいて、前記アノード側の上流に設けられた前記水素の供給弁と、前記アノード側の下流に設けられた前記燃料電池のアノード側の生成水を排出する排出弁と、前記圧縮空気を供給する空気供給配管部と、前記燃料電池のアノード側の生成水を溜める水溜り部と、前記空気供給配管部の少なくとも一部と前記水溜り部との間で熱交換を行なう熱交換部とを備え、前記供給弁と前記排出弁を閉じた状態にして前記燃料電池の発電を行ない、前記燃料電池内及び前記水溜り部を減圧状態にした後、前記供給弁を開放して前記燃料電池内に前記水素を噴入して前記生成水を前記水溜り部に押し出すことを特徴としている(請求項1)。 To achieve the above object, a fuel cell system of the present invention supplies hydrogen to the anode side of the fuel cell, the fuel cell system which generates power by supplying compressed air to the cathode side of the fuel cell, wherein The hydrogen supply valve provided on the upstream side of the anode side, the discharge valve for discharging the generated water on the anode side of the fuel cell provided on the downstream side of the anode side, and the air supply piping part for supplying the compressed air When a water reservoir for storing water produced on the anode side of the fuel cell, and a heat exchanger for performing heat exchange between at least a portion the water reservoir of the air supply pipe portion, the supply valve And with the discharge valve closed, the fuel cell generates power, and after the pressure in the fuel cell and the water reservoir is reduced, the supply valve is opened and the hydrogen is injected into the fuel cell. Enter It is characterized by extruding a serial product water to the water reservoir (claim 1).
また、前記熱交換部は、前記空気供給配管部により供給される前記圧縮空気を加湿する加湿手段を含み、前記水溜り部を構成するタンクと前記加湿手段とが熱交換可能に接触して配設されていることを特徴としている(請求項2)。 Further, the prior SL heat exchange unit, the supplied by the air supply pipe portion comprises a humidifying means for humidifying the compressed air, and a tank which constitutes the water reservoir portion and the humidifying means are in contact so as to be heat-exchange It is characterized by being arranged (Claim 2).
請求項1の発明によれば、圧縮空気を燃料電池のカソード側に供給する空気供給配管部の少なくとも一部と、燃料電池のアノード側の生成水を溜める水溜り部との間で熱交換部により熱交換を行なうことで、燃料電池に供給される高温の圧縮空気の冷却を行なっている。さらに、供給弁と排出弁を閉じた状態での燃料電池の発電により、燃料電池内及び水溜り部を減圧状態にし、その後供給弁を開放することにより燃料電池内に噴入する水素が低温であるため、燃料電池内及び水溜り部が冷却されて空気供給配管部を通過する圧縮空気に対する熱交換機能がより向上する。したがって、非駆動部品間で熱交換を行なうことにより、従来の複雑な構成に比べ、非常に簡易な構成で圧縮空気を冷却して燃料電池が損傷するのを防止でき、さらに、従来のような、構成材料、構成部材間の熱膨張の差を原因とした誤動作を招くおそれのない燃料電池システムを提供することができる。 According to the first aspect of the present invention, the heat exchanging section is provided between at least a part of the air supply piping section that supplies the compressed air to the cathode side of the fuel cell and the water reservoir section that stores the generated water on the anode side of the fuel cell. By performing heat exchange, the high-temperature compressed air supplied to the fuel cell is cooled. Furthermore, the power generation of the fuel cell with the supply valve and the discharge valve closed causes the pressure in the fuel cell and the water reservoir to be reduced, and then the supply valve is opened so that the hydrogen injected into the fuel cell is at a low temperature. Therefore, the heat exchange function with respect to the compressed air passing through the air supply pipe portion after the inside of the fuel cell and the water reservoir is cooled is further improved. Therefore, by exchanging heat between the non-driven components, it is possible to prevent the fuel cell from being damaged by cooling the compressed air with a very simple configuration as compared with the conventional complicated configuration. In addition, it is possible to provide a fuel cell system that does not cause a malfunction due to a difference in thermal expansion between constituent materials and constituent members.
請求項2の発明によれば、空気供給配管部により供給される圧縮空気を加湿手段により加湿することで、圧縮空気を冷却できるとともに、当該加湿手段とタンクとが熱交換可能に接触して配設されているため、圧縮空気とタンクとの間で熱交換を行なうことができ、より効率よく簡易に圧縮空気を冷却することができる。 According to the second aspect of the present invention, the compressed air supplied from the air supply pipe section is humidified by the humidifying means, so that the compressed air can be cooled, and the humidifying means and the tank are arranged in contact with each other so as to allow heat exchange. Therefore, heat exchange can be performed between the compressed air and the tank, and the compressed air can be cooled more efficiently and easily.
つぎに、本発明をより詳細に説明するため、実施形態について、図1および図2にしたがって詳述する。 Next, in order to describe the present invention in more detail, the embodiment will be described in detail with reference to FIGS. 1 and 2.
図1は燃料電池システムのブロック図、図2は図1の燃料電池システムの生成水排出処理の説明図であり、それらの図面において、図3と同一符号は同一若しくは相当するものを示し、4は燃料タンク、5はその主止弁、6、7、8は燃料タンク4から燃料電池(FC)1に至るアノード側上流の燃料ガス供給配管部9に設けられたレギュレータ、燃料である水素の供給弁、圧力センサである。また、15は燃料電池1から常閉の排出弁16に至るアノード側下流の燃料ガス排出配管部、17は燃料ガス排出配管部15に設けられた適当な大きさの矩形箱体或いは円筒体のタンクである。そして、燃料電池1のアノード側から排出された生成水は、燃料ガス排出配管部15を介してタンク17に流入することで当該タンク17に溜まるように構成されている。また、タンク17は、適当な大きさの矩形箱体或いは円筒体であって、本発明の「水溜り部」を形成する。
FIG. 1 is a block diagram of the fuel cell system, and FIG. 2 is an explanatory diagram of the generated water discharge process of the fuel cell system of FIG. 1. In these drawings, the same reference numerals as those in FIG. Is a fuel tank, 5 is its main stop valve, 6, 7 and 8 are regulators provided in the fuel gas supply piping section 9 upstream of the anode from the fuel tank 4 to the fuel cell (FC) 1, and hydrogen as a fuel Supply valve, pressure sensor.
また、図1に示すように、コンプレッサ22により圧縮された圧縮空気を燃料電池1のカソード側に供給する空気供給配管部20と、化学反応後に残存した空気を燃料電池1から排出する空気排出配管部21とが配管されている。そして、燃料電池1から空気排出配管部21を介して排出される残存空気に含まれる水分を、水分子のみ透過可能な中空糸を介して空気供給配管部20を通過する圧縮空気に供給することで、当該圧縮空気を加湿する加湿器(本発明の「加湿手段」に相当)23が配設されている。
Also, as shown in FIG. 1, an air
上記したように、空気供給配管部20を介して燃料電池1のカソード側に供給する圧縮空気を加湿器23により加湿することで、当該圧縮空気を冷却することができる。また、加湿された圧縮空気が燃料電池1に供給されることで、燃料電池1を構成する高分子電解質膜に水分を供給して当該燃料電池1内で生じる燃料の水素と酸素との化学反応を促進することができる。
As described above, the compressed air supplied to the cathode side of the fuel cell 1 through the air
また、図1に示すように、加湿器23とタンク17とは熱交換可能に接触して配設されている。したがって、加湿器23を介して空気供給配管部20を通過する圧縮空気とタンク17との間で熱交換が行なわれ、高温の圧縮空気が冷却される。このように、加湿器23が本発明の「熱交換部」として機能するとともに、タンク17が高温の圧縮空気および加湿器23の放熱板として機能している。
Further, as shown in FIG. 1, the
なお、図1、図2においても、弁5、7、16及びレギュレータ6は白抜きが開いた状態を示し、黒塗りが閉じた状態を示す。
In FIGS. 1 and 2, the
また、この実施形態の燃料電池システムでは図3の燃料電池システムと同様に、アノード側の生成水の排出時、タンク17内に設けられた供給弁7と排出弁16とを閉じた状態にして燃料電池1の発電を行なった後、供給弁7を開放して生成水を排出する。そして、生成水の排出タイミングを燃料電池1のアノード側の濡れ状態、すなわち、燃料電池1のアノード側の生成水の滞留状態から決定し、燃料電池1のアノード側の設定した濡れ状態を検出したときに供給弁7と排出弁16を閉じた状態にして前記の燃料電池1の発電を行なっている。
Further, in the fuel cell system of this embodiment, as in the fuel cell system of FIG. 3, when the produced water on the anode side is discharged, the supply valve 7 and the
つぎに、図1の燃料電池システムの生成水排出処理を、図2を参照して説明する。 Next, the generated water discharge process of the fuel cell system of FIG. 1 will be described with reference to FIG.
まず、図2の工程S1は通常の発電状態を示し、この通常の発電状態においては、供給弁7は開かれ、燃料タンク4に貯蔵された燃料の高圧の水素ガスは、レギュレータ6により減圧調整され、その後、供給弁7、圧力センサ8を介して燃料電池1のアノード側に供給される。 First, step S1 of FIG. 2 shows a normal power generation state. In this normal power generation state, the supply valve 7 is opened, and the high-pressure hydrogen gas stored in the fuel tank 4 is decompressed by the regulator 6. Thereafter, the fuel is supplied to the anode side of the fuel cell 1 through the supply valve 7 and the pressure sensor 8.
また、コンプレッサ22で圧縮され、加湿器23により加湿されるとともに冷却された圧縮空気が空気供給配管部20により燃料電池1のカソード側に供給される。また、燃料電池1内における化学反応後、水分を含んだ残存空気が空気排出配管部21介して排出される。なお、上記したように、この残存空気に含まれる水分を利用して加湿器23は空気供給配管部20を通過して燃料電池1のカソード側に供給される圧縮空気を加湿する。
Further, compressed air compressed by the
そして、発電に伴って生じた生成水が燃料電池1のアノード側に滞留し、アノード側の濡れ状態が進行して発電能力が次第に低下していく。なお、図2の燃料電池1、タンク17等の斜線部分が模式的に示した生成水である。
Then, the generated water that accompanies the power generation stays on the anode side of the fuel cell 1, the wet state on the anode side progresses, and the power generation capacity gradually decreases. The hatched portions of the fuel cell 1, the
そこで、燃料電池1のアノード側の濡れ状態を、燃料電池1の電流の積算値、電圧、或いは発電時間等の状態値から推定或いは検出し、前記状態値が実験等で設定された所定値に達して生成水の排出が必要なタイミングになると、図2の工程S2に移行し、供給弁7を閉止し、供給弁7及び排出弁16が閉じた状態で燃料電池1の発電を継続する。
Therefore, the wet state on the anode side of the fuel cell 1 is estimated or detected from a state value such as an integrated value, voltage, or power generation time of the current of the fuel cell 1, and the state value is set to a predetermined value set by an experiment or the like. When it reaches the timing at which the generated water needs to be discharged, the process proceeds to step S2 in FIG. 2, the supply valve 7 is closed, and the power generation of the fuel cell 1 is continued with the supply valve 7 and the
このとき、燃料電池1は燃料である水素ガスの供給を止めた状態で発電し、この発電によってガスが消費されて、燃料電池1内及び該燃料電池1に連通したタンク(水溜り部)17が減圧状態になる。 At this time, the fuel cell 1 generates power in a state where supply of hydrogen gas as fuel is stopped, and gas is consumed by this power generation, and a tank (water reservoir) 17 communicated with the fuel cell 1 and the fuel cell 1. Is in a reduced pressure state.
そして、燃料電池1内が所定圧力に低下するか、燃料電池1の減圧開始からの電流量(積算値)が設定値に達するかすると、図2の工程S3に移行して供給弁7を開き、減圧状態の燃料電池1内に水素ガスを噴入し、燃料電池1から燃料ガス排出配管部15を介してタンク17に至る水素ガス流により燃料電池1のアノード側の生成水をタンク17に押し出して電池外部に確実に排出する。
Then, when the inside of the fuel cell 1 falls to a predetermined pressure or the current amount (integrated value) from the start of depressurization of the fuel cell 1 reaches a set value, the process proceeds to step S3 in FIG. Hydrogen gas is injected into the fuel cell 1 in a decompressed state, and the generated water on the anode side of the fuel cell 1 is fed into the
このとき、タンク17の生成水が燃料電池1に逆流しないようにするため、この実施形態においては、燃料電池1とタンク17との燃料ガス排出配管部15をタンク17の上部に接続し、排出弁16をタンク17の下部に設けて、生成水をタンク17に落とし込んで貯留する。なお、タンク7の燃料電池1側の燃料ガス排出配管部15との接続位置と排出弁16の配設位置とに段差を設ける代わりに、例えば、燃料電池1とタンク17との間の燃料ガス排出配管部15に逆止弁を設けるようにしてもよい。
At this time, in order to prevent the generated water in the
また、燃料電池1のアノード側に滞留した生成水を確実に排出するため、タンク17を燃料電池1のアノード側の空間容積以上の大きさにして前記アノード側全体の燃料等を全てタンク17に導入するように減圧すればよく、この減圧の調整は燃料電池1の発電電力を調整して制御することができる。なお、圧力変化ΔPと発電電流iとは、R、T、Vを気体乗数、温度、容積として、ΔP=(R・T/V)×((i/96485)×(セル数/2))の関係がある。
Further, in order to surely discharge the generated water staying on the anode side of the fuel cell 1, the
なお、減圧状態の燃料電池1内に水素ガスを噴入し、燃料電池1から燃料ガス排出配管部15を介してタンク17に至る水素ガス流により燃料電池1のアノード側の生成水をタンク17に押し出す際に、噴入された低温の水素の一部がタンク17に流入する。したがって、タンク17が流入した低温の水素によって冷却されるため、空気供給配管部20を通過する高温の圧縮空気および加湿器23に対する、タンク17の放熱板としての機能が向上し、より効率よく圧縮空気および加湿器23が冷却される。
In addition, hydrogen gas is injected into the fuel cell 1 in a decompressed state, and the generated water on the anode side of the fuel cell 1 is supplied to the
そして、一定量の生成水がタンク17に溜まるまでは、工程S3から工程S1に戻って通常の発電を行ない、生成水の排出が必要になると工程S2、S3に移行し、上記の処理をくり返す。
Then, until a certain amount of generated water is accumulated in the
さらに、タンク17に一定量の生成水が溜まると、図2の工程S3からS4に移行し、排出弁16を開けタンク17の貯留水を排出し、この排水の終了後、排出弁16を閉止して工程S1に戻る。なお、排出弁16は供給弁7等と同様の電磁弁或いはフロート式の弁等で形成される。
Further, when a certain amount of generated water accumulates in the
以上のように、この実施形態の燃料電池システムの場合、高温の圧縮空気を燃料電池1のカソード側に供給する空気供給配管部20の少なくとも一部と、燃料電池1のアノード側の生成水を溜めるタンク17との間で加湿器23を介して熱交換を行なうことで、燃料電池1に供給される圧縮空気の冷却を行なっている。したがって、非駆動部品間で熱交換を行なうことにより、従来の複雑な構成に比べ、非常に簡易な構成で圧縮空気を冷却して燃料電池が損傷するのを防止でき、さらに、従来のような、構成材料、構成部材間の熱膨張の差を原因とした誤動作を招くおそれがない。
As described above, in the fuel cell system of this embodiment, at least a part of the air
また、空気供給配管部20により供給される圧縮空気を加湿器23により加湿することで、圧縮空気を冷却できるとともに、当該加湿器23とタンク17とが熱交換可能に接触して配設されているため、圧縮空気とタンク17との間で加湿手段23を介して熱交換を行なうことができ、より効率よく簡易に圧縮空気を冷却することができる。なお、図1に示すように、矩形状のタンク17に同様の形状の加湿器23を載置することで、タンク17と加湿器23との間の接触面積が大きくなり、タンク17による加湿器23および圧縮空気の放熱効果が向上する。
Further, the compressed air supplied from the air
また、図2に示すように、生成水の排出工程で、燃料タンク4から燃料電池1に供給された低温の水素がタンク17に流入するので、タンク17が流入した水素により冷却されて、タンク17の放熱板としての機能がより向上し、加湿器23および圧縮空気がより効率よく冷却される。
In addition, as shown in FIG. 2, in the process of discharging generated water, low temperature hydrogen supplied from the fuel tank 4 to the fuel cell 1 flows into the
また、従来の圧縮空気を冷却する技術に比べ、非常に簡易かつ簡素な構成で圧縮空気を冷却できるため、燃料電池システムを小型化でき、特に、軽自動車など、燃料電池システムの配置スペースに制限のある小型な機器に採用することができる。 In addition, compared with conventional technology for cooling compressed air, the compressed air can be cooled with a very simple and simple configuration, so the fuel cell system can be downsized, and in particular, it is limited to the space where the fuel cell system is placed, such as a light vehicle. It can be used for small equipment with
なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能であり、例えば、タンク17を空気供給配管部20に接触して配設したり、空気供給配管部20をタンク17を貫通するように配設することで、加湿器23を介さずに圧縮空気を冷却することができる。
The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the gist of the present invention. The compressed air can be cooled without going through the
また、燃料の水素は、改質器によりメタノールや天然ガスから水素を生成して燃料電池1に供給するように構成してもよい。また、燃料電池1のセル数等はどのようであってもよい。 Further, the hydrogen of the fuel may be configured such that hydrogen is generated from methanol or natural gas by a reformer and supplied to the fuel cell 1. Further, the number of cells of the fuel cell 1 may be whatever.
また、本発明の燃料電池システムは、例えば1kw〜10kwの家庭用電気製品の電源およびその非常用電源、あるいは車両用バッテリーとして利用することができる。なお、本発明の燃料電池システムを車両用バッテリーとして用いる場合、車両を構成する中空のサイドメンバの内部空間を本発明の「水溜り部」として利用することで、燃料電池システムを車両にコンパクトに搭載することが可能となる。 Further, the fuel cell system of the present invention can be used as a power source for household electrical products of 1 kw to 10 kw and an emergency power source thereof, or a vehicle battery, for example. When the fuel cell system of the present invention is used as a vehicle battery, the fuel cell system can be made compact in the vehicle by utilizing the internal space of the hollow side member constituting the vehicle as the “water reservoir” of the present invention. It can be installed.
1 燃料電池
9 燃料ガス供給配管部
16 排出弁
17 タンク(水溜り部)
20 空気供給配管部
23 加湿器(加湿手段、熱交換部)
DESCRIPTION OF SYMBOLS 1 Fuel cell 9 Fuel gas
20 Air
Claims (2)
前記アノード側の上流に設けられた前記水素の供給弁と、
前記アノード側の下流に設けられた前記燃料電池のアノード側の生成水を排出する排出弁と、
前記圧縮空気を供給する空気供給配管部と、
前記燃料電池のアノード側の生成水を溜める水溜り部と、
前記空気供給配管部の少なくとも一部と前記水溜り部との間で熱交換を行なう熱交換部と
を備え、
前記供給弁と前記排出弁を閉じた状態にして前記燃料電池の発電を行ない、前記燃料電池内及び前記水溜り部を減圧状態にした後、前記供給弁を開放して前記燃料電池内に前記水素を噴入して前記生成水を前記水溜り部に押し出すことを特徴とする燃料電池システム。 In the fuel cell system for generating power by supplying hydrogen to the anode side of the fuel cell and supplying compressed air to the cathode side of the fuel cell,
The hydrogen supply valve provided upstream of the anode side;
A discharge valve for discharging generated water on the anode side of the fuel cell provided downstream of the anode side;
An air supply pipe for supplying the compressed air;
A water reservoir for storing generated water on the anode side of the fuel cell;
A heat exchanging part that exchanges heat between at least a part of the air supply pipe part and the water reservoir ,
After the supply valve and the discharge valve are closed, the fuel cell generates power, and after reducing the pressure in the fuel cell and the water reservoir, the supply valve is opened and the fuel cell is placed in the fuel cell. A fuel cell system, wherein hydrogen is injected to push out the generated water into the water reservoir .
前記水溜り部を構成するタンクと前記加湿手段とが熱交換可能に接触して配設されていることを特徴とする請求項1に記載の燃料電池システム。 The heat exchange part includes a humidifying means for humidifying the compressed air supplied by the air supply pipe part,
2. The fuel cell system according to claim 1, wherein a tank constituting the water reservoir and the humidifying means are arranged in contact with each other so as to be able to exchange heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006334500A JP5153129B2 (en) | 2006-12-12 | 2006-12-12 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006334500A JP5153129B2 (en) | 2006-12-12 | 2006-12-12 | Fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008147076A JP2008147076A (en) | 2008-06-26 |
JP5153129B2 true JP5153129B2 (en) | 2013-02-27 |
Family
ID=39606999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006334500A Expired - Fee Related JP5153129B2 (en) | 2006-12-12 | 2006-12-12 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5153129B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101838510B1 (en) | 2016-03-11 | 2018-03-14 | 현대자동차주식회사 | Evaporative cooling type fuel cell system and stack colling control method for the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1186888A (en) * | 1997-09-10 | 1999-03-30 | Toshiba Corp | Fused carbonate fuel cell power generation plant |
JP2003178790A (en) * | 2001-12-11 | 2003-06-27 | Sanyo Electric Co Ltd | Fuel cell power generation system |
JP4222116B2 (en) * | 2003-06-16 | 2009-02-12 | トヨタ自動車株式会社 | Fuel cell system |
JP4789402B2 (en) * | 2003-06-26 | 2011-10-12 | 本田技研工業株式会社 | Fuel cell system |
JP2006269155A (en) * | 2005-03-23 | 2006-10-05 | Toyota Motor Corp | Fuel cell system |
JP2008041388A (en) * | 2006-08-04 | 2008-02-21 | Matsushita Electric Ind Co Ltd | Fuel cell system |
-
2006
- 2006-12-12 JP JP2006334500A patent/JP5153129B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008147076A (en) | 2008-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7799475B2 (en) | Method of using H2 purge for stack startup/shutdown to improve stack durability | |
US8034500B2 (en) | Systems and methods for starting and operating fuel cell systems in subfreezing temperatures | |
CN100379065C (en) | Fuel-cell generating system capable of starting and operating in low-temperature environment | |
CN112635793B (en) | Double-stack double-circulation fuel cell system | |
EP2226880A1 (en) | A method for shutting down a back-up fuel cell electric generator comprising a compact manifold body | |
US20040191585A1 (en) | Fuel cell system | |
US7678477B2 (en) | Method of operating a fuel cell stack | |
US9543610B2 (en) | Fuel cell vehicle | |
US20140038073A1 (en) | Shutdown strategy to avoid carbon corrosion due to slow hydrogen/air intrusion rates | |
US8905726B2 (en) | Fixation structure for compressor | |
US8765318B2 (en) | System and method for electrochemical cell system and leak detection and indication | |
US20150280258A1 (en) | Cathode gas recirculation method and system for fuel cells | |
JP5153129B2 (en) | Fuel cell system | |
JP5508915B2 (en) | Fuel cell system | |
JP2008181768A (en) | Fuel cell system | |
JP2014063664A (en) | Method of starting fuel cell system | |
US20100304239A1 (en) | Rapid start-up and operating system for a fuel cell power plant utilizing a reformate | |
JP2009181700A (en) | Fuel battery device | |
JP2006523373A (en) | Mobile fuel cell generator | |
JP4939053B2 (en) | Fuel cell system | |
KR101601377B1 (en) | A heat exchange unit of suppling air to fuel cell cathod and a heat exchange method thereof | |
CN114639852B (en) | Electrochemical hydrogen boosting system | |
JP6979635B1 (en) | Hydrogen system | |
JP2007087739A (en) | Fuel cell system | |
JP5320695B2 (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090610 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |