JP5149874B2 - Thermophysical property analysis apparatus and thermophysical property analysis method - Google Patents

Thermophysical property analysis apparatus and thermophysical property analysis method Download PDF

Info

Publication number
JP5149874B2
JP5149874B2 JP2009155124A JP2009155124A JP5149874B2 JP 5149874 B2 JP5149874 B2 JP 5149874B2 JP 2009155124 A JP2009155124 A JP 2009155124A JP 2009155124 A JP2009155124 A JP 2009155124A JP 5149874 B2 JP5149874 B2 JP 5149874B2
Authority
JP
Japan
Prior art keywords
light
heating
reflected
detection
measurement site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009155124A
Other languages
Japanese (ja)
Other versions
JP2011012991A (en
Inventor
弘行 高松
昌広 乾
修吾 三宅
綾 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP2009155124A priority Critical patent/JP5149874B2/en
Publication of JP2011012991A publication Critical patent/JP2011012991A/en
Application granted granted Critical
Publication of JP5149874B2 publication Critical patent/JP5149874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、被測定物表面の測定部位に加熱光を照射して加熱し、この測定部位に検出光を反射させてこの反射光を受光し、その受光強度の変化から前記測定部位の温度変化を検出して熱物性についての解析を行う熱物性解析装置及び熱物性解析方法に関する。   The present invention irradiates and heats the measurement site on the surface of the object to be measured, reflects the detection light to the measurement site, receives the reflected light, and changes the temperature of the measurement site from the change in the received light intensity. The present invention relates to a thermophysical analysis apparatus and a thermophysical analysis method for detecting thermophysical properties and analyzing thermophysical properties.

従来から、被測定物、例えば薄膜試料の熱物性についての解析評価のための測定方法として、特許文献1に記載された方法が知られている。この方法は、共通の短パルスレーザを薄膜試料の測定部位を加熱するための加熱光(加熱用パルス光)と前記測定部位の温度変化を検出するための検出光(検出用パルス光)とに分岐し、これら加熱光と検出光とを透明基板上に形成された薄膜試料における測定部位の表裏各面に照射することにより熱拡散測定を行ういわゆるサーモリフレクタンス法である。この測定方法において加熱光と検出光とを薄膜試料に照射するときには、高精度に温度変化を検出するために測定部位での光の強度を確保すべく当該測定部位で焦点を結ぶように検出光が照射されると共に、加熱を効率よく行うために測定部位での光の強度を確保すべく当該測定部位で焦点を結ぶように加熱光が照射される。   2. Description of the Related Art Conventionally, a method described in Patent Document 1 is known as a measurement method for analyzing and evaluating the thermal properties of an object to be measured, for example, a thin film sample. This method uses a common short pulse laser as heating light (heating pulse light) for heating a measurement site of a thin film sample and detection light (detection pulse light) for detecting a temperature change of the measurement site. This is a so-called thermoreflectance method that performs thermal diffusion measurement by irradiating the front and back surfaces of the measurement site in a thin film sample formed on a transparent substrate by branching and irradiating these heating light and detection light. When a thin film sample is irradiated with heating light and detection light in this measurement method, the detection light is focused so as to focus on the measurement site in order to ensure the intensity of light at the measurement site in order to detect temperature changes with high accuracy. In order to efficiently perform heating, the heating light is irradiated so as to focus on the measurement site in order to ensure the intensity of light at the measurement site.

このサーモリフレクタンス法では、前記薄膜試料の裏面側(検出光が照射される面の反対側)に配置された基板が加熱光を透過する素材でなければ、前記加熱光が前記薄膜試料の裏面に到達することができず、当該薄膜試料を加熱することができない。即ち、前記のサーモリフレクタンス法では、不透明な基板の表面に形成された前記薄膜試料の熱物性についての解析に必要な測定ができないという問題が生じていた。   In this thermoreflectance method, if the substrate disposed on the back side of the thin film sample (opposite to the surface irradiated with detection light) is not a material that transmits the heating light, the heating light is the back side of the thin film sample. The thin film sample cannot be heated. That is, the thermoreflectance method has a problem that the measurement necessary for the analysis of the thermal properties of the thin film sample formed on the surface of the opaque substrate cannot be performed.

そこで、前記加熱光と前記検出光とを前記薄膜試料の表面、即ち、同一面に照射し、その検出光の反射光から前記測定部位の温度変化を検出する方法が考えられた。このように加熱光と検出光とが共に薄膜試料の表面に照射されることで、薄膜試料の裏面側に配置された基板が不透明な素材で構成されていても当該薄膜試料を前記加熱光によって加熱することができる。   Therefore, a method has been considered in which the surface of the thin film sample, that is, the same surface is irradiated with the heating light and the detection light, and the temperature change of the measurement site is detected from the reflected light of the detection light. In this way, both the heating light and the detection light are irradiated on the surface of the thin film sample, so that even if the substrate disposed on the back side of the thin film sample is made of an opaque material, the thin film sample is irradiated with the heating light. Can be heated.

特開2001−83113号公報JP 2001-83113 A

しかし、この方法では、加熱光も検出光も薄膜試料の同一面(表面)で反射されるため、前記加熱光の反射光が前記検出光の反射光強度を測定する測定系に入射する場合がある。しかも加熱光が測定部位で焦点を結ぶように照射されるため、この焦点位置で反射された加熱光の反射光の強度は大きい。前記測定系に向かう加熱光の反射光は、そのままの強度で測定系によって測定されるため当該測定系で測定される検出光の反射光強度の測定結果にノイズとして入り込み易かった。このように検出光の反射光強度の測定結果にノイズが混入すると、被測定物の熱物性の解析評価を精度よく行うことができない。   However, in this method, since the heating light and the detection light are reflected on the same surface (surface) of the thin film sample, the reflected light of the heating light may enter the measurement system that measures the reflected light intensity of the detection light. is there. Moreover, since the heating light is irradiated so as to focus on the measurement site, the intensity of the reflected light of the heating light reflected at this focal position is high. Since the reflected light of the heating light directed to the measurement system is measured by the measurement system with the same intensity, it is easy to enter the measurement result of the reflected light intensity of the detection light measured by the measurement system as noise. Thus, if noise is mixed in the measurement result of the reflected light intensity of the detection light, the analysis and evaluation of the thermal properties of the object to be measured cannot be performed with high accuracy.

そこで、本発明は、上記問題点に鑑み、被測定物の同一面に加熱光及び検出光を照射して当該試料の熱物性を解析しても、検出光の反射光強度の測定において加熱光の反射光の影響を受け難い熱物性解析装置及び熱物性解析方法を提供することを課題とする。   Therefore, in view of the above problems, the present invention is not limited to the heating light in the measurement of the reflected light intensity of the detection light, even if the thermal property of the sample is analyzed by irradiating the same surface of the measurement object with the heating light and the detection light. It is an object of the present invention to provide a thermophysical property analysis apparatus and a thermophysical property analysis method that are not easily affected by reflected light.

そこで、上記課題を解消すべく、本発明は、被測定物表面の測定部位に光を照射し、その反射光に基づいて前記被測定物の熱物性についての解析を行う熱物性解析装置であって、前記測定部位を加熱するための加熱光を放射する加熱光放射手段と、前記加熱光を前記測定部位まで導光する第1の光学系と、前記測定部位の温度変化を検出するための検出光を放射する検出光放射手段と、前記検出光を前記測定部位まで導光する第2の光学系と、前記測定部位からの前記検出光の反射光を受光する受光部を有し、この受光部に入射した前記検出光の反射光の強度を測定する検出光測定手段と、前記測定部位からの前記検出光の反射光を前記検出光測定手段の受光部まで導光する第3の光学系とを備え、前記第2の光学系が、前記測定部位で焦点を結ぶように前記検出光を集光する検出光用集光部材を有し、前記第1の光学系、前記測定部位において前記加熱光が焦点を結ぶように集光する場合に比べ前記第3の光学系に導光されて前記受光部に到達する加熱光の反射光の強度が小さくなるように前記測定部位において焦点をぼかし且つその照射範囲に前記検出光の照射範囲が含まれるように加熱光を集光する加熱用集光部材を有すると共に、前記加熱用集光部材により集光された加熱光を前記測定部位に照射し、前記加熱用集光部材は、前記測定部位からの前記加熱光の反射光が前記第3の光学系において前記受光部よりも上流側で焦点を結ぶように構成される、又は前記測定部位からの前記加熱光の反射光が前記第3の光学系の上流側で焦点を結ぶと共に前記第3の光学系において前記受光部に向かって発散するように構成されることを特徴とする。尚、本発明において、集光とは、光を一点(焦点)に集束させる場合だけでなく、光が進むに従ってその照射範囲が広がるような光線を照射範囲が一定となるようにして光線が発散しないようにする場合も含む。 Accordingly, in order to solve the above problems, the present invention is a thermophysical property analyzer that irradiates a measurement site on the surface of an object to be measured and analyzes the thermophysical properties of the object to be measured based on the reflected light. A heating light emitting means for emitting heating light for heating the measurement site, a first optical system for guiding the heating light to the measurement site, and a temperature change for detecting the temperature of the measurement site A detection light emitting means for emitting detection light; a second optical system for guiding the detection light to the measurement site; and a light receiving unit for receiving reflected light of the detection light from the measurement site. Detection light measuring means for measuring the intensity of reflected light of the detection light incident on the light receiving section, and third optical for guiding reflected light of the detection light from the measurement site to the light receiving section of the detection light measuring means And the second optical system is focused on the measurement site The detection light have a detection light for condensing member for condensing so as to connect the first optical system, the third compared with the case where the heating light at the measurement site is condensed to focus The measurement part is defocused and heated so that the irradiation range of the detection light is included in the measurement region so that the intensity of the reflected light of the heating light that is guided to the optical system and reaches the light receiving unit is reduced. light while have a heating condensing member for condensing the heating for condensing heating light condensed by the member irradiating the measurement site, the heating condensing member, said from the measurement site The reflected light of the heating light is configured to focus on the upstream side of the light receiving unit in the third optical system, or the reflected light of the heating light from the measurement site is reflected by the third optical system. Focusing on the upstream side and in the third optical system Characterized in that configured to diverge toward the light receiving portion. In the present invention, focusing means not only the case where light is focused at a single point (focal point), but also a light beam that spreads as the light travels so that the light beam diverges so that the light irradiation range becomes constant. This includes the case where it is not to be performed.

被測定物表面の測定部位において検出光が焦点を結ぶように照射されると共に、加熱光が測定部位において焦点を結ぶように集光する場合に比べ第3の光学系に導光されて受光部に到達する加熱光の反射光(反射加熱光)の強度が小さくなるように前記測定部位において焦点をぼかし且つその照射範囲に前記検出光の照射範囲を含むよう照射されるように、異なる集光部材によって検出光と加熱光とが前記測定部位にそれぞれ集光されることにより、第3の光学系に導光される検出光の反射光(反射検出光)に混入した反射加熱光がその一部しか検出光測定手段の受光部に入射できず、これにより検出光測定手段における反射検出光の強度を測定した結果に反射加熱光の影響(ノイズ)が入り難くなる。   Compared with the case where the detection light is irradiated so as to focus on the measurement site on the surface of the object to be measured and the heating light is focused so as to focus on the measurement site, the light receiving unit is guided to the third optical system. The focused light is blurred so that the intensity of the reflected light (reflected heating light) of the heating light that reaches the light beam is reduced and the measurement site is focused so that the irradiation range includes the detection light irradiation range. When the detection light and the heating light are respectively collected on the measurement site by the member, the reflected heating light mixed in the reflected light (reflected detection light) of the detection light guided to the third optical system is one of them. Only the portion can enter the light receiving portion of the detection light measuring means, and thereby the influence (noise) of the reflected heating light hardly enters the result of measuring the intensity of the reflected detection light in the detection light measuring means.

具体的に、検出用集光部材により検出光が被測定物表面(測定部位)で焦点を結ぶように集光されると共に、加熱用集光部材により加熱光が被測定物表面で焦点をぼかすように集光されることで、検出光と加熱光との測定部位における各反射光はそれぞれ異なるビーム広がり角を有することとなる。第3の光学系では、このビーム広がり角の違いに起因して反射加熱光が受光部の位置において発散状態(受光部の上流側で一旦集束したあと発散した状態も含む。)となるため、その一部しか受光部に入射することができない。その結果、受光部に入射する反射加熱光の強度が小さくなり、この反射加熱光が測定結果にノイズとして入り難くなる。   Specifically, the detection light is condensed so that the detection light is focused on the surface of the object to be measured (measurement site), and the heating light is defocused on the surface of the object to be measured by the heating light condensing member. By condensing in this way, each reflected light at the measurement site of the detection light and the heating light has a different beam divergence angle. In the third optical system, the reflected heating light is diverged at the position of the light receiving part (including a state where it is once converged on the upstream side of the light receiving part and then diverged) due to the difference in the beam divergence angle. Only a part of the light can enter the light receiving portion. As a result, the intensity of the reflected heating light incident on the light receiving portion is reduced, and this reflected heating light is less likely to enter the measurement result as noise.

しかも、検出光が測定部位において焦点を結ぶように照射されるため、測定部位での検出光の強度が確保され、これにより当該部位の温度変化の測定精度が確保される。   In addition, since the detection light is irradiated so as to focus on the measurement site, the intensity of the detection light at the measurement site is ensured, thereby ensuring the measurement accuracy of the temperature change at the site.

本発明に係る熱物性解析装置において、前記第1の光学系は、前記加熱用集光部材により集光された加熱光を前記検出用集光部材により集光された検出光に同軸又は略同軸となるように合流させて前記測定部位に照射するのが好ましい。   In the thermophysical property analyzing apparatus according to the present invention, the first optical system is configured such that the heating light condensed by the heating condensing member is coaxial or substantially coaxial with the detection light condensed by the detecting condensing member. It is preferable to irradiate the measurement site by joining together.

このように測定部位に照射される加熱光及び検出光を同軸又は略同軸とすることにより、反射検出光と同じ光路を反射加熱光が通るため第3の光学系に入射する反射加熱光の強度が大きくなるが、当該装置のように測定部位に照射する加熱光の焦点をぼかすことで、反射検出光の測定結果に反射加熱光の影響が入るのを抑制することができる。   The intensity of the reflected heating light incident on the third optical system since the reflected heating light passes through the same optical path as the reflected detection light by making the heating light and the detection light irradiated on the measurement site coaxial or substantially coaxial in this way. However, it is possible to suppress the influence of the reflected heating light on the measurement result of the reflected detection light by blurring the focus of the heating light applied to the measurement site as in the apparatus.

しかも、加熱光と検出光とを同軸又は略同軸にして測定部位に照射することで、被測定物の厚さが変わったとき、即ち、被測定物表面と各集光部材との間隔が変わったときに、異なる集光部材によって加熱光と検出光とがそれぞれ測定部位に向けて集光されているにも関わらず各照射位置の調整が不要になる。   In addition, when the thickness of the object to be measured is changed by irradiating the measurement site with the heating light and the detection light coaxially or substantially coaxially, that is, the distance between the surface of the object to be measured and each condensing member changes. In this case, although the heating light and the detection light are condensed toward the measurement site by different condensing members, adjustment of each irradiation position becomes unnecessary.

記第3の光学系は、前記加熱光の反射光の焦点位置に集光された前記加熱光の反射光の進行を遮る遮光部と、この遮光部を支持しその周囲を光が通過可能な光通過部とを有する遮光部材を備えるのが好ましい。 Before Symbol third optical system includes a light shielding portion for shielding the progress of the reflected light focused on the focal position of the reflected light of the heating light the heating light, the periphery thereof to support the light shielding part of light can pass It is preferable to provide a light-shielding member having a proper light passing portion.

かかる構成によれば、第3の光学系において、受光部へ向けて導光される反射加熱光が遮光部材の遮光部によってその進行を遮られる一方、受光部へ向けて導光される反射検出光は、遮光部材よりも下流側の受光部で集光するため遮光部の周囲(即ち、光通過部)を通ってその下流側の受光部まで到達できる。その結果、受光部に反射加熱光がより入射し難くなり、これにより検出光測定手段における反射検出光の強度を測定した結果に反射加熱光の影響がより入り難くなる。   According to such a configuration, in the third optical system, the reflection heating light guided toward the light receiving unit is blocked by the light blocking unit of the light blocking member from traveling while the reflection detection is guided toward the light receiving unit. Since the light is collected by the light receiving portion on the downstream side of the light shielding member, the light can reach the light receiving portion on the downstream side through the periphery of the light shielding portion (that is, the light passage portion). As a result, the reflected heating light is less likely to enter the light receiving portion, and thereby the influence of the reflected heating light is less likely to enter the result of measuring the intensity of the reflected detection light in the detection light measuring unit.

前記第1の光学系は、前記加熱光を第1の偏光方向に偏光する第1の偏光手段を有し、前記第2の光学系は、前記検出光を前記第1の偏光方向と異なる第2の偏光方向に偏光する第2の偏光手段を有し、前記第3の光学系は、当該第3の光学系において前記第2の偏光方向に偏光された光の下流側への進行を許容すると共に前記第1の偏光方向に偏光された光の下流側への進行を阻止する選択手段を有するのが好ましい。   The first optical system has a first polarization unit that polarizes the heating light in a first polarization direction, and the second optical system has a first light direction different from the first polarization direction. A second polarization unit that polarizes in the second polarization direction, and the third optical system allows the light polarized in the second polarization direction to travel downstream in the third optical system. In addition, it is preferable to have selection means for preventing the light polarized in the first polarization direction from proceeding downstream.

かかる構成によれば、選択手段が、第3の光学系に入射して受光部へ向かう反射加熱光の進行を阻止すると共に反射検出光の進行を許容するため、反射加熱光が受光部へより到達し難くなり、その結果、検出光測定手段における反射検出光の強度の測定結果に反射加熱光の影響がより入り難くなる。即ち、第3の光学系では、反射加熱光が第1の偏光手段により第1の偏光方向に偏光された加熱光の反射光であるため受光部へ導光される途中で選択手段により受光部への進行を阻止される一方、反射検出光が第2の偏光手段により第2の偏光方向に偏光された検出光の反射光であるため選択手段により受光部への進行を許容され当該受光部へ到達できる。   According to such a configuration, the selection unit prevents the reflected heating light from entering the third optical system and traveling toward the light receiving unit and allows the reflected detection light to travel. As a result, the influence of the reflected heating light is less likely to enter the measurement result of the intensity of the reflected detection light in the detection light measuring means. That is, in the third optical system, since the reflected heating light is reflected light of the heating light polarized in the first polarization direction by the first polarizing means, the light receiving section is selected by the selecting means while being guided to the light receiving section. While the reflected detection light is the reflected light of the detection light polarized in the second polarization direction by the second polarizing means, the selection means allows the light to travel to the light receiving section, and the light receiving section Can be reached.

また、前記加熱光放射手段と前記検出光放射手段とが前記加熱光及び前記検出光の双方を放射する共通の光放射手段によって構成され、この光放射手段は、所定周期のパルス光を放射するパルス光放射部と、この放射部から放射された前記パルス光を前記加熱光と前記検出光とに分岐し、この分岐した加熱光を前記第1の光学系に入射させると共に前記分岐した検出光を前記第2の光学系に入射させる分岐手段とを有するのが好ましい。   Further, the heating light emitting means and the detection light emitting means are constituted by a common light emitting means for emitting both the heating light and the detection light, and the light emitting means emits pulsed light having a predetermined cycle. A pulsed light radiating part, and the pulsed light emitted from the radiating part is branched into the heating light and the detection light, and the branched heating light is incident on the first optical system and the branched detection light. It is preferable to have branching means for making the light incident on the second optical system.

かかる構成によれば、加熱光と検出光とを放射するためにパルス光放射手段を個別に配置する必要がなくなることで省コスト化及び装置の小型化が図られ、しかも異なるパルス光放射手段から放射されたパルス光の同期を図るといった困難な調整作業や複雑な調整回路等が不要となる。   According to such a configuration, it is not necessary to separately arrange the pulse light emitting means for emitting the heating light and the detection light, thereby reducing the cost and the size of the apparatus, and further, from different pulse light emitting means. Difficult adjustment work such as synchronization of emitted pulsed light, complicated adjustment circuit, and the like are not required.

また、上記課題を解消すべく、本発明は、被測定物の測定部位に光を照射し、その反射光に基づいて前記被測定物の熱物性についての解析を行う熱物性解析方法であって、前記測定部位の温度変化を測定するための検出光を当該測定部位で焦点を結ぶように集光させて照射すると共に、前記測定部位を加熱するための加熱光を当該測定部位に照射する照射工程と、前記測定部位からの前記検出光の反射光を前記測定部位とは異なる測定位置まで導光する導光工程と、この導光工程で前記測定位置に導光された前記検出光の反射光の強度を測定する測定工程とを備える。そして、前記照射工程では、前記測定部位において前記加熱光が焦点を結ぶように集光する場合に比べ前記導光工程において導光され前記測定位置に到達する加熱光の反射光の強度が小さくなるように前記測定部位において焦点をぼかし且つその照射範囲に前記検出光の照射範囲が含まれ、並びに、前記測定部で反射した前記加熱光が前記導光工程において前記検出光の反射光と共に前記測定位置に向けて導光されたときに当該測定位置よりも上流側で焦点を結ぶように加熱光を集光し、この集光された加熱光を前記測定部位に照射することを特徴とする。 Further, in order to solve the above problems, the present invention is a thermophysical property analysis method for irradiating light to a measurement site of a measurement object and analyzing the thermal property of the measurement object based on the reflected light. Irradiating the measurement region with detection light for measuring the temperature change of the measurement region, condensing and irradiating the measurement region with the detection light, and heating the measurement region with heating light. A light guide step of guiding reflected light of the detection light from the measurement site to a measurement position different from the measurement site, and reflection of the detection light guided to the measurement position in the light guide step Ru and a measurement step of measuring the intensity of light. In the irradiation step, the intensity of the reflected light of the heating light that is guided in the light guiding step and reaches the measurement position is smaller than that in the case where the heating light is focused so as to be focused at the measurement site. The measurement region is defocused so that the irradiation range includes the detection light irradiation range , and the heating light reflected by the measurement unit is reflected together with the detection light reflection light in the light guiding step. When the light is guided toward the measurement position , the heating light is condensed so as to focus on the upstream side from the measurement position , and the condensed heating light is irradiated to the measurement site. To do.

このように被測定物表面の測定部位において焦点を結ぶように検出光を照射すると共に、測定部位において焦点を結ぶように集光する場合に比べ、導光工程において導光され測定位置に到達する加熱光の反射光の強度が小さくなるように前記測定部位において焦点をぼかし且つその照射範囲に検出光の照射範囲が含まれるように加熱光を集光することにより、導光工程において反射検出光と共に導光される反射加熱光のうちの一部しか測定位置において測定されず、これにより測定位置での反射検出光の強度を測定した結果に反射加熱光の影響が入り難くなる。   In this way, the detection light is irradiated so as to be focused on the measurement site on the surface of the object to be measured, and is guided in the light guide process to reach the measurement position as compared with the case where the light is focused so as to focus on the measurement site. The reflected detection light is reflected in the light guide step by focusing the heating light so that the focus of the measurement site is defocused so that the intensity of the reflected light of the heating light is reduced and the irradiation range of the detection light is included in the irradiation range. In addition, only a part of the reflected heating light that is guided is measured at the measurement position, so that the influence of the reflected heating light does not easily enter the result of measuring the intensity of the reflected detection light at the measurement position.

即ち、異なる焦点位置となるように加熱光と検出光とが測定部位に照射されることで反射加熱光と反射検出光とが異なるビーム広がり角を有することとなり、このビーム広がり角の違いに起因して当該導光工程で導光される反射加熱光が測定位置において発散状態となりその一部しか測定されない。   That is, the heating light and the detection light are irradiated on the measurement site so as to be in different focal positions, so that the reflected heating light and the reflected detection light have different beam divergence angles. Then, the reflected heating light guided in the light guiding step is diverged at the measurement position, and only a part thereof is measured.

しかも、検出光が測定部位において焦点を結ぶように照射されるため、測定部位での検出光の強度が確保され、これにより当該部位の温度変化の測定精度が確保される。   In addition, since the detection light is irradiated so as to focus on the measurement site, the intensity of the detection light at the measurement site is ensured, thereby ensuring the measurement accuracy of the temperature change at the site.

以上より、本発明によれば、被測定物の同一面に加熱光及び検出光を照射して当該試料の熱物性を解析しても、検出光の反射光強度の測定において加熱光の反射光の影響を受け難い熱物性解析装置及び熱物性解析方法を提供することができる。   As described above, according to the present invention, even if the thermal properties of the sample are analyzed by irradiating the same surface of the object to be measured with the heating light and the detection light, the reflected light of the heating light is measured in the measurement of the reflected light intensity of the detection light. It is possible to provide a thermophysical property analysis apparatus and a thermophysical property analysis method that are not easily affected by the above.

本実施形態に係る熱物性解析装置の概略構成図である。It is a schematic block diagram of the thermophysical property analyzer which concerns on this embodiment. 前記熱物性解析装置の第3の光学系周辺の拡大構成図である。It is an expanded block diagram around the 3rd optical system of the said thermophysical-characteristic analyzer. 他実施形態に係る熱物性解析装置における光検出器の構成図である。It is a block diagram of the photodetector in the thermophysical property analyzer which concerns on other embodiment. 他実施形態に係る熱物性解析装置における第3の光学系周辺の拡大構成図である。It is an enlarged block diagram around the 3rd optical system in the thermophysical property analyzer which concerns on other embodiment.

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1及び図2に示されるように、本実施形態に係る熱物性解析装置(以下、単に「解析装置」とも称する。)10は、1つのパルスレーザ21から周期的に出射(放射)される基幹パルスレーザ(基幹パルス光)B0を2分岐させて、その一方を加熱用パルス光(以下、単に「加熱光」とも称する。)B1、他方を検出用パルス光(以下、単に「検出光」とも称する。)B2としている。そして、加熱光B1を薄膜試料(被測定物)11表面の測定部位11aに照射すると共に検出光B2を照射し、当該測定部位11aで反射した検出光(反射検出光)B2aを受光してその強度を測定することにより、前記測定部位11aの温度変化を測定する(熱拡散測定を行う)サーモリフレクタンス法に基づく熱物性解析を行う装置である。尚、本実施形態に係る薄膜試料11は、基板12上に成膜されている。   As shown in FIG. 1 and FIG. 2, a thermophysical property analyzer (hereinafter also simply referred to as “analyzer”) 10 according to the present embodiment is periodically emitted (radiated) from one pulse laser 21. The main pulse laser (main pulse light) B0 is branched into two, one of which is a heating pulse light (hereinafter also simply referred to as “heating light”) B1, and the other is a detection pulse light (hereinafter simply referred to as “detection light”). Also referred to as B). Then, the measurement light 11a on the surface of the thin film sample (object to be measured) 11 is irradiated with the heating light B1 and the detection light B2, and the detection light (reflected detection light) B2a reflected by the measurement part 11a is received. It is a device that performs thermophysical analysis based on the thermoreflectance method that measures the temperature change of the measurement site 11a (performs thermal diffusion measurement) by measuring the strength. The thin film sample 11 according to the present embodiment is formed on the substrate 12.

具体的に、解析装置10は、加熱光B1及び検出光B2の双方を放射する光放射手段20と、加熱光B1を薄膜試料11の測定部位11a(以下、単に「測定部位11a」とも称する。)まで導光する第1の光学系30と、検出光B2を測定部位11aまで導光する第2の光学系40と、測定部位11aからの反射検出光B2aの強度を測定する検出光測定手段50と、測定部位11aからの反射検出光B2aを検出光測定手段50まで導光する第3の光学系60と、ステージ13とを備える。   Specifically, the analyzing apparatus 10 includes a light emitting means 20 that emits both the heating light B1 and the detection light B2, and the heating light B1 is also referred to as a measurement site 11a (hereinafter simply referred to as “measurement site 11a”) of the thin film sample 11. ), The second optical system 40 for guiding the detection light B2 to the measurement site 11a, and the detection light measurement means for measuring the intensity of the reflected detection light B2a from the measurement site 11a. 50, a third optical system 60 for guiding the reflected detection light B2a from the measurement site 11a to the detection light measurement means 50, and the stage 13.

光放射手段20は、所定周期のパルス光を放射するパルスレーザ(パルス光放射部)21と、このパルスレーザ21から放射されたパルス光を加熱光B1と検出光B2とに分岐する第1ビームスプリッタ(分岐手段)22とを有する。   The light emitting means 20 is a first laser beam that divides the pulsed light emitted from the pulsed laser 21 into a heating light B1 and a detection light B2 and a pulsed laser (pulsed light emitting part) 21 that emits pulsed light of a predetermined period. And a splitter (branching means) 22.

パルスレーザ21は、所定周期で断続する数ピコ秒〜十ピコ秒程度の幅の単位パルス光PLで構成される基幹パルス光(基幹パルスビーム)B0を放射する光源である。例えば、本実施形態に係るパルスレーザ21は、波長が532nm、パルス幅が12psのパルス光(パルス状のビーム)B0を繰り返し周波数が80MHzで出力する。   The pulse laser 21 is a light source that emits basic pulsed light (basic pulsed beam) B0 composed of unit pulsed light PL having a width of about several picoseconds to ten picoseconds intermittent at a predetermined cycle. For example, the pulse laser 21 according to this embodiment outputs pulsed light (pulsed beam) B0 having a wavelength of 532 nm and a pulse width of 12 ps at a repetition frequency of 80 MHz.

第1ビームスプリッタ22は、パルスレーザ21から出力される基幹パルス光B0を分岐させるもので、加熱光(加熱用パルス光)B1と検出光(検出用パルス光)B2とに2分岐させる。この第1ビームスプリッタ22は、基幹パルス光B0を分岐した後、加熱光B1を第1の光学系30に入射させると共に検出光B2を第2の光学系40に入射させる。本実施形態の第1ビームスプリッタ22は、偏光ビームスプリッタであり、下流側には偏光調整用波長板101,102が配置される。この第1ビームスプリッタ22は、分岐した光(加熱光B1と検出光B2)を偏光調整用波長板101,102に通すことで加熱光B1を第1の偏光方向に偏光すると共に検出光B2を第2の偏光方向に偏光する。即ち、本実施形態の偏光調整用波長板101,102を有する第1ビームスプリッタ22は、基幹パルス光B0を加熱光B1と検出光B2とに分岐する分岐手段と、加熱光B1と検出光B2とを互いに異なる偏光状態にする偏光手段とを兼ねている。尚、第1の偏光方向と第2の偏光方向とは異なる偏光方向である。   The first beam splitter 22 branches the basic pulsed light B0 output from the pulse laser 21, and splits it into heating light (heating pulsed light) B1 and detection light (detecting pulsed light) B2. The first beam splitter 22 divides the basic pulse light B 0, and then makes the heating light B 1 incident on the first optical system 30 and makes the detection light B 2 incident on the second optical system 40. The first beam splitter 22 of the present embodiment is a polarization beam splitter, and polarization adjustment wavelength plates 101 and 102 are disposed on the downstream side. The first beam splitter 22 passes the branched light (heating light B1 and detection light B2) through the polarization adjusting wavelength plates 101 and 102, thereby polarizing the heating light B1 in the first polarization direction and the detection light B2. Polarizes in the second polarization direction. That is, the first beam splitter 22 having the polarization adjusting wavelength plates 101 and 102 of the present embodiment includes a branching unit that branches the basic pulse light B0 into the heating light B1 and the detection light B2, and the heating light B1 and the detection light B2. Also serves as a polarization means for making the polarization states different from each other. Note that the first polarization direction and the second polarization direction are different polarization directions.

第1の光学系30は、ミラー31と、加熱用集光レンズ(加熱用集光部材)32と、第2ビームスプリッタ33とを有し、光放射手段20から放射された加熱光B1を測定部位11aまで導光する。また、第1の光学系30は、加熱光B1を強度変調するための変調手段34を有する。   The first optical system 30 has a mirror 31, a heating condensing lens (heating condensing member) 32, and a second beam splitter 33, and measures the heating light B1 emitted from the light emitting means 20. The light is guided to the part 11a. Further, the first optical system 30 includes a modulation unit 34 for modulating the intensity of the heating light B1.

加熱用集光レンズ32は、第1の光学系30で導光される加熱光B1を測定部位11aに向けて集光するものである。この加熱用集光レンズ32の焦点位置は、測定部位11aと異なる位置に設定されている。そのため、加熱用集光レンズ32によって集光された加熱光B1は、測定部位11aにおいて一点に集束せずに照射範囲sが広がりを有するように照射される(図2参照)。即ち、測定部位11aにおいて焦点がぼけた状態で加熱光B1が照射される。この加熱用集光レンズ32は、測定部位11aにおいて加熱光B1が焦点を結ぶように集光する場合に比べ、第3の光学系60に導光されて検出光測定手段50に到達する反射加熱光B1aの強度が小さくなるように測定部位11aにおいて焦点をぼかし且つその照射範囲sに検出光B2の照射範囲が含まれるような焦点位置に設定されている。このように加熱用集光レンズ32の焦点位置が設定されることで、測定部位11aで反射して第3の光学系60に入り込んだ反射加熱光B1aは、検出光測定手段50の光検出器51(詳細には、光検出器51の受光部51a)よりも上流側で焦点を結ぶ。具体的に、本実施形態の加熱用集光レンズ32には、焦点距離(焦点位置)が40mmの凸レンズが用いられる。この加熱用集光レンズ32を通過した加熱光B1は、測定部位11aに到達する前に一旦集束した後、発散状態で測定部位11aに到達する(図2参照)。   The heating condensing lens 32 condenses the heating light B1 guided by the first optical system 30 toward the measurement site 11a. The focal position of the heating condenser lens 32 is set to a position different from that of the measurement site 11a. Therefore, the heating light B1 collected by the heating condenser lens 32 is irradiated so that the irradiation range s is widened without being focused at one point in the measurement site 11a (see FIG. 2). That is, the heating light B1 is irradiated in a state where the focal point is blurred at the measurement site 11a. This heating condensing lens 32 is reflected and heated by the third optical system 60 and reaches the detection light measuring means 50 as compared with the case where the heating light B1 is focused so as to be focused at the measurement site 11a. The focal point is set so that the focal point is blurred in the measurement region 11a so that the intensity of the light B1a is reduced and the irradiation range s of the irradiation range of the detection light B2 is included in the irradiation range s. By setting the focal position of the heating condensing lens 32 in this way, the reflected heating light B1a reflected by the measurement site 11a and entering the third optical system 60 is detected by the photodetector of the detection light measuring means 50. The focus is set on the upstream side of 51 (specifically, the light receiving portion 51a of the photodetector 51). Specifically, a convex lens having a focal length (focal position) of 40 mm is used for the heating condensing lens 32 of the present embodiment. The heating light B1 that has passed through the heating condensing lens 32 is once focused before reaching the measurement site 11a, and then reaches the measurement site 11a in a divergent state (see FIG. 2).

第2ビームスプリッタ33は、偏光ビームスプリッタであり、第2の偏光方向に偏光された光を透過させると共に第2の偏光方向と異なる偏光方向に偏光された光を反射する。即ち、本実施形態の第2ビームスプリッタ33では、第2の偏光方向に偏光されている検出光B2は透過するが、第1の偏光方向に偏光されている加熱光B1は反射される。この第2ビームスプリッタ33は、当該第2ビームスプリッタ33で反射した加熱光B1を当該ビームスプリッタ33を通過した後の検出光B2に同軸又は略同軸となるように合流させる。尚、本実施形態の第2ビームスプリッタ33は、第3の光学系60の一部も構成する。この第3の光学系60における第2ビームスプリッタ33の作用については後述する。   The second beam splitter 33 is a polarization beam splitter, and transmits light polarized in the second polarization direction and reflects light polarized in a polarization direction different from the second polarization direction. That is, in the second beam splitter 33 of the present embodiment, the detection light B2 polarized in the second polarization direction is transmitted, but the heating light B1 polarized in the first polarization direction is reflected. The second beam splitter 33 merges the heating light B1 reflected by the second beam splitter 33 with the detection light B2 after passing through the beam splitter 33 so as to be coaxial or substantially coaxial. Note that the second beam splitter 33 of the present embodiment also constitutes a part of the third optical system 60. The operation of the second beam splitter 33 in the third optical system 60 will be described later.

変調手段34は、変調器35と発振器36とを有し、変調器35が発振器36からの変調信号に基づいて加熱光B1を所定の周波数で強度変調する。本実施形態では、変調器35として音響光学変調器が用いられ、加熱光B1が100kHzで強度変調される。   The modulation means 34 has a modulator 35 and an oscillator 36, and the modulator 35 modulates the intensity of the heating light B1 at a predetermined frequency based on the modulation signal from the oscillator 36. In the present embodiment, an acousto-optic modulator is used as the modulator 35, and the intensity of the heating light B1 is modulated at 100 kHz.

第2の光学系40は、ミラー41と、光路遅延装置42と、検出用集光レンズ(検出用集光部材)43とを有し、測定部位11aに対して検出光B2を垂直方向から照射するように導光する。   The second optical system 40 includes a mirror 41, an optical path delay device 42, and a detection condensing lens (detection condensing member) 43, and irradiates the measurement site 11a with the detection light B2 from the vertical direction. To guide the light.

光路遅延装置42は、加熱光B1と検出光B2との間で測定部位11aにおけるパルス光到達の時間差を生じさせるものであり、その時間差を例えばピコ秒オーダーの精度で調節可能(可変)である。この光路遅延装置42は、光学機器及びその移動機構で構成されている。本実施形態の光路遅延装置42は、検出光B2の光路長を調節することにより、加熱光B1と検出光B2との間で測定部位11aにおけるパルス光到達の時間差を生じさせる装置である。具体的には、光路遅延装置42は、一対のミラー42aと、この一対のミラー42aを検出光B2の光軸方向に移動させる移動ステージ42b、及びこの移動ステージ42bの動作を計算機53からの制御指令に従って制御する制御回路(図示せず)等を備えている。   The optical path delay device 42 generates a time difference in the arrival of the pulsed light at the measurement site 11a between the heating light B1 and the detection light B2, and the time difference can be adjusted (variable) with an accuracy of, for example, picosecond order. . The optical path delay device 42 includes an optical device and its moving mechanism. The optical path delay device 42 of the present embodiment is a device that generates a time difference in arrival of pulsed light at the measurement site 11a between the heating light B1 and the detection light B2 by adjusting the optical path length of the detection light B2. Specifically, the optical path delay device 42 controls from the computer 53 a pair of mirrors 42a, a moving stage 42b that moves the pair of mirrors 42a in the optical axis direction of the detection light B2, and an operation of the moving stage 42b. A control circuit (not shown) for controlling according to the command is provided.

検出用集光レンズ43は、第2の光学系40で導光される検出光B2を測定部位11aに向けて集光するものである。この検出用集光レンズ43の焦点位置は、測定部位11aと一致又は略一致するように設定されている。そのため、検出用集光レンズ43によって集光された検出光B2は、測定部位11aにおいて一点に集束する。即ち、測定部位11aで焦点を結ぶように検出光B2が照射される(図2参照)。このように検出用集光レンズ43の焦点位置が設定されることで、測定部位11aで反射して第3の光学系60に入り込んだ反射検出光B2aは、検出光測定手段50の光検出器51(詳細には、光検出器51の受光部51a)で焦点を結ぶ。具体的に、本実施形態の検出用集光レンズ43には、焦点距離(焦点位置)が60mmの凸レンズが用いられる。尚、本実施形態の検出用集光レンズ43は、第3の光学系60の一部も構成する。この第3の光学系60における検出用集光レンズ43の作用については後述する。   The detection condensing lens 43 condenses the detection light B2 guided by the second optical system 40 toward the measurement site 11a. The focal position of the detection condensing lens 43 is set to coincide with or substantially coincide with the measurement site 11a. Therefore, the detection light B2 collected by the detection condenser lens 43 is focused at one point in the measurement site 11a. That is, the detection light B2 is irradiated so as to focus on the measurement site 11a (see FIG. 2). By setting the focal position of the condensing lens 43 for detection in this way, the reflected detection light B2a reflected by the measurement site 11a and entering the third optical system 60 is detected by the photodetector of the detection light measuring means 50. 51 (specifically, the light receiving unit 51a of the photodetector 51) is focused. Specifically, a convex lens having a focal length (focal position) of 60 mm is used for the detection condensing lens 43 of the present embodiment. Note that the detection condensing lens 43 of this embodiment also constitutes a part of the third optical system 60. The operation of the detection condensing lens 43 in the third optical system 60 will be described later.

検出光測定手段50は、測定部位11aからの反射検出光B2aが入射する光検出器51と、この光検出器51と発振器36とが接続されるロックインアンプ52と、このロックインアンプ52が接続される計算機53とを有する。   The detection light measuring means 50 includes a photodetector 51 to which the reflected detection light B2a from the measurement site 11a is incident, a lock-in amplifier 52 to which the photodetector 51 and the oscillator 36 are connected, and the lock-in amplifier 52. And a computer 53 to be connected.

光検出器51は、反射検出光B2aが入射する受光部51aを有し、この受光部51aに入射した反射検出光B2aの強度を強度信号として出力するものである。受光部51aは、第3の光学系60により導光された反射検出光B2aが入射できる大きさを有していればよい。本実施形態では、反射検出光B2aが受光部51aの位置において集束するように第3の光学系60によって導光されるため、受光部51aには小型の受光素子が用いられる。具体的には、受光部51aとしてシリコンフォトダイオード(縦が0.5mm、横が0.5mm、受光径φが0.5mm)が用いられる。   The photodetector 51 has a light receiving portion 51a on which the reflected detection light B2a is incident, and outputs the intensity of the reflected detection light B2a incident on the light receiving portion 51a as an intensity signal. The light receiving unit 51a only needs to have a size with which the reflected detection light B2a guided by the third optical system 60 can enter. In the present embodiment, since the reflected detection light B2a is guided by the third optical system 60 so as to converge at the position of the light receiving unit 51a, a small light receiving element is used for the light receiving unit 51a. Specifically, a silicon photodiode (length 0.5 mm, width 0.5 mm, light receiving diameter φ 0.5 mm) is used as the light receiving portion 51a.

尚、光検出器51の具体的構成は限定されない。例えば、本実施形態では、受光部51aとして受光素子が配置されているが、これに限定されず、図3に示されるように、光検出器151は、検出器本体152とその内部に配置される受光素子153とを備え、受光部として検出器本体152に設けられたピンホール151aに入射した(即ち、ピンホール154を通過した)反射検出光B2aを検出器本体152の内部に配置された受光素子153が受光し、その受光強度を検出するように構成されてもよい。この光検出器151では、反射検出光B2aは、集光状態でピンホール(受光部)151aに向かい、ピンホール151aを通過するときに一旦集束し、その後、ピンホール151aを通過して発散状態となって受光素子153に到達する。従って、この光検出器151では、本実施形態の受光素子51aよりも大きな受光素子153を用いることができる。   The specific configuration of the photodetector 51 is not limited. For example, in the present embodiment, a light receiving element is arranged as the light receiving unit 51a, but the present invention is not limited to this, and as shown in FIG. 3, the photodetector 151 is arranged in the detector main body 152 and the inside thereof. And the reflected detection light B2a incident on the pinhole 151a provided in the detector main body 152 as a light receiving portion (that is, passed through the pinhole 154) is disposed inside the detector main body 152. The light receiving element 153 may receive light and be configured to detect the received light intensity. In this light detector 151, the reflected detection light B2a is focused toward the pinhole (light receiving portion) 151a in a condensed state and once converged when passing through the pinhole 151a, and then diverges through the pinhole 151a. And reaches the light receiving element 153. Therefore, this photodetector 151 can use a light receiving element 153 larger than the light receiving element 51a of the present embodiment.

ロックインアンプ52は、光検出器51から出力される強度信号から変調手段34で変調した周波数成分を検出(抽出)するものである。   The lock-in amplifier 52 detects (extracts) the frequency component modulated by the modulation means 34 from the intensity signal output from the photodetector 51.

計算機53は、ロックインアンプ52で検出された周波数成分から測定部位11aの温度変化を導出するものである。さらに計算機53は、あらかじめ定められた解析規則に従って測定部位11aの前記温度変化から薄膜試料11の熱物性を解析すると共にその解析結果を出力(記憶部への書き込みや表示部への表示、他装置への送信等)する。   The computer 53 derives the temperature change of the measurement site 11 a from the frequency component detected by the lock-in amplifier 52. Further, the computer 53 analyzes the thermophysical property of the thin film sample 11 from the temperature change of the measurement site 11a according to a predetermined analysis rule and outputs the analysis result (writing to the storage unit, display on the display unit, other devices) To send to).

第3の光学系60は、第2ビームスプリッタ33と、検出用集光レンズ43と、第3ビームスプリッタ61と、遮光部材62と、集光レンズ63とを有し、測定部位11aで反射された反射検出光B2aを光検出器51の受光部51aまで導光する。   The third optical system 60 includes a second beam splitter 33, a detection condensing lens 43, a third beam splitter 61, a light blocking member 62, and a condensing lens 63, and is reflected by the measurement site 11a. The reflected reflection light B2a is guided to the light receiving portion 51a of the photodetector 51.

第2ビームスプリッタ33は、測定部位11aに対して垂直方向から入射した加熱光B1及び検出光B2の各反射光のうち、第1の偏光方向に偏光された反射加熱光B1aを加熱用集光レンズ32側に反射すると共に第2の偏光方向に偏光された反射検出光B2aを通過させる。このとき、第2ビームスプリッタ33は、反射加熱光B1aを全て反射することができず、僅かな反射加熱光B1aが当該第2ビームスプリッタ33を反射検出光B2aと共に通過する。   The second beam splitter 33 condenses the reflected heating light B1a polarized in the first polarization direction among the reflected lights of the heating light B1 and the detection light B2 incident from the vertical direction with respect to the measurement site 11a. The reflected detection light B2a that is reflected toward the lens 32 and polarized in the second polarization direction is allowed to pass. At this time, the second beam splitter 33 cannot reflect all the reflected heating light B1a, and a small amount of reflected heating light B1a passes through the second beam splitter 33 together with the reflected detection light B2a.

検出用集光レンズ43は、測定部位11aで反射され発散状態で当該検出用集光レンズ43に到達した反射検出光B2aをその内部を通過させることにより平行光にする。また、検出用集光レンズ43は、測定部位11aで反射され発散状態(反射検出光B2aと異なるビーム広がり角)で当該検出用集光レンズ43に到達した反射加熱光B1a(第2ビームスプリッタ33で反射されずに透過した反射加熱光B1a)をその内部を通過させることにより集光状態にする。   The detection condensing lens 43 converts the reflected detection light B2a that has been reflected by the measurement site 11a and has reached the detection condensing lens 43 in a divergent state into parallel light by passing through the inside thereof. Further, the detection condensing lens 43 is reflected by the measurement site 11a and is reflected and diverged (a beam divergence angle different from that of the reflected detection light B2a) and reaches the detection condensing lens 43 in the reflected heating light B1a (second beam splitter 33). The reflected heating light B1a) that has been transmitted without being reflected by the light passes through the inside thereof to be brought into a condensed state.

第3ビームスプリッタ61は、第2の光学系40により導光される検出光B2の光路上に配置されている。本実施形態の第3ビームスプリッタ61は、ハーフミラーで構成され、測定部位11aに対して垂直方向から当該測定部位11aに向って進む検出光B2を通過させると共に測定部位11aから同軸上に戻ってきた反射検出光B2aを光検出器51側へ反射するものである。   The third beam splitter 61 is disposed on the optical path of the detection light B2 guided by the second optical system 40. The third beam splitter 61 of the present embodiment is configured by a half mirror, and allows the detection light B2 traveling from the vertical direction toward the measurement site 11a to pass through the measurement site 11a and returns coaxially from the measurement site 11a. The reflected detection light B2a is reflected to the photodetector 51 side.

遮光部材62は、第3の光学系60において、反射検出光B2aの下流側への進行を許容しつつ、反射加熱光B1aの下流側への進行を遮るものである。この遮光部材62は、第3の光学系60において反射加熱光B1aの焦点位置に配置され、遮光部62aと光通過部62bとを有する。遮光部材62において、遮光部62aは反射加熱光B1aの焦点位置に集光された反射加熱光B1aの進行を遮るための部位であり、光通過部62bは遮光部62aを前記焦点位置に支持しその周囲を光(反射検出光B2a)が通過可能に構成された部位である。本実施形態では、第3の光学系60の導光方向における反射加熱光B1aの焦点位置に当該光学系60により導光される光の光路と直交する姿勢で配置された板状のガラス(光通過部)62bと、このガラス62bの表面における前記焦点位置に蒸着されたアルミ(遮光部)62aとで構成される。即ち、焦点位置に集光された反射加熱光B1aが蒸着されたアルミ62aによって反射されてその進行を遮られ、その周囲のガラス部分62bを反射検出光B2aが通過する。   In the third optical system 60, the light blocking member 62 allows the reflected detection light B2a to travel downstream and blocks the reflected heating light B1a from traveling downstream. The light shielding member 62 is disposed at the focal position of the reflected heating light B1a in the third optical system 60, and includes a light shielding portion 62a and a light passage portion 62b. In the light shielding member 62, the light shielding part 62a is a part for blocking the progress of the reflected heating light B1a collected at the focal position of the reflected heating light B1a, and the light passage part 62b supports the light shielding part 62a at the focal position. This is a part configured to allow light (reflection detection light B2a) to pass therethrough. In the present embodiment, a plate-like glass (light) arranged in a posture orthogonal to the optical path of the light guided by the optical system 60 at the focal position of the reflected heating light B1a in the light guiding direction of the third optical system 60. (Passing part) 62b and aluminum (light-shielding part) 62a deposited at the focal position on the surface of the glass 62b. That is, the reflected heating light B1a collected at the focal position is reflected by the deposited aluminum 62a to block its progress, and the reflected detection light B2a passes through the surrounding glass portion 62b.

集光レンズ63は、検出用集光レンズ43を通過することにより平行光となった反射検出光B2aを当該反射検出光B2aが当該集光レンズ63を通過することにより光検出器51の受光部51aにおいて焦点を結ぶように集光するものである。   The condenser lens 63 receives the reflected detection light B2a, which has become parallel light by passing through the detection condenser lens 43, and the light receiving unit of the photodetector 51 when the reflected detection light B2a passes through the condenser lens 63. The light is focused so as to be focused at 51a.

ステージ13は、薄膜試料11が成膜された基板12を支持すると共に計算機53からの制御指令に従って、薄膜試料11の位置を2次元方向(加熱光B1及び検出光B2の照射方向に対して垂直若しくはほぼ垂直な面の方向)に移動可能ないわゆるX−Yステージである。即ち、計算機53によってステージ13を制御することにより、加熱光B1及び検出光B2の照射位置に薄膜試料11表面における所望の測定部位11aを位置合わせすることができる。   The stage 13 supports the substrate 12 on which the thin film sample 11 is formed, and moves the position of the thin film sample 11 in a two-dimensional direction (perpendicular to the irradiation direction of the heating light B1 and the detection light B2) according to a control command from the computer 53. Alternatively, it is a so-called XY stage that is movable in the direction of a substantially vertical plane). That is, by controlling the stage 13 with the computer 53, the desired measurement site 11a on the surface of the thin film sample 11 can be aligned with the irradiation position of the heating light B1 and the detection light B2.

以上のように構成される解析装置10では、以下のようにして薄膜試料11の熱物性の解析が行われる。   In the analysis apparatus 10 configured as described above, the thermal properties of the thin film sample 11 are analyzed as follows.

薄膜試料11を成膜された基板12がステージ13上に設置される。加熱光B1及び検出光B2の照射位置に薄膜試料11表面における測定部位11aが位置するように計算機53によりステージ13が制御される。   A substrate 12 on which a thin film sample 11 is formed is placed on a stage 13. The stage 13 is controlled by the computer 53 so that the measurement site 11a on the surface of the thin film sample 11 is positioned at the irradiation position of the heating light B1 and the detection light B2.

次に、光放射手段20によって加熱光B1と検出光B2とが放射される。加熱光B1は、第1の光学系30により導光されて測定部位11aに照射される一方、検出光B2は、第2の光学系40により導光されて測定部位11aに照射される。具体的に、パルスレーザ21により放射された基幹パルス光B0が第1ビームスプリッタ22により加熱光B1と検出光B2とに分岐される。このとき、第1ビームスプリッタ22により分岐された加熱光B1及び検出光B2が偏光調整用波長板101,102を通ることにより、加熱光B1は第1の偏光方向に偏光され、検出光B2は第2の偏光方向に偏光される。加熱光B1は、変調手段34により所定の周期で強度変調された後、加熱用集光レンズ32により集光されて測定部位11aに照射される。一方、検出光B2は、加熱光B1に対して所定のパルス光到達時間差で測定部位11aに到達するように光路遅延装置42によって光路長を調節されたあとに検出用集光レンズ43により集光されて測定部位11aに照射される。このとき、検出光B2は測定部位11aで焦点を結ぶように照射される一方、加熱光B1は焦点をぼかすように、即ち、焦点位置が測定部位11aと異なる位置となるように照射される。   Next, the heating light B1 and the detection light B2 are emitted by the light emitting means 20. The heating light B1 is guided by the first optical system 30 and applied to the measurement site 11a, while the detection light B2 is guided by the second optical system 40 and applied to the measurement site 11a. Specifically, the basic pulse light B0 emitted by the pulse laser 21 is branched into the heating light B1 and the detection light B2 by the first beam splitter 22. At this time, the heating light B1 and the detection light B2 branched by the first beam splitter 22 pass through the polarization adjusting wave plates 101 and 102, so that the heating light B1 is polarized in the first polarization direction, and the detection light B2 is Polarized in the second polarization direction. The intensity of the heating light B1 is modulated at a predetermined period by the modulation means 34, and then condensed by the heating condenser lens 32 and applied to the measurement site 11a. On the other hand, the detection light B2 is condensed by the detection condenser lens 43 after the optical path length is adjusted by the optical path delay device 42 so as to reach the measurement site 11a with a predetermined pulse light arrival time difference with respect to the heating light B1. Then, the measurement site 11a is irradiated. At this time, the detection light B2 is irradiated so as to focus on the measurement site 11a, while the heating light B1 is irradiated so as to defocus, that is, the focus position is different from the measurement site 11a.

そして、測定部位11aで反射された検出光(反射検出光)B2aは、第3の光学系60によって検出光測定手段50まで導光される一方、反射された加熱光(反射加熱光)B1aは第3の光学系60の途中でその進行を阻止される。具体的に、反射検出光B2aは、第2ビームスプリッタ33を通過し、検出用集光レンズ43、第3ビームスプリッタ61、遮光部材62(詳細には、光通過部62b)、集光レンズ63を順に経て光検出器51の受光部51aに到達する。一方、反射加熱光B1aは、その多くが第2ビームスプリッタ33によって加熱用集光レンズ32側に反射され、その一部だけが当該第2ビームスプリッタ33を通過する。即ち、反射加熱光B2aの一部が第3の光学系60に入り込む。この第2ビームスプリッタ33を通過した反射加熱光B1aは、検出用集光レンズ43、第3ビームスプリッタ61を順に経て遮光部材62の遮光部62aの位置で焦点を結び、この遮光部62aにより反射されることによりその進行を阻止される。即ち、第3の光学系60に入り込んだ反射加熱光B1aは、第2ビームスプリッタ33と、遮光部材62とにより受光部51aへの到達が阻止される。   The detection light (reflection detection light) B2a reflected by the measurement site 11a is guided to the detection light measurement means 50 by the third optical system 60, while the reflected heating light (reflection heating light) B1a is The progress is prevented in the middle of the third optical system 60. Specifically, the reflected detection light B2a passes through the second beam splitter 33, and the detection condenser lens 43, the third beam splitter 61, the light shielding member 62 (specifically, the light passage part 62b), and the condenser lens 63. The light reaches the light receiving part 51a of the photodetector 51 through the above. On the other hand, most of the reflected heating light B <b> 1 a is reflected by the second beam splitter 33 toward the heating condenser lens 32, and only a part thereof passes through the second beam splitter 33. That is, a part of the reflected heating light B <b> 2 a enters the third optical system 60. The reflected heating light B1a that has passed through the second beam splitter 33 passes through the detection condensing lens 43 and the third beam splitter 61 in order, and is focused at the position of the light shielding portion 62a of the light shielding member 62, and reflected by this light shielding portion 62a. Is prevented from proceeding. That is, the reflected heating light B1a that has entered the third optical system 60 is prevented from reaching the light receiving portion 51a by the second beam splitter 33 and the light shielding member 62.

検出光測定手段50において、前記導光された反射検出光B2aの強度が測定され、その強度に基づいて薄膜試料11(測定部位11a)の熱物性が解析される。具体的に、光検出器51の受光部51aに入射した反射検出光B2aの強度が光検出器51から強度信号として出力される。この強度信号を受け取ったロックインアンプ52において、当該強度信号から変調手段34での強度変調の周期成分が検出され、この周期成分に基づき計算機53が薄膜試料11の熱物性を解析すると共にその解析結果を出力する。   In the detection light measuring means 50, the intensity of the guided reflected detection light B2a is measured, and the thermophysical property of the thin film sample 11 (measurement site 11a) is analyzed based on the intensity. Specifically, the intensity of the reflected detection light B2a incident on the light receiving unit 51a of the photodetector 51 is output from the photodetector 51 as an intensity signal. In the lock-in amplifier 52 that has received this intensity signal, the periodic component of the intensity modulation in the modulation means 34 is detected from the intensity signal, and the computer 53 analyzes the thermal physical properties of the thin film sample 11 based on this periodic component and analyzes the analysis. Output the result.

以上のように本実施形態の解析装置10では、測定部位11aにおいて検出光B2が焦点を結ぶように集光されると共に、第3の光学系60に入り込んだ反射加熱光B1aが当該光学系60において受光部51aよりも上流側で焦点を結ぶように加熱光B1が測定部位11aにおいて焦点をぼかされ且つその照射範囲sに検出光B2の照射範囲(焦点位置)を含むよう集光されるように、異なる集光レンズ32,43によって加熱光B1と検出光B2とが測定部位11aにそれぞれ集光されるため、第3の光学系60に導光される反射検出光B2aに混入した反射加熱光B1aがその焦点位置で一旦集束したあと発散状態で受光部51aに到達するため、受光部51aに入射した反射加熱光B1aの強度は小さい。そのため、検出光測定手段50における反射検出光B2aの強度を測定した結果に反射加熱光B1aの影響(ノイズ)が入り難くなる。   As described above, in the analysis apparatus 10 of the present embodiment, the detection light B2 is condensed so as to be focused at the measurement site 11a, and the reflected heating light B1a that has entered the third optical system 60 is the optical system 60. In FIG. 5, the heating light B1 is focused at the measurement site 11a so as to focus on the upstream side of the light receiving portion 51a, and is condensed so that the irradiation range s includes the irradiation range (focus position) of the detection light B2. As described above, since the heating light B1 and the detection light B2 are respectively condensed on the measurement site 11a by the different condensing lenses 32 and 43, the reflection mixed in the reflection detection light B2a guided to the third optical system 60. Since the heating light B1a once converges at the focal position and then reaches the light receiving unit 51a in a diverging state, the intensity of the reflected heating light B1a incident on the light receiving unit 51a is small. Therefore, the influence (noise) of the reflected heating light B1a does not easily enter the result of measuring the intensity of the reflected detection light B2a in the detection light measuring means 50.

しかも、本実施形態では、第3の光学系60において、反射加熱光B1aが焦点を結ぶ位置に遮光部材62を配置し、この焦点位置で集束した状態の反射加熱光B1aを反射して当該反射加熱光B1aの進行を阻止することにより受光部51aに到達する反射加熱光B1aをさらに少なくし、これにより検出光測定手段50における反射検出光B2aの強度を測定した結果に反射加熱光B1aの影響(ノイズ)が入ることをより抑制している。   Moreover, in the present embodiment, in the third optical system 60, the light shielding member 62 is disposed at a position where the reflected heating light B1a is focused, and the reflected heating light B1a focused at the focal position is reflected to reflect the reflected light. By preventing the heating light B1a from proceeding, the reflected heating light B1a reaching the light receiving portion 51a is further reduced, and the result of measuring the intensity of the reflected detection light B2a in the detection light measuring means 50 is influenced by the influence of the reflected heating light B1a. (Noise) is more suppressed.

具体的に、加熱用集光レンズ32の焦点距離が反射加熱光B1aが第3の光学系60において受光部51aよりも上流側で焦点を結ぶように設定されているため、第3の光学系60に入り込んだ反射加熱光B1aは、受光部51aの上流側で一旦集束したあと発散し、その一部のみが受光部51aに入射する。そのため、受光部51aに入射する反射加熱光B1aの強度は、集束した状態で受光部51aに入射したときよりも小さくなる。そのため、反射検出光B2aの測定結果に反射加熱光B1aの影響が入り難くなる。   Specifically, since the focal length of the heating condenser lens 32 is set so that the reflected heating light B1a is focused on the upstream side of the light receiving portion 51a in the third optical system 60, the third optical system. The reflected heating light B1a that has entered 60 is once converged on the upstream side of the light receiving portion 51a and then diverges, and only a part thereof enters the light receiving portion 51a. Therefore, the intensity of the reflected heating light B1a incident on the light receiving portion 51a is smaller than that when entering the light receiving portion 51a in a focused state. Therefore, the influence of the reflected heating light B1a is less likely to enter the measurement result of the reflected detection light B2a.

しかも、本実施形態の解析装置10では、前記焦点位置に遮光部材62が配置されることで、第3の光学系60において、第2ビームスプリッタ33を通過して受光部51aへかう反射加熱光B1aが遮光部材62の遮光部62aによってその進行を遮られるため、反射検出光B2aの測定結果に反射加熱光B1aの影響がさらに入り難くなる。一方、反射検出光B2aは、遮光部材62を平行光の状態で通過し、当該遮光部材62よりも下流側の集光レンズ63によって集光されるため、遮光部材62の位置では遮光部62aの周囲(即ち、光通過部62b)を通過してその下流側の受光部51aに到達できる。   In addition, in the analysis apparatus 10 of the present embodiment, the light shielding member 62 is disposed at the focal position, so that the reflected heating light that passes through the second beam splitter 33 and travels toward the light receiving unit 51a in the third optical system 60. Since the progress of B1a is blocked by the light shielding portion 62a of the light shielding member 62, the influence of the reflected heating light B1a is further less likely to enter the measurement result of the reflected detection light B2a. On the other hand, the reflection detection light B2a passes through the light shielding member 62 in the state of parallel light and is condensed by the condenser lens 63 on the downstream side of the light shielding member 62. Therefore, at the position of the light shielding member 62, the reflection detecting light B2a It can pass through the surroundings (that is, the light passage part 62b) and reach the light receiving part 51a on the downstream side.

さらに、本実施形態の解析装置10では、第3の光学系60に偏光ビームスプリッタである第2ビームスプリッタ33が配置されることで、当該第2ビームスプリッタ33が第3の光学系60に入射して受光部51aへ向かう反射加熱光B1aの進行の多くを阻止すると共に反射検出光B2aの進行を許容するため、受光部51aに到達する反射検出光B2aの強度を十分確保することができると共に第3の光学系60に入り込む反射加熱光B1aの量を少なくすることができる。その結果、検出光測定手段50における反射検出光B2aの強度の測定結果に反射加熱光B1aの影響がより入り難くなる。   Further, in the analysis apparatus 10 of the present embodiment, the second beam splitter 33 that is a polarization beam splitter is disposed in the third optical system 60, so that the second beam splitter 33 enters the third optical system 60. In order to prevent much of the reflected heating light B1a from traveling toward the light receiving portion 51a and to allow the reflected detection light B2a to travel, the intensity of the reflected detection light B2a reaching the light receiving portion 51a can be sufficiently secured. The amount of the reflected heating light B1a that enters the third optical system 60 can be reduced. As a result, the influence of the reflected heating light B1a is less likely to enter the measurement result of the intensity of the reflected detection light B2a in the detection light measuring means 50.

また、本実施形態の解析装置10では、測定部位11aに照射される加熱光B1及び検出光B2を同軸又は略同軸とすることにより反射検出光B2aと同じ光路を反射加熱光B1aが通るため第3の光学系60に向う反射加熱光B1aの強度が大きくなるが、当該解析装置10のように測定部位11aに照射する加熱光B1の焦点をぼかすことで、反射検出光B2aの測定結果に反射加熱光B1aの影響が入るのを抑制することができる。即ち、当該解析装置10では、遮光部材62が配置されていなくても、測定部位11aで焦点を結ぶように加熱光B1が照射されたときよりも受光部51aに入射する反射加熱光B1aの強度が小さくなるため、反射検出光B2aの測定結果に反射加熱光B1aの影響が入るのを抑制することができ、本実施形態のように遮光部材62が配置されていれば、遮光部材62によって受光部51aへの到達を阻止され、反射検出光B2aの測定結果に反射加熱光B1aの影響が入るのをより抑制することができる。   Moreover, in the analysis apparatus 10 of this embodiment, since the heating light B1 and the detection light B2 irradiated on the measurement site 11a are coaxial or substantially coaxial, the reflected heating light B1a passes through the same optical path as the reflected detection light B2a. Although the intensity of the reflected heating light B1a toward the third optical system 60 increases, the reflected reflected light is reflected on the measurement result of the reflected detection light B2a by blurring the focus of the heating light B1 applied to the measurement site 11a as in the analysis apparatus 10. It is possible to suppress the influence of the heating light B1a. That is, in the analysis apparatus 10, even if the light blocking member 62 is not disposed, the intensity of the reflected heating light B1a incident on the light receiving unit 51a is more than that when the heating light B1 is irradiated so as to focus on the measurement site 11a. Therefore, the influence of the reflected heating light B1a on the measurement result of the reflected detection light B2a can be suppressed. If the light shielding member 62 is arranged as in the present embodiment, the light shielding member 62 receives light. It is possible to further prevent the influence of the reflected heating light B1a from entering the measurement result of the reflected detection light B2a by being prevented from reaching the portion 51a.

ここで、例えば、解析装置10において、測定部位11aに対して検出光B2を垂直に照射すると共に加熱光B1を入射角を大きくして照射する場合、薄膜試料11の厚さが変わると、薄膜試料11の表面と加熱用集光レンズ32及び検出用集光レンズ43との距離が変わるため、斜めから照射される加熱光B1の薄膜試料11表面上の照射位置が移動し、加熱光B1と検出光B2との照射位置がずれてしまう。そのため、このような解析装置では、薄膜試料11の厚みに応じて、加熱光B1の照射位置を調整する必要がある。しかし、本実施形態の解析装置10では、加熱光B1と検出光B2とを同軸又は略同軸にして測定部位11aに照射するため、薄膜試料11の厚さが変わっても、即ち、薄膜試料11の表面と各集光レンズ32,43との間隔が変わっても、加熱光B1と検出光B2との照射位置のずれが生じない。そのため、各照射位置の調整が不要になる。   Here, for example, when the analysis device 10 irradiates the measurement light 11 vertically with the detection light B2 and irradiates the heating light B1 with a large incident angle, the thin film sample 11 changes in thickness. Since the distance between the surface of the sample 11 and the condenser lens for heating 32 and the condenser lens for detection 43 changes, the irradiation position on the surface of the thin film sample 11 of the heating light B1 irradiated obliquely moves, and the heating light B1 and The irradiation position with the detection light B2 is shifted. Therefore, in such an analysis apparatus, it is necessary to adjust the irradiation position of the heating light B <b> 1 according to the thickness of the thin film sample 11. However, in the analysis apparatus 10 of the present embodiment, the heating light B1 and the detection light B2 are irradiated coaxially or substantially coaxially to the measurement site 11a, so that even if the thickness of the thin film sample 11 changes, that is, the thin film sample 11 Even if the distance between the surface of the lens and each of the condensing lenses 32 and 43 changes, the irradiation position of the heating light B1 and the detection light B2 does not shift. Therefore, adjustment of each irradiation position becomes unnecessary.

また、本実施形態の解析装置10では、一つの光放射手段20が加熱光B1と検出光B2との双方を放射するためにパルス光放射手段を個別に配置する必要がなくなり、これにより省コスト化及び装置の小型化が図られ、しかも異なるパルス光放射手段から放射されたパルス光の同期を図るといった困難な調整作業や複雑な調整回路等が不要となる。   Further, in the analysis apparatus 10 of the present embodiment, since one light emitting means 20 emits both the heating light B1 and the detection light B2, it is not necessary to separately arrange the pulse light emitting means, thereby reducing the cost. The size of the apparatus and the size of the apparatus can be reduced, and a complicated adjustment circuit or a complicated adjustment circuit for synchronizing the pulsed light emitted from different pulsed light emission means is not required.

また、本実施形態の解析装置10では、検出光B2が測定部位11aにおいて焦点を結ぶように照射されるため、測定部位11aでの検出光B2の強度が確保され、これにより当該部位11aの温度変化の測定精度が確保される。   Moreover, in the analysis apparatus 10 of this embodiment, since the detection light B2 is irradiated so as to focus on the measurement site 11a, the intensity of the detection light B2 at the measurement site 11a is ensured, and thereby the temperature of the site 11a. The measurement accuracy of changes is ensured.

尚、本発明の熱物性解析装置及び熱物性解析方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the thermophysical property analysis apparatus and thermophysical property analysis method of the present invention are not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

例えば、上記実施形態では、第3光学系60に入り込んだ反射加熱光B1aが受光部51aの上流側で焦点を結ぶように加熱用集光レンズ32が構成されている(即ち、加熱用集光レンズ32の焦点距離が設定されている)が、この構成に限定されない。即ち、加熱光B1が測定部位11aにおいて焦点を結ぶように集光する場合に比べ、第3の光学系60に入り込んで受光部51aに到達する反射加熱光B1aの強度が小さくなるように測定部位11aにおいて焦点をぼかし且つその照射範囲sに検出光の照射範囲を含むよう測定部位11aに向けて加熱光B1を集光するように構成されていればよい。   For example, in the above embodiment, the heating condensing lens 32 is configured so that the reflected heating light B1a that has entered the third optical system 60 is focused on the upstream side of the light receiving unit 51a (that is, the heating condensing lens 32). The focal length of the lens 32 is set), but is not limited to this configuration. That is, the measurement site is such that the intensity of the reflected heating light B1a that enters the third optical system 60 and reaches the light receiving portion 51a is smaller than when the heating light B1 is focused so as to be focused at the measurement site 11a. It is only necessary that the heating light B1 is condensed toward the measurement site 11a so that the focal point is blurred in 11a and the irradiation range s includes the detection light irradiation range.

このように構成されていれば、異なる集光レンズ32,43によって加熱光B1と検出光B2と測定部位11aにそれぞれ集光されることにより、第3の光学系60に導光される反射検出光B2aに混入した反射加熱光B1aがその一部しか検出光測定手段50の受光部51aに入射できず、これにより検出光測定手段50における反射検出光B2aの強度を測定した結果に反射加熱光B1aの影響(ノイズ)が入り難くなる。   If comprised in this way, the reflection detection guided to the 3rd optical system 60 by condensing by heating light B1, detection light B2, and the measurement site | part 11a by the different condensing lenses 32 and 43, respectively. Only a part of the reflected heating light B1a mixed in the light B2a can enter the light receiving portion 51a of the detection light measuring means 50. As a result, the reflected heating light B2a is measured as a result of measuring the intensity of the reflected detection light B2a. The influence (noise) of B1a is difficult to enter.

そのため、前記のように、上記実施形態の第3の光学系60において遮光部材62を取り除いても、反射加熱光B1aが一旦焦点位置(遮光部材62の配置位置)で集束したあと発散するためその一部しか受光部51aに入射できず、これにより受光部51aに入射する反射加熱光B1aの強度が十分小さくなって反射検出光B2aの測定結果に反射加熱光B1aの影響が入り難い。   Therefore, as described above, even if the light shielding member 62 is removed in the third optical system 60 of the above embodiment, the reflected heating light B1a diverges after being focused once at the focal position (arrangement position of the light shielding member 62). Only a part of the light can enter the light receiving portion 51a, whereby the intensity of the reflected heating light B1a incident on the light receiving portion 51a becomes sufficiently small, and the measurement result of the reflected detection light B2a is less likely to be affected by the reflected heating light B1a.

また、図4に示されるように、検出光B12のビーム径を受光部51aと同程度まで絞り、検出用集光レンズ143と加熱用集光レンズ132との焦点距離をそれぞれ調整することにより、反射検出光B12aが平行光の状態で受光部51aに入射し且つ反射加熱光B11aが受光部51aに向って発散し続けるように解析装置10が構成されてもよい。このように構成されても、受光部51aに入射する反射加熱光B11aの強度を十分小さくすることができ、これにより反射検出光B12aの測定結果に反射加熱光B11aの影響を入り難くすることができる。   Further, as shown in FIG. 4, the beam diameter of the detection light B12 is reduced to the same level as the light receiving portion 51a, and the focal lengths of the detection condenser lens 143 and the heating condenser lens 132 are adjusted, respectively. The analysis apparatus 10 may be configured such that the reflected detection light B12a is incident on the light receiving unit 51a in the state of parallel light and the reflected heating light B11a continues to diverge toward the light receiving unit 51a. Even if comprised in this way, the intensity | strength of the reflected heating light B11a which injects into the light-receiving part 51a can be made small enough, and it becomes difficult to enter into the measurement result of the reflected detection light B12a by the reflected heating light B11a. it can.

上記実施形態では第2ビームスプリッタ33が偏光ビームスプリッタで構成されているが、これに限定されず、第2ビームスプリッタ33がハーフミラーで構成され、第3ビームスプリッタ61が偏光ビームスプリッタで構成されてもよい。即ち、反射加熱光B1aが第3ビームスプリッタ61を通過すると共に反射検出光B2aが受光部51a側に反射されるように第3ビームスプリッタ61が構成されてもよい。   In the above embodiment, the second beam splitter 33 is configured by a polarization beam splitter. However, the present invention is not limited to this. The second beam splitter 33 is configured by a half mirror, and the third beam splitter 61 is configured by a polarization beam splitter. May be. That is, the third beam splitter 61 may be configured such that the reflected heating light B1a passes through the third beam splitter 61 and the reflected detection light B2a is reflected toward the light receiving portion 51a.

上記実施形態では、測定部位11aに対して加熱光B1と検出光B2とが同軸又は略同軸で照射されているが、これに限定されない。例えば、測定部位11aに対して検出光B2を垂直に照射すると共に加熱光B1を斜め方向から照射してもよい。この場合、薄膜試料11の表面には微視的には凹凸が存在するため、この凹凸により乱反射した反射加熱光B1aが第3の光学系60に入り込んで光検出器51に向うが、測定部位11aにおいて焦点がぼけるように加熱光を斜めから照射することで、測定部位11aで焦点を結ぶように斜めから照射した場合に比べ、光検出器51で測定される反射加熱光B1aの強度を弱くすることができる。   In the above embodiment, the heating light B1 and the detection light B2 are irradiated on the measurement site 11a coaxially or substantially coaxially, but the measurement site 11a is not limited to this. For example, the detection light B2 may be irradiated perpendicularly to the measurement site 11a and the heating light B1 may be irradiated from an oblique direction. In this case, since there are microscopic irregularities on the surface of the thin film sample 11, the reflected heating light B1a irregularly reflected by the irregularities enters the third optical system 60 toward the photodetector 51, but the measurement site The intensity of the reflected heating light B1a measured by the photodetector 51 is weakened by irradiating the heating light obliquely so that the focal point is defocused at 11a, compared to the case where the measurement site 11a is irradiated obliquely so as to focus. can do.

上記実施形態では、解析装置10は、加熱光B1を強度変調して測定部位11aに照射しているが、強度変調していない加熱光B1を測定部位11aに照射するように構成されてもよい。このように構成されても、反射検出光B2aの強度に基づき薄膜試料11の熱物性を解析することができる。   In the above embodiment, the analysis apparatus 10 irradiates the measurement site 11a with the intensity modulated with the heating light B1, but may be configured to irradiate the measurement site 11a with the heating light B1 that has not been intensity modulated. . Even if comprised in this way, the thermophysical property of the thin film sample 11 can be analyzed based on the intensity | strength of reflected detection light B2a.

上記実施形態の解析装置10では、1つのパルスレーザ21が用いられ、このパルスレーザ21から放射された基幹パルス光B0を分岐することで加熱光B1と検出光B2とが導出されているが、個別のパルスレーザ、即ち、加熱用パルスレーザ(加熱光放射手段)と検出用パルスレーザ(検出光放射手段)とが用いられてもよい。この場合、加熱用パルスレーザから放射される加熱光(加熱用パルス光)と検出用パルスレーザから放射される検出光(検出用パルス光)との同期を図る必要がある。   In the analysis apparatus 10 of the above embodiment, one pulse laser 21 is used, and the heating light B1 and the detection light B2 are derived by branching the basic pulse light B0 emitted from the pulse laser 21, Individual pulse lasers, that is, a heating pulse laser (heating light radiation means) and a detection pulse laser (detection light radiation means) may be used. In this case, it is necessary to synchronize the heating light (heating pulse light) emitted from the heating pulse laser and the detection light (detection pulse light) emitted from the detection pulse laser.

10 解析装置(熱物性解析装置)
11 薄膜試料(被測定物)
11a 測定部位
20 光放射手段
30 第1の光学系
32 加熱用集光レンズ(加熱用集光部材)
40 第2の光学系
43 検出用集光レンズ(検出用集光部材)
50 検出光測定手段
60 第3の光学系
B1 加熱光
B1a 反射加熱光(加熱光の反射光)
B2 検出光
B2a 反射検出光(検出光の反射光)
s 測定部位における加熱光の照射範囲
10 Analysis device (Thermophysical property analysis device)
11 Thin film sample (object to be measured)
11a Measurement site 20 Light emitting means 30 First optical system 32 Condensing lens for heating (condensing member for heating)
40 Second optical system 43 Condensing lens for detection (condensing member for detection)
50 Detection light measuring means 60 Third optical system B1 Heating light B1a Reflected heating light (reflected light of heating light)
B2 detection light B2a reflection detection light (reflection light of detection light)
s Irradiation range of the heating light at the measurement site

Claims (6)

被測定物表面の測定部位に光を照射し、その反射光に基づいて前記被測定物の熱物性についての解析を行う熱物性解析装置であって、
前記測定部位を加熱するための加熱光を放射する加熱光放射手段と、
前記加熱光を前記測定部位まで導光する第1の光学系と、
前記測定部位の温度変化を検出するための検出光を放射する検出光放射手段と、
前記検出光を前記測定部位まで導光する第2の光学系と、
前記測定部位からの前記検出光の反射光を受光する受光部を有し、この受光部に入射した前記検出光の反射光の強度を測定する検出光測定手段と、
前記測定部位からの前記検出光の反射光を前記検出光測定手段の受光部まで導光する第3の光学系とを備え、
前記第2の光学系が、前記測定部位で焦点を結ぶように前記検出光を集光する検出光用集光部材を有し、
前記第1の光学系、前記測定部位において前記加熱光が焦点を結ぶように集光する場合に比べ前記第3の光学系に導光されて前記受光部に到達する加熱光の反射光の強度が小さくなるように前記測定部位において焦点をぼかし且つその照射範囲に前記検出光の照射範囲が含まれるように加熱光を集光する加熱用集光部材を有すると共に、前記加熱用集光部材により集光された加熱光を前記測定部位に照射し、
前記加熱用集光部材は、前記測定部位からの前記加熱光の反射光が前記第3の光学系において前記受光部よりも上流側で焦点を結ぶように構成される、又は前記測定部位からの前記加熱光の反射光が前記第3の光学系の上流側で焦点を結ぶと共に前記第3の光学系において前記受光部に向かって発散するように構成されることを特徴とする熱物性解析装置。
A thermophysical property analyzing apparatus that irradiates light to a measurement site on the surface of the object to be measured and analyzes the thermophysical properties of the object to be measured based on the reflected light,
Heating light emitting means for emitting heating light for heating the measurement site;
A first optical system for guiding the heating light to the measurement site;
A detection light emitting means for emitting detection light for detecting a temperature change of the measurement site;
A second optical system for guiding the detection light to the measurement site;
A detection light measuring means for receiving reflected light of the detection light from the measurement site, and measuring the intensity of reflected light of the detection light incident on the light reception unit;
A third optical system for guiding reflected light of the detection light from the measurement site to a light receiving unit of the detection light measurement means;
It said second optical system, possess the detection light collecting light detecting optical light focusing member so as to focus at the measuring site,
The first optical system, wherein the heating light in the measurement site of the third heat of the reflected light reaching the light receiving portion is guided to the optical system than in the case of converging to focus strength while have a heating condensing member for condensing the heating light to include irradiation range of the detection light and the irradiation range defocused at said measurement site to be smaller, the heating condenser Irradiate the measurement site with heating light collected by the member,
The heating condensing member is configured such that the reflected light of the heating light from the measurement site is focused on the upstream side of the light receiving unit in the third optical system, or from the measurement site The thermal property analyzing apparatus characterized in that the reflected light of the heating light is focused on the upstream side of the third optical system and is diverged toward the light receiving unit in the third optical system. .
請求項1に記載の熱物性解析装置において、
前記第1の光学系は、前記加熱用集光部材により集光された加熱光を前記検出用集光部材により集光された検出光に同軸又は略同軸となるように合流させて前記測定部位に照射することを特徴とする熱物性解析装置。
In the thermophysical property analyzer according to claim 1,
The first optical system combines the heating light collected by the heating condensing member with the detection light condensed by the detecting condensing member so as to be coaxial or substantially coaxial with the measurement site. A thermophysical property analyzing apparatus characterized by irradiating a laser beam.
請求項2に記載の熱物性解析装置において、
記第3の光学系は、前記加熱光の反射光の焦点位置に集光された前記加熱光の反射光の進行を遮る遮光部と、この遮光部を支持しその周囲を光が通過可能な光通過部とを有する遮光部材を備えることを特徴とする熱物性解析装置。
In the thermophysical property analyzer according to claim 2,
Before Symbol third optical system includes a light shielding portion for shielding the progress of the reflected light focused on the focal position of the reflected light of the heating light the heating light, the periphery thereof to support the light shielding part of light can pass A thermophysical property analyzing apparatus comprising a light shielding member having a light passing portion.
請求項2又は3に記載の熱物性解析装置において、
前記第1の光学系は、前記加熱光を第1の偏光方向に偏光する第1の偏光手段を有し、
前記第2の光学系は、前記検出光を前記第1の偏光方向と異なる第2の偏光方向に偏光する第2の偏光手段を有し、
前記第3の光学系は、当該第3の光学系において前記第2の偏光方向に偏光された光の下流側への進行を許容すると共に前記第1の偏光方向に偏光された光の下流側への進行を阻止する選択手段を有することを特徴とする熱物性解析装置。
In the thermophysical property analyzer according to claim 2 or 3,
The first optical system includes a first polarization unit that polarizes the heating light in a first polarization direction,
The second optical system includes a second polarization unit that polarizes the detection light in a second polarization direction different from the first polarization direction,
The third optical system allows the light polarized in the second polarization direction to travel downstream in the third optical system and downstream of the light polarized in the first polarization direction. The thermophysical property analysis apparatus characterized by having a selection means for preventing the progress of the process.
請求項1乃至4のいずれか1項に記載の熱物性解析装置において、
前記加熱光放射手段と前記検出光放射手段とが前記加熱光及び前記検出光の双方を放射する共通の光放射手段によって構成され、
この光放射手段は、所定周期のパルス光を放射するパルス光放射部と、この放射部から放射された前記パルス光を前記加熱光と前記検出光とに分岐し、この分岐した加熱光を前記第1の光学系に入射させると共に前記分岐した検出光を前記第2の光学系に入射させる分岐手段とを有することを特徴とする熱物性解析装置。
In the thermophysical property analyzer according to any one of claims 1 to 4,
The heating light emitting means and the detection light emitting means are constituted by a common light emitting means for emitting both the heating light and the detection light,
The light radiating means divides the pulsed light radiating part radiating pulsed light of a predetermined period, the pulsed light radiated from the radiating part into the heating light and the detection light, and the branched heating light is A thermophysical property analysis apparatus comprising: a branching unit that causes the detection light to be incident on the first optical system and the branched detection light to be incident on the second optical system.
被測定物の測定部位に光を照射し、その反射光に基づいて前記被測定物の熱物性についての解析を行う熱物性解析方法であって、
前記測定部位の温度変化を測定するための検出光を当該測定部位で焦点を結ぶように集光させて照射すると共に、前記測定部位を加熱するための加熱光を当該測定部位に照射する照射工程と、
前記測定部位からの前記検出光の反射光を前記測定部位とは異なる測定位置まで導光する導光工程と、
この導光工程で前記測定位置に導光された前記検出光の反射光の強度を測定する測定工程とを備え、
前記照射工程では、前記測定部位において前記加熱光が焦点を結ぶように集光する場合に比べ前記導光工程において導光され前記測定位置に到達する加熱光の反射光の強度が小さくなるように前記測定部位において焦点をぼかし且つその照射範囲に前記検出光の照射範囲が含まれ、並びに、前記測定部で反射した前記加熱光が前記導光工程において前記検出光の反射光と共に前記測定位置に向けて導光されたときに当該測定位置よりも上流側で焦点を結ぶように加熱光を集光し、この集光された加熱光を前記測定部位に照射することを特徴とする熱物性解析方法。
A thermophysical property analysis method for irradiating a measurement site of a measurement object with light and analyzing the thermal property of the measurement object based on the reflected light,
Irradiation step of condensing and irradiating detection light for measuring a temperature change of the measurement site so as to focus on the measurement site, and irradiating the measurement site with heating light for heating the measurement site When,
A light guide step for guiding reflected light of the detection light from the measurement site to a measurement position different from the measurement site;
A measurement step of measuring the intensity of reflected light of the detection light guided to the measurement position in this light guide step,
Wherein in the irradiating step, so that the intensity of the reflected light of the heating light to reach the measuring position is guided in the light guide step as compared with the case where the heating light at the measurement site is condensed to focus decreases And the measurement light is defocused , and the irradiation range of the detection light is included in the irradiation range , and the heating light reflected by the measurement unit is measured together with the reflected light of the detection light in the light guiding step. Heat is condensed so as to focus on the upstream side of the measurement position when guided toward the position, and the measurement site is irradiated with the condensed heating light. Physical property analysis method.
JP2009155124A 2009-06-30 2009-06-30 Thermophysical property analysis apparatus and thermophysical property analysis method Expired - Fee Related JP5149874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155124A JP5149874B2 (en) 2009-06-30 2009-06-30 Thermophysical property analysis apparatus and thermophysical property analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155124A JP5149874B2 (en) 2009-06-30 2009-06-30 Thermophysical property analysis apparatus and thermophysical property analysis method

Publications (2)

Publication Number Publication Date
JP2011012991A JP2011012991A (en) 2011-01-20
JP5149874B2 true JP5149874B2 (en) 2013-02-20

Family

ID=43592063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155124A Expired - Fee Related JP5149874B2 (en) 2009-06-30 2009-06-30 Thermophysical property analysis apparatus and thermophysical property analysis method

Country Status (1)

Country Link
JP (1) JP5149874B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343076C2 (en) * 1993-12-16 1997-04-03 Phototherm Dr Petry Gmbh Device for photothermal testing of a surface of an object in particular being moved
JP3252155B2 (en) * 1999-09-14 2002-01-28 独立行政法人産業技術総合研究所 Thermal diffusivity measurement method by thermoreflectance method
JP4284284B2 (en) * 2005-02-14 2009-06-24 株式会社神戸製鋼所 Photothermal conversion measuring apparatus and method
JP5086863B2 (en) * 2007-08-29 2012-11-28 株式会社神戸製鋼所 Thermophysical property evaluation equipment, measurement method for thermophysical property evaluation

Also Published As

Publication number Publication date
JP2011012991A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP4790560B2 (en) Single terahertz wave time waveform measurement device
CN113365773B (en) Method and apparatus for controlled processing of workpieces
JP2008119716A (en) Laser beam machining apparatus, and focus maintaining method therein
US20130100461A1 (en) Methods and apparatuses for position and force detection
WO2008039825A2 (en) Detection system for birefringence measurement
JP2013002859A (en) Inspection apparatus and inspection method using terahertz wave
JP2015078985A (en) Surface pattern defect measuring apparatus of transparent substrate
KR20150130440A (en) Beam position control for an extreme ultraviolet light source
KR101647062B1 (en) Plasma diagnostic system by using multiple pass Thomson scattering
KR101279578B1 (en) Auto focusing apparatus for laser processing and auto focusing method using the same
JP5149874B2 (en) Thermophysical property analysis apparatus and thermophysical property analysis method
KR102143187B1 (en) Laser processing apparatus and laser processing method using the same
JP2008122202A (en) Beam observation device
TWI414385B (en) Real time monitoring system for depth of laser processing and method thereof
JP5502564B2 (en) Electromagnetic wave detection device
JP7039371B2 (en) Laser-excited ultrasonic generator, laser ultrasonic inspection device, and laser ultrasonic inspection method
JP5086863B2 (en) Thermophysical property evaluation equipment, measurement method for thermophysical property evaluation
JP2008119715A (en) Laser beam machining apparatus
JP2008216150A (en) Inspection device and method of transparent object
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
CN104236715A (en) Method and device for measuring polarization-state spatial distribution of light beams at focal point
KR20130112107A (en) Auto focusing apparatus for laser processing and auto focusing method using the same
CN112268860A (en) Dual-wavelength femtosecond pumping detection heat reflection system
CN112268861A (en) Dual-wavelength femtosecond pumping detection heat reflection system
CN105424602A (en) Variable-angle optical element surface absorption characteristic measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5149874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees